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Abstract. We obtain a complete classification of ruled zero mean curvature surfaces in
the three-dimensional light cone. En route, we examine geodesics and screw motions in the
space form, allowing us to discover helicoids. We also consider their relationship to catenoids
using Weierstrass representations of zero mean curvature surfaces in the three-dimensional
light cone.

1. Introduction

Rooted in the discoveries of non-Euclidean geometry, it is often interesting to examine which
Euclidean geometric concepts and results can be applied to other geometries. Ever since
Catalan showed that the standard helicoid is the only non-trivial ruled minimal surface
in Euclidean space [4], classification problem of ruled surfaces satisfying certain curvature
restrictions in various space forms has received plethora of interest across various three-
dimensional spaces. These results include the study of:

• ruled Weingarten surfaces in Lorentzian 3-space L3 [7],
• ruled and helicoidal zero mean curvature (ZMC) surfaces in Lorentzian 3-space [16],
• ruled zero mean curvature surfaces in S2 × R, H2 × R, Heisenberg group Nil3, and the

Berger sphere [11, 19, 20],
• ruled Weingarten hypersurfaces in hyperbolic spaces Hn+1, Lorentzian spaces and de

Sitter spaces Sn+1 [1, 2, 3], and
• ruled ZMC surfaces in isotropic 3-space [24].

The main purpose of this article is to present a classification of ruled ZMC surfaces in the
three-dimensional light cone Q3

+, which is a space form equipped with a degenerate metric.
Its curve theory and surface theory have been developed in [12, 13, 14, 15], which we review
in our preparatory Section 2. We also review rotational ZMC surfaces, called catenoids, in
Q3

+, found in [6], as they will play an important role.

We begin our main discussion in Section 3 by considering geodesics in Q3
+, as degenerate

metric of the space form presents a meaningful obstacle. Then we find two important
ruled ZMC surfaces in Section 4, to serve as examples unveiling the required ansatz to
obtain a classification of ruled ZMC surfaces in Q3

+. In particular, noting that helicoids
in Euclidean space can be characterized as ruled surfaces that are invariant under screw
motions, we consider screw motions in Section 4.1, and show that the surface obtained via
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applying screw motions to a geodesic has zero mean curvature in Section 4.2, which we call
helicoids. We also show that one of the catenoids reviewed, the parabolic catenoid, is in fact
a ruled surface in Section 4.4. A noted feature of ZMC surfaces in Q3

+ is that they admit a
Weierstrass representation1 [13, 14, 18] as in the case of minimal surfaces in Euclidean space
[25]. The Weierstrass representation allows for a ZMC surface to be represented in terms of
a meromorphic function and a holomorphic 1-form called the Weierstrass data. Notably, the
famous isometric deformation connecting catenoids to helicoids in Euclidean space admits
a simple characterization in terms of its Weierstrass data, known as the associated family.
Thus, in Section 5, we present a comprehensive examination of the relationship between
catenoids and helicoids in Q3

+. In particular, we show that, as in the Euclidean case, every
helicoid is in the associated family of some catenoid (Theorem 5.1), but unlike the Euclidean
case, only certain catenoids admit a helicoid in its associated family (Theorem 5.2). Then,
in Section 5.3, we introduce a Lawson-type correspondence between ZMC surfaces in the
isotropic 3-space and Q3

+ and compare the associated families of catenoid in each space form
under the correspondence.

Finally, in Section 6, we obtain a complete classification of ruled ZMC surfaces in Q3
+

(Theorem 6.2), showing that every ruled ZMC surface must be a helicoid or a parabolic
catenoid up to isometries and homotheties of Q3

+.

Acknowledgement. The authors would like to thank Prof. Heayong Shin for his constant
encouragements on this work. We would also like to thank the anonymous reviewer for
carefully reading the earlier versions of our manuscript and providing useful comments.

2. Preliminaries

In this section, we briefly review the basic differential geometry of the three dimensional light
cone, including curve and surface theory, mainly to set the notations to be used throughout.
(We refer the readers to [12, 13] for a detailed introduction.)

2.1. Q3
+ as a quadric. We identify Lorentzian 4-space L4 with Herm(2) as follows:

L4 ∋ (x0, x1, x2, x3) ∼
(
x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)
∈ Herm(2).

Then for any X, Y ∈ Herm(2) ∼= L4, the inner product can be expressed as

⟨X, Y ⟩ := −1

2

(
det (X + Y )− detX − detY

)
,

so that
⟨X,X⟩ = − detX.

An arbitrary F ∈ SL(2,C) acts on L4 as an orientation-preserving isometry via the action

(2.1) Herm(2) ∋ X 7→ FXF ⋆ ∈ Herm(2),

where F ⋆ is the conjugate transpose of F . In fact, SL(2,C) is a two-to-one covering of the
group of orientation-preserving and origin-fixing isometries of L4.
1ZMC surfaces in hyperbolic 3-space and in de Sitter 3-space have Weierstrass-type representations that is
different in flavor, exploiting the method of infinite-dimensional Lie groups, known as loop groups.
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The submanifolds of L4 we are interested in are

I3 := {X ∈ Herm(2) : x0 − x3 = 0},
Q3

+ := {X ∈ Herm(2) : ⟨X,X⟩ = 0, trX > 0},
Q3

− := {X ∈ Herm(2) : ⟨X,X⟩ = 0, trX < 0}.

In particular, the action of SL(2,C) given by (2.1) acts as an orientation-preserving isometry
of Q3

+. Conversely, any orientation preserving isometry of Q3
+ can be described by this action.

Example 2.1. Rotations in Q3
+ can be described as isometries that fix a 2-dimensional

subspace of L4 (see, for example, [6, 8]). Normalizing the 2-dimensional subspace based on
the induced metric, they can be described by

D1(µ) :=

(
µ 0
0 1

µ

)
, D2(µ) :=

(
0 µ
− 1

µ
0

)
, P (µ) :=

(
1 µ
0 1

)
.

for some µ ∈ C \ {0}.

2.2. Curve theory. Given a unit-speed regular curve γ : I → Q3
+ ⊂ L4 given on an interval

I, define

κ := −1

2
⟨γ′′, γ′′⟩, T := γ′, and N := κγ − γ′′.

Then there exist uniquely a function τ and a vector field B along γ which form a null basis
of L4 with det(γ,T,N,B) < 0:

⟨X, Y ⟩

X
Y

γ T N B

γ 0 0 1 0
T 0 1 0 0
N 1 0 0 0
B 0 0 0 1

Using such {γ,T,N,B} as a moving frame along the curve γ, the Frenet equations are given
by

(2.2)


γ′

T′

N′

B′

 =


0 1 0 0
κ 0 −1 0
0 −κ 0 −τ
τ 0 0 0



γ
T
N
B

 ,

The values κ and τ are referred to as the cone curvature and the cone torsion, respectively.
See [12, 15] for details.

2.3. Surface theory. Let U be a simply-connected domain in R2. Given an immersion
X : U ⊂ R2 → Q3

+ with coordinates (u, v) = (u1, u2) ∈ U , there is a unique map G : U → Q3
−

which satisfies
⟨G,G⟩ = ⟨G, Xu⟩ = ⟨G, Xv⟩ = ⟨G, X⟩ − 1 = 0,
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which is called the lightlike Gauss map of X [10] (also referred to as the associated surface
[14]). The first and second fundamental forms of X are then given by

g := ⟨Xi, Xj⟩ dui duj, A := ⟨G, Xij⟩ dui duj,

respectively, from which the definition of mean curvature and (extrinsic) Gauss curvature for
X follow:

H :=
1

2
tr(g−1A), K := det (g−1A).

If a surface has H ≡ c for some nonzero real constant c, then the surface is called a constant
mean curvature (CMC-c) surface. If H ≡ 0, then the surface is referred to as a zero mean
curvature (ZMC) surface.

When a surface is conformally parametrized, we will introduce the complex structure via
z = u+ iv.

An immersion X : U → Q3
+ admits three different representations, each of which we will

make use in this manuscript: An immersion X can be viewed as a graph of any function
f : U → R over the surface

(u, v) 7→
(
u2 + v2 u+ iv
u− iv 1

)
so that

X(u, v) = ef(u,v)
(
u2 + v2 u+ iv
u− iv 1

)
.

When we represent an immersion X as a graph using the function f , we will denote it by
Xf .

On the other hand, using the fact that the map

C2 \ {(0, 0)} ∋
(
z
w

)
7→
(
z
w

)(
z
w

)⋆

=

(
zz̄ zw̄
z̄w ww̄

)
∈ Q3

+

is onto, we can represent an immersion via

X =

(
A
C

)(
A
C

)⋆

=: φφ⋆

for some complex-valued functions A and C defined on U . We will refer to such φ : U → C2

as the lift of X into C2.

Finally, for any F : U → SL(2,C), we can also represent an immersion X via

X = F

(
1 0
0 0

)
F ⋆.

We will refer to such F as the lift of X into SL(2,C). Using this last characterization, we
introduce the following notion:

Definition 2.2. We say two immersions X and X̃ are equal up to isometries and homothety
of Q3

+ if they satisfy X̃(s, t) = rFX(s, t)F ⋆ for some r ∈ R+ and F ∈ SL(2,C), and denote
this by

X ≃ X̃.
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Remark 2.3. For c ∈ C \ {0}, we have(
c 0
0 c−1

)(
1 0
0 0

)(
c 0
0 c−1

)⋆

= cc̄

(
1 0
0 0

)
.

If Fc := F

(
c 0
0 c−1

)
, then

Xc := Fc

(
1 0
0 0

)
F ⋆
c = cc̄F

(
1 0
0 0

)
F ⋆ = cc̄X, dFcF

−1
c = dFF−1.

In other words, homothetic images of X can be obtained via Fc.

2.4. Representations of ZMC immersions. Suppose X = Xf is an immersion regarded
as a graph using some function f : U → R. Then the mean curvature of Xf can be calculated
as

(2.3) H =
1

2
e−2f(u,v)(fuu(u, v) + fvv(u, v)).

Example 2.4 (A family of CMC surfaces in Q3
+). Let us consider the surface Xf :

U → Q3
+ given via the function f : U → R

f(u, v) := d+ ln sech (au+ bv + c)

for some constants a, b, c, d ∈ R with a2 + b2 ̸= 0. Then one can directly check that the mean
curvature of Xf is

H = −e−2d(a2 + b2)/2.

If H ≡ 0 so that Xf is a ZMC surface, then f must be harmonic, so f = φ + φ̄ for some
holomorphic function φ in a simply connected domain. Then, after a conformal change of
parameters if necessary, we see the following:

Lemma 2.5 ([14]). X : U → Q3
+ has zero mean curvature if and only if

X(z) = φ(z)φ(z)⋆, φ(z) :=

(
A(z)
C(z)

)
for some holomorphic functions A and C.

Now we would like to see how the lift of a ZMC immersion X into C2 induces the lift into
SL(2,C): A holomorphic F ∈ Cω(U , SL(2,C)) is called null if detFz = 0. Given an arbitrary
holomorphic φ(z) =

(
A(z)
C(z)

)
that is the lift of a ZMC immersion to C2, one can find a

null-holomorphic

F =

(
A B
C D

)
∈ Cω(U , SL(2,C))

such that

F

(
1 0
0 0

)
F ⋆ =

(
A
C

)(
A
C

)⋆

via

(2.4) F =

(
A 0
C A−1

)(
1 −E
0 1

)
, E :=

∫
((1/A)′)2

(C/A)′
dz.



6 J. CHO, D. LEE, W. LEE, AND S.-D. YANG

For a given null-holomorphic F we define meromorphic functions G, g and holomorphic
1-forms Ω, ω by

(2.5) dFF−1 =

(
G −G2

1 −G

)
Ω, F−1 dF =

(
g −g2
1 −g

)
ω.

This is the Weierstrass representation of ZMC surfaces in Q3
+ [13, 14, 17, 18], and (g, ω) is

called Weierstrass data. We call G and g the hyperbolic Gauss map and the secondary Gauss
map, respectively. The Hopf differential is

Q := ΩdG = ω dg.

For λ ∈ C \ {0}, the change of Weierstrass data

(2.6) (g, ω) 7→ (g, λω)

induces a transformation, where the metric, Hopf differential, and the second fundamental
form change as follows:

g 7→ |λ|2g, Q 7→ λQ, A = 2ReQ 7→ Aλ = 2ReλQ.

When |λ|2 = 1, this gives an isometric deformation of a ZMC surface, commonly referred to
as the associated family of ZMC surfaces.

2.5. Catenoids in Q3
+. As examples of ZMC surfaces, we review catenoids in Q3

+, ZMC
surfaces that are invariant under rotations [6]. For real constants a, b, c, consider

(2.7) φE
a (z) := eiaz

(
eiz

e−iz

)
, φH

b (z) := eibz
(
ez

e−z

)
, φP

c (z) := eicz
(
z
1

)
.

These are lifts to C2 of elliptic, hyperbolic, parabolic catenoids in Q3
+, respectively. Their

lifts to SL(2,C) are

FE
a (z) :=

(
ei(a+1)z − (a+1)2

4a
e−i(a−1)z

ei(a−1)z − (a−1)2

4a
e−i(a+1)z

)
,

FH
b (z) :=

(
e(ib+1)z − i(b−i)2

4b
e−(ib−1)z

e(ib−1)z − i(b+i)2

4b
e−(ib+1)z

)
,

F P
c (z) :=

(
zeicz −1

2
(2 + icz)e−icz

eicz −1
2
ice−icz

)
.

Their Weierstrass data can be written as

gE(w) = gH(w) = gP (w) = w

and

(2.8) ωE =

(
−1

4
+

1

4a2

)
dw

w2
, ωH =

(
−1

4
− 1

4b2

)
dw

w2
, ωP = −1

4

dw

w2
.

Remark 2.6. Note that there is only one parabolic catenoid up to isometries and homothety
of Q3

+. For CMC-1 surfaces in de Sitter three-space, a similar fact has been observed in [9].
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3. Geodesics of Q3
+

As the induced metric on Q3
+ is degenerate, we will consider geodesics in Q3

+ by using
characterizations of geodesics in better known quadrics of L4: hyperbolic 3-space H3 and de
Sitter 3-space S3

1. In both cases, geodesics are obtained as intersections of each corresponding
space and a two dimensional plane in L4 which passes through the origin; thus, they are
curves in a totally geodesic surface, i.e. a totally umbilic surface with vanishing mean and
(extrinsic) Gaussian curvature, whose geodesic curvature vanishes.

3.1. Planes in Q3
+. We first define planes as follows:

Definition 3.1. A plane is an immersion in Q3
+ that is totally geodesic, that is, whose

second fundamental form A vanishes everywhere.

We will characterize planes within the class of totally umbilic surfaces in Q3
+: these are given

by intersections with affine 3-planes, namely,

S[M, q] := {X ∈ Q3
+ : ⟨X,M⟩ = q}

for some M ∈ L4 and q ∈ R \ {0}. Then it can be directly checked that the lightlike Gauss
map of S[m, q] is given by

G = − 1

2q2
⟨M,M⟩X +

1

q
M

so that its mean curvature and Gaussian curvature satisfy

H =
1

2q2
⟨M,M⟩, K =

1

4q4
⟨M,M⟩2.

Thus:

Lemma 3.2. An immersion is part of a plane if and only if it is part of P [M, q] defined via

P [M, q] := {X ∈ Q3
+ : ⟨X,M⟩ = q, ⟨M,M⟩ = 0}.

3.2. Geodesics. Now that we have the notion of a plane, we define geodesics as follows:

Definition 3.3. A regular curve in a plane of Q3
+ is called a geodesic if its geodesic curvature

vanishes in the plane.

To obtain an explicit formulation of geodesics, let us suppose that a plane is given via P [M, q].
We will now calculate the metric induced on P [M, q] from the ambient space by constructing
a coordinate chart. Choose any nonzero lightlike vector M̃ such that ⟨M, M̃⟩ = q ̸= 0, and
note that span{M, M̃} must have signature (−+). Thus,

R := span{M, M̃}⊥ ∼= E2,

where E2 denotes the usual Euclidean 2-plane.

We define a bijection ψ : R → P [M, q] by

ψ(Y ) = Y + M̃ − 1

2q
⟨Y, Y ⟩M
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and its inverse by

ψ−1(X) = X − M̃ − 1

q
⟨X, M̃⟩M.

Viewing ψ as a coordinate chart, let γ : I → P [m, q] be a unit-speed curve with Y : I → R
such that

γ = ψ ◦ Y.

Since

γ′ = (Y + M̃ − 1
2q
⟨Y, Y ⟩M)′ = Y ′ − 1

q
⟨Y, Y ′⟩M,

it must follow that

⟨γ′, γ′⟩ = ⟨Y ′, Y ′⟩.

Therefore, any plane P [m, q] is isometric to R ∼= E2, and thus γ : I → P [m, q] is a curve in
P [m, q] with vanishing geodesic curvature if and only if Y := ψ−1 ◦ γ : I → R ∼= E2 is a line.

To obtain explicit parametrizations of geodesics, let Y : I → R be a line parametrized by
arc-length so that

Y (s) = V s+W

for any constant V,W ∈ R = span{M, M̃}⊥ with ⟨V, V ⟩ = 1. We then have

γ(s) = ψ ◦ Y (s) = V s+W + M̃ − 1
2q
(s2 + 2⟨V,W ⟩s+ ⟨W,W ⟩)M

= − 1
2q
Ms2 + (V − 1

q
⟨V,W ⟩M)s+W + M̃ − 1

2q
⟨W,W ⟩M

:=
1

2
a⃗s2 + b⃗s+ c⃗.

Then we can check directly that

(3.1) ⟨⃗a, a⃗⟩ = ⟨⃗a, b⃗⟩ = ⟨⃗b, c⃗⟩ = ⟨c⃗, c⃗⟩ = 0, ⟨⃗a, c⃗⟩ = −⟨⃗b, b⃗⟩ = −1.

On the other hand, let γ : I → Q3
+ be given via

γ(s) =
1

2
a⃗s2 + b⃗s+ c⃗,

where a⃗, b⃗, c⃗ ∈ L4 satisfy (3.1). Then we have

⟨γ(s), a⃗⟩ = −1,

so that γ is a curve in the plane P [⃗a,−1]. Therefore, using ψ−1 : P [⃗a,−1] → R, we write
Y := ψ−1 ◦ γ with c⃗ = M̃ as

Y = 1
2
a⃗s2 + b⃗s+ c⃗− c⃗+ ⟨1

2
a⃗s2 + b⃗s+ c⃗, c⃗⟩⃗a = b⃗s

so that Y is a line.

Summarizing:
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Theorem 3.4. A curve γ : I → Q3
+ is a geodesic in Q3

+ if and only if there exist some
a⃗, b⃗, c⃗ ∈ L4 satisfying

(3.2)

⟨X, Y ⟩

X
Y

a⃗ b⃗ c⃗

a⃗ 0 0 −1

b⃗ 0 1 0
c⃗ −1 0 0

such that

(3.3) γ(s) =
1

2
a⃗s2 + b⃗s+ c⃗.

Using the parametrization, we can also deduce the following:

Lemma 3.5. All geodesics are congruent to each other.

Proof. Let a⃗, b⃗, c⃗ be arbitrary vectors of L4 which satisfy (3.2). By applying an isometry of

Q3
+, we may assume that c⃗ =

(
0 0
0 1

)
. Then (3.2) implies that

a⃗ =

(
2 w
w̄ 1

2
ww̄

)
, b⃗ =

(
0 eiθ

e−iθ 1
2
(we−iθ + w̄eiθ)

)
for some w ∈ C and θ ∈ R. Let F :=

(
e−iθ/2 0

−1
2
w̄eiθ/2 eiθ/2

)
∈ SL(2,C), then

F a⃗F ⋆ =

(
2 0
0 0

)
, F b⃗F ⋆ =

(
0 1
1 0

)
, F c⃗F ⋆ =

(
0 0
0 1

)
,

and thus the claim follows. □

3.3. Geodesics as space curves. To make connection with the curve theory reviewed in
Section 2.2, let γ be a geodesic given by the unit-speed parametrization as in Theorem 3.4,
so that

γ′(s) = a⃗s+ b⃗, γ′′(s) = a⃗.

Thus the cone curvature of γ vanishes:

κ = −1

2
⟨γ′′, γ′′⟩ = 0.

On the other hand, since

span{γ,T,N} = span{γ, γ′, γ′′} = span{a⃗, b⃗, c⃗}
is constant in s, we have that B : I → span{γ,T,N}⊥ is a constant vector, and hence the
cone torsion τ also vanishes.

To consider the converse, let us assume that γ : I → Q3
+ is a unit speed curve with κ = τ = 0.

Then the Frenet equation (2.2) implies γ′′′ = T ′′ = −N ′ = 0⃗. Hence, γ′′ is a constant vector,
say a⃗ ∈ L4. Since κ = 0 if and only if γ′′ is lightlike, we have ⟨⃗a, a⃗⟩ = 0.
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Integrating once with respect to s, we obtain γ′(s) = a⃗s+ b⃗ for some b⃗ ∈ L4, and since γ is
unit speed,

1 = ⟨γ′, γ′⟩ = ⟨⃗as+ b⃗, a⃗s+ b⃗⟩ = 2⟨⃗a, b⃗⟩s+ ⟨⃗b, b⃗⟩,
allowing us to conclude that ⟨⃗a, b⃗⟩ = 0, ⟨⃗b, b⃗⟩ = 1.

Integrating once more with respect to s, we may write

γ(s) =
1

2
a⃗s2 + b⃗s+ c⃗

for some c⃗ ∈ L4. The fact that γ takes values in Q3
+ tells us

0 = ⟨γ(s), γ(s)⟩ = ⟨⃗a, c⃗⟩s2 + s2 + 2⟨⃗b, c⃗⟩s+ ⟨c⃗, c⃗⟩,

so that ⟨⃗a, c⃗⟩ = −1, ⟨⃗b, c⃗⟩ = 0, and ⟨c⃗, c⃗⟩ = 0.

Thus we conclude:

Theorem 3.6. A unit-speed curve in Q3
+ is a geodesic if and only if its cone curvature and

cone torsion vanish.

Remark 3.7. In Riemannian manifolds, a geodesic is determined by its initial position and
initial velocity. However, that is not the case in Q3

+. For example, let γ be given as in (3.3)
and take a⃗, b⃗, and c⃗ as in the proof of Lemma 3.5 with θ = 0. Then any arbitrary choice of
w = iµ ∈ iR yields geodesics all with the same initial position and initial velocity. This is
due to the freedom of choice of M̃ .

4. Two examples of ruled ZMC surfaces Q3
+

In this section, we will examine two important ruled ZMC surfaces in Q3
+, with an eye on

obtaining a complete classification of all ruled ZMC surfaces in Q3
+.

4.1. Screw motions in Q3
+. One of the most important examples of a ruled minimal surface

in Euclidean space is a helicoid, obtained by applying a certain screw motion to a geodesic.
Our first step in the classification of ruled ZMC surfaces in Q3

+ is to mimic the Euclidean
case, and apply a certain screw motion to a geodesic, and see if the resulting surface has
zero mean curvature. Thus, we first devote our attention to screw motions in Q3

+, by first
examining isometries that form a one-parameter subgroup under composition:

Fact 4.1. Let φ : (−ϵ, ϵ) → SL(2,C) be a one-parameter subgroup of isometries of Q3
+, so

that
φ(s+ t) = φ(s)φ(t).

Hence φ(s)−1(φ(s+ t)− φ(s)) = φ(t)− φ(0), which implies

φ(s)−1φ(s)′ = φ(0)′ ∈ sl(2,C).

Then φ(s) = esφ(0)
′ . For a, b, c ∈ C with ∆ :=

√
−(a2 + bc) ̸= 0,

exp

(
s

(
a b
c −a

))
=

(
cos∆s+ a

∆
sin∆s b

∆
sin∆s

c
∆
sin∆s cos∆s− a

∆
sin∆s

)
.
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So let us consider all cases of A ∈ sl(2,C), so that A2 = −(detA)I2, generating such
one-parameter subgroups, where the rotation matrices of Example 2.1 will be used.

Case 1. Suppose that detA ̸= 0. Then λ :=
√
− detA is an eigenvalue of A and

A =M diag(λ,−λ)M−1

for some M ∈ SL(2,C). Then the one-parameter subgroup s 7→ esA is similar to s 7→ D1(e
λs).

If λ is purely imaginary, φ are elliptic rotations. If λ is real, φ are hyperbolic rotations. If λ
is neither real nor purely imaginary, then φ are screw motions.

Case 2. Suppose that detA = 0. Then A =

(
αβ −α2

β2 −αβ

)
for some α, β ∈ C and esA = I+sA.

Let
λ :=

√
−iα/β, h := 2iαβ for α, β ∈ C \ {0}.

Then
D2(λ)e

sAD2(λ)
−1 = φ(hs),

where

φ(k) :=

(
1 + ik

2
k
2

k
2

1− ik
2

)
= BP (k)B−1, B :=

1√
2

(
1 −i
−i 1

)
.

So the one-parameter subgroup s 7→ esA is similar to s 7→ P (sh) in SL(2,C) for some h ∈ C.
If α or β is 0, it’s trivial. Note that, if h = reiθ, then(

e−iθ/2 0
0 eiθ/2

)(
1 sreiθ

0 1

)(
e−iθ/2 0
0 eiθ/2

)−1

=

(
1 rs
0 1

)
,

so it is conjugate to a single parabolic rotation. In conclusion, we obtain the following:

Proposition 4.2. Any one-parameter subgroup of isometries of Q3
+ is similar to

D1(e
λs) =

(
eλs 0
0 e−λs

)
, or P (rs) =

(
1 rs
0 1

)
,

for some λ ∈ C and r ∈ R.

Now that we have the notions of geodesics and screw motions, we define the following special
classes of surfaces:

Definition 4.3. Let X : U → Q3
+ be an immersion.

• If X is invariant under screw motions, then X is called a helicoidal surface.
• If X is foliated by geodesics, then X is called a ruled surface.

4.2. Helicoids. Now let us consider the surface obtained by applying a screw motion to a
geodesic:

X(u, v) :=

(
e(a+ib)v 0

0 e−(a+ib)v

)(
u2 u
u 1

)(
e(a+ib)v 0

0 e−(a+ib)v

)⋆

=

(
e2avu2 e2ibvu
e−2ibvu e−2av

)
,
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where a and b are some real constants. Then one can calculate the lightlike Gauss map G
and the corresponding fundamental forms to find that H ≡ 0. Thus, as in the case of minimal
surfaces in Euclidean space, we define helicoids in Q3

+ as follows:

Definition 4.4. For arbitrary nonzero real numbers a and b, we call the image of R2 by

Ha,b(u, v) :=

(
e(a+ib)v 0

0 e−(a+ib)v

)(
u2 u
u 1

)(
e(a+ib)v 0

0 e−(a+ib)v

)⋆

the standard helicoid of Q3
+. Any surface that is congruent to X up to homotheties and

isometries of Q3
+ are referred to as helicoids (see Figure 1, left).

Now we note some important geometric facts about helicoids in Q3
+:

Lemma 4.5. The following hold:

• For any nonzero real numbers a and b, the curve v 7→ Ha,b( 1
2
√
a2+b2

, v) is a unit-speed
helix and has constant cone curvature κ = 2(a2 − b2) and constant cone torsion τ = 4ab.

• The metric of the surface is given by g = du2 + 4au du dv + 4(a2 + b2)u2 dv2, so u-
parameter curves and v-parameter curves of Ha,b meet at constant angles, but not
perpendicularly.

• The metric is singular if u = 0.

Proof. The proof follows from direct calculations. □

Remark 4.6. For a = 0, we have

H0,b(u, v) =

(
u2 e2ibvu

e−2ibvu 1

)
.

Then the surface is the intersection of Q3
+ and the hyperplane x0−x3 = 1 in L4, a horosphere

(see Figure 1, center):

{(x0, x1, x2, x3) ∈ Q3
+ : x0 + x3 = x21 + x22}.

Also when b = 0, we have

Ha,0(u, v) =

(
e2avu2 u
u e−2av

)
,

which is a lightlike surface in Q3
+.

In particular, applying screw motion to a geodesic does not result in orthogonal parametriza-
tion of the resulting helicoid, which makes the case of Q3

+ stand out from the cases of other
space forms. However, we can find a conformal reparametrization of the standard helicoid
as follows: If we let ṽ := 2bv and ũ := 2av + lnu, then

(4.1) H̃a,b(ũ, ṽ) := Ha,b
(
eũ−

a
b
ṽ, 1

2b
ṽ
)
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Figure 1. A helicoid (left), a horosphere (center) and a parabolic catenoid
(right) in the ball model of Q3

+ (cf. [6]). Curves represent geodesics.

is conformally parametrized, and

(4.2)
H̃a,b(u, v) = e−

a
b
v

(
ei

v
2 0
0 e−i v

2

)(
e2u eu

eu 1

)(
ei

v
2 0
0 e−i v

2

)⋆

= φHel
i a
2b
(u+ iv)φHel

i a
2b
(u+ iv)⋆, φHel

c (z) := ecz
(
ez

1

)
.

Direct calculations show that the v-parameter curves do not have constant cone curvature,
hence are not helices.

Remark 4.7. Note that Ha,b[R+×R] = H̃a,b[R2] and Ha,b(−u, v) = R0H
a,b(u, v)R⋆

0 for

R0 :=

(
1 0
0 −1

)
. That is,

Ha,b(−u, v) = R1 ◦Ha,b(u, v), R1(x0, x1, x2, x3) := (x0,−x1,−x2, x3).

We may regard Ha,b[R2], which has singularities at the v-axis, as the analytic extension
of the spacelike surface H̃a,b[R2], which is intrinsically flat, as every ZMC surface in Q3

+ is
intrinsically flat. (See also [6, § 4.5].)

4.3. Geodesics on helicoids and the singular set. Now we consider geodesics on helicoids
given globally by Ha,b : R2 → Q3

+. In particular, we wish to examine the behavior of geodesics
on Ha,b around the singular set {u = 0}.

We will first find the geodesics of helicoids by finding an (almost) orthonormal basis of the
tangent bundle. Calculating the induced metric of Ha,b as

ds2 = (du+ 2au dv)2 + 4b2u2 dv2,

we reparametrize the surface as in (4.1) so that the surface is conformally parametrized by
z = ũ+ iṽ ∈ C1

∼= C:

ds2 = e2(ũ−
a
b
ṽ)(dũ2 + dṽ2) = |e(1+

a
b
i)z dz|2.

Note that
(ũ, ṽ) = (lnu+ 2av, 2bv).
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Consider another change of coordinates

C1 ∋ z
ρ7−−→ ζ = e(1+

a
b
i)z ∈ C2

∼= C \ {0}

which transforms the induced metric into

ds2 =
1

|1 + a
b
i|2

|dζ|2.

Thus, any geodesic in C2 satisfies

(α− iβ)ζ + (α + iβ)ζ̄ + 2γ = 0

for some real constants α, β, γ. We distinguish two cases.

Case 1. Suppose γ ̸= 0. Substituting ζ by e(1+
a
b
i)(ũ+iṽ) yields

α cos c1 + β sin c1 = −γe−(ũ−a
b
ṽ) = −γu−1, where c1 = c1(ũ, ṽ) :=

a

b
ũ+ ṽ.

Then

|u| = |γ|
|α cos c1 + β sin c1|

≥ |γ|
|α|+ |β|

> 0.

Thus, in this case, geodesics do not intersect the singular set (see Figure 2).

Case 2. Suppose γ = 0. In this case, Arg ζ = constant. Noting that ζ = eũ−
a
b
ṽei(

a
b
ũ+ṽ), we

conclude that any component of the lift of the geodesic by ρ can be written as

a

b
ũ+ ṽ = c1,

where c1 is some real constant. Now, the corresponding points in the (u, v)-plane must lie
on the curve parametrized by ũ where

u = exp
(
(1 + a2

b2
)ũ− a

b
c1

)
, v =

ṽ

2b
=
c1 − a

b
ũ

2b
.

In particular, we see that u → 0+ as ũ → −∞, but then v → ±∞; thus, in this case,
geodesics asymptotically approach the singular set {u = 0}, without ever intersecting it (see
Figure 2).

We summarize as follows:

Theorem 4.8. There is no geodesic intersecting the singular set in the helicoids.

Remark 4.9. The situation in the isotropic three-space I3 is different, where the standard
helicoid can be parameterized by H(u, v) := (u cos av, u sin av, bv), (u, v) ∈ R2, up to isome-
tries and homothety. For each v ∈ R, let γ(u) := H(u, v). Then γ[R] is a geodesic of I3, and
γ[R+] and γ[R−] are geodesics of H[R+× R] and H[R−× R], respectively, which converge to
the singular point H(0, v).
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Figure 2. Left: H̃a,b[R2]. The solid curves are (halves of) the rulings, the
dotted curve is a geodesic of case 1 and the dashed curve is a geodesic of case
2 in §4.3. Right: Ha,b[R2]. The line is the singular set.

4.4. Parabolic catenoids. We now give another important example of a ruled ZMC surface
in Q3

+: the parabolic catenoid reviewed in Section 2.5. To check that the parabolic catenoid
is a ruled surface, we first observe that if we write z = u+ iv and φP

c is from (2.7), then

(4.3) CP
c (u, v) := φP

c (u+ iv)φP
c (u+ iv)⋆ = e−2cv

(
1 iv
0 1

)(
u2 u
u 1

)(
1 iv
0 1

)⋆

.

The fact that the parabolic catenoid is a ruled surface follows from the following reparametriza-
tion:

(4.4) CP
c (e

2cvu, v) =

(
1 iv
0 1

)(
ecv 0
0 e−cv

)(
u2 u
u 1

)(
ecv 0
0 e−cv

)⋆(
1 iv
0 1

)⋆

so that the parabolic catenoid is a surface obtained by applying isometries to a geodesic (see
Figure 1, right).

Remark 4.10. The map

R ∋ c 7→ pc(v) :=

(
1 iv
0 1

)(
ecv 0
0 e−cv

)
in (4.4) is not a one-parameter subgroup, that is, pc(v1 + v2) ̸= pc(v1)pc(v2). Hence it is not
a screw motion. On the other hand, the map

R ∋ c 7→ qc(v) := e−cv

(
1 iv
0 1

)
= exp

(
−cv −iv
0 −cv

)
in (4.3) induces a one-parameter subgroup, that is, qc(v1 + v2) = qc(v1)qc(v2). However, qc(v)
does not represent an isometry.

5. Helicoids and the associated family of catenoids

In the Euclidean case, helicoids and catenoids are related by an isometric deformation, called
the associated family. In this section, we examine whether helicoids in Q3

+ can also be found
in the associated family of catenoids in Q3

+.
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5.1. Associated family of catenoids in Q3
+. Recall from (2.6) that a ZMC surface with

Weierstrass data (g, ω) admits an isometric deformation known as the associated family by a
change in the Weierstrass data via

(g, ω) 7→ (g, λω)

for any unit complex constant λ. Taking the Weierstrass data as

(g, ωδ) =

(
w, δ

dw

w2

)
,

for some δ ∈ R \ {0}, we note from (2.8) that the resulting immersion Xδ is

• an elliptic catenoid if δ > −1
4
,

• a parabolic catenoid if δ = −1
4
, or

• a hyperbolic catenoid if δ < −1
4
.

Therefore, any surface with Weierstrass data

(g, ωδ) =

(
w, δ

dw

w2

)
,

for any δ ∈ C \ {0} must be in the associated family of a catenoid, given by the Weierstrass
data

(g, ω|δ|) =

(
w, |δ|dw

w2

)
.

5.2. Helicoids and the associated family of catenoids. Turning our attention to the
conformally parametrized (standard) helicoid H̃a,b in (4.2), we first note that we may assume
without loss of generality that b = 1

2
. Then the lift of H̃a to C2 is given in (4.2) by

φHel
a (z) := eiaz

(
ez

1

)
.

Thus we can find the lift F a to SL(2,C) using (2.4):

F a(z) =

(
e
z
2 0

0 e−
z
2

)(
1 − (1+ia)2

1+2ia

1 a2

1+2ia

)(
eiaz 0
0 e−iaz

)(
e
z
2 0

0 e−
z
2

)
.

This in turn allows us to find the Weierstrass data using (2.5), so that

(G,Ω) =

(
a− i

a
ez, a2e−z dz

)
(g, ω) =

(
−a(1 + ia)

2a− i
e(−1−2ia)z,−e(1+2ia)z dz

)
.

Making a change of coordinate via w := g, we may normalize the Weierstrass data as

(g̃, ω̃) =

(
w,− a(a− i)

(2a− i)2
dw

w2

)
.

Therefore, we have:

Theorem 5.1. Every helicoid in Q3
+ is in the associated family of some catenoid in Q3

+.
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However, the converse is not true, namely, there are catenoids that do not have helicoids in
the associated family. To see this, we note that for

δ(a) := − a(a− i)

(2a− i)2
,

one can directly check that for real functions of x and y of a given by

x(a) + i y(a) := −1

4
− δ(a),

we have (
x(a)2 + y(a)2

)2
+

1

4
x(a)

(
x(a)2 + y(a)2

)
− 1

64
y(a)2 = 0,

which is the formula for a cardioid. As a varies from −∞ to ∞, the image starts from
(−1/4, 0) and wraps around in the counterclockwise direction.

In particular, we have
|δ(a)| ∈ (0, 1

2
√
3
],

so that when |c| > 1
2
√
3
, the catenoids with Weierstrass data (g, ωc) =

(
z, cdw

w2

)
have no

helicoids in its associated family. We summarize:

Theorem 5.2. Let Xδ be the ZMC catenoid in Q3
+ given by the Weierstrass data

g = ζ, ω =
δ

ζ2
dζ for δ ∈ R+.

Then the number of helicoids and catenoids in the associated family of Xδ varies depending
upon δ, which can be described as follows (see also Figure 3):

• 0 < δ < 1
4
: two elliptic catenoids and two helicoids (Fig. 4),

• δ = 1
4
: one elliptic catenoid, two helicoids, and one parabolic catenoid (Fig. 5),

• 1
4
< δ < 1

2
√
3
: one elliptic catenoid, one hyperbolic catenoid, four helicoids (Fig. 6),

• δ = 1
2
√
3
: one elliptic catenoid, one hyperbolic catenoid, two helicoids (Fig. 7),

• 1
2
√
3
< δ: one elliptic catenoid, one hyperbolic catenoid.

5.3. Associated family of catenoids under Lawson-type correspondence between
I3 and Q3

+. Lawson-type correspondence between ZMC surfaces in the isotropic 3-space I3
and the 3-dimensional light cone Q3

+ has been established in [17] as a generalization of the
Umehara-Yamada perturbation [23].

In this section, we derive a similar type of correspondence between ZMC surfaces in I3 and
Q3

+, and consider the correspondence between the associated family of catenoids in I3 and Q3
+.

The derivation is obtained efficiently by viewing both classes of surfaces as graphs: Suppose
that X : U → Q3

+ is an immersion represented as a graph of a function f : U → R, that is,

X(u, v) = ef(u,v)
(
u2 + v2 u+ iv
u− iv 1

)
.
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Figure 3. Types of surface given by the Weierstrass data (g, ω) = (w, δ dw
w2 ),

depending on the value of δ ∈ C \ {0}. The dashed line corresponds to elliptic
catenoids, the black point parabolic catenoid, dotted line hyperbolic catenoids,
and cardioid helicoids.

Figure 4. Associated families of catenoid given by the Weierstrass data
(g, ω) = (w, 1

2
√
5
dw
w2 ).

We have seen in (2.3) that X is a ZMC surface if and only if f is a harmonic map. However,
it is known [21] that any ZMC surface in I3 must be a graph of a harmonic map, giving us
the following correspondence between ZMC surfaces in I3 and Q3

+:

Lemma 5.3. The following map

(5.1) T : I3 → Q3
+, T (x, y, l) := el

(
x2 + y2 x + iy
x− iy 1

)
sends ZMC surfaces in I3 to ZMC surfaces in Q3

+.
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Figure 5. Associated families of catenoid given by the Weierstrass data
(g, ω) = (w, 1

4
dw
w2 ).

Figure 6. Associated families of catenoid given by the Weierstrass data
(g, ω) = (w, 1√

13
dw
w2 ).

Figure 7. Associated families of catenoid given by the Weierstrass data
(g, ω) = (w, 1

2
√
3
dw
w2 ).

Note that

T (x, y, l) = P (x + iy)D1(e
−l/2)

(
0
1

)(
P (x + iy)D1(e

−l/2)

(
0
1

))⋆

.
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Example 5.4. The image of the plane l = f(x, y) = ax + by + c in I3 under T in (5.1) is

X(u, v) = e2(au+bv+c)

(
u2 + v2 u+ iv
u− iv 1

)
,

which is the parabolic catenoid.

We shall now examine the relationship between the associated families of catenoids in I3 and
Q3

+. For arbitrary real constants α and β, consider

Φ(z̃) := eα+iβ(z̃,−iz̃, ln z̃) ∈ C3, z̃ := eu+iv ∈ C.
With r := eα,

X̃α,β(u, v) := Re(Φ(z))

= r
(
eu cos(v + β), eu sin(v + β), u cos β − v sin β

)
are associate families of catenoids under homotheties in I3. By Lemma 5.3,

Xα,β(u, v) := er(u cosβ−v sinβ)

(
e2(u+α) eu+αei(v+β)

eu+αe−i(v+β) 1

)
is a ZMC surface in Q3

+ for each α, β ∈ R. Then using c := 1
2
eα+iβ ∈ C \ {0}, we can rewrite

Xα,β = Xc as

(5.2)

Xc(u, v) = Xα,β(u, v)

= eαD1(e
1
2
(α+iβ))φc(z)φc(z)

⋆D1(e
1
2
(α+iβ))⋆

≃ φc(z)φc(z)
⋆,

where φc(z) := ecz
(
ez

1

)
.

To find the Weierstrass data for Xc, we use (5.2) to assume without loss of generality that

Xc(z) = φc(z)φc(z)
⋆,

that is, the lift of Xc to C2 is φc(z). Then the lift Fc of Xc to SL(2,C) for c ̸= −1
2

can be
found using (2.4) as

Fc(z) :=

(
e
z
2 0

0 e−
z
2

)(
1 − (c+1)2

2c+1

1 − c2

2c+1

)(
ecz 0
0 e−cz

)(
e
z
2 0

0 e−
z
2

)
,

and we can see that Fc is indeed null-holomorphic. Direct calculations then show that

(G,Ω) =
(
(1 + 1

c
)ez,−c2e−z dz

)
,

(g, ω) =
(
− c(c+1)

2c+1
e−(2c+1)z,−e(2c+1)z dz

)
.

Now we make a coordinate change w := g so that

(g̃c, ω̃c) =

(
w,− c(c+ 1)

(2c+ 1)2
dw

w2

)
.

Since the map δ̃(c) given by

δ̃(c) = − c(c+ 1)

(2c+ 1)2
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is a surjection onto C \ {−1
4
}, we conclude that every surface in the associated families of

elliptic or hyperbolic catenoids in Q3
+ corresponds to a surface in the associated familiy of

catenoids in I3, under the correspondence in Lemma 5.3.

In particular, if Xc is a ZMC surface constructed using Weierstrass data (g̃c, ω̃c), then it is

• an elliptic catenoid when c ∈ R \ {−1
2
} so that δ̃(c) ∈ (−1

4
,∞),

• a hyperbolic catenoid when c = −1
2
+ ic̃ for c̃ ∈ R \ {0} so that δ̃(c) ∈ (−∞,−1

4
), or

• a helicoid when c ∈ iR \ {0} or c ∈ −1 + iR \ {−1}.

Remark 5.5. When c = −1
2
, X− 1

2
(z) and its lift F− 1

2
(z) are

X− 1
2
(z) =

 e
z+z̄
2 e

z−z̄
2

e
−z+z̄

2 e
−z−z̄

2

 and F− 1
2
(z) =

(
e
z
2 z

4
e
z
2

e−
z
2 (1 + z

4
)e−

z
2

)
.

Direct calculations show that

(G,Ω) =
(
−ez,− e−z

4
dz
)
, (g, ω) =

(
− z+2

4
,− dz

)
.

Now we use the coordinate change w := g to see that the Weierstrass data of this case is

(g̃− 1
2
, ω̃− 1

2
) = (w, 4 dw) .

Thus, X− 1
2

is the trivial Enneper cousin (see [5] or [22]), and with z = u+ iv,

(5.3)

X− 1
2
(u, v) =

(
eu eiv

e−iv e−u

)
=

(
e

u
2 0
0 e−

u
2

)(
ei

v
2 0
0 e−i v

2

)(
1 1
1 1

)(
ei

v
2 0
0 e−i v

2

)⋆(
e

u
2 0
0 e−

u
2

)⋆

.

It is bi-rotationally invariant with constant K ≡ −1
4
.

We take a change of parameters via

(u, v) = (ũ+ ṽ, ũ− ṽ).

Then we have

X− 1
2
(ũ, ṽ) =

(
eλũ 0
0 e−λũ

)(
eλ̄ṽ 0

0 e−λ̄ṽ

)(
1 1
1 1

)(
eλ̄ṽ 0

0 e−λ̄ṽ

)⋆(
eλũ 0
0 e−λũ

)⋆

,

where λ = 1
2
(1 + i). Thus the surface is also bi-helicoidal, obtained by applying two screw

motions to a single point.

Remark 5.6. The example of trivial Enneper cousin (5.3) is an example of a helicoidal ZMC
surface in Q3

+ that is not in the associated family of catenoids. Thus it would be interesting
to classify all helicoidal ZMC surface in Q3

+. Also it remains to see if the example of trivial
Enneper cousin is the only bi-helicoidal ZMC surface in Q3

+.
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5.4. Lightlike Gauss maps of catenoids and helicoids. Let X : U → Q3
+ be a confor-

mally parametrized ZMC immersion with conformal coordinates (u, v). Then the lightlike
Gauss map G : U → Q3

− can be viewed as a surface into Q3
−, called the associated surface of

X in [14], and the following facts are known:

Remark 5.7. Let X : U → Q3
+ be a ZMC immersion with conformal coordinates (u, v) ∈ U .

If the lightlike Gauss map G is immersed, then G is also a conformally parametrized ZMC
immersion. Furthermore, the first fundamental form gG of G is given in terms of the first
fundamental form of X via

gG = −KgX .

Normalizing helicoids H̃a(u, v) in (4.2) with b = 1
2

so that

H̃a(u, v) = e−2av

(
e2u eu+iv

eu−iv 1

)
,

the lightlike Gauss map Ga(u, v) of H̃a(u, v) is given by

Ga(u, v) = −2e2av
(

a2 + 1 a(a− i)e−u+iv

a(a+ i)e−u−iv a2e−2u

)
.

Setting eα+iβ := a− i for α, β ∈ R, we then notice

Ga(u, v) = −2e2av
(

e2α aeα+iβe−u+iv

aeα−iβe−u−iv a2e−2u

)
= −2aeαD2(

i√
a
)D1(e

− 1
2
(α+iβ))H̃a(−u,−v)D1(e

− 1
2
(α+iβ))⋆D2(

i√
a
)⋆

≃ H̃a(−u,−v),

so that Ga(u, v) is again a helicoid. We can similarly check that if a ZMC surface in Q3
+ is a

catenoid, then its lightlike Gauss map is also a catenoid:

Proposition 5.8. Let X : U → Q3
+ be a helicoid or (an elliptic, a hyperbolic, a parabolic)

catenoid. Then the lightlike Gauss map of X is also a helicoid or (an elliptic, a hyperbolic, a
parabolic) catenoid in Q3

−, respectively.

6. Classification of ruled ZMC surfaces in Q3
+

In this section, we show that any ruled ZMC surface in Q3
+ must be either a helicoid (4.2)

or a parabolic catenoid (4.4) up to isometry and homothety. As noted in Lemma 4.5, the
surface obtained by applying screw motions to a geodesic results in a ZMC surface, which
we call a helicoid; however, helices and geodesics do not meet orthogonally (even though
they meet at a constant angle). Therefore, the standard techniques of classifying ruled ZMC
surfaces do not work in Q3

+.

To overcome this obstacle, we will view a ruled surface as an application of isometries to a
geodesic, and find the condition on the isometries for the resulting surface to have zero mean
curvature.



RULED ZMC SURFACES IN Q3
+ 23

Thus, without loss of generality, we assume that any spacelike ruled surface in Q3
+ is param-

eterized as
X(s, t) = F (s)δ(t)F (s)⋆

for the geodesic δ(t) :=
(
t2 t
t 1

)
and some curve F in SL(2,C) with F (0) = I2. Let

XF
∗ (s, t) := F (s)−1X∗(s, t)(F (s)

−1)⋆, Ω(s) := F (s)−1F (s)′ =

(
α(s) β(s)
γ(s) −α(s)

)
.

Then, direct calculations show that

XF (s, t) = δ(t), XF
s (s, t) = Ω(s)δ(t) + δ(t)Ω(s)⋆, XF

t (s, t) = δ(t)′,

XF
ss(s, t) = F (s)−1F (s)′′δ(t) + 2Ω(s)δ(t)Ω(s)⋆ + δ(t)(F (s)−1F (s)′′)⋆,

XF
st(s, t) = Ω(s)

(
2t 1
1 0

)
+

(
2t 1
1 0

)
Ω(s)⋆, XF

tt (s, t) =

(
2 0
0 0

)
.

Here we note that

F (s)−1F (s)′′ = (F−1F ′)′ + (F−1F ′)2 = Ω(s)′ − detΩ(s)I2,

where I2 is the 2× 2 identity matrix.

Now let G(s, t) be the lightlike Gauss map of X(s, t). Then

GF (s, t) := F (s)−1G(s, t)(F (s)−1)⋆

satisfies
⟨GF ,GF ⟩ = ⟨GF , XF

s ⟩ = ⟨GF , XF
t ⟩ = ⟨GF , XF ⟩ − 1 = 0.

To proceed further, let

a0 :=

(
−2 0
0 0

)
, a1 :=

(
0 1
1 0

)
, a2 :=

(
0 i
−i 0

)
, a3 :=

(
0 0
0 1

)
.

We regard a3 as a point in Q3
+, and a0, a1, a2 as a basis of Ta3Q3

+.

We realize that δ(t) is obtained by rotating a3 by the parabolic rotation P (t) =

(
1 t
0 1

)
.

That is, δ(t) = P (t)a3P (t)
⋆. We let

fι(t) := P (t)aιP (t)
⋆, ι = 0, 1, 2, 3.

Then for any t, {f0(t),f1(t),f2(t)} is a basis of Tδ(t)Q3
+, and we see that

XF (s, t) = f3(t), XF
t (s, t) = f1(t),

Ω(s) =
1

2
(α(t2 − 1) + (β + γ)t)f0 +

1

2
(2αt+ β + γ)f1 −

i

2
(β − γ)f2 − αf3,

XF
s (s, t) = (2tα1(s) + β1(s)− t2γ1(s))f1(t)

+ (2tα2(s) + β2(s)− t2γ2(s))f2(t)− 2(α1(s)− tγ1(s))f3(t),

where ∗1 := Re(∗), ∗2 := Im(∗) for ∗ = α, β, γ.
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Then

GF (s, t) = f0(t) +
2
(
α1(s)− tγ1(s)

)
2tα2(s) + β2(s)− t2γ2(s)

f2(t)

−
2
(
α1(s)− tγ1(s)

)2(
2tα2(s) + β2(s)− t2γ2(s)

)2f3(t),

and

E := ⟨Xs, Xs⟩ = ⟨XF
s , X

F
s ⟩, L := ⟨G, Xss⟩ = ⟨GF , XF

ss⟩,
F := ⟨Xs, Xt⟩ = ⟨XF

s , X
F
t ⟩, M := ⟨G, Xst⟩ = ⟨GF , XF

st⟩,
G := ⟨Xt, Xt⟩ = ⟨XF

t , X
F
t ⟩, N := ⟨G, Xtt⟩ = ⟨GF , XF

tt ⟩.
The mean curvature H of X is

H =
C(s, t)

2
(
t2γ2(s)− 2tα2(s)− β2(s)

)3 ,
where C(s, t) is a fourth-order polynomial

C(s, t) := c0(s) + c1(s)t+ c2(s)t
2 + c3(s)t

3 + c4(s)t
4

of t, such that

c4(s) := 2γ2(s)
(
γ1(s)

2 + γ2(s)
2
)
,

c3(s) := −8α2(s)
(
γ1(s)

2 + γ2(s)
2
)
+ 2γ2(s)γ

′
1(s)− 2γ1(s)γ

′
2(s).(6.1)

Thus X has zero mean curvature if and only if

c0(s) = c1(s) = c2(s) = c3(s) = c4(s) = 0 for all s.

From c4(s) = 0, we see that γ2(s) = 0 for all s. Now to use (6.1), we distinguish two cases:
α2(s0) ̸= 0 for some s0 or α2(s) = 0 for all s.

Case 1. α2(s0) ̸= 0 for some s0. We may assume that α2(s) ̸= 0 for all s in some interval
containing s0. From the vanishing of c3(s) in (6.1), we conclude that γ1(s) = 0 for all s. Then
Ω(s) is an upper triangular matrix, and an interesting analysis can be carried out. In this
case, the coefficients of the numerator of the ZMC surface equation become the following:

c0(s) = 2β2(s)α1(s)
′ + α1(s)

(
4α2(s)β1(s)− 2β2(s)

′)− 4α1(s)
2β2(s),

c1(s) = 4α2(s)α1(s)
′ − 4α1(s)α2(s)

′, c2(s) = c3(s) = c4(s) = 0.

From the vanishing of c1(s), we conclude that

(6.2) α1(s) = dα2(s)

for some real constant d. We distinguish two cases.

Case 1-1. Suppose that d ̸= 0 so that

(6.3) α1(s) ̸= 0 for all s.

Let c = 1/d. Then,
c0(s)

α1(s)2
= −4β2(s)− 2

(
β2(s)

α1(s)

)′

+ 4cβ1(s),
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and c0(s) = 0 is equivalent to

(6.4) β1(s) =
1

c
β2(s) +

1

2c

(
β2(s)

α1(s)

)′

.

Thus, X has zero mean curvature if and only if (6.2) and (6.4) hold while α1 and β2 are
arbitrary smooth functions.

By defining f and g by

(6.5) α1(s) := g(s), β2(s) := f(s)g(s),

we have
α2(s) := cg(s), β1(s) :=

1

c
f(s)g(s) +

1

2c
f(s)′,

so that
Ω(s) = Ω1(s) + Ω2(s),

where

Ω1(s) =

(
(1 + ic)g(s) (1

c
+ i)f(s)g(s)

0 −(1 + ic)g(s)

)
, Ω2(s) =

0
(

f(s)
2c

)′
0 0

 .

With G(s) :=
∫
g(s)ds,

(6.6) F1(s) :=

(
e(1+ic)G(s) 0

0 e−(1+ic)G(s)

)
, F2(s) :=

(
1 f(s)

2c
0 1

)
,

and the matrix-valued function
F (s) := F1(s)F2(s)

is the (unique) solution to F (s)−1F (s)′ = Ω(s) with F (0) = I2. Therefore

X(s, t) = F1(s)F2(s)δ(t)F2(s)
⋆F1(s)

⋆

with F1, F2 as in (6.6) for some smooth real-valued functions f,G. Note that for fixed s,
the image of t 7→ F2(s)δ(t)F2(s)

⋆ is the same as the image of t 7→ δ(t). Hence, X(s, t) =
F1(s)δ(t)F1(s)

⋆.

Finally we notice from (6.3) and (6.5) that g(s) ̸= 0, hence we conclude that G is a strictly
monotone function, hence it has an inverse function s = h(G) and we can take G as a new
variable. We abuse notation by calling it s again, and conclude that

X(s, t) =

(
e(1+ic)s 0

0 e−(1+ic)s

)(
t2 t
t 1

)(
e(1+ic)s 0

0 e−(1+ic)s

)⋆

.

Then for any nonzero real number a, we may set s = as′ and b = ca, and by calling s′ as s
again, and conclude that

(6.7) X(s, t) =

(
e(a+ib)s 0

0 e−(a+ib)s

)(
t2 t
t 1

)(
e(a+ib)s 0

0 e−(a+ib)s

)⋆

.

That is, any generic ruled ZMC surface in Q3
+ is congruent to one of the above.

It is already shown that the surface in (6.7) is a ruled ZMC surface in Q3
+.
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Case 1-2. Suppose that d = 0. Then α1(s) = 0 for all s, from which it follows that
c0(s) = c1(s) = 0 for all s. In this case, we have

Ω(s) =

(
iα2(s) β1(s) + iβ2(s)

0 −iα2(s)

)
.

We can easily solve F (s)−1F (s)′ = Ω(s) with F (0) = I2 to obtain

(6.8) F (s) =

(
1 B1(s) + iB2(s)
0 1

)(
eiA(s) 0
0 e−iA(s)

)
,

where A(s) :=
∫ s

0
α2(s̃)ds̃, B1(s) + iB2(s) :=

∫ s

0
(β1(s̃) + iβ2(s̃))e

2iA(s̃)ds̃. So we conclude that
F (s) is of the form in (6.8) for some real-valued functions A,B1, B2.

Case 2. α2(s) = 0 for all s. Then c2(s) = −6β2(s)γ1(s)
2. We again have two cases:

Case 2-1. Suppose that β2(s1) ̸= 0 for some s1. By continuity, we may assume without loss
of generality that β2(s) ̸= 0 for all s, so that γ1(s) = 0 for all s. Then

c0(s) = 2α1(s)
′β2(s)− 2α1(s)β2(s)

′ − 4α1(s)
2β2(s),

c1(s) = c2(s) = c3(s) = c4(s) = 0.

Hence the mean curvature is identically zero if and only if

α1(s)
′β2(s)− α1(s)β2(s)

′ − 2α1(s)
2β2(s) = 0,

or equivalently
β2(s) = c1α1(s)e

−2
∫ s
0 α1(s̃) ds̃ = c2A(s)

′e−A(s).

In this case,

(6.9) Ω(s) =

(
α1(s) β1(s) + iβ2(s)
0 −α1(s)

)
,

and F−1F ′ = Ω with F (0) = I2 yield

(6.10) F (s) =

(
1 B1(s) + iB2(s)
0 1

)(
eA(s)/2 0

0 e−A(s)/2

)
,

where A(s) := 2
∫ s

0
α1(s̃)ds̃, B1(s) :=

∫ s

0
β1(s̃)e

A(s̃)ds̃, and B2(s) := c2A(s).

Conversely, if F is defined by (6.10) with arbitrary A(s) and B1(s) with B2(s) := c2A(s),
where c2 is an arbitrary real number, then Ω(s) := F (s)−1F (s)′ satisfies (6.9) with α1(s) =
1
2
A(s)′, β1(s) = B1(s)

′e−A(s), β2(s) = B2(s)
′e−A(s).

Case 2-2. Suppose that β2(s) = 0 for all s. Then coefficients c0, c1, c2, c3, c4 are all zero. In
this case, Ω(s) is real and trace-free, i.e. Ω(s) ∈ sl(2,R). Then F such that F−1F ′ = Ω is
real-valued, i.e. F (s) ∈ SL(2,R). This means that X = F (s)δ(t)F (s)⋆ is real-valued, which
in turn means that the x2-component of X(s, t) is zero, hence the image of X lies in

Q3
+ ∩ {x1 = 0} = {(x0, x1, x2, x3) : x20 + x21 + x23 = 0, x2 = 0}.

Since it is not spacelike, we exclude this case.

In summary, we have the following:
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Proposition 6.1. A surface given by X(s, t) := F (s)δ(t)F (s)⋆ is a ruled ZMC surface in

Q3
+, if δ(t) :=

(
t2 t
t 1

)
and

F (s) :=

(
eas 0
0 e−as

)(
eibs 0
0 e−ibs

)
, or

F (s) :=

(
1 B1(s) + iB2(s)
0 1

)(
eiA(s) 0
0 e−iA(s)

)
, or(6.11)

F (s) :=

(
1 B1(s) + ic2A(s)
0 1

)(
eA(s)/2 0

0 e−A(s)/2

)
(6.12)

for arbitrary real numbers a, b, c and arbitrary real-valued functions A,B1, B2, is a ruled ZMC
surface.

Conversely, any ruled ZMC surface in Q3
+ is congruent to one of the above.

Now we analyse the shapes of the ruled ZMC surfaces given by (6.11) and (6.12). First of
all, we see that for F in (6.11),

X(s, t) =

(
∗ ∗∗

∗ ∗ ∗ 1

)
,

that is, the surface is the intersection of Q3
+ and the hyperplane x0 − x3 = 1 in L4. So it is

simply the horosphere.

Now let X be given by F in (6.12). Direct calculations show that

x2(s) = c2se
−2s, x0(s)− x3(s) = e−2s.

Then

(6.13) x2 = c3(x0 − x3) ln(x0 − x3), c3 = −c2/2 ∈ R \ {0},
that is, the ruled ZMC surface in (6.12) is the intersection of Q3

+ and the surface given by
(6.13).

We show that this is a ruled surface. If we let

x0 − x3 = es,

then

X = a⃗(s)
x21
2

+ b⃗(s)x1 + c⃗(s),

where

a⃗(s) :=

(
2e−s 0
0 0

)
, b⃗(s) :=

(
0 1
1 0

)
, c⃗(s) := es

(
(c3s)

2 ic3s
−ic3s 1

)
.

If we let
x1 = u, c3s = v,

then

(6.14) X(u, v) =

(
2e−cv 0
0 0

)
u2

2
+

(
0 1
1 0

)
u+ ecv

(
v2 iv
−iv 1

)
.
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Note that if c = 0 then

X(u, v) =

(
u2 + v2 u+ iv
u− iv 1

)
,

which is the surface given in (6.11).

To see how (6.14) is obtained from the geodesic X(u, 0), we see that

X(u, v) =

(
Φ1(v)Φ2(v)

(
u
1

))(
Φ1(v)Φ2(v)

(
u
1

))⋆

=
(
Φ1(v)Φ2(v)

)(u2 u
u 1

)(
Φ1(v)Φ2(v)

)⋆
,

where

Φ1(v) =

(
1 iv
0 1

)
, Φ2(v) =

(
e−cv/2 0
0 ecv/2

)
,

that is, we apply to the geodesic Φ(u, 0) the screw motion which is a composition of the
hyperbolic rotation Φ2(v) and the parabolic rotation Φ1(v).

Theorem 6.2. The following maps

Ha,b(u, v) :=

(
e(a+ib)v 0

0 e−(a+ib)v

)(
u2 u
u 1

)(
e(a+ib)v 0

0 e−(a+ib)v

)⋆

and

C̃P
c (u, v) :=

(
1 iv
0 1

)(
e−

cv
2 0

0 e
cv
2

)(
u2 u
u 1

)(
e−

cv
2 0

0 e
cv
2

)⋆(
1 iv
0 1

)⋆

are ruled ZMC surfaces in Q3
+, where a, b, c are real constants with b ̸= 0. Ha,b is the helicoid

and C̃P
c is the parabolic catenoid. When a = 0, c = 0, they are standard horosphere.

Conversely, any spacelike ruled ZMC surface in Q3
+ must be one of the above up to the

homothety and isometries of Q3
+.

Proof. The first claim follows from Subsections 4.2 and 4.4. The second claim follows from
the contents of this section. □
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