Polars of Pin® groups
and related compact Lie groups. II
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Abstract

Abstract. We explicitly describe polars of Ss° groups and covering
homomorphisms between related compact Lie groups with Pin® groups.

1 Introduction

In the previous paper [3] the author explicitely describe polars of Pin®(n) and
related compact Lie groups

Spin®(n), Pin(n), Spin(n), 0°(n), SO°(n),0(n), SO(n).

For a compact Lie group G with identity element e, each connected component
of {g € G| g> = e} is called a polar of G. The geometric background of the
polar is described in Nagano [1], Tasaki [3] and the references cited in [3]. In
this paper we investigate the polars of Ss®(4m), the quotient groups of O¢(n)
and covering homomorphisms between related compact Lie groups. Polars of
Ss(4m) and the quotient groups of O(n) are described in [1]. These results seem
to be usefull for considering maximal antipodal subgroups of them and maximal
antipodal sets in such polars.

We use notions and symbols described in the previous paper [3]. Let e, ..., eqm
be the standad orthonormal basis of R*™. In the Cliffod algebra Cly,, we can
see that epy,,) = e1€z--- ey is in the center of Clyy, and e[24m] = 1. Thus we
can consider the quotient group Ss(4m) = Spin(4m)/(ejam)), which is called
semi-spin group. Here (z) denotes the subgroup generated by an element z in
a group. Using Spin®(4m) we can define Ss°(4m) = Spin®(4m)/(ejam)). The
natural projection o : Spin(4m) — Ss(4m) is a double covering homomorphism
with kernel ker o = (€[4,,,). We can consider a double covering homomorphism
o¢: Spin‘(4m) — Ss°(4m) with kernel ker 0¢ = (e[4,))-
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2 Preliminaries

We will prepare some notation and other information to state the main theorem
(Theorem 3.1) of this paper.
In order to describe polars of Ss¢(4m) we recall the symbols defined in [3]:

Py(4m) = {v1 -+ vg € Pin(4m) | v; € RY™, (v;,v;) = 6;; (i, 5 € [k])},

Py (4m) = {1}, By (4m) = {-1},

Py, (4m) = {epm) b Pry(4m) = {—epum},
where 0 < k < 4m. Py(4m) is diffeomorphic to the real oriented Grassmann
manifold G (R*™) consisting of oriented subspaces of dimension &k in R*™.

The transformation of Ga,,(R*™) corresponding to the transformation of
Py (4m) induced by the product of efy,, is the transformation that associates

the elements of Ga,y,(R*™) with their orthogonal complements with suitable

orientations. Let Gfm(R‘“") denote the quotient space obtained by dividing
Gam (R*™) by the transformation mentioned above. Pap,(41m))/(€pm)) is diffeo-

morphic to GZ, (R4™).
Moreover we define

ei,j(0) = cosf +sinfe;e; € Spin(dm) (1 <4,j <4m, i#j),

~ 1 1
Jom = €1,2 <47T) €34 <47T> Ct€4m—1,4m <7T) ,
., 3 1
Jom = €1,2 <47T) €3,4 <4ﬂ') “ttC4m—1,4m <7T) ;

RY(4m) = {xJoma™! | z € Spin(4m)},

R™(4m) = {zJ},, =1 | z € Spin(4m)},
R(4m) = {g € SO(4m) | ¢* = —1am}

I N

in order to describe polars of Ss®(4m). R(4m) is the manifold consisting of all
orthogonal complex structures on R*™. Since any element of R(4m) is alter-
nating, we can consider the Pfaffian Pf of it. Tanaka and the author [2] showed
that

R(4m) = RT(4m) U R~ (4m)
is a decomposition to cnnected components, where

R*(4m) = {g € R(4m) | Pf(g) = 1},

R~ (4m) = {g € R(4m) | Pf(g) = —1}.
We can see that RT(4m) is diffeomorphic to SO(4m)/U(2m), which is the
compact symmetric space denoted by DIII(2m). Let p : Spin(4m) — SO(4m)

denote the standard covering homomorphism. In the proof of Theorem 3.1 we
will show that

pH(RY(4m)) = R* (4m)U(=R " (4m)), p~ (R~ (4m)) = R~ (4m)U(~R" (4m))



are decompositions to connected components and Rt (4m), R~ (4m) are diffeo-
morphic to DITI(2m).

3 Polars of Ss¢ groups

In this section we explicitly describe polars of Ss¢(4m).

Theorem 3.1. Let e denote the identity element of Ss(4m) and Ss(4m). The
polars of Ss¢(4m) and Ss(4m) are as follows:

F(e,Ss¢(4m)) = o“(Py (4m)) U o“(Py (4m))
U |J  oWTPuo(dm)u ) o(Puw(4m))

1<k<(m+1)/2 1<k<m/2
o¢(R*(4m)) Uo®(—R* (4m)) U o¢(vV—1R™ (4m)),
F(e, Ss(4m)) = (P (4m)) U o(Py (4m))
u U o(Pu(dm))
1<k<m/2
Uo®(R*(4m)) U o®(—R*(4m)).

o¢(Py (4m)) and o¢(Py (4m)) are poles and the other polars are as follows:

)
0°(VTPup_a(4m)) = Gy 2 (RI™) (1 <k < (m+1)/2),
(/TP (4m) & GE.(R*) (o)
0°(Pyy(4m)) = Gup(R™™) (1< b < my2),
0 (Pom () = G, (R™™)  (1meven),
o°(R*(4m)) = o ( R*(4m)) = DITI(2m)/{%1sm},
o°(vV=1R™(4m)) = DIII(2m).
Proof. We define tori T; (I < 2m) in Spin(4m) and Ty (I < 2m) in Spin©(4m)

by
Ty ={e12(01) --eq—1,20(00) | O1,...,00 € R}, T =U(1)T;.

We can see that Ty, is a maximal torus of Spin(4m) and that T, is a maximal
torus of Spin®(4m). Their images o(Tsy,) and o°(Ts,,) are maximal tori of
Ss(4m) and Ss¢(4m) respectively.

We determine {o(£) | € € Tom, 0(£)? = (1)} in order to obtain all polars
of Ss(4m). We take & € Toy,. Since ker o = (e[4,,)), the condition o(§)? = o(1)
is equivalent to £2 = 1 or €[4m]- We consider two cases € =1and ¢ = €[4m)
separately.

(1) The case where £2 = 1. We have already considered such £ in [3]. We
obtained

{€ € Spin°(4m) | € =1}



m m—1
= Py (4m) U Py (4m) U | ) V=TPux_2(4m) U | Pux(4m)
k=1 k=1
U P, (4m) U Py, (4m)

in Corollary 4.2 in [3]. Since the image of a polar in Spin®(4m) under ¢ is a
polar in Ss¢(4m), all of polars in {c¢(&) | £ € Spin®(4m), &% = 1} are

{0¢(V—1Py_2(4m)) | 1 <k <m}U{o°(Py(4m)) |1 <k <m — 1}
U{o(Py (4m)), o(Py (4m)), o¢(Py, (4m)), 0°(Py,, (4m))}.

In this description we have

o®(Py (4m)) = 0°(eum Py (4m)) = a°(P;,(4m)),
o°(Py (4m)) = 0 (e Py (4m)) = 0°(Py, (4m)).
We need to give 0¢(v/—1Pyi—2(4m)) and o°(Pyx(4m)) a similar consideration.
We note that epy,,) Pr(4m) = Pyyn_r(4m) for 0 < k < 4m. It is sufficient to
consider Py (4m) for k < 2m.

First we consider o¢(v/—1Py;_2(4m)) for 2 < 4k — 2 < 2m. The condition
where 2 < 4k — 2 < 2m is equivalent to that where 1 < k < (m + 1)/2. If
1<k < (m+1)/2, we have

JC(\/j1P4k_2(4m)) = ac(e[4m] \/T1P4k_2(4m))
= 0°(V=1Pum—ap+2(4m)).

Moreover, if 1 < k < (m+1)/2, 0¢(v/—1Pyx—2(4m)) and 0¢(/—1 Py —ar12(4m))
are diffeomorphic to Py;_o(4m). When m is odd, there can be the case where
k = (m+1)/2. In this case 4m — 4k + 2 = 4k — 2 and ¢° is a double cover-
ing from v/—1Py,,(4m) onto o¢(v/—1Py,(4m)). Therefore 0¢(v/—1 Py, (4m)) =
Pom (4m)) /(€am))-

Second we consider o¢(Py(4m)) for 4 < 4k < 2m. The condition where
4 < 4k < 2m is equivalent to that where 1 <k <m/2. If 1 <k < m/2, we have

o (Pyk(4m)) = 0°(efam) Par(4m)) = 0°(Pagm—ar(4m)).

Moreover, if 1 < k < m/2, 0¢(Py(4m)) and 0°(Pym—ax(4m)) are diffeomorphic
to Py (4m). When m is even, there can be the case where k = m/2. In this case
4dm — 4k = 4k and o€ is a double covering from Py, (4m) onto o¢(Py,y,(4m)).
Therefore 0°( P (41m)) 22 Py (4m)) /(e (am)) = GE (RY™).

Therefore all of polars in {o¢(£) | € € Spin©(4m),&? = 1} are

{0°(V=1Py—o(4m)) | 1 < k < (m +1)/2}
U{o°(Py(4m)) | 1 < k < m/2}
U {o°(Py" (4m)), o°(Fy (4m))}.



Here o°(Py (4m)),0¢(Py (4m)) are poles. 1f 1 < k < (m + 1)/2, we have
0(V/—=1Py_2(4m)) = Pyi_2(4m) =2 Gyp_o(R*™). When m is odd,

0°(V=1Pon (4m)) = Py (4m)) /(epam)) = G, (R*™).

If 1 < k < m/2, we have 0°(Py(4m)) = Py.(4m) = Gup(R*™). When m is
even,
0° (P (4m)) = Poy (4m) /(epam)) = G, (R'™).

(2) The case where 2 = efy,,,). We consider {€ € T5,, | € = e[am)}. We set
¢ =ugforu e U(1) and g € Toy,. The element £2 = u?g? is equal to €[4,y if and

only if u? =1, g* = €pamm) or u® = —1, g> = —€[4y). The equality u* =1 holds
if and only if uw = +1. The equality u? = —1 holds if and only if u = £/—1.
We separately consider the conditions ¢? = e[y,,) and g* = —epy,) for g € Top,.

We set g = e12(01) - €am—1,4m(02m).
(2.1) The case where g = €4m] and u = £1. The condition g% = €[4m] 18
equivalent to
1,2(201) - - €am—1,4m(202m) = €[am-

Moreover this is equivalent to
(cos 2601 + sin 2601 e1e3) - - - (cos 202, + sin 205, €4 —1€4m) = €[am]-

If this holds, then sin 26 - - - sin 265, = 1. Conversely if sin 26y - - - sin 265, = 1
holds, then sin26; = +1 for any ¢ € [2m]. These imply cos26; = 0 for any
€ [2m]. Hence

(cos 20y +sin201eqez) - - - (cos 202y, 4 sin 209 €4m —1€4m) = €[am]
holds. Therefore we have

{£ €Dy | = €[4m] }
= {6172(91) e e4m—174m(92m) ‘ sin 201 e sin 202m = 1}
= {61)2(91) c '64m_1,4m(02m) | sin 2(% = il,#{i ‘ sin 2(% = —1} : even}

= {el,z(el) - eam1.4m(O2m) ‘2@- €QZ+1)2,# {z | 20; € (47 + 3)5} : even}
2 2
= {61,2(91) - eam—1,4m(O2m)

3 1
= iHe2i71,2i <4ﬂ'> H €25-1,2j (47T> IC [2m], #I . even

i€l jem\I

T , T
0; € (2Z + 1)1,#{2 | 6; € <4Z+3)Z} .even}

1 1
= :I;Hﬁ(—l—i—egi,legi) H ﬁ(l—i—egj,legj) I C [2m], #I : even

icl jelzm\I
Here we note that for a € Z

T
€2i—1,2i ((QG + 1)Z>



€2i-1,2i (i?‘() = %(1 + e2i-1€2;) (a =0 (mod4)),
_)ezici (%77) = %(—1 + egi—1€2;) (a =1 (mod4)),
B €2i—1,2 (%r) = %(—1 —egi—1€2;) (a =2 (mod4)),
€2i-1,2i (277) = %(1 — egi_16€3;) (a = 3 (mod4)).

We set

Iy = E ‘01} . r(0) = exp O — {;’rj ; ‘Czlsnﬂ € 50(2) (9€R)

We can see
p (€2i—1,2i ((261 + 1)1)) P
r(37)=J1  (a=0 (modd)),
_r (37) ==/ (a=1(mod4)),
r(3r)=J1  (a=2 (modd)),
r(ir)=—-Ji (a=3(modd)),

where (eg;_1,€2;) is the subspace sppaned by es;_1,€e9; in R*™. Therefore we
obtain

p({€ € Tom | € = elam})
61J1

.y e = +1 (i € [2m])

#{i € [2m]|e = —1} : even
€2mJ1

This shows that Pf(p({& € Tom | £ = €[am)})) = {1}. The image p({£ € Tom |
£ = eum)}) and its conjugate orbit by SO(4m) are contained in R(4m). All
connected components of R(4m) are R (4m) and R~ (4m). Hence p({¢ € Toy, |
£ = eum}) C RT(4m) and

U 9p({€ € Tom | € = epumy})g™" € R (4m).
geSO(4m)

Let Jo,, = diag(Jy,...,J1) € SO(4m). We can see Jo,, = p(jgm) and

Jom € {E € Tom | € = epmi}t,  Jom € p({€ € Tom | € = epamy})-

Moreover Ja,, € Rt (4m) and R (4m) is an SO(4m)-conjugate orbit of Jo,.
Hence we have

U 9p({€ € Tom | € = e )™ " = R (4m).
geSO(4m)

We consider the left hand side of this equation.

U 9p({€ € Tom | € = efamy})g ™

geSO(4m)



= U p@pd€ € Tam | € = e o)™

xeSpin(4m)

U pefe € To | € = cpim}a™)

x€Spin(4m)

14 U LE{f S T2m | 52 = 6[4m]}$_1

z€Spin(4m)
= p({€ € Spin(4m) | € = epm)}).

Since ey, is in the center of Spin(4m), for any & € Spin(4m) with £ = €[4m]
and any x € Spin(4m), we have

(zéx™1)? = 22271 = me[4m]m_1 = €lm]-
Therefore we have
p({€ € Spin(4m) | € = elum)}) = R* (4m).
This implies {¢ € Spin(4m) | € = epum)} C p~ ' (RT (4m)).

We consider whether {¢ € Spin(4m) | € = €[4} is connected or not. Let
I = diag(—1,1) € O(2). Since

I I L LIt [-h
I Jp Ll LIt~ — |’

we can see that all elements of p({€ € Topm, | £ = e[um)}) are SO(4m)-conjugate.
If we express the above equation as an image of p, we get the following equation.

(1)) o ) ) oo ()
(o () 3)

A direct calculation shows

1 1 1 LY (B 3
€1,3 27‘(’ €1,2 47'( €3.4 471' €1,3 271' =€1,2 47'(' €34 47T .
Therefore each element of {£ € Ty, | €2 = e[4m]} is conjugate to Jom OF —Jam.
This implies that

{€ € Spin(4m) | € = ey} = R (4m) U (—R* (4m))
is a decomposition to connected components. From the above argument we have

=L (B (4m)) = {€ € Spin(4m) | € = ey} = RH(4m) U (=R* (4m)



and the right hand side is a decomposition to connected components.
p: RY(4m) — R*(4m), p:—R*(4m) — R*(4m)
are diffeomorphisms and
R*(4m) = —R*(4m) = DIII(2m)
holds. In this case polars are
{o°(R* (4m)), 0 (—R* (4m))}.

A direct calculation shows
~ 3 3 =
€[4m] Jom = €1,2 171' ©r€4m—1,4m Zﬂ— €ER (4m)

and we obtain efy,,) R (4m) = R* (4m). Moreover

~ 3 3
pleam)J2m) = p (61,2 (47T> ©tCam—1,4m (47r>)

= diag(_le ceey _Jl) =—Jo = —p(j2m)
and for any z € Spin(4m)
plepmrTamz™") = p(x)p(epam)Jam)p(@) ™" = p(x)(—p(Jom))p(z) !
= fp(acjgmxfl).

Thus we obtain ~
plemi€) = —p(€) (€ € R*(4m)).

Hence 0° : Rt (4m) — o°(R*(4m)) corresponds to the double covering DITI(2m) —
DIII(2m)/{£14,,} by the diffecomorphism p : R (4m) — R*(4m) = DIII(2m).
Therefore ¢¢ : RT(4m) — o¢(R*(4m)) is also a double covering. Similarly
0¢: —RT(4m) — 0¢(—RT(4m)) is also a double covering and we have

o®(R*(4m)) = 0°(—RT (4m)) = DIIT(2m)/{£14m}.

(2.2) The case where g*> = —epy,,) and u = +v/—1. The condition ¢* =
—€[4m) 18 equivalent to

e1,2(201) - €am—1,4m(202m) = —€[am)-
Moreover this is equivalent to
(cos 20y + sin 26 e1ez) - - - (coS 202, + 8N 202, €41 —1€4m) = —€[4m)-

If this holds, then sin 20 - - - sin 265, = —1. Conversely if sin 26 - - - sin 26,,, =
—1 holds, then sin26; = +1 for any ¢ € [2m]. These imply cos 26, = 0 for any
i € [2m]. Hence

(COS 201 + sin 2916162) cee (COS 205, + sin 292m€4m_164m) = —€[4m)]



holds. Therefore we have

(€€, | &= —€[4m) }
= {61,2(91) te €4m—1,4m(92m) \ sin 260, - - - sin 209,, = —1}

= {61)2(91) .. '€4m71,4m(92m) ‘ sin 291' = il,#{i ‘ sin 291’ = —1} : Odd}
- {61,2(91) - eamet1.4m(O2m) ‘291- c@z+1)I, 4 {z | 20; € (4Z+3)g} :odd}

2
= {61,2(91) .- 'e4m71,4m(92m) 92 S (QZ—F 1)%,# {Z | 92 S (4Z+ 3)%} . Odd}

3 1
{igeziui (47T> H €25-1,2j (47T>

JE2m\I

IC[2m], #I: odd}

1 1
=+ —=(—1+eaire2) —=(1+ eaj_1e2;)

je2m]\I

I C2m], #I : odd}.

Therefore we obtain

p({{ € Tom | 62 = 76[4m]})
61J1

_ . € ==£1 (i € 2m])

#{ie[2m]|e =—1}:0dd

62mJ1

This shows that Pf(p({¢ € Tom | €% = —epm)})) = {—1}. Hence p({¢ € Tom, |
2= —e[4m]}) C R~ (4m) and

U 9p({€ € Tom | € = —em})g™" € B~ (4m).
geSO(4m)

Let J5,, = diag(—Jy1, J1,...,J1) € SO(4m). We can see J5, , = p(jém) and
Jom € {6 € Tom | € = —eum)}s  Jom € p({E € Tom | € = —epam})-

Moreover J5,. € R~ (4m) and R~ (4m) is an SO(4m)-conjugate orbit of J;, .
Hence we have

U gp({£ € Topm, | 52 = _e[4m]})g_1 = R_(4m)'
9€S0(4m)

We consider the left hand side of this equation.
U  9p({€ € Tom | € = —epam g™
geSO(4m)

= U o@pll € Ton | € = —efmPpla) ™

z€Spin(4m)



= U p@f € Tom | € = ey}

xeSpin(4m)

=p U a{€ € Tom | € = —epmy ™!

z€Spin(4m)
= p({€ € Spin(4m) | € = —epam}).-

Since —e[yy,) is in the center of Spin(dm), for any £ € Spin(4m) with £ =
—€[4m) and any x € Spin(4m), we have

(z€x™1)? = 227" = 2(—epm))2 ™" = —eum)-
Therefore we have
pl{€ € Spin(4m) | € = el }) = B~ (4m).
This implies {¢ € Spin(4m) | € = —eum} C p~ (R~ (4m)).
A similar argument to the previous case shows that each element of {£ €
Tom | €2 = —€pam} is conjugate to J3,, or —Jj,,. This implies that
{¢ € Spin(4m) | € = —epum} = R~ (4m) U (=R~ (4m))
is a decomposition to connected components. From the above argument we have
p L (R (4m)) = {€ € Spin(4m) | € = —epum} = R~ (4m) U (—R~ (4m)
and the right hand side is a decomposition to connected components.
p: R (4m) — R~ (4m), p:—R (4m) — R~ (4m)
are diffeomorphisms and
R™(4m) = —R™(4m) = DIII(2m)
holds. In this case polars are

{o¢(V=1R™(4m)), 0°(—v/—1R™ (4m))}.

A direct calculation shows

- 5 3 3 .
e[4m]J§m =e19 (47r) €34 <47r) e Cdm—1,4m <47r) € —R™ (4m)

and we obtain e[4m]R’ (4m) = —R~(4m). Moreover
. 5 3 3
P(€[4m]J£m) =p <61,2 <47T) €3,4 (47T> ©r€am—1,4m <47T>)
= diag(J1,—J1,...,—J1) = —p(J3,,)

10



and for any = € Spin(4m)

plepam @™ ") = p(x) pleam Jom)p(@) ™1 = p(x)(=p(Jh,,))p(x) "
= _p(xjémxil)'

Thus we obtain

plepmé) = —p(&) (€ € R™(4m)).

Hence ¢ : R~ (4m) — 0°(R~(4m)) is a diffeomorphism. Similarly ¢¢ : —R™ (4m) —

o°(—R~(4m)) is also a diffeomorphism.

o°(R™(4m)) = 0°(— R~ (4m)) = DIII(2m).

4 Polars of O°(n)/{£1,}

In this section we explicitly describe polars of O°(n)/{+1,}.

In order to describe polars of O°(n)/{£1,} w recall the symbols defined in
[3]. For 0 < k < n, we set x = diag(—1,...,—1,1,...,1) € O(n), where the
number of —1’s is k, and

Qi(n) = {garg™" | g € O(n)}
= {g € O(n) | ¢’s eigenvalues and multiplicities : (—1,k),(1,n — k)}.

We can see that

{geOn)|g*=1,} = U Qxr(n).

0<k<n

Theorem 4.1. Let m, : O°(n) — O¢%(n)/{x1,} be a natural projection. The
polars of O°¢(n)/{£1,} are as follows:

F (51,27 (0°(n))
= U m@m)u | m(VIQkm)

0<k<n 0<k<n
U (RT(n)) Umn(R™(n)) U, (V—=1RY(n)) Un,(V—1R™ (n)),
where RY(n), R™(n) appear only if n is even.

Proof. We take a element 7, (zg) (z € U(1),g € O(n)) of F(s,, (1, ™ (0%(n))).
Since 7, (29)? = m,(1,), we have 22¢g? = +1,,. This is equivalent to the condition
22 = 41 and ¢ = +1,,. Hence we obtain

F(sr,(1,),™(0%(n)))
=m.({g € O(n) | ¢* = £1,}) Um,(V=1{g € O(n) | ¢* = £1,,})

and the statement of the theorem. O
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