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Abstract

We compute the sequence of best approximations for the vector (1/β, 1/β2)
where β is the real dominant root of the polynomial Pa,b(x) = x3−ax2−bx−1, a
and b are integers satisfying −a+1 ≤ b ≤ −2. In this case, β is a Pisot number
which does not satisfy the finiteness property. To achieve this, we will use the
topological properties of a class of Rauzy fractals associated with these Pisot
numbers.

1 Introduction

Let v be an element of Rd, where d ≥ 2, ∥·∥ be a norm in Rd and q be an integer
number. Let us define

∥qv∥0 = min
{
∥qv − (p1, ..., pd)∥ , (p1, ..., pd) ∈ Zd

}
.

Let (qn)n≥0 be an increasing sequence of integer numbers. We say that (qn)n≥0 is the
sequence of best approximations of the vector v for the norm ∥·∥, if for all n ∈ Z+

and 0 < q < qn, one have ∥qnv∥0 < ∥qv∥0.
This sequence depends on the norm ∥·∥ and there is no general algorithm that fur-
nishes the sequence of best approximations for all elements of Rd. When d = 1 the
problem is already solved and the sequence of best approximations is given by the
classical algorithm of one-dimensional continued fractions. When n ≥ 2 the problem
of finding sequence of best approximations becomes a very difficult task because there
is no algorithm that provides this sequence for all vectors (see [8]). But we can con-
sider this question for classes of vectors, in particular, for vectors which coordinates
are cubic Pisot numbers. A Pisot number is an algebraic integer greater than 1 such
that its conjugates have modulus less than 1.

2020 Mathematics Subject Classification. Primary: 28A80; Secondary: 11J70.

1



The first results is this sense were obtained in [4], [5], and [7]. These results were
obtained by using the topological properties of the so-called Rauzy fractals, in par-
ticular, the properties of the tilings that they generate. These fractals can be defined
by means of β−representations (a sequence of integer numbers which we will discuss
in Section 2). If a β-representation ends up with infinitely many zeros, it is said to be
finite. We say that a Pisot number β has the Finiteness Property (or Property (F)
) if the β−representation of every nonnegative element of Z[β] is finite. The papers
mentioned above only considered Pisot numbers having the Property (F).
Assuming that the associated Rauzy fractals has 6 neighbors i.e., the central fractal
tile is surrounded by six copies of itself (see Section 2), we shall prove the following:

Theorem 1.1. Let β be a cubic Pisot unit, with complex conjugates satisfying the
equation X3 = aX2 + bX + 1, −a + 1 ≤ b ≤ −2. Let (qn)n≥0 be the Tribonacci
sequence defined by

q0 = 1, q1 = a, q2 = a2 + b, qn+3 = aqn+2 + bqn+1 + qn, ∀n ≥ 0.

If β does not have the Property (F) and the associated Rauzy fractals has 6 neighbors,
then there exists a norm ∥·∥ in R2 (called Rauzy Norm) and n0 ∈ Z+ such that
(qn)n≥n0 is the sequence of best approximations for the vector (1/β, 1/β2) for the
norm ∥·∥.

Our theorem is an extension of that one by Hubert and Messaoudi [7] for a class of
vectors which coordinates are Pisot numbers not having the Property (F). Hereafter,
we will follow the notations of Rauzy, Messaoudi and Hubert.

2 Rauzy fractals

In this section we briefly describe the β−numeration system necessary to construct
the Rauzy fractal.
Given a real number β > 1, a β-representation (or β-expansion) of a number x ∈ R+

is an infinite sequence (xi)i≤k, where k ∈ Z, xi ≥ 0 such that x =
∑k

i=−∞ xiβ
i. The

digits xi can be computed using the greedy algorithm (see [12] or [6] for a detailed
explanation). As we said it before, if a β-representation ends up with infinitely
many zeros, it is said to be finite and the ending zeros can be omitted. Then, the
sequence will be denoted by (xi)n≤i≤k or xk · · ·xn. The digits xi belong to the set
A = {0, · · · , β}, if β is an integer, or to the set A = {0, · · · , ⌊β⌋}, otherwise.
Akiyama [1] classified cubic Pisot units as being exactly the set of dominant roots of
the polynomial Pa,b(x) = x3 − ax2 − bx− 1, whose coefficients and respective Rényi
β-representation of 1, denoted by d(1, β)(see [16] for the definition), satisfy one of
the following conditions:

i) 1 ≤ b ≤ a, and d(1, β) = .ab1;
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ii) b = −1, a ≥ 2, and d(1, β) = .(a− 1)(a− 1)01;
iii) b = a+ 1, and d(1, β) = .(a+ 1)00a1;
iv) −a+ 1 ≤ b ≤ −2, and d(1, β) = .(a− 1)(a+ b− 1)(a+ b)∞,

where (a+ b)∞ is the periodic expansion (a+ b)(a+ b)(a+ b) · · · .
Denote by Fin(β) the set of nonnegative real numbers that have a finite β-representation.
A Pisot number β has the Finiteness Property (or Property (F) ) if Z[β] ∩ [0,+∞[⊂
Fin(β). Notice that the Pisot numbers in the sets i), ii) and iii) have the Property
(F), while the Pisot numbers in iv) have not. The authors in [7] studied the sequence
of best approximations for the classes i), ii), and iii). In this paper, we study the
best approximations for the class iv).
Let us suppose that β is a cubic Pisot unit which does not satisfy the Property (F)
and let us denote by α and λ its Galois conjugates. Let Pa,b(x) = x3 − ax2 − bx− 1
be the minimal polynomial of β. Let (qn)n≥0 be the Tribonacci sequence defined in
the Theorem 1.1. Using the greedy algorithm we have the following.

Proposition 2.1. Every nonnegative integer n can be uniquely expressed as
n =

∑N
i=0 diqi, where di ∈ {0, . . . , a − 1} and djdj−1dj−2 · · · dj−k ⪯lex (a − 1)(a +

b− 1) (a+ b) · · · (a+ b)︸ ︷︷ ︸
k−1 times

, for all j ≥ k ≥ 0, where “⪯lex” is the lexicographical order.

LetD = {(di)i≥k, k ∈ Z,∀n ≥ k, dndn−1dn−2 · · · dn−k ⪯lex (a−1)(a+b−1) (a+ b) · · · (a+ b)︸ ︷︷ ︸
k−1 times

}.

By definition, the Rauzy fractal is the set

R := Ra,b =

{
+∞∑
i=2

diθi, (dn)n∈Z ∈ D

}

where θi = αi, if α ∈ C \ R or θi = (αi, λi), if α ∈ R. Notice that R ⊂ C or R ⊂ R2,
and the set R is compact.

Rauzy fractals for the cases where a = 1, b = 1 (called Classic Rauzy Fractal) and
a = 3, b = −2 are shown in Fig.1 a) and Fig.1 b) respectively. The set R3,−2 is
related to Special Pisot numbers, i.e., a Pisot number β such that β/(β − 1) is also
a Pisot number (see [19]).
Now we shall give an alternative definition of the Rauzy fractal. Let N ∈ Z+ and
(dj)k(N)≥j≥0 be a q-representation of N , i.e., N =

∑k(N)
i=0 diqi, where (di)i≥0 ∈ D. Let

δ(N) = N(1/β, 1/β2)− (PN , QN),
where

PN =

k(N)∑
j=1

djqj−1, QN =

k(N)∑
j=2

djqj−2.
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Figure 1: a) The set R1,1. b) The set R3,−2.

Let us consider the matrix B defined as

B =

(
−b/β −1/β

1− b/β2 −1/β2

)
.

We have the following property.

Lemma 2.2. For all n ≥ 2,

B

(
qn/β − qn−1

qn/β
2 − qn−2

)
=

(
qn+1/β − qn

qn+1/β
2 − qn−1

)
where (qn)n≥0 is the sequence defined previously.

Proof. The proof is not difficult and it is made by induction. □

Corollary 2.3. If N =
∑k(N)

j=0 djqj then δ(N) =
∑k(N)

j=0 djB
jδ(1), where δ(1) =

(1/β, 1/β2).

Thus, the Rauzy fractal is the set

E = {δ(N); N ∈ Z+} ⊂ R2.

This set was introduced by G. Rauzy in 1982 [15]. Since then, this set and its
generalizations have been extensively studied due to its strong connections with many
fields of mathematics such as Dynamical Systems and Number Theory [3, 17, 10, 11,
?, 18, 9].
As mentioned before, our results highly depends on the topological properties of the
class of Rauzy fractals associated with Pisot numbers not having the Property (F).
The topological and arithmetical properties of this class of Rauzy fractals were stud-
ied in details in [14] (see also [13]). For instance, it was shown that these fractals
tile the plane, and there exists an explicit finite state automaton that recognizes the
boundaries of these sets, which allows to establish the number of neighbors of Ra,b in
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the tiling they generate. In particular, it was proved thatRa,b has at least 6+2(K−1)
neighbors, where K =

[
a−1

a+b+1

]
. Let us remind that an element u of a lattice Λ is a

neighbor of R if, and only if, R ∩ R + u ̸= ∅. We will assume that we are in the
case of 6 neighbors. In this case, u ∈ {±α,±(1 + (b+ 1)α),±(1 + bα)}. Fig.2 a) and
Fig.2 b) illustrate this.

Figure 2: a) Tiling the plane by R3,−2 . b) Tiling the plane by R5,−3.

We will introduce the Rauzy Norm. Let M =

(
λ+ b/β 1/β
−α− b/β −1/β

)
. One can check

that the matrix B defined before is similar to the matrix

(
α 0
0 λ

)
and it satisfies

MB =

(
α 0
0 λ

)
M.

We will consider the case when β has complex conjugates. In this case, the Rauzy
Norm ∥·∥ is defined by:

∥x∥ = |(α + b/β)x1 + x2/β|,∀x = (x1, x2) ∈ R2.

Remark 2.4. Notice that ∥x∥ = |π1Mx|, where π1(x, y) = x, for all (x, y) ∈ R2, and
it is not difficult to verify that ∥Bx∥ = |α| ∥x∥, for all x ∈ R2.

Corollary 2.5. Let (dn)n≥0 be a q−representation. Then∥∥∑+∞
n=0 dnB

nδ(1)
∥∥ = ∥δ(1)∥ |

∑+∞
n=0 dnα

n|.
In particular,

∥δ(qn)∥ = ∥δ(1)∥ |αn|, for all n ≥ 0.

Remark 2.6. All omitted proofs can be found in [13].
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3 Sequence of best approximations

To prove Theorem 1.1 it will be necessary several auxiliary results. Let us begin with

Theorem 3.1. There exists a real number c > 0 such that for all q ∈ Z+ and for all
g ∈ Z2, if ∥q(1/β, 1/β2)− g∥ < c then q(1/β, 1/β2)− g = δ(q) or q(1/β, 1/β2)− g =
δ(q)− (1, 1).

As a corollary we obtain,

Corollary 3.2. There exists a real number c > 0 such that for all q ∈ Z+, if
∥q(1/β, 1/β2)∥0 < c then ∥q(1/β, 1/β2)∥0 = ∥δ(q)∥.

The proof of the following proposition can be adapted from that one found in [7].

Proposition 3.3. There exists a linear and bijective application from R2 to C such
that f(E) = R and f(Z2) = Z+ Zα.

The next lemma is of crucial importance for the statements that are to follow. The
proof is in the Appendix.

Lemma 3.4. R∩ (Z+ Zα) = {0,−1− (b+ 1)α}.

Remark 3.5. The proof of Lemma 3.4 relies on the assumption that we are in the
case of 6 neighbors. One could question whether the statement remains true in the
case of more neighbors. We conjecture that, assuming that the origin is shared by
exactly two tiles, Lemma 3.4 is still valid.

The next statement is a special case of a theorem of Akiyama[2]:

Proposition 3.6. 0 ∈ int(R∪ (R+ 1 + (b+ 1)α)).

Proof of Theorem 3.1. We have that R ∩ Z + Zα = {0,−1 − (b + 1)α)}.
Hence, E ∩ Z2 = (f−1(0), f−1(−1 − (b + 1)α)) = ((0, 0), (1, 1)). Then there ex-
ists a real number c > 0 such that for all g ∈ Z2, infx∈E ∥g − x∥ < c implies
that g = (0, 0) or g = (1, 1). Let us suppose that ∥q(1/β, 1β2)− g∥ < c. Since
δ(q) − q(1/β, 1/β2) ∈ Z2 and δ(q) ∈ E , then ∥δ(q)− (δ(q)− q(1/β, 1/β2)− g∥ < c.
Therefore δ(q)− q(1/β, 1/β2) + g = (0, 0) or δ(q)− q(1/β, 1/β2) + g = (1, 1), that is,
δ(q) = q(1/β, 1/β2)− g or q(1/β, 1/β2)− g = δ(q)− (1, 1). □

Proof of Theorem 1.1. Let us prove that there exists n0 ∈ N such that (qn)n≥n0 is
the sequence of best approximation for the vector (1/β, 1/β2) for the norm ∥·∥.
Let c be a real number as defined in Theorem 3.1. Let n0 ∈ N such that ∥δ(qn0)∥ =
κ|αn0 | < c, where κ = ∥δ(1)∥. Take n ≥ n0 and 0 < q < qn. Let us prove that
∥qn(1/β, 1/β2)∥0 < ∥q(1/β, 1/β2)∥0. Suppose that
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∥q(1/β, 1/β2)∥0 ≤ ∥qn(1/β, 1/β2)∥0 ≤ ∥qn(1/β, 1/β2)∥ = κ|αn| ≤ κ|αn0| < c.
Hence, ∥q(1/β, 1/β2)∥0 < c. Now, suppose that∥∥q(1/β, 1/β2)

∥∥
0
=

∥∥q(1/β, 1/β2)− g
∥∥ .

Thus, by Theorem 3.1, we obtain that q(1/β, 1/β2)− g = δ(q) or q(1/β, 1/β2)− g =
δ(q)− (1, 1). Let us treat these cases separately.

Case 1. q(1/β, 1/β2)− g = δ(q). In this case,

∥∥q(1/β, 1/β2)
∥∥
0
= ∥δ(q)∥ < ∥δ(qn)∥ . (1)

Since q < qn, then q =
∑n−1

i=0 diqi. Thus,

∥δ(q)∥ = κ

∣∣∣∣∣
n−1∑
i=0

diα
i

∣∣∣∣∣ . (2)

From (1) and (2) we obtain that |
∑n−1

i=0 diα
i| < |αn|.

On the other hand,
∑n−1

i=0 diβ
i /∈ Q, otherwise we would have

∑n−1
i=0 diβ

i = r/s, where
r, s ∈ Z. Hence, Nβ2 + pNβ + qN = r/s, that is, sNβ2 + pNsβ + qNs = r. Thus,
sN = pNs = 0 and qNs = r and then s = 0. Absurd. Therefore, λ =

∑n−1
i=0 diβ

i is an
algebraic number of degree 3, since Q(λ) ⊂ Q(β). Thus

∑n−1
i=0 diα

i,
∑n−1

i=0 diα
i and∑n−1

i=0 diβ
i are Galois conjugates, and hence |

∑n−1
i=0 diα

i
∑n−1

i=0 diα
i
∑n−1

i=0 diβ
i| ∈ Z.

Therefore, ∣∣∣∣∣
n−1∑
i=0

diα
i

∣∣∣∣∣
2

≥ 1∑n−1
i=0 diβi

≥ 1

βn
= |α|2n,

which implies that ∣∣∣∣∣
n−1∑
i=0

diα
i

∣∣∣∣∣ ≥ |α|n.

Absurd.

Case 2. q(1/β, 1/β2) − g = δ(q) − (1, 1). In this case, ∥q(1/β, 1/β2)− g∥0 =
∥q(1/β, 1/β2)− g∥ = ∥q(1/β, 1/β2)− (1, 1)∥. We have that ∥q(1/β, 1/β2)− g∥ =
κ|

∑n−1
k=2 dkα

k|. Let us suppose that ∥q(1/β, 1/β2)− (1, 1)∥ = κ|
∑n−1

i=0 diα
i +1+ (b+

1)α|.
Claim:

∥q(1/β, 1/β2)− (1, 1)∥ ≥ ∥δ(qn)∥ = |αn|.
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Indeed, ∣∣∣∣∣1 + (b+ 1)α +
n−1∑
i=2

diα
i

∣∣∣∣∣
2

·

∣∣∣∣∣1 + (b+ 1)β +
n−1∑
i=2

diβ
i

∣∣∣∣∣ ≥ 1.

Hence, ∣∣∣∣∣1 + (b+ 1)α +
n−1∑
i=2

diα
i

∣∣∣∣∣ ≥ 1√∣∣1 + (b+ 1)β +
∑n−1

i=2 diβi
∣∣ .

On the other hand, take n ≥ n0 large enough such that 1+ (b+1)β+
∑n−1

i=2 diβ
i > 0.

Hence, 1 + (b+ 1)β +
∑n−1

i=2 diβ
i ≤

∑n−1
i=0 diβ

i ≤ βn, because b+ 1 ≤ −1. Thus,

1

1 + (b+ 1)β +
∑n−1

i=2 diβi
≥ 1

βn
= |α|2n.

Hence, |1 + (b+ 1)α +
∑n−1

i=2 diα
i| ≥ |α|n. Absurd.

Therefore, ∥qn(1/β, 1/β2)∥0 < ∥q(1/β, 1/β2)∥0 for all cases. □

4 Appendix

4.1 Construction of the automaton

This section is dedicated to prove

Lemma 3.4 R∩ (Z+ Zα) = {0,−1− (b+ 1)α}.

To prove that, we need to construct a finite automaton, denoted byH, that recognizes
points with two α−representations, that is, a point that can be written in two different
ways. These points belong to the boundary of Ra,b. Let us begin with a definition.

Definition 4.1. A finite automaton is a triple (S,A,C), where A is the alphabet of
the automaton, S is the set of the states and C is a subset of S × A × S. We say
that a sequence (an)n∈N is recognizable by the automaton (S,A,C) if there exists a
sequence (sn) ∈ AN such that (si−1, ai, si) ∈ C, for all i ∈ N

Before constructing the automaton we need the following proposition (see [14]):

Proposition 4.2. Let x =
∑∞

i=l εiα
i and y =

∑∞
i=l ε

′
iα

i, where l ∈ Z and (εi)i≥l,
(ε′i)i≥l belong to D. Then x = y if, and only if, the set {x(k)− y(k), k ≥ l} is finite,

where x(k) = α−k+2
∑k

i=l εiα
i and y(k) = α−k+2

∑k
i=l ε

′
iα

i, ∀k ≥ l.

As a consequence of this proposition, we have the following result.
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Theorem 4.3. Let (εi)i≥l and (ε′i)i≥l two distinct elements of D, then
∑∞

i=l εiα
i =∑∞

i=l ε
′
iα

i if and only if the sequence ((εi, ε
′
i))i≥l is recognizable by the automaton H.

Now, let us construct the automaton H such that n, p ∈ Z and (εi)i≥2, (ε
′
i)i≥2 ∈ D,

n + pα +
∑+∞

i=2 εiα
i =

∑+∞
i=2 ε

′
iα

i if, and only if, (n, 0)(p, 0)(ε2, ε
′
2) · · · is an infinite

path in the automaton H.
The idea is (see [14], or [18] for a comprehensive explanation): Let p and q be two
states. The set of edges is the set of (p, (c, d), q) ∈ S×{0, 1, ..., a− 1}2 ×S satisfying
q = p

α
+ (c − d)α2 and the initial state is {0}. We suppose that we are in the case

where Ra,b has 6 neighbors. In this case, it was shown also in [14], Proposition 4.1,
that the set of states is S = {0,±α2,±(α + bα2),±(α + (b + 1)α2),±(1 + bα + (a−
1)α2),±(1 + (b+ 1)α + (a+ b)α2),±(1 + (b+ 1)α + (a+ b+ 1)α2)}.
Let x =

∑+∞
i=l εiα

i and y =
∑+∞

i=l ε
′
iα

i, where ε = (εi)i≥l and ε′ = (ε′i)i≥l belong to D.
Suppose that x = y and for all k ≥ l we set Sk = Sk(ε, ε

′) = x(k)− y(k). We have,

Sk+1 =
Sk

α
+ (εk+1 − εk+1)α

2. (3)

Let t be the smallest integer such that εt ̸= ε′t. Hence Si(ε, ε
′) = 0 for all i ∈

{l, ..., t− 1}. Suppose that (εt, ε
′
t) = (1, 0). Then, St = α2. From (3) we deduce that

St+1 = α + (εt+1 − ε′t+1)α
2 =

{
α + bα2, if (εt+1, εt+1) = (b, 0)
α + (b+ 1)α2, if(εt+1, ε

′
t+1) = (b+ 1, 0)

Then, (α2, (ε+ b, ε), α+ bα2) is an edge connecting the state α2 to state α+ bα2, and
(α2, (ε+b+1, ε), α+(b+1)α2) is and edge connecting the state α2 to state α+(b+1)α2.
Continuing with this process, we obtain an infinite path (Si, (εi, ε

′
i), Si+1)i≥l beginning

in the initial state of H. This path will be denoted by (εi, ε
′
i)i≥l. The set of states S

is finite, then we obtain a finite automaton (Fig.3).

Proof of Lemma 3.4: Let us notice that 0 and −1 − bα belongs to R. Suppose
that there exists n, p ∈ Z such that n+ pα =

∑∞
i=2 εiα

i, where (εi)i≥2 ∈ D. Suppose
that n > 0. Then,

(n, 0)(p, 0)(0, ε2)(0, ε2) · · ·

is a path in the automaton H. Absurd, because this sequence is not recognizable by
H. □
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α² 

α +(b+1)α² 
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-1-(b+1)α-(a+b)α² 

-1-bα-(a-1)α² 1+bα+(a-1)α² 

(1, 0) 

(b, 0) 

(b+1, 0) 

(ε+a+b, ε) 

(ε+a+b+1, ε) 

(ε+a+b-1, ε) 

(ε+a-2, ε) 

(ε, ε+b+1) 

(ε, ε+b+2) 

(ε, ε+a+b+1) 

( ε, ε+a+b-1) 

( ε, ε+a+b) 

(ε, ε+a-2) 

(ε, ε-b-2) 

(ε, ε-b-1) 
(ε+a-1, ε) (ε, ε+a-1) 

(0, 1) 

(0, b) 

(0, b+1) 

(ε+a+b, ε) 

(ε, ε+a+b) 

(0, 0) 

Figure 3: Automaton H.
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