100. 多次元空間曲線の射影微分幾何 = 研究

蟹谷乗展

紙上談話倉= ヨツテ種々面白イ研究ノ話ヲ知ラシテ頂ク
コトハ特= 各々遠隔ノ地= 居ル者= 取ツテ大変有難イコトヲ
アリマス。執筆ヲフサツタ諸賢並＝編輯ヲ勞ヲ取ツテ下サ
ル阪大ノ教官ノ各位＝厚ク御礼申シテガマス。

人ノ話ベカリ関イテ白発フ黒ヲ居ルモノ義理ヲ思い様
＝思ヒマスノへ此関考ヘタ居ルコトヲ披露致シマス。

微分幾何 = 於ケル空間曲線ノ tangent, principal,
normal, binormal ア作ツタ動三角錐＝相當スレモノフ
射影微分幾何ア作レントイフ問題。是レハ例ヘヘ Fubini,
Čech. / G. P. D. イテテハルモノハ可恨複雑ナ＝ソドロ

— 4 —
＝言ヘナイ。
私ハ次ノ様＝取リマシテ、空間曲線Γノ一点X＝於ケルtangent.Γ, Γ' tangent 画7 developable surface 7D, 之レヲX＝於ケル osculating plane ヴ切ツテ切ロノ曲線ヲK(詳シテ於ヘヘ切ロハKトシ), X＝於ケルK, osculating conic 7K_2 トシ, 先づて上＝一箇X_1 ヲ取リ, X_1 カテK_2 = ヒイス切線ノ切点ヲX_2 トシ, 此ノ切線＝対シテX＝於ケルΓ' 7 osculating linear complex = 同シテ共転ノ直線l上＝一箇X_3 ヲ取リ此等ノ四点X, X_1, X_2, X_3 ヴ repère mobile ヴ顶点＝取リマシテ。

實際利用スル場合＝ハ上ノ様＝点X, X_1 カテ上ノ任意ノ点トシテオク方が便利デスガ、ハッキリ定メナイト思ヘバ例ヘバ直線XX_2 がK) projective normal = ナル様＝スレバ宜シイ。次＝点X_3 テスガl上＝八幾何学的＝種々ノ点ヲ変メルコトガ出来ル。私ハ點X_3 トシテpoint de coincidence ハ名付ケテモノヲ取リマシテ。斯様＝repère mobile ヴ取ツテ曲線ノ一般的性質ヲ論シモノレノラ＝昨年放題工大記要＝藤本シマシタ。其ノ後ノレヲ次元空間ノ曲線＝拡張ソシテトシテ苦心シテケレドも種々ノ困難＝遭遇シテ一旦中止シタノデシタが此ノ頃又取リ出シテやツ チ見ベレシタ。今度ハ少々目鼻がツキカウガズ。先づ解釈的＝言フト上ノ様＝repère mobile ヴ取ルレクトハ空間曲線

--- 5 ---
\[Z^2 = \frac{1}{2} (Z')^2 + a_5 (Z')^5 + \cdots, \]
\[Z^3 = \frac{1}{6} (Z')^6 + b_6 (Z')^6 + \cdots \]

タイプ形 = 导数コドム (\(Z', Z^2, Z^3 \) 八曲线ノ主ノ点) non-homogeneous coordinates. \(x_3 \) ポイント de coincidence = 取ルコト：\(a_5 = b_6 \) トナルメウニ = トルコトデリマスガ \(n \) 次元空間曲線 (\(S_n \) 内ノ曲線 \(\mathcal{M} \) 上ノ一点 \(x \) ニテテル tangent ト上ノ一点 \(x_1 \), \(x \) ニテテル \(\mathcal{M} \) osculating plane ト上ノ一点 \(x_2 \) (上ノ \(x_2 \) ナイ様) + 以下同様), 一般 \(x \) ニテテル \(\mathcal{M} \) 接触スル \(S \) 上ノ一点 \(x_c \), 最後 = 接触 \(S_{n-1} \) 上ノ \(x_n \) ナイ様 \(S_n \) 一点 \(x_n = \text{値シテリレ} \) 等 \(n+1 \) 面ノ点 \(x, x_1, \ldots, x_n \) \(\mathcal{M} \) 頂点 = 持ツreper = 依頼シテリ方程式

\[Z^i = \frac{1}{i!} \left((Z')^i + b_{i+1} (Z')^{i+1} + \cdots \right) \quad (i = 2, \ldots, n) \]

タイプ形 = 写ケル。

次ノ条件ガ破ラヌミウ = reper / transformation

\(b_{n+1} = b_{n} = \cdots = b_3 = 0, \)
\(b_{n+2} = b_{n+1} = \cdots = b_4 = 0, \)
\(b_{n+3} = \cdots = b_5 = 0, \)
\(b_{n+4} = \cdots = b_6 = 0, \)
\(\cdots \)
\(b_2 = 0. \)
+\tau \equiv \sum_{l=n+1, n+2, n+3} b_{n+1}^{n-1}, b_{n+2}^{n-1}, b_{n+3}^{n-1} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係}

\frac{b_{n+1}^{n-1}}{b_{n+2}^{n-1}}, \frac{b_{n+2}^{n-1}}{b_{n+3}^{n-1}} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係}

\frac{b_{n+1}^{n-2}}{b_{n+2}^{n-2}} = 0 \quad \frac{b_{n+2}^{n-2}}{b_{n+3}^{n-2}} = 0 \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係} \quad \text{等}= \text{ニツノ関係}

\sum_{\sigma=0}^{l-1} \frac{(l-2)!}{(\sigma)! (l-2-\sigma)!} \frac{(n+2-\sigma)!}{(n-\sigma)!} = 0

\sum_{\sigma=1}^{l-1} \frac{(l-2)!}{(\sigma-1)! (l-1-\sigma)! (n-\sigma)!} = 0

(l = 3, \ldots, n-1),

\sum_{\sigma=0}^{n-2} \frac{(n-2)!}{(\sigma)! (n-2-\sigma)! (n-\sigma)!} = 0

\sum_{\sigma=1}^{n+\tau} \frac{(n-2)!}{(\sigma-1)! (n-1-\sigma)! (n-\sigma)!} = 0

-- 7 --
トナル模=定メ得レコトラ知リマシタ。兹＝てハ陳成ハ任意
ノ正整数ヲアツテヨイノアスガ実際コノrepéreヲ使フ場合
＝ハテ＝2トスル方ガ都合ガ良イヤウェス。第二＝此ノ定メ
方ノ幾何学的解釈、第三＝此ノrepéreヲ使ツア曲線ヲ論
ルト言フコト＝ナルノアスガ此等＝ツイテハ至ガ十餘出未テ
居リマセントモノシシ穂マッチカリ改メテ披露シマス。尚水
上＝述べタ解析的ノ部分ノ鮮シイ証明八近ノ旅順工大記要＝
発表シマス。

（3月1日受取）

8