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Abstract. In this paper, we define a Heegaard splitting to be
quasi-strongly keen if the pair of vertices in the curve complex
realizing the Hempel distance is unique and the set of all geodesics
connecting them is finite. Focusing on the case where the Hempel
distance is 2, we prove that every quasi-strongly keen genus-g (≥ 3)
Heegaard splitting is in fact strongly keen, meaning that there
exists exactly one geodesic connecting the pair.

1. Introduction

The curve complex C(S), introduced by Harvey [1], plays a funda-
mental and central role in low-dimensional topology, particularly in
the study of the Heegaard splittings of 3-manifolds and their Goeritz
groups. A Heegaard splitting is a classical and powerful method for
describing 3-manifolds by decomposing them into two handlebodies.
To measure the complexity of such a splitting, Hempel introduced the
notion of Hempel distance [2], which is defined as the distance in the
curve complex C(S) between the disk complexes associated with the
handlebodies.

In order to refine the notion of Hempel distance, Ido–Jang–Kobayashi [3]
introduced the concept of keen Heegaard splittings, where the pair of
vertices in the respective disk complexes realizing the Hempel distance
is unique. They further defined strongly keen Heegaard splittings,
where there exists exactly one geodesic connecting the pair. They
proved the existence of both strongly keen Heegaard splittings and
keen Heegaard splittings with infinitely many geodesics realizing the
Hempel distance (hence, they are not strongly keen).

In this paper, we consider an intermediate refinement, namely, Hee-
gaard splittings for which the pair of vertices realizing the Hempel
distance is unique, but the set of all geodesics connecting the pair is
finite. We refer to such splittings as quasi-strongly keen. This property
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is closely related to the finiteness of geodesics in the curve complex,
which can be described in terms of vertex pairs of type F and strongly
type F, the definitions of which are given in Subsection 2.2.

Using this terminology, the central question we address in this paper
is the following:

Question : Does there exist a Heegaard splitting that is quasi-strongly
keen but not strongly keen?

In a previous work [6], the author showed that there exist distance-2
vertex pairs in the curve complex which are of type F but not strongly
type F. (We note that in [5], Matsuda, Shiga and the author gave a
vast refinement of the results in [6]. In fact they gave an explicit upper
bounds of the number of the geodesics joining a type F pair of vertices
with distance 2, and gave concrete constructions realizing various finite
counts.)

This result suggests that a distance 2 Heegaard splitting that is quasi-
strongly keen but not strongly keen might exist. However, in this paper,
we show that such an expectation does not hold in the category of
distance 2 and genus at least 2 Heegaard splittings. Our main result is
the following:

Theorem 1.1. Every quasi-strongly keen genus-g (≥ 3) Heegaard split-
ting with distance 2 is strongly keen.

REMARK 1.2. Theorem 1.1 does not hold for low-genus cases. When
g = 1, for example, the genus-1 Heegaard splitting of the lens space
L(5, 2) admits exactly two geodesics between the disk complexes, since
the curve complex of the torus is the Farey graph (for details, see
Appendix B in [4]). When g = 2, it is known that any Heegaard
splitting is not keen (see Remark 3.2 in [3]). Thus, the assumption
g ≥ 3 is essential.

2. Preliminaries.

2.1. Curve complex. Let S be an orientable surface of genus g ≥ 0
with c ≥ 0 boundary components. In this subsection, we recall the
definition of the curve complex associated to S.

A simple closed curve in S means a closed connected 1-manifold
embedded in the interior of S. A simple closed curve α is said to be
inessential if either α bounds a disk in S, or α is parallel to a component
of ∂S. Otherwise, α is called essential. Two simple closed curves are
said to be isotopic if there exists an ambient isotopy of S carrying one
to the other. The surface S is said to be simple if it does not admit
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any essential simple closed curve. Otherwise, we say S is non-simple.
We say that S is sporadic if it does not contain any pair of non-isotopic
disjoint essential simple closed curves. Otherwise, S is said to be non-
sporadic. It is elementary to show that S is a sporadic, non-simple
surface if and only if S is homeomorphic to either a torus with at most
one boundary component, or a sphere with 4 boundary components.

DEFINITION 2.1. Suppose that S is non-sporadic. The curve complex
C(S) is the simplicial complex defined as follows: its vertices are the
isotopy classes of essential simple closed curves in S. A collection
of k + 1 mutually distinct vertices spans a k-simplex if they can be
represented by pairwise disjoint curves in S.

DEFINITION 2.2. Suppose that S is a sporadic, non-simple surface.
Then the curve complex C(S) is defined as follows: its vertices are
the isotopy classes of essential simple closed curves in S. When S is
a torus with at most one boundary component, a collection of k +
1 distinct vertices spans a k-simplex if each pair can be realized to
intersect exactly once. When S is a 4-punctured sphere, a collection of
k+1 distinct vertices spans a k-simplex if each pair can be realized to
intersect twice.

We denote by C0(S) the 0-skeleton of C(S). Throughout this paper,
for a vertex ℓ ∈ C0(S), we often identify ℓ with a geometric representa-
tive in its isotopy class. Given a collection {ℓ0, ℓ1, . . . , ℓn} of vertices in
C(S), we always assume that the geometric intersection number |ℓi∩ℓj|
is minimal in their isotopy classes for any i ̸= j.

The distance dS(α, β) between two vertices α and β in C(S) is defined
as the minimal number of 1-simplices in any simplicial path connecting
them. A path [ℓ0, ℓ1, . . . , ℓn] in C(S) is called a geodesic if n = dS(ℓ0, ℓn).

2.2. Vertex pairs in C(S) with finite geodesic set. Let S be a
non-sporadic surface, and let C(S) be defined as in Section 2.1.

DEFINITION 2.3. A pair of vertices (α, β) in the curve complex C(S)
is said to be of type F if the set of all geodesics connecting α and β
consists of finite number of elements. Moreover, (α, β) is said to be of
strongly type F if there exists exactly one geodesic connecting α and β.

REMARK 2.4. In [3], the condition that (α, β) is strongly type F is
described as the unique geodesic from α to β.
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Throughout this paper, for a submanifold Y of a manifold X, we
denote by NX(Y ) a regular neighborhood of Y in X.

Suppose that a pair (ℓ0, ℓ2) ∈ C0(S) × C0(S) satisfies the following
two conditions:

• dS(ℓ0, ℓ2) = 2,
• (ℓ0, ℓ2) is of type F but not strongly type F.

That is, there exist only finitely many (≥ 2) geodesics of distance 2
connecting ℓ0 and ℓ2. We denote them by

[ℓ0, ℓ
(i)
1 , ℓ2] (i = 1, . . . , n).

Lemma 2.5. Under the above notations, we have the following: For

any 1 ≤ i < j ≤ n, the curves ℓ
(i)
1 and ℓ

(j)
1 are disjoint; that is,

ℓ
(i)
1 ∩ ℓ

(j)
1 = ∅.

Proof. Suppose, for a contradiction, that there exist ℓ
(i)
1 , ℓ

(j)
1 such that

ℓ
(i)
1 ∩ ℓ

(j)
1 ̸= ∅. Let ∂(NS(ℓ

(i)
1 ∪ ℓ

(j)
1 )) be the boundary of a regular

neighborhood of ℓ
(i)
1 ∪ℓ(j)1 in S. If some components of the boundary are

inessential in S, denote them by e1, . . . , ep. For each such component
ek, define a region Ek bounded by ek as follows:

• If ek bounds a disk in S, let Ek be that disk.
• If ek is parallel to a boundary component of S, let Ek be the
annulus it cobounds with the boundary component.

Let E =
⋃p

k=1Ek, and define X = NS(ℓ
(i)
1 ∪ ℓ

(j)
1 ) ∪ E . Then X is a

non-simple subsurface of S such that each component of ∂X is essential
in S. In fact, if X is simple, then every essential simple closed curve

in X is isotopic to a boundary component of X, implying ℓ
(i)
1 and ℓ

(j)
1

are disjoint, which contradicts our assumption.
Since X is non-simple, it is easy to show that there exist infinitely

many pairwise distinct essential simple closed curves m
(1)
1 ,m

(2)
1 , . . . in

X. Then, for each k, the path [ℓ0,m
(k)
1 , ℓ2] is a geodesic of distance 2

connecting ℓ0 and ℓ2, contradicting the assumption that there are only
finitely many such geodesics.

This completes the proof of the lemma. □

2.3. Heegaard splitting. In this subsection, we recall the notion of
Heegaard splittings and introduce several related concepts concerning
geodesics in the curve complex.

A handlebody is a compact 3-manifold that is homeomorphic to a
3-ball with a finite number of 1-handles attached. Let M be a closed
orientable 3-manifold. A Heegaard splitting of M is a decomposition
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M = V1 ∪S V2, where V1 and V2 are handlebodies such that V1 ∩ V2 =
∂V1 = ∂V2 = S. The surface S is called the Heegaard surface, and its
genus is called the genus of the Heegaard splitting.

Let V be a handlebody. The disk complex D(V ) is the full sub-
complex of the curve complex C(∂V ) whose vertices correspond to the
isotopy classes of essential simple closed curves in ∂V that bound prop-
erly embedded disks in V . A collection of k + 1 distinct such vertices
forms a k-simplex in D(V ) if they can be represented by pairwise dis-
joint curves.

DEFINITION 2.6 (Hempel [2]). Let V1 ∪S V2 be a Heegaard splitting
of a closed orientable 3-manifold. The Hempel distance of the splitting
is defined by

d(V1∪SV2) := dS(D(V1),D(V2)) = min{dS(α, β) | α ∈ D(V1), β ∈ D(V2)}.

DEFINITION 2.7. A Heegaard splitting V1 ∪S V2 is said to be keen
if there exists a unique pair (α, β) ∈ D(V1) × D(V2) that realizes the
Hempel distance.

Note that even if a Heegaard splitting is keen, the geodesics in C(S)
connecting the unique pair (α, β) may not be unique.

DEFINITION 2.8. Let V1 ∪S V2 be a keen Heegaard splitting. We
say that the splitting is quasi-strongly keen if the unique pair (α, β)
realizing the Hempel distance is of type F in C(S). If the pair (α, β) is
of strongly type F, then we say that the splitting is strongly keen.

3. Proof of main result

In this section, we give a proof of the main result of this paper
(Theorem 1.1).

Assume, for contradiction, that there exists a quasi-strongly keen
Heegaard splitting V1 ∪S V2 of distance 2 and genus at least 3 that is
not strongly keen. Then, there exist two geodesics [ℓ0, ℓ1, ℓ2], [ℓ0, ℓ

′
1, ℓ2]

in C(S) realizing the Hempel distance.

Lemma 3.1. Under the above notation, the following holds:

(1) ℓ0, ℓ1, and ℓ′1 are all non-separating in S.
(2) The union ℓ0 ∪ ℓ1 (resp. ℓ0 ∪ ℓ′1) separates S.

Proof. (1) Suppose that ℓ0 is separating in S. Let D0 be a disk prop-
erly embedded in V1 bounded by ℓ0. Then D0 separates V1 into two
components, say V ′

1 and V ′′
1 . We suppose that ℓ1 ⊂ ∂V ′′

1 . Then we
can find a disk D′

0 properly embedded in V ′
1 such that D0 ∩ D′

0 = ∅
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and D′
0 is not isotopic to D0. Then the path [∂D′

0, ℓ1, ℓ2] is a geodesic,
contradicting the keenness of the splitting.

Now suppose ℓ1 is separating in S. Then ℓ1 separates S into two com-
ponents, say S1 and S2. Since ℓ0 ∩ ℓ2 ̸= ∅, we may assume both curves
lie in S1. Since S2 has genus at least one, it is non-simple. Thus, we
can find infinitely many pairwise distinct essential simple closed curves

m
(1)
1 ,m

(2)
1 , . . . in S2. Then, for each k, the path [ℓ0,m

(k)
1 , ℓ2] is a geo-

desic of distance 2 connecting ℓ0 and ℓ2, contradicting the assumption
that there are only finitely many such geodesics.

The same argument applies symmetrically to ℓ′1.
(2) Suppose that ℓ0 ∪ ℓ1 is non-separating in S. Then there exists

an essential simple closed curve ℓ∗ intersecting ℓ0 ∪ ℓ1 transversely in
one point contained in ℓ0. Let D0 be a disk properly embedded in V1

bounded by ℓ0. Let D∗
0 be a disk properly embedded in V1, obtained

by a band sum of two parallel copies of the compressing disk D0 ⊂ V1

along ℓ∗. Then the path [∂D∗
0, ℓ1, ℓ2] is a geodesic, contradicting the

keenness of the splitting.
The case for ℓ0 ∪ ℓ′1 follows similarly. □

By Lemma 3.1(2), the union ℓ0∪ℓ1 separates S into two components,
say P1 and P∗. By Lemma 2.5, we have ℓ1 ∩ ℓ′1 = ∅, and we also recall
that ℓ0 ∩ ℓ′1 = ∅. These show that ℓ′1 is contained in either P1 or P∗;
assume it lies in P∗.
Since ℓ0 ∪ ℓ′1 also separates S, and ℓ′1 is non-separating, it follows

that ℓ′1 must separate P∗ into two components, say P2 and P3, where
ℓ0 ⊂ ∂P2 and ℓ1 ⊂ ∂P3. Thus, the surface S is decomposed into three
components as S = P1∪P2∪P3, with ∂P1 = ℓ0∪ℓ1, ∂P2 = ℓ0∪ℓ′1, ∂P3 =
ℓ1 ∪ ℓ′1.
At this point, note that if the genus of S is 3, then both P1 and P∗

have genus 1. In this case, there is no way to choose a non-separating
curve ℓ′1 in P∗ that further separates it into two components as required.
This contradicts the assumption that such ℓ′1 exists. Therefore, we may
assume the genus of S is at least 4 from now on.

Since ℓ1 and ℓ′1 are not isotopic, the genus of P3 is at least one.
Therefore, there exist infinitely many pairwise non-isotopic essential

simple closed curves m
(1)
1 ,m

(2)
1 , . . . in P3. Furthermore, since ℓ0∩ℓ2 ̸= ∅

and ℓ2 ∩ (ℓ1 ∪ ℓ′1) = ∅, it follows that ℓ2 ∩ P3 = ∅. Therefore, for each

k, the path [ℓ0,m
(k)
1 , ℓ2] is a geodesic of distance 2 connecting ℓ0 and

ℓ2, contradicting the assumption that there are only finitely many such
geodesics.

This completes the proof of Theorem 1.1.
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