163. *Berandete h-Mannigfaltigkeit*,
*Homologiegruppe* = 就テ

小松醇邦 (昭大)

Berandete Mannigfaltigkeit = 就イテ一般的圵性質ハ Wesentlich ツミノポメルハ容易ナコト
デハナイ。此処ノミノハ今迄＝此ノ方面デ得テテ居ル結果，
Mayer - Vietoris 関係式，Portriagin
Dualitätssatz 等ヲ適當＝組ミ合セタモノ＝過ハナイ。

Berandete h-Mannigfaltigkeit $M_i^{n+1}$
ノ境界 ノ判次元集合体 $M_i^n$ カラ成ルトスル。$M_i^{n+1}$
ノベッチ数 $p_i^n, M_i^n$ ノベッチ数 $p_i^n$ 且ッ $M_i^n$
デハ homolog 0 トナラナイ Zyklen デ $M_i^{n+1}$ デハ
homolog 0 トスル Zyklen ハ作ル群ノベッチ数
(階級, rank) $\gamma^2$ トスル。

定理1. $\sum_{i=1}^{m} p_i^n = \gamma^n + \gamma^{n-2}$

— 8 —
証明. \( M_i^{r+1} \) は homöomorph である。このため、\( M_2^{r+1} \) と \( M_i^{r+1} \) の境界は相違を持たない点を示す。点 \( p \) で \( p \) は \( \mathbb{S}^{r+1} \) 上の点である。\( p \) で \( \mathbb{S}^{r+1} \) 上の閉集合体 \( M_i^{r+1} \) が存在し、コンプレックス数 \( \mathbb{C}^{r} \) と対応する。

特に境界 \( M_i^{r+1} \) へのHomologiegruppe \( \Lambda M_i^{r+1} \) へのHomologiegruppe は「Gruppe = homomorph = abbilden」という関係を示す。

\( \varphi \) は Homomorphism, Kern, Gruppe, rank である。

次に \( M_i^{r+1} - M_i^{r+1} \) へのHomologiegruppe は \( M_i^{r+1} - M_i^{r+1} \) への homöomorph である。\( M_i^{r+1} - M_i^{r+1} \) は \( \mathbb{S}^{r+1} \) 上の閉集合体 \( M_i^{r+1} \) と \( M_2^{r+1} \) の境界で相違を持たない点を示す。特に境界の \( \Lambda M_i^{r+1} \) への Homologiegruppe は \( \Lambda M_i^{r+1} \) への Homologiegruppe は「Gruppe = homomorph = abbilden」という関係を示す。

\( \mathbb{S}^{r+1} \) 上の \( \Lambda M_i^{r+1} \) への Homologiegruppe は「Gruppe = homomorph = abbilden」という関係を示す。

特に境界の \( \mathbb{S}^{r+1} \) 上の閉集合体 \( M_i^{r+1} \) が存在し、コンプレックス数 \( \mathbb{C}^{r} \) と対応する。

Pontrjagrin / Dualitätssatz = ヨーレバ

\[
\gamma^{n-r} = \sum_{i=1}^{m} p_{i}^{r} - \gamma^{r} \]

定理II. \( p' = \sum p_{i}' - \gamma' \) である。
記定理 \( n=1 \) \( p' \geq \frac{1}{2} \sum_{i} p_{i}' \)

証明. Trivial.

定理 III.

1. \( p' \geq \frac{1}{2} \left( \sum_{i=1}^{m} p_{i}' - \gamma^2 - (m-1) \right) \)

2. \( q_{r}^{n} = p_{r}^{n} + p_{r}^{n-r+1} \)

3. \( p_{r}^{n} - p_{r}^{n-r+1} = r_{n-r} - r_{r-l} \)

4. \( n \) even \( 2 \chi(M_{i}^{n}) = \chi(M_{i}^{n}) \)
   \( n \) odd \( 2 \chi(M_{i}^{n}) = \chi(M_{i}^{n}) \)

出處 = \( \chi \) - Euler - Poincaréschke Charakteristik

証明. \( M_{i}^{n+1} + M_{i}^{n+1} = M_{i}^{n+1} + \eta \) Verdopplung =

Mayer Victoris の関係が導べら

\( q_{r}^{n} = 2 p_{r}^{n} - \sum p_{i}^{n} + r_{r} + r_{r-l} \)

1) \( \gamma = m-1, q_{r}^{n} \geq 0 \) \( \eta \) 入レベラ直チ = 出し。

2) \( q_{r}^{n} = q_{r}^{n-r+1} \) 及び定理 1 に代へば
   \( 2 q_{r}^{n} = q_{r}^{n} + q_{r}^{n-r+1} = 2 p_{r}^{n} + 2 p_{r}^{n-r+1} \)

3) \( q_{r}^{n} - q_{r}^{n-r+1} \) ヨリ出し。

4) \( \sum_{h=0}^{n+1} (-1)^{h} q_{r}^{n} \) 作ツタ結果 = 過ぎナイ。

終り＝著者加ヘテ置ケベキハ昨年七月本於上數學談話會

第ニ号デーチ取扱ツタ H. Seifert の定理 (Math. Zeit. 35 Bd.) 擴張ハ此処ノ定理 II デアツヘ、ソノマ
マノ形が高次元の場合=拡張へ出るナ。アソコデハ何故か
\[ y^r = r^{2n-r} \] とシタ誤=基本ソク。

尚ホソハ2号が取扱ツナ \[ p' = \frac{1}{2} \sum p_i' \] attain
スル example な証明サ方基本下手。要スル=ユークリッド3次元空間ノ中ガ v_m 個ノ任意ノ閉曲面デ境セラレタ空間
部カノネ次元ベッチ数 \[ p' = \frac{1}{2} \sum_{i=1}^{m} p_i' \] デアルガ、ソノ証明ハ
Knoten / Außenraum / Homologiegruppe ヴ
求メル方法ヲ少し modify スレビヨイノデ唯ノ演習問題=
過ぎナイ。

尚スソコデ書イテオイタコト即チ \[ p' = \frac{1}{2} \sum p_i' \] attain スル berandete Raum ハ断面ムノ=
限ルカト云フノデアルガ、ソレハ限ラナイトコト明カデアル、
三次元ユークリッド空間ノ中= einbetten 出来タモノノ=任意ノーツノ PoAunckare 空間ヲ所謂 Vereinigung ス
デモハノ R^3 デ realisieren スルコト不可能、且ベッ
チ数 8 变ラナイ。

ポアンカレ空間トハ任意ノ Zylinder が homolog 0
トチリ而モ三次元球 S^3 トハ homöomorph デナイモノ、
何ハイクラデモアル。

Vereinigung トハ im Kleinen デ Vollkugel
ヲ西方ゲーツゲツ取リ除キ Rand トシテノ球面フニツ
identifizieren スルコト。