Reguläre Anfangszahl mit Limeszahlindex = で

黒田 武 暁 (東京女高師)

標題 = 掲げた順序数が集合論で取り扱うべきではないと
又 = 矛盾の数の考察が矛盾ない説因 = ルフトハ
考察ラ雑な = ルフトハ、コノ数ノ存在ヲ主張出来ルメヲ
集合論ノ原理系ヲ見当リマケン。ドコカ＝プリムシタラ御教
示願ヒタイ次第デス。

ソレデコノ数が存在スルヲ＝集合論ヲ拡張スル＝ハ
Zermelo, Grenzzahlen und Mengenbereich
(Fund. Math. 16, 1930) = 関節シテ次ヲマクナコト
が考ヘラレマス。形づくヲノ便宜ノタメ＝ヨク知タレテキ
ル言義ノ定義カラ始メタク思ヒマス。以下ギリシヤ字ハ皆順
序数。

1. \(\alpha, \beta, \gamma \ldots \) が極限数デアルトキ、適當ナ順序数
 ノ列

\[\beta_0, \beta_1, \ldots, \beta_\nu, \ldots, \nu < \beta. \]

---19---
二対シテ

\[\lim_{n \to \beta} \gamma_n = \lambda \]

トナルナラノアクセスメahnトフォンfinal デアルト云フ。

II. 自分自身トノミ konfinal デアル数トregulärト云フ (例ヘベ \(\omega \))。

III. 超限順序数ヲ数ノ類ニ合ツテ各類ニAnfangszahlヲ大キサノ順ニ

\[\omega, \omega_1, \ldots, \omega_\omega, \ldots \omega_1, \ldots, \omega_\omega, \ldots \]

トスルトキ, \(\omega \)ノIndex がLimeszahl デアルスウ

テクレオreguläre Anfangszahl トReguläre

Anfangszahl mit Limeszahl Index スハ

exorbitante Zahl ト云フ。

Exorbitante Zahl が存在デルスウ=スルタメニ

Zermelo-Fraenkel-V. Neumann, ノ命题ニ

次ノ命题ヲンハルヘル。

IV. 任意ノ集合 \(m = \) 対シテ次ノ条件ヲ満たスル集合 \(M \)

ガウトモーツハ存在スル。

i) \(m \in M \),

ii) \(\alpha \in M \)ナラバ

1) Potenzmenge \(\mathcal{U} \alpha \in M \),

2) Vereinigungsmenge \(\bigcup \alpha \in M \),

3) Aussonderungsmenge \(\alpha \setminus \omega(x) \in M \),
実数列の和と積の定義

\[\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n \]

\[\prod_{n=1}^{\infty} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n \]

実数列の収束性と発散性

収束性: 実数列 \(\{a_n\} \) が収束するとき、

\[\lim_{n \to \infty} a_n = L \]

発散性: 実数列 \(\{a_n\} \) が発散するとき、

\[\lim_{n \to \infty} a_n \text{ が定義されない} \]

実数列の和の性質

1. 有限個の和: 実数列 \(\{a_n\} \) が有限個の和を持つとき、

\[\sum_{n=1}^{N} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n \]

2. 有限個の積: 実数列 \(\{a_n\} \) が有限個の積を持つとき、

\[\prod_{n=1}^{N} a_n = \lim_{N \to \infty} \prod_{n=1}^{N} a_n \]

実数列の積の性質

1. 実数列 \(\{a_n\} \) の積が1に収束するとき、

\[\prod_{n=1}^{\infty} a_n = 1 \]

2. 実数列 \(\{a_n\} \) の積が0に収束するとき、

\[\prod_{n=1}^{\infty} a_n = 0 \]

実数列の極限の応用

実数列の極限の応用として、

\[\lim_{n \to \infty} (a_n - b_n) = L\]

実数列の極限の性質

1. 実数列の収束性の性質: 実数列 \(\{a_n\} \) が収束するとき、

\[\lim_{n \to \infty} a_n = L \]

2. 実数列の発散性の性質: 実数列 \(\{a_n\} \) が発散するとき、

\[\lim_{n \to \infty} a_n \text{ が定義されない} \]

実数列の極限の応用

実数列の極限の応用として、

\[\lim_{n \to \infty} (a_n - b_n) = L\]

実数列の極限の性質

1. 実数列の収束性の性質: 実数列 \(\{a_n\} \) が収束するとき、

\[\lim_{n \to \infty} a_n = L \]

2. 実数列の発散性の性質: 実数列 \(\{a_n\} \) が発散するとき、

\[\lim_{n \to \infty} a_n \text{ が定義されない} \]
ナル数列 α_n の ν で、存在する。ソシテ α_n で元デアルカ
ラ α_n は M が属ス (ソレハ α_n で元 + と (1) ヨツテ α_n で元、
$\nu \in N$ と カマリ、且ッ N で元ハソナ定義ト IV, ii), =) ト
= ヨツテ M で元、從ッテ ν 質片 α_n か IV, ii), ハ = ヨツ
テ M で元デアル）。同様 $\rho (\rho$ カラ $\rho \in M$、從ッテ IV,
ii), =) ヨツテ

$A = \mathcal{M}(\alpha_n; \nu \in \rho)$

が、従ッテ IV, ii), ロ = ヨツテ γA が M が属ス。然ル =
(2) = ヨツテ

$\gamma A = \pi$

故 = π が M が属ス。従ッテ N が属ス。除しソレハ (1)
= 反スル。故 = π へ regulär デアル。第一 = $\pi = \omega_{\alpha+1}$,
トスレハ ω_{α} で元デアルカ ω_{α} が，従ッテ $\nu \omega_{\alpha}$ が $M =

\nu \omega_{\alpha} \mid > | \omega_{\alpha} |$

\nu \omega_{\alpha} \mid \geq | \omega_{\alpha+1} | = | \pi |

従ッテ π が N が属スコトナリ (1) = 反スル。故 = π

Limeszahlindex が持ッカ Anfangszahl
デアル。

Exorbitante Zahl が少クトモーツ存在スルコ
トナ要求スルソナナ IV は於テ「任意ノ集合 m = 非シテ」
ハ不要ナワケガス。實ハ凡テノ exorbitante Zahl
元トスル集合ガ存在スナイ程非常＝多くノ exorbitante
zahl が存在シテモライタイノデ「任意ノ------」ヲツケタ次第デノソレハ IV。＝於テ任意ノ順序数 η で m = トレベ、λ = 對スル M = 對應スル Anfangszahl ρ ハ η ヨリ大キクナリ、従ツテ如何程デモ大キイ exorbitante Zahl が存在スルコト＝ナリマス。従ツテ欠テノ exorbitante Zahl が「集合」ハ「発散」シテ集合ガハアリ得ナイコト＝ナリマス。

以上ハ大体ノ着ヲ大ザッパデスガ、公理カラ厳密＝當ツテ見テ意外ナ困難＝遭遇スルコトガナケレバ exorbitante Zahl が Mengenbereich ＝造入ツ来ルダラヲト思ヒマス。 且シ IV. ハ多スギルコトヲ假定シテキルカラ知レタセンシYS IV, 他ノ公理ト非常＝趣キ異＝シテキルノデソノ点＝問題カモ知レマセン。集合ヲ無暗＝覆クスル例ノ矛盾ガ起リマスガ IV = ヨツテ擴ゲテモ大々々大ト考ヘマス。