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Abstract

Abstract. We explicitly describe polars of Ssc groups and covering
homomorphisms between related compact Lie groups with Pinc groups.

1 Introduction

In the previous paper [3] the author explicitely describe polars of Pinc(n) and
related compact Lie groups

Spinc(n), P in(n), Spin(n), Oc(n), SOc(n), O(n), SO(n).

For a compact Lie group G with identity element e, each connected component
of {g ∈ G | g2 = e} is called a polar of G. The geometric background of the
polar is described in Nagano [1], Tasaki [3] and the references cited in [3]. In
this paper we investigate the polars of Ssc(4m), the quotient groups of Oc(n)
and covering homomorphisms between related compact Lie groups. Polars of
Ss(4m) and the quotient groups of O(n) are described in [1]. These results seem
to be usefull for considering maximal antipodal subgroups of them and maximal
antipodal sets in such polars.

We use notions and symbols described in the previous paper [3]. Let e1, . . . , e4m
be the standad orthonormal basis of R4m. In the Cliffod algebra Cl4m we can
see that e[4m] = e1e2 · · · e4m is in the center of Cl4m and e2[4m] = 1. Thus we

can consider the quotient group Ss(4m) = Spin(4m)/⟨e[4m]⟩, which is called
semi-spin group. Here ⟨x⟩ denotes the subgroup generated by an element x in
a group. Using Spinc(4m) we can define Ssc(4m) = Spinc(4m)/⟨e[4m]⟩. The
natural projection σ : Spin(4m) → Ss(4m) is a double covering homomorphism
with kernel ker σ = ⟨e[4m]⟩. We can consider a double covering homomorphism
σc : Spinc(4m) → Ssc(4m) with kernel ker σc = ⟨e[4m]⟩.
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2 Preliminaries

We will prepare some notation and other information to state the main theorem
(Theorem 3.1) of this paper.

In order to describe polars of Ssc(4m) we recall the symbols defined in [3]:

Pk(4m) = {v1 · · · vk ∈ Pin(4m) | vi ∈ R4m, ⟨vi, vj⟩ = δij (i, j ∈ [k])},
P+
0 (4m) = {1}, P−

0 (4m) = {−1},
P+
4m(4m) = {e[4m]}, P−

4m(4m) = {−e[4m]},

where 0 < k < 4m. Pk(4m) is diffeomorphic to the real oriented Grassmann
manifold G̃k(R4m) consisting of oriented subspaces of dimension k in R4m.

The transformation of G̃2m(R4m) corresponding to the transformation of
P2m(4m) induced by the product of e[4m] is the transformation that associates

the elements of G̃2m(R4m) with their orthogonal complements with suitable

orientations. Let G#
2m(R4m) denote the quotient space obtained by dividing

G̃2m(R4m) by the transformation mentioned above. P2m(4m))/⟨e[4m]⟩ is diffeo-
morphic to G#

2m(R4m).
Moreover we define

ei,j(θ) = cos θ + sin θeiej ∈ Spin(4m) (1 ≤ i, j ≤ 4m, i ̸= j),

J̃2m = e1,2

(
1

4
π

)
e3,4

(
1

4
π

)
· · · e4m−1,4m

(
1

4
π

)
,

J̃ ′
2m = e1,2

(
3

4
π

)
e3,4

(
1

4
π

)
· · · e4m−1,4m

(
1

4
π

)
,

R̃+(4m) = {xJ̃2mx−1 | x ∈ Spin(4m)},
R̃−(4m) = {xJ̃ ′

2mx−1 | x ∈ Spin(4m)},
R(4m) = {g ∈ SO(4m) | g2 = −14m}

in order to describe polars of Ssc(4m). R(4m) is the manifold consisting of all
orthogonal complex structures on R4m. Since any element of R(4m) is alter-
nating, we can consider the Pfaffian Pf of it. Tanaka and the author [2] showed
that

R(4m) = R+(4m) ∪R−(4m)

is a decomposition to cnnected components, where

R+(4m) = {g ∈ R(4m) | Pf(g) = 1},
R−(4m) = {g ∈ R(4m) | Pf(g) = −1}.

We can see that R+(4m) is diffeomorphic to SO(4m)/U(2m), which is the
compact symmetric space denoted by DIII(2m). Let ρ : Spin(4m) → SO(4m)
denote the standard covering homomorphism. In the proof of Theorem 3.1 we
will show that

ρ−1(R+(4m)) = R̃+(4m)∪(−R̃+(4m)), ρ−1(R−(4m)) = R̃−(4m)∪(−R̃−(4m))
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are decompositions to connected components and R̃+(4m), R̃−(4m) are diffeo-
morphic to DIII(2m).

3 Polars of Ssc groups

In this section we explicitly describe polars of Ssc(4m).

Theorem 3.1. Let e denote the identity element of Ssc(4m) and Ss(4m). The
polars of Ssc(4m) and Ss(4m) are as follows:

F (e, Ssc(4m)) = σc(P+
0 (4m)) ∪ σc(P−

0 (4m))

∪
⋃

1≤k≤(m+1)/2

σc(
√
−1P4k−2(4m)) ∪

⋃
1≤k≤m/2

σc(P4k(4m))

∪ σc(R̃+(4m)) ∪ σc(−R̃+(4m)) ∪ σc(
√
−1R̃−(4m)),

F (e, Ss(4m)) = σc(P+
0 (4m)) ∪ σc(P−

0 (4m))

∪
⋃

1≤k≤m/2

σc(P4k(4m))

∪ σc(R̃+(4m)) ∪ σc(−R̃+(4m)).

σc(P+
0 (4m)) and σc(P−

0 (4m)) are poles and the other polars are as follows:

σc(
√
−1P4k−2(4m)) ∼= G̃4k−2(R4m) (1 ≤ k < (m+ 1)/2),

σc(
√
−1P2m(4m)) ∼= G#

2m(R4m) (m:odd),

σc(P4k(4m)) ∼= G̃4k(R4m) (1 ≤ k < m/2),

σc(P2m(4m)) ∼= G#
2m(R4m) (m:even),

σc(R̃+(4m)) ∼= σc(−R̃+(4m)) ∼= DIII(2m)/{±14m},
σc(

√
−1R̃−(4m)) ∼= DIII(2m).

Proof. We define tori Tl (l ≤ 2m) in Spin(4m) and T c
l (l ≤ 2m) in Spinc(4m)

by

Tl = {e1,2(θ1) · · · e2l−1,2l(θl) | θ1, . . . , θl ∈ R}, T c
l = U(1)Tl.

We can see that T2m is a maximal torus of Spin(4m) and that T c
2m is a maximal

torus of Spinc(4m). Their images σ(T2m) and σc(T c
2m) are maximal tori of

Ss(4m) and Ssc(4m) respectively.
We determine {σ(ξ) | ξ ∈ T2m, σ(ξ)2 = σ(1)} in order to obtain all polars

of Ss(4m). We take ξ ∈ T2m. Since ker σ = ⟨e[4m]⟩, the condition σ(ξ)2 = σ(1)
is equivalent to ξ2 = 1 or e[4m]. We consider two cases ξ2 = 1 and ξ2 = e[4m]

separately.
(1) The case where ξ2 = 1. We have already considered such ξ in [3]. We

obtained

{ξ ∈ Spinc(4m) | ξ2 = 1}
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= P+
0 (4m) ∪ P−

0 (4m) ∪
m⋃

k=1

√
−1P4k−2(4m) ∪

m−1⋃
k=1

P4k(4m)

∪ P+
4m(4m) ∪ P−

4m(4m)

in Corollary 4.2 in [3]. Since the image of a polar in Spinc(4m) under σc is a
polar in Ssc(4m), all of polars in {σc(ξ) | ξ ∈ Spinc(4m), ξ2 = 1} are

{σc(
√
−1P4k−2(4m)) | 1 ≤ k ≤ m} ∪ {σc(P4k(4m)) | 1 ≤ k ≤ m− 1}

∪ {σc(P+
0 (4m)), σc(P−

0 (4m)), σc(P+
4m(4m)), σc(P−

4m(4m))}.

In this description we have

σc(P+
0 (4m)) = σc(e[4m]P

+
0 (4m)) = σc(P+

4m(4m)),

σc(P−
0 (4m)) = σc(e[4m]P

−
0 (4m)) = σc(P−

4m(4m)).

We need to give σc(
√
−1P4k−2(4m)) and σc(P4k(4m)) a similar consideration.

We note that e[4m]Pk(4m) = P4m−k(4m) for 0 < k < 4m. It is sufficient to
consider Pk(4m) for k ≤ 2m.

First we consider σc(
√
−1P4k−2(4m)) for 2 ≤ 4k − 2 ≤ 2m. The condition

where 2 ≤ 4k − 2 ≤ 2m is equivalent to that where 1 ≤ k ≤ (m + 1)/2. If
1 ≤ k ≤ (m+ 1)/2, we have

σc(
√
−1P4k−2(4m)) = σc(e[4m]

√
−1P4k−2(4m))

= σc(
√
−1P4m−4k+2(4m)).

Moreover, if 1 ≤ k < (m+1)/2, σc(
√
−1P4k−2(4m)) and σc(

√
−1P4m−4k+2(4m))

are diffeomorphic to P4k−2(4m). When m is odd, there can be the case where
k = (m + 1)/2. In this case 4m − 4k + 2 = 4k − 2 and σc is a double cover-
ing from

√
−1P2m(4m) onto σc(

√
−1P2m(4m)). Therefore σc(

√
−1P2m(4m)) ∼=

P2m(4m))/⟨e[4m]⟩.
Second we consider σc(P4k(4m)) for 4 ≤ 4k ≤ 2m. The condition where

4 ≤ 4k ≤ 2m is equivalent to that where 1 ≤ k ≤ m/2. If 1 ≤ k ≤ m/2, we have

σc(P4k(4m)) = σc(e[4m]P4k(4m)) = σc(P4m−4k(4m)).

Moreover, if 1 ≤ k < m/2, σc(P4k(4m)) and σc(P4m−4k(4m)) are diffeomorphic
to P4k(4m). When m is even, there can be the case where k = m/2. In this case
4m − 4k = 4k and σc is a double covering from P2m(4m) onto σc(P2m(4m)).

Therefore σc(P2m(4m)) ∼= P2m(4m))/⟨e[4m]⟩ ∼= G#
2m(R4m).

Therefore all of polars in {σc(ξ) | ξ ∈ Spinc(4m), ξ2 = 1} are

{σc(
√
−1P4k−2(4m)) | 1 ≤ k ≤ (m+ 1)/2}

∪ {σc(P4k(4m)) | 1 ≤ k ≤ m/2}
∪ {σc(P+

0 (4m)), σc(P−
0 (4m))}.

4



Here σc(P+
0 (4m)), σc(P−

0 (4m)) are poles. If 1 ≤ k < (m + 1)/2, we have
σc(

√
−1P4k−2(4m)) ∼= P4k−2(4m) ∼= G̃4k−2(R4m). When m is odd,

σc(
√
−1P2m(4m)) ∼= P2m(4m))/⟨e[4m]⟩ ∼= G#

2m(R4m).

If 1 ≤ k < m/2, we have σc(P4k(4m)) ∼= P4k(4m) ∼= G̃4k(R4m). When m is
even,

σc(P2m(4m)) ∼= P2m(4m)/⟨e[4m]⟩ ∼= G#
2m(R4m).

(2) The case where ξ2 = e[4m]. We consider {ξ ∈ T c
2m | ξ2 = e[4m]}. We set

ξ = ug for u ∈ U(1) and g ∈ T2m. The element ξ2 = u2g2 is equal to e[4m] if and
only if u2 = 1, g2 = e[4m] or u

2 = −1, g2 = −e[4m]. The equality u2 = 1 holds

if and only if u = ±1. The equality u2 = −1 holds if and only if u = ±
√
−1.

We separately consider the conditions g2 = e[4m] and g2 = −e[4m] for g ∈ T2m.
We set g = e1,2(θ1) · · · e4m−1,4m(θ2m).

(2.1) The case where g2 = e[4m] and u = ±1. The condition g2 = e[4m] is
equivalent to

e1,2(2θ1) · · · e4m−1,4m(2θ2m) = e[4m].

Moreover this is equivalent to

(cos 2θ1 + sin 2θ1e1e2) · · · (cos 2θ2m + sin 2θ2me4m−1e4m) = e[4m].

If this holds, then sin 2θ1 · · · sin 2θ2m = 1. Conversely if sin 2θ1 · · · sin 2θ2m = 1
holds, then sin 2θi = ±1 for any i ∈ [2m]. These imply cos 2θi = 0 for any
i ∈ [2m]. Hence

(cos 2θ1 + sin 2θ1e1e2) · · · (cos 2θ2m + sin 2θ2me4m−1e4m) = e[4m]

holds. Therefore we have

{ξ ∈ T2m | ξ2 = e[4m]}
= {e1,2(θ1) · · · e4m−1,4m(θ2m) | sin 2θ1 · · · sin 2θ2m = 1}
= {e1,2(θ1) · · · e4m−1,4m(θ2m) | sin 2θi = ±1,#{i | sin 2θi = −1} : even}

=
{
e1,2(θ1) · · · e4m−1,4m(θ2m)

∣∣∣2θi ∈ (2Z+ 1)
π

2
,#

{
i | 2θi ∈ (4Z+ 3)

π

2

}
: even

}
=

{
e1,2(θ1) · · · e4m−1,4m(θ2m)

∣∣∣θi ∈ (2Z+ 1)
π

4
,#

{
i | θi ∈ (4Z+ 3)

π

4

}
: even

}
=

±
∏
i∈I

e2i−1,2i

(
3

4
π

) ∏
j∈[2m]\I

e2j−1,2j

(
1

4
π

)∣∣∣∣∣∣ I ⊂ [2m], #I : even


=

±
∏
i∈I

1√
2
(−1 + e2i−1e2i)

∏
j∈[2m]\I

1√
2
(1 + e2j−1e2j)

∣∣∣∣∣∣ I ⊂ [2m], #I : even

 .

Here we note that for a ∈ Z

e2i−1,2i

(
(2a+ 1)

π

4

)
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=


e2i−1,2i

(
1
4π

)
= 1√

2
(1 + e2i−1e2i) (a ≡ 0 (mod4)),

e2i−1,2i

(
3
4π

)
= 1√

2
(−1 + e2i−1e2i) (a ≡ 1 (mod4)),

e2i−1,2i

(
5
4π

)
= 1√

2
(−1− e2i−1e2i) (a ≡ 2 (mod4)),

e2i−1,2i

(
7
4π

)
= 1√

2
(1− e2i−1e2i) (a ≡ 3 (mod4)).

We set

J1 =

[
0 −1
1 0

]
, r(θ) = exp θJ1 =

[
cos θ − sin θ
sin θ cos θ

]
∈ SO(2) (θ ∈ R).

We can see

ρ
(
e2i−1,2i

(
(2a+ 1)

π

4

))∣∣∣
⟨e2i−1,e2i⟩

=


r
(
1
2π

)
= J1 (a ≡ 0 (mod4)),

r
(
3
2π

)
= −J1 (a ≡ 1 (mod4)),

r
(
5
2π

)
= J1 (a ≡ 2 (mod4)),

r
(
7
2π

)
= −J1 (a ≡ 3 (mod4)),

where ⟨e2i−1, e2i⟩ is the subspace sppaned by e2i−1, e2i in R4m. Therefore we
obtain

ρ({ξ ∈ T2m | ξ2 = e[4m]})

=

±

ϵ1J1 . . .

ϵ2mJ1


∣∣∣∣∣∣∣

ϵi = ±1 (i ∈ [2m])

#{i ∈ [2m] | ϵi = −1} : even

 .

This shows that Pf(ρ({ξ ∈ T2m | ξ2 = e[4m]})) = {1}. The image ρ({ξ ∈ T2m |
ξ2 = e[4m]}) and its conjugate orbit by SO(4m) are contained in R(4m). All
connected components of R(4m) are R+(4m) and R−(4m). Hence ρ({ξ ∈ T2m |
ξ2 = e[4m]}) ⊂ R+(4m) and⋃

g∈SO(4m)

gρ({ξ ∈ T2m | ξ2 = e[4m]})g−1 ⊂ R+(4m).

Let J2m = diag(J1, . . . , J1) ∈ SO(4m). We can see J2m = ρ(J̃2m) and

J̃2m ∈ {ξ ∈ T2m | ξ2 = e[4m]}, J2m ∈ ρ({ξ ∈ T2m | ξ2 = e[4m]}).

Moreover J2m ∈ R+(4m) and R+(4m) is an SO(4m)-conjugate orbit of J2m.
Hence we have ⋃

g∈SO(4m)

gρ({ξ ∈ T2m | ξ2 = e[4m]})g−1 = R+(4m).

We consider the left hand side of this equation.⋃
g∈SO(4m)

gρ({ξ ∈ T2m | ξ2 = e[4m]})g−1
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=
⋃

x∈Spin(4m)

ρ(x)ρ({ξ ∈ T2m | ξ2 = e[4m]})ρ(x)−1

=
⋃

x∈Spin(4m)

ρ(x{ξ ∈ T2m | ξ2 = e[4m]}x−1)

= ρ

 ⋃
x∈Spin(4m)

x{ξ ∈ T2m | ξ2 = e[4m]}x−1


= ρ({ξ ∈ Spin(4m) | ξ2 = e[4m]}).

Since e[4m] is in the center of Spin(4m), for any ξ ∈ Spin(4m) with ξ2 = e[4m]

and any x ∈ Spin(4m), we have

(xξx−1)2 = xξ2x−1 = xe[4m]x
−1 = e[4m].

Therefore we have

ρ({ξ ∈ Spin(4m) | ξ2 = e[4m]}) = R+(4m).

This implies {ξ ∈ Spin(4m) | ξ2 = e[4m]} ⊂ ρ−1(R+(4m)).
We consider whether {ξ ∈ Spin(4m) | ξ2 = e[4m]} is connected or not. Let

I1 = diag(−1, 1) ∈ O(2). Since[
I1

I1

] [
J1

J1

] [
I1

I1

]−1

=

[
I1J1I

−1
1

I1J1I
−1
1

]
=

[
−J1

−J1

]
,

we can see that all elements of ρ({ξ ∈ T2m | ξ2 = e[4m]}) are SO(4m)-conjugate.
If we express the above equation as an image of ρ, we get the following equation.

ρ

(
e1,3

(
1

2
π

))
ρ

(
e1,2

(
1

4
π

)
e3,4

(
1

4
π

))
ρ

(
e1,3

(
1

2
π

))−1

= ρ

(
e1,2

(
3

4
π

)
e3,4

(
3

4
π

))
.

A direct calculation shows

e1,3

(
1

2
π

)
e1,2

(
1

4
π

)
e3,4

(
1

4
π

)
e1,3

(
1

2
π

)−1

= e1,2

(
3

4
π

)
e3,4

(
3

4
π

)
.

Therefore each element of {ξ ∈ T2m | ξ2 = e[4m]} is conjugate to J̃2m or −J̃2m.
This implies that

{ξ ∈ Spin(4m) | ξ2 = e[4m]} = R̃+(4m) ∪ (−R̃+(4m))

is a decomposition to connected components. From the above argument we have

ρ−1(R+(4m)) = {ξ ∈ Spin(4m) | ξ2 = e[4m]} = R̃+(4m) ∪ (−R̃+(4m))
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and the right hand side is a decomposition to connected components.

ρ : R̃+(4m) → R+(4m), ρ : −R̃+(4m) → R+(4m)

are diffeomorphisms and

R̃+(4m) ∼= −R̃+(4m) ∼= DIII(2m)

holds. In this case polars are

{σc(R̃+(4m)), σc(−R̃+(4m))}.

A direct calculation shows

e[4m]J̃2m = e1,2

(
3

4
π

)
· · · e4m−1,4m

(
3

4
π

)
∈ R̃+(4m)

and we obtain e[4m]R̃
+(4m) = R̃+(4m). Moreover

ρ(e[4m]J̃2m) = ρ

(
e1,2

(
3

4
π

)
· · · e4m−1,4m

(
3

4
π

))
= diag(−J1, . . . ,−J1) = −J2m = −ρ(J̃2m)

and for any x ∈ Spin(4m)

ρ(e[4m]xJ̃2mx−1) = ρ(x)ρ(e[4m]J̃2m)ρ(x)−1 = ρ(x)(−ρ(J̃2m))ρ(x)−1

= −ρ(xJ̃2mx−1).

Thus we obtain
ρ(e[4m]ξ) = −ρ(ξ) (ξ ∈ R̃+(4m)).

Hence σc : R̃+(4m) → σc(R̃+(4m)) corresponds to the double coveringDIII(2m) →
DIII(2m)/{±14m} by the diffeomorphism ρ : R̃+(4m) → R+(4m) ∼= DIII(2m).
Therefore σc : R̃+(4m) → σc(R̃+(4m)) is also a double covering. Similarly
σc : −R̃+(4m) → σc(−R̃+(4m)) is also a double covering and we have

σc(R̃+(4m)) ∼= σc(−R̃+(4m)) ∼= DIII(2m)/{±14m}.

(2.2) The case where g2 = −e[4m] and u = ±
√
−1. The condition g2 =

−e[4m] is equivalent to

e1,2(2θ1) · · · e4m−1,4m(2θ2m) = −e[4m].

Moreover this is equivalent to

(cos 2θ1 + sin 2θ1e1e2) · · · (cos 2θ2m + sin 2θ2me4m−1e4m) = −e[4m].

If this holds, then sin 2θ1 · · · sin 2θ2m = −1. Conversely if sin 2θ1 · · · sin 2θ2m =
−1 holds, then sin 2θi = ±1 for any i ∈ [2m]. These imply cos 2θi = 0 for any
i ∈ [2m]. Hence

(cos 2θ1 + sin 2θ1e1e2) · · · (cos 2θ2m + sin 2θ2me4m−1e4m) = −e[4m]
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holds. Therefore we have

{ξ ∈ T2m | ξ2 = −e[4m]}
= {e1,2(θ1) · · · e4m−1,4m(θ2m) | sin 2θ1 · · · sin 2θ2m = −1}
= {e1,2(θ1) · · · e4m−1,4m(θ2m) | sin 2θi = ±1,#{i | sin 2θi = −1} : odd}

=
{
e1,2(θ1) · · · e4m−1,4m(θ2m)

∣∣∣2θi ∈ (2Z+ 1)
π

2
,#

{
i | 2θi ∈ (4Z+ 3)

π

2

}
: odd

}
=

{
e1,2(θ1) · · · e4m−1,4m(θ2m)

∣∣∣θi ∈ (2Z+ 1)
π

4
,#

{
i | θi ∈ (4Z+ 3)

π

4

}
: odd

}
=

±
∏
i∈I

e2i−1,2i

(
3

4
π

) ∏
j∈[2m]\I

e2j−1,2j

(
1

4
π

)∣∣∣∣∣∣ I ⊂ [2m], #I : odd


=

±
∏
i∈I

1√
2
(−1 + e2i−1e2i)

∏
j∈[2m]\I

1√
2
(1 + e2j−1e2j)

∣∣∣∣∣∣ I ⊂ [2m], #I : odd

 .

Therefore we obtain

ρ({ξ ∈ T2m | ξ2 = −e[4m]})

=

±

ϵ1J1 . . .

ϵ2mJ1


∣∣∣∣∣∣∣

ϵi = ±1 (i ∈ [2m])

#{i ∈ [2m] | ϵi = −1} : odd

 .

This shows that Pf(ρ({ξ ∈ T2m | ξ2 = −e[4m]})) = {−1}. Hence ρ({ξ ∈ T2m |
ξ2 = −e[4m]}) ⊂ R−(4m) and⋃

g∈SO(4m)

gρ({ξ ∈ T2m | ξ2 = −e[4m]})g−1 ⊂ R−(4m).

Let J ′
2m = diag(−J1, J1, . . . , J1) ∈ SO(4m). We can see J ′

2m = ρ(J̃ ′
2m) and

J̃ ′
2m ∈ {ξ ∈ T2m | ξ2 = −e[4m]}, J ′

2m ∈ ρ({ξ ∈ T2m | ξ2 = −e[4m]}).

Moreover J ′
2m ∈ R−(4m) and R−(4m) is an SO(4m)-conjugate orbit of J ′

2m.
Hence we have ⋃

g∈SO(4m)

gρ({ξ ∈ T2m | ξ2 = −e[4m]})g−1 = R−(4m).

We consider the left hand side of this equation.⋃
g∈SO(4m)

gρ({ξ ∈ T2m | ξ2 = −e[4m]})g−1

=
⋃

x∈Spin(4m)

ρ(x)ρ({ξ ∈ T2m | ξ2 = −e[4m]})ρ(x)−1

9



=
⋃

x∈Spin(4m)

ρ(x{ξ ∈ T2m | ξ2 = e[4m]}x−1)

= ρ

 ⋃
x∈Spin(4m)

x{ξ ∈ T2m | ξ2 = −e[4m]}x−1


= ρ({ξ ∈ Spin(4m) | ξ2 = −e[4m]}).

Since −e[4m] is in the center of Spin(4m), for any ξ ∈ Spin(4m) with ξ2 =
−e[4m] and any x ∈ Spin(4m), we have

(xξx−1)2 = xξ2x−1 = x(−e[4m])x
−1 = −e[4m].

Therefore we have

ρ({ξ ∈ Spin(4m) | ξ2 = −e[4m]}) = R−(4m).

This implies {ξ ∈ Spin(4m) | ξ2 = −e[4m]} ⊂ ρ−1(R−(4m)).
A similar argument to the previous case shows that each element of {ξ ∈

T2m | ξ2 = −e[4m]} is conjugate to J̃ ′
2m or −J̃ ′

2m. This implies that

{ξ ∈ Spin(4m) | ξ2 = −e[4m]} = R̃−(4m) ∪ (−R̃−(4m))

is a decomposition to connected components. From the above argument we have

ρ−1(R−(4m)) = {ξ ∈ Spin(4m) | ξ2 = −e[4m]} = R̃−(4m) ∪ (−R̃−(4m))

and the right hand side is a decomposition to connected components.

ρ : R̃−(4m) → R−(4m), ρ : −R̃−(4m) → R−(4m)

are diffeomorphisms and

R̃−(4m) ∼= −R̃−(4m) ∼= DIII(2m)

holds. In this case polars are

{σc(
√
−1R̃−(4m)), σc(−

√
−1R̃−(4m))}.

A direct calculation shows

e[4m]J̃
′
2m = e1,2

(
5

4
π

)
e3,4

(
3

4
π

)
· · · e4m−1,4m

(
3

4
π

)
∈ −R̃−(4m)

and we obtain e[4m]R̃
−(4m) = −R̃−(4m). Moreover

ρ(e[4m]J̃
′
2m) = ρ

(
e1,2

(
5

4
π

)
e3,4

(
3

4
π

)
· · · e4m−1,4m

(
3

4
π

))
= diag(J1,−J1, . . . ,−J1) = −ρ(J̃ ′

2m)
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and for any x ∈ Spin(4m)

ρ(e[4m]xJ̃
′
2mx−1) = ρ(x)ρ(e[4m]J̃

′
2m)ρ(x)−1 = ρ(x)(−ρ(J̃ ′

2m))ρ(x)−1

= −ρ(xJ̃ ′
2mx−1).

Thus we obtain
ρ(e[4m]ξ) = −ρ(ξ) (ξ ∈ R̃−(4m)).

Hence σc : R̃−(4m) → σc(R̃−(4m)) is a diffeomorphism. Similarly σc : −R̃−(4m) →
σc(−R̃−(4m)) is also a diffeomorphism.

σc(R̃−(4m)) ∼= σc(−R̃−(4m)) ∼= DIII(2m).

4 Polars of Oc(n)/{±1n}
In this section we explicitly describe polars of Oc(n)/{±1n}.

In order to describe polars of Oc(n)/{±1n} w recall the symbols defined in
[3]. For 0 ≤ k ≤ n, we set xk = diag(−1, . . . ,−1, 1, . . . , 1) ∈ O(n), where the
number of −1’s is k, and

Qk(n) = {gxkg
−1 | g ∈ O(n)}

= {g ∈ O(n) | g’s eigenvalues and multiplicities : (−1, k), (1, n− k)}.

We can see that
{g ∈ O(n) | g2 = 1n} =

⋃
0≤k≤n

Qk(n).

Theorem 4.1. Let πn : Oc(n) → Oc(n)/{±1n} be a natural projection. The
polars of Oc(n)/{±1n} are as follows:

F (sπn(1n), πn(O
c(n)))

=
⋃

0≤k≤n

πn(Qk(n)) ∪
⋃

0≤k≤n

πn(
√
−1Qk(n))

∪ πn(R
+(n)) ∪ πn(R

−(n)) ∪ πn(
√
−1R+(n)) ∪ πn(

√
−1R−(n)),

where R+(n), R−(n) appear only if n is even.

Proof. We take a element πn(zg) (z ∈ U(1), g ∈ O(n)) of F (sπn(1n), πn(O
c(n))).

Since πn(zg)
2 = πn(1n), we have z

2g2 = ±1n. This is equivalent to the condition
z2 = ±1 and g2 = ±1n. Hence we obtain

F (sπn(1n), πn(O
c(n)))

= πn({g ∈ O(n) | g2 = ±1n}) ∪ πn(
√
−1{g ∈ O(n) | g2 = ±1n})

and the statement of the theorem.
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