RULED ZERO MEAN CURVATURE SURFACES
IN THE THREE-DIMENSIONAL LIGHT CONE
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ABSTRACT. We obtain a complete classification of ruled zero mean curvature surfaces in
the three-dimensional light cone. En route, we examine geodesics and screw motions in the
space form, allowing us to discover helicoids. We also consider their relationship to catenoids
using Weierstrass representations of zero mean curvature surfaces in the three-dimensional
light cone.

1. INTRODUCTION

Rooted in the discoveries of non-Euclidean geometry, it is often interesting to examine which
Euclidean geometric concepts and results can be applied to other geometries. Ever since
Catalan showed that the standard helicoid is the only non-trivial ruled minimal surface
in Euclidean space [4], classification problem of ruled surfaces satisfying certain curvature
restrictions in various space forms has received plethora of interest across various three-
dimensional spaces. These results include the study of:

e ruled Weingarten surfaces in Lorentzian 3-space L? [7],

e ruled and helicoidal zero mean curvature (ZMC) surfaces in Lorentzian 3-space [16],

e ruled zero mean curvature surfaces in S? x R, H? x R, Heisenberg group Nils, and the
Berger sphere [11, 19, 20],

e ruled Weingarten hypersurfaces in hyperbolic spaces H"™!, Lorentzian spaces and de
Sitter spaces S"™! [1, 2, 3|, and

e ruled ZMC surfaces in isotropic 3-space [24].

The main purpose of this article is to present a classification of ruled ZMC surfaces in the
three-dimensional light cone Qi, which is a space form equipped with a degenerate metric.
Its curve theory and surface theory have been developed in [12, 13, 14, 15|, which we review
in our preparatory Section 2. We also review rotational ZMC surfaces, called catenoids, in
Q3, found in [6], as they will play an important role.

We begin our main discussion in Section 3 by considering geodesics in Qi, as degenerate
metric of the space form presents a meaningful obstacle. Then we find two important
ruled ZMC surfaces in Section 4, to serve as examples unveiling the required ansatz to
obtain a classification of ruled ZMC surfaces in Q3. In particular, noting that helicoids
in Euclidean space can be characterized as ruled surfaces that are invariant under screw
motions, we consider screw motions in Section 4.1, and show that the surface obtained via
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applying screw motions to a geodesic has zero mean curvature in Section 4.2, which we call
helicoids. We also show that one of the catenoids reviewed, the parabolic catenoid, is in fact
a ruled surface in Section 4.4. A noted feature of ZMC surfaces in Q3 is that they admit a
Weierstrass representation’ |13, 14, 18] as in the case of minimal surfaces in Euclidean space
[25]. The Weierstrass representation allows for a ZMC surface to be represented in terms of
a meromorphic function and a holomorphic 1-form called the Weierstrass data. Notably, the
famous isometric deformation connecting catenoids to helicoids in Euclidean space admits
a simple characterization in terms of its Weierstrass data, known as the associated family.
Thus, in Section 5, we present a comprehensive examination of the relationship between
catenoids and helicoids in Q7. In particular, we show that, as in the Euclidean case, every
helicoid is in the associated family of some catenoid (Theorem 5.1), but unlike the Euclidean
case, only certain catenoids admit a helicoid in its associated family (Theorem 5.2). Then,
in Section 5.3, we introduce a Lawson-type correspondence between ZMC surfaces in the
isotropic 3-space and Q7 and compare the associated families of catenoid in each space form
under the correspondence.

Finally, in Section 6, we obtain a complete classification of ruled ZMC surfaces in Qi
(Theorem 6.2), showing that every ruled ZMC surface must be a helicoid or a parabolic
catenoid up to isometries and homotheties of Q3.

Acknowledgement. The authors would like to thank Prof. Heayong Shin for his constant
encouragements on this work. We would also like to thank the anonymous reviewer for
carefully reading the earlier versions of our manuscript and providing useful comments.

2. PRELIMINARIES

In this section, we briefly review the basic differential geometry of the three dimensional light
cone, including curve and surface theory, mainly to set the notations to be used throughout.
(We refer the readers to [12, 13| for a detailed introduction.)

2.1. Q% as a quadric. We identify Lorentzian 4-space L* with Herm(2) as follows:

X +X3 X+ ’ng
X1 — ’ng X0 — X3

L* 3 (xq, X1, X2,X3) ~ ( ) € Herm(2).

Then for any X,Y € Herm(2) = LL*, the inner product can be expressed as

(X,Y):=—=(det (X +Y) — det X — detY),

1
2
so that
(X, X) =—det X.

An arbitrary F' € SL(2,C) acts on L* as an orientation-preserving isometry via the action

(2.1) Herm(2) 5 X — FXF* € Herm(2),

where F* is the conjugate transpose of F. In fact, SL(2,C) is a two-to-one covering of the
group of orientation-preserving and origin-fixing isometries of L.

1ZMC surfaces in hyperbolic 3-space and in de Sitter 3-space have Weierstrass-type representations that is
different in flavor, exploiting the method of infinite-dimensional Lie groups, known as loop groups.
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The submanifolds of IL* we are interested in are
I’ := {X € Herm(2) : xg — x3 = 0},
Q% == {X € Herm(2) : (X, X) = 0,tr X > 0},
Q? :={X € Herm(2) : (X, X) = 0,tr X < 0}.

In particular, the action of SL(2,C) given by (2.1) acts as an orientation-preserving isometry
of Q3. Conversely, any orientation preserving isometry of Q3 can be described by this action.

ExAMPLE 2.1. Rotations in Qi can be described as isometries that fix a 2-dimensional
subspace of IL* (see, for example, [6, 8|). Normalizing the 2-dimensional subspace based on
the induced metric, they can be described by

Di(p) = (g 0) Dap) = (ﬂ g), P = (5 1)

for some p € C\ {0}.

2.2. Curve theory. Given a unit-speed regular curve v : I — Q% C IL* given on an interval
I, define

1
K= —5(7”,7">, T:=9, and N:=ry—7".
Then there exist uniquely a function 7 and a vector field B along ~ which form a null basis

of IL* with det(y, T,N,B) < 0:

(X,Y)
XnyTNB
~ J0J0[1]0
T [0/1]0]0
N [1[0[0]0
B [0/0]0]1

Using such {7, T, N, B} as a moving frame along the curve 7, the Frenet equations are given
by

~! 0O 1 0 O v

T k 0 =1 0 T
(22) N[Tlo =x 0 —r||N]|"

B’ T 0 0 0 B

The values k and 7 are referred to as the cone curvature and the cone torsion, respectively.
See [12, 15] for details.

2.3. Surface theory. Let U/ be a simply-connected domain in R?. Given an immersion
X :U C R? - Q3 with coordinates (u,v) = (u',u?) € U, there is a unique map G : Y — Q*
which satisfies

<G7G> = <GaXu> = <G>Xv> = <G7X> —-1=0,
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which is called the lightlike Gauss map of X [10] (also referred to as the associated surface
[14]). The first and second fundamental forms of X are then given by

g = (X, X;)du'dv?, A := (G, X;;)du’ do,

respectively, from which the definition of mean curvature and (extrinsic) Gauss curvature for
X follow:

1
H:= 5 tr(g 'A), K:=det(g'A).

If a surface has H = ¢ for some nonzero real constant ¢, then the surface is called a constant
mean curvature (CMC-c) surface. If H = 0, then the surface is referred to as a zero mean
curvature (ZMC) surface.

When a surface is conformally parametrized, we will introduce the complex structure via
zZ=u+1v.

An immersion X : Y — Q3 admits three different representations, each of which we will
make use in this manuscript: An immersion X can be viewed as a graph of any function

f U — R over the surface
(4,0) > u+ 0w+
’ U — 1

so that

X(’LL ’U)_ef(u’v) u2+v2 U+ v
S u— v 1 '

When we represent an immersion X as a graph using the function f, we will denote it by
Xy

On the other hand, using the fact that the map

v () () () - (2 )<

is onto, we can represent an immersion via

() -

for some complex-valued functions A and C' defined on U. We will refer to such ¢ : U« — C?
as the lift of X into C2.

Finally, for any F': U — SL(2,C), we can also represent an immersion X via

1 0 .«
X_F<O O)F'

We will refer to such F' as the lift of X into SL(2,C). Using this last characterization, we
introduce the following notion:

DEFINITION 2.2. We say two immersions X and X are equal up to isometries and homothety
of Q% if they satisfy X(s,t) = rFX(s,t)F* for some r € RT and F' € SL(2,C), and denote
this by

X ~X.
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REMARK 2.3. For ¢ € C\ {0}, we have

EOEDGEE) (Y

L c 0
If F,:=F <O cl)’ then

. 10\ e (1 O\ o o 1
Xc.—Fc(0 0) Fc—ch<0 O)F =ccX, dF.F, =dFF .

In other words, homothetic images of X can be obtained via F,.

2.4. Representations of ZMC immersions. Suppose X = X is an immersion regarded
as a graph using some function f : &/ — R. Then the mean curvature of X can be calculated
as

(2.3) H = 50 (fuuu,0) 4 o, 0).

EXAMPLE 2.4 (A FAMILY OF CMC SURFACES IN Q% ). Let us consider the surface X :
U — Q3 given via the function f: U — R

f(u,v) :== d+ Insech (au + bv + ¢)

for some constants a, b, ¢, d € R with a? + b*> # 0. Then one can directly check that the mean
curvature of Xy is
H=—e?a® +b%)/2.

If H= 0 so that Xy is a ZMC surface, then f must be harmonic, so f = ¢ + ¢ for some
holomorphic function ¢ in a simply connected domain. Then, after a conformal change of
parameters if necessary, we see the following:

Lemma 2.5 ([14]). X : U — Q3 has zero mean curvature if and only if

¥ = 9 (5]

for some holomorphic functions A and C'.

Now we would like to see how the lift of a ZMC immersion X into C? induces the lift into

SL(2,C): A holomorphic F' € C*(U,SL(2,C)) is called null if det F, = 0. Given an arbitrary
holomorphic ¢(z) = (égg) that is the lift of a ZMC immersion to C?, one can find a
null-holomorphic

F- (é g) € C*(U, SL(2,C))

o)) (@)

(2.4) F = (é A0_1> ((1) _1E), E:—/%dz.

such that
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For a given null-holomorphic F' we define meromorphic functions G, g and holomorphic
1-forms €, w by

(G -G? (9 —9°
(2.5) dFF _(1 o) Frar=(f e

This is the Weierstrass representation of ZMC surfaces in Q3 [13, 14, 17, 18], and (g, w) is
called Weierstrass data. We call G and g the hyperbolic Gauss map and the secondary Gauss
map, respectively. The Hopf differential is

Q@ :=QdG =wdg.
For A € C\ {0}, the change of Weierstrass data
(2.6) (9,w) = (9, Aw)

induces a transformation, where the metric, Hopf differential, and the second fundamental
form change as follows:

g |\’g, Q= )AQ, A=2ReQ~ A\=2RelQ.
When |A|? = 1, this gives an isometric deformation of a ZMC surface, commonly referred to

as the associated family of ZMC' surfaces.

2.5. Catenoids in Qi As examples of ZMC surfaces, we review catenoids in Q3 , ZMC
surfaces that are invariant under rotations [6]. For real constants a, b, ¢, consider

en e (L), e = (D)) do=es ()

These are lifts to C* of elliptic, hyperbolic, parabolic catenoids in Q3 respectively. Their

lifts to SL(2,C) are
i(a+1)z _ (a+1)? —i(a—1)z
E fp— e 4a €
Fa (Z) T <€i(a—l)z _(a1)2e—i(a+l)z> ’

4a
] i(b—9)% —(ib—1)z
FH(z) _ elib+l)z (b4b) e—(ib=1)
b : plib—1)z _i(bzrbi)ze—(ib—&—l)z )
. 1 ) »
ze'*  —=(2 4 1cz)e
FcP(Z) = (eicz 2(—liC€_i>Cz ) :
2

Their Weierstrass data can be written as
9% (w) = g"(w) = ¢g""(w) = w

and

1 1\ dw 1 1\ dw 1dw
2.8 L U T A (N R
(28) “ ( 4+4a2> we Y ( 4 452) w2 Y 1 w2

REMARK 2.6. Note that there is only one parabolic catenoid up to isometries and homothety
of Q3. For CMC-1 surfaces in de Sitter three-space, a similar fact has been observed in [9].
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3. GEODESICS OF Q2

As the induced metric on Q7 is degenerate, we will consider geodesics in Q% by using
characterizations of geodesics in better known quadrics of IL*: hyperbolic 3-space H? and de
Sitter 3-space S?. In both cases, geodesics are obtained as intersections of each corresponding
space and a two dimensional plane in L* which passes through the origin; thus, they are
curves in a totally geodesic surface, i.e. a totally umbilic surface with vanishing mean and
(extrinsic) Gaussian curvature, whose geodesic curvature vanishes.

3.1. Planes in Q3. We first define planes as follows:

DEFINITION 3.1. A plane is an immersion in @i that is totally geodesic, that is, whose
second fundamental form A vanishes everywhere.

We will characterize planes within the class of totally umbilic surfaces in Qi: these are given
by intersections with affine 3-planes, namely,

S[M,q) :={X € Q) : (X, M) =q}

for some M € L* and ¢ € R\ {0}. Then it can be directly checked that the lightlike Gauss
map of S[m, ¢l is given by

1 1
G=—MMX+-M
so that its mean curvature and Gaussian curvature satisfy
1 1
H=—(M M), Kz—(M,M)Q.
2q? 4q*

Thus:

Lemma 3.2. An immersion is part of a plane if and only if it is part of P[M,q| defined via
P[M,q) == {X € Q} : (X, M) = q,(M, M) = 0}.

3.2. Geodesics. Now that we have the notion of a plane, we define geodesics as follows:

DEFINITION 3.3. A regular curve in a plane of Q3 is called a geodesic if its geodesic curvature
vanishes in the plane.

To obtain an explicit formulation of geodesics, let us suppose that a plane is given via P[M, q].
We will now calculate the metric induced on P[M, g| from the ambient space by constructing
a coordinate chart. Choose any nonzero lightlike vector M such that (M, M ) =¢q #0, and
note that span{M, M} must have signature (—+). Thus,

R = span{ M, M}+ =~ E2,
where E? denotes the usual Euclidean 2-plane.

We define a bijection ¢ : R — P[M, q] by

1
WY)=Y +M— 2—q<Y,Y>M
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and its inverse by

wﬂsz—M—ame[

Viewing 1 as a coordinate chart, let v : I — P[m,q| be a unit-speed curve with Y : [ — R
such that
Yy=voVY.
Since
!/ Y 1 ! / 1 !
V=F+M- (Y V)M) =Y - (Y.Y)M,
it must follow that
(v, =Y.

Therefore, any plane P[m, ¢] is isometric to R = E?, and thus v : [ — P[m, ¢| is a curve in
P[m, q] with vanishing geodesic curvature if and only if Y := ¢l o~y : [ — R X E? is a line.

To obtain explicit parametrizations of geodesics, let Y : I — R be a line parametrized by
arc-length so that

Y(s)=Vs+W
for any constant V, W € 9% = span{ M, M}* with (V,V) = 1. We then have

Y(s) = oY (s) =Vs+W+M— &(s*+2(V,W)s + (W, W))M
= =M+ (V= LV, W)M)s + W + M — 5-(W,W)M

1 —
= 5&’82 + bs +C.

Then we can check directly that

—.

(3.1) (@,d) = (a@,b) = (b,&) = (&,&) =0, (@, = —(bb) = —1.
On the other hand, let v : I — Q3 be given via
1, -
v(s) = 5as +bs + ¢,
where @, b, @ € L* satisfy (3.1). Then we have

(v(s), @) = —1,

so that ~ is a curve in the plane P[@, —1]. Therefore, using ¢! : P[d, —1] — R, we write
Y =9y toywithé= M as

Y =1ds® +bs+é— i+ (

N |

so that Y is a line.

Summarizing:
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Theorem 3.4. A curve v : I — Q3 is a geodesic in Q2 if and only if there exist some
@, b,é e L* satisfying

(X,)Y)
3 YWzl e
(32) G 10 ]0[=1
b | o l1] o0
c —-110| O
such that
1 =
(3.3) v(s) = 5652 +bs +¢.

Using the parametrization, we can also deduce the following:

Lemma 3.5. All geodesics are congruent to each other.

Proof. Let @, I;, ¢ be arbitrary vectors of IL* which satisfy (3.2). By applying an isometry of

8 (1)) Then (3.2) implies that

2 w g_ 0 eie

o Lww) e Lwe ™ + we')
—i6/2
| i6/2 €i8/2> € SL(2,C), then

? , we may assume that ¢ = (

a

D=

for some w € C and 6 € R. LetF:_<

1 —
—Qwe

. (20 ~ . (01 . (00
FaF—<O O), FbF_(l O), FCF_(O 1),

and thus the claim follows. O

3.3. Geodesics as space curves. To make connection with the curve theory reviewed in
Section 2.2, let v be a geodesic given by the unit-speed parametrization as in Theorem 3.4,
so that

N(s)=ds+b, ~"(s)=a.
Thus the cone curvature of v vanishes:

1
o — _§<7//’7//> —0.
On the other hand, since
span{v, T,N} = span{v,7,7"} = span{d, b, &}

is constant in s, we have that B : I — span{~, T,N}* is a constant vector, and hence the
cone torsion 7 also vanishes.

To consider the converse, let us assume that v : I — Q2 is a unit speed curve with k = 7 = 0.

Then the Frenet equation (2.2) implies v = T = —N’ = 0. Hence, 4" is a constant vector,
say @ € L. Since k = 0 if and only if 4" is lightlike, we have (@, @) = 0.
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Integrating once with respect to s, we obtain v/(s) = as + b for some b € L*, and since v is
unit speed,

— —

1= (v,7) = (d@s+b,ds + b) = 2(@,b)s + (b, b),
0, (b, b) =

=

allowing us to conclude that (@, b) =

Integrating once more with respect to s, we may write
]_ —
v(s) = 5582 +bs+¢
for some ¢ € L*. The fact that + takes values in Q% tells us

0= (7(s),7(s)) = (@ &)s* + s> + 2(b,&)s + (. ),
so that (@,& = —1, (b,&) =0, and (¢,&) = 0.
Thus we conclude:

Theorem 3.6. A unit-speed curve in Q% is a geodesic if and only if its cone curvature and
cone torsion vanish.

REMARK 3.7. In Riemannian manifolds, a geodesic is determined by its initial position and
initial velocity. However, that is not the case in Qi. For example, let v be given as in (3.3)

and take d, 5, and ¢ as in the proof of Lemma 3.5 with # = 0. Then any arbitrary choice of
w = ip € iR yields geodesics all with the same initial position and initial velocity. This is
due to the freedom of choice of M.

4. TWO EXAMPLES OF RULED ZMC SURFACES Q%

In this section, we will examine two important ruled ZMC surfaces in Q%, with an eye on
obtaining a complete classification of all ruled ZMC surfaces in Q2.

4.1. Screw motions in Q3. One of the most important examples of a ruled minimal surface
in Euclidean space is a helicoid, obtained by applying a certain screw motion to a geodesic.
Our first step in the classification of ruled ZMC surfaces in Q3 is to mimic the Euclidean
case, and apply a certain screw motion to a geodesic, and see if the resulting surface has
zero mean curvature. Thus, we first devote our attention to screw motions in Q3 , by first
examining isometries that form a one-parameter subgroup under composition:

FACT 4.1. Let ¢ : (—€,€) = SL(2,C) be a one-parameter subgroup of isometries of Q%, so
that

p(s+1) = p(s)p(t).
Hence ¢(s) " (¢(s +1t) — p(s)) = ¢(t) — ¢(0), which implies
p(s)"lp(s) = p(0) € 5l(2,C).
Then ¢(s) = 50", For a,b,c € C with A := \/—(a® + bc) # 0,

a b cos As 4+ £ sin As b gin As
exp | s = . A A i .
c —a % sin As cos As — % sin As
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So let us consider all cases of A € sl(2,C), so that A> = —(det A)I,, generating such
one-parameter subgroups, where the rotation matrices of Example 2.1 will be used.

Case 1. Suppose that det A # 0. Then X\ := y/— det A is an eigenvalue of A and
A= M diag(\, —\) M~

for some M € SL(2,C). Then the one-parameter subgroup s — €4 is similar to s — D;(e**).
If A is purely imaginary, ¢ are elliptic rotations. If A is real, ¢ are hyperbolic rotations. If A
is neither real nor purely imaginary, then ¢ are screw motions.

2
Case 2. Suppose that det A = 0. Then A = (%f —zﬁ) for some o, B € C and e*4 = I +sA.

Let
A= /—ia/f, h = 2iaf for a,p5 € C\ {0}.
Then
Dy(N)e Da(A) ™! = @(hs),
where
148 & . 1 < 1 —i)
k) = 2 2 .| =BPk)B™, B:=— . )
o(k) (% 1_Z§> (k) V2 \—i 1

So the one-parameter subgroup s + ¢4 is similar to s — P(sh) in SL(2, C) for some h € C.
If o or B is 0, it’s trivial. Note that, if h = re®, then

-1
e /2 0 1 sre®\ [e7®/2 0 (1 rs
0 €i9/2 0 1 0 6i0/2 —\o 1)

so it is conjugate to a single parabolic rotation. In conclusion, we obtain the following:

Proposition 4.2. Any one-parameter subgroup of isometries of Q3 is similar to
As
s e 0 1 rs
Dy(e*) = < 0 e_)\s) , or P(rs)= (0 1) ’
for some A € C and r € R.

Now that we have the notions of geodesics and screw motions, we define the following special
classes of surfaces:

DEFINITION 4.3. Let X : U — Q3 be an immersion.

e If X is invariant under screw motions, then X is called a helicoidal surface.
e If X is foliated by geodesics, then X is called a ruled surface.

4.2. Helicoids. Now let us consider the surface obtained by applying a screw motion to a

geodesic:
(a+ib)v 0 2 (a+ib)v 0 *
(& Uu Uu (&
X(“? U) = ( 0 e(a+ib)v> ( U 1> ( 0 e(a+ib)v>

B 62avu2 €2ibvu
- e —QZqu 6—2(111 )
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where a and b are some real constants. Then one can calculate the lightlike Gauss map G
and the corresponding fundamental forms to find that H = 0. Thus, as in the case of minimal
surfaces in Euclidean space, we define helicoids in Q2 as follows:

DEFINITION 4.4. For arbitrary nonzero real numbers a and b, we call the image of R? by

*
(a+ib)v 0 2 (a+ib)v 0
ab L € u u €
H (U’v U) T ( 0 e(a+ib)v) (U 1> ( 0 6(a+ib)v)

the standard helicoid of Q%. Any surface that is congruent to X up to homotheties and
isometries of Q3 are referred to as helicoids (see Figure 1, left).

Now we note some important geometric facts about helicoids in Qi”r:

Lemma 4.5. The following hold:
e For any nonzero real numbers a and b, the curve v —» H“’b(wﬁ,v) 1S a unit-speed
heliz and has constant cone curvature k = 2(a® —b?) and constant cone torsion T = 4ab.

e The metric of the surface is given by g = du® + daududv + 4(a® + b*)u? dv?, so u-
parameter curves and v-parameter curves of H* meet at constant angles, but not
perpendicularly.

o The metric is singular if u = 0.

Proof. The proof follows from direct calculations. U

REMARK 4.6. For a = 0, we have
ul p2ibvy,
Ho’b(uﬂ U) = (e—Qibvu 1 :

Then the surface is the intersection of Q% and the hyperplane xg —x3 = 1 in L*, a horosphere
(see Figure 1, center):

{(X07X1,X2,X3) € Qi 1Xot+ X3 = X% + xg}

Also when b = 0, we have
u €2avu2 U
H ’O(U,U) = ( U eZav) )

which is a lightlike surface in Q3.

In particular, applying screw motion to a geodesic does not result in orthogonal parametriza-
tion of the resulting helicoid, which makes the case of Q3 stand out from the cases of other
space forms. However, we can find a conformal reparametrization of the standard helicoid
as follows: If we let v := 2bv and @ := 2av + Inu, then

(4.1) Ab(a,0) = H (eﬁ*%f’, QA,)@)
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FIGURE 1. A helicoid (left), a horosphere (center) and a parabolic catenoid
(right) in the ball model of Q3 (cf. [6]). Curves represent geodesics.

is conformally parametrized, and

Frab _ _ay, ez 0 e ev ez 0
(4.9) B (u,v) = e (0 e_i;> (6“ 1)(0 e_ig)

Hel

= Pis (u+ iv)gOHEI(u + w)*, <p£[el(z) et (61 ) ‘

a
'3

Direct calculations show that the v-parameter curves do not have constant cone curvature,
hence are not helices.

REMARK 4.7. Note that H**[R*xR] = H**[R?] and H**(—u,v) = Ry H**(u,v) R} for

Ry = ((1) _01> That is,

H*(—u,v) = Ry o H*"(u,v), Ri(xo,X1,Xo,X3) = (X0, —X1, —X2,X3).

We may regard H*’[R?], which has singularities at the v-axis, as the analytic extension
of the spacelike surface H**[R?], which is intrinsically flat, as every ZMC surface in Q3 is
intrinsically flat. (See also [6, § 4.5].)

4.3. Geodesics on helicoids and the singular set. Now we consider geodesics on helicoids
given globally by H*" : R* — Q3. In particular, we wish to examine the behavior of geodesics
on H®" around the singular set {u = 0}.

We will first find the geodesics of helicoids by finding an (almost) orthonormal basis of the
tangent bundle. Calculating the induced metric of H*® as

ds? = (du + 2au dv)? + 4b*u* dv?,
we reparametrize the surface as in (4.1) so that the surface is conformally parametrized by
z=71+z17€(C1%’(C
ds? = 2059 (di2 + di?) = |e1H50* dz 2.
Note that
(@, ?) = (Inu+ 2av, 2bv).
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Consider another change of coordinates

Cy 32+ (=802 e C, =\ {0}
which transforms the induced metric into

2 _ 2

Thus, any geodesic in Cy satisfies
(@ —iB)¢ + (a+iB)C +2y =0

for some real constants «, 3, v. We distinguish two cases.

(143 4) (a+i0)

Case 1. Suppose v # 0. Substituting ¢ by e yields
acosc, + fBsine = —”ye*(ﬁ*?f’) = —yu !, where ¢ = ¢1(4,0) == %ﬁ + 0.
Then
] = i M
\Ozcoscl+ﬂsmcl] la| + |5

Thus, in this case, geodesics do not intersect the singular set (see Figure 2).

Case 2. Suppose 7 = 0. In this case, Arg( = constant. Noting that ( = eﬁ_gﬁei(za”Lﬁ), we
conclude that any component of the lift of the geodesic by p can be written as

a

—U+ 0 = ¢y,
b 1

where ¢; is some real constant. Now, the corresponding points in the (u,v)-plane must lie
on the curve parametrized by u where

2\~ a v
u:exp<(1+b—Q)u—Eq)7 U:2_b: 50

In particular, we see that u — 0% as @ — —oo, but then v — Zoo; thus, in this case,
geodesics asymptotically approach the singular set {u = 0}, without ever intersecting it (see
Figure 2).

We summarize as follows:
Theorem 4.8. There is no geodesic intersecting the singular set in the helicoids.

REMARK 4.9. The situation in the isotropic three-space I? is different, where the standard
helicoid can be parameterized by H(u,v) := (ucosav,usinav,bv), (u,v) € R? up to isome-
tries and homothety. For each v € R, let v(u) := H(u,v). Then v[R] is a geodesic of IT?, and
v[R*] and y[R~] are geodesics of H[R*x R] and H[R™x R], respectively, which converge to
the singular point H (0, v).
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FIGURE 2. Left: H**[R?]. The solid curves are (halves of) the rulings, the
dotted curve is a geodesic of case 1 and the dashed curve is a geodesic of case
2 in §4.3. Right: H*’[R?]. The line is the singular set.

4.4. Parabolic catenoids. We now give another important example of a ruled ZMC surface
in Qi: the parabolic catenoid reviewed in Section 2.5. To check that the parabolic catenoid
is a ruled surface, we first observe that if we write z = u + iv and ¢F is from (2.7), then

43)  CPu,v) = 0P (u+ i)l (u +iv)* = e~ ((1) ’f) (“2 “) ((1) ’f)

u 1

The fact that the parabolic catenoid is a ruled surface follows from the following reparametriza-
tion:

Pr 20w (1w (e 0 w2 w\ (e 0\ (1 iw\"
woereno= (o F) (05 (D)0 5) 6)

so that the parabolic catenoid is a surface obtained by applying isometries to a geodesic (see
Figure 1, right).

REMARK 4.10. The map

1 w e’ 0
R3¢ pe(v) = (O 1)(0 e“”’)

in (4.4) is not a one-parameter subgroup, that is, p.(v; + v2) # pe(v1)pe(ve). Hence it is not
a screw motion. On the other hand, the map

S AN —cv  —1v
Rocrq(v):i=e (0 1>—exp< 0 —cv)

in (4.3) induces a one-parameter subgroup, that is, g.(v; + v2) = ¢.(v1)g.(v2). However, ¢.(v)
does not represent an isometry.

5. HELICOIDS AND THE ASSOCIATED FAMILY OF CATENOIDS

In the Euclidean case, helicoids and catenoids are related by an isometric deformation, called
the associated family. In this section, we examine whether helicoids in (@‘:’L can also be found
in the associated family of catenoids in Q3.
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5.1. Associated family of catenoids in Q3. Recall from (2.6) that a ZMC surface with
Weierstrass data (g,w) admits an isometric deformation known as the associated family by a
change in the Weierstrass data via

(g,w) = (g, \w)

for any unit complex constant \. Taking the Weierstrass data as

dw
(g7w5) = (UJ?(SE) )

for some § € R\ {0}, we note from (2.8) that the resulting immersion X is

e an elliptic catenoid if § > —%1,
1
4
e a hyperbolic catenoid if § < —}l.

e a parabolic catenoid if § = —+, or

Therefore, any surface with Weierstrass data

dw
(g7w5) = (w7éﬁ) )

for any 0 € C\ {0} must be in the associated family of a catenoid, given by the Weierstrass
data
dw
(9,wis) = (Uh Wﬁ) :

5.2. Helicoids and the associated family of catenoids. Turning our attention to the
conformally parametrized (standard) helicoid H*® in (4.2), we first note that we may assume
without loss of generality that b = % Then the lift of H* to C? is given in (4.2) by

PHI(2) o= o (1) |

Thus we can find the lift F'* to SL(2,C) using (2.4):

Fo(z) = eg 0 1 —% (emz O) eg 0
0 e2)\1 5 0 ™) \o e2)

This in turn allows us to find the Weierstrass data using (2.5), so that

(G,Q) = (a — Zez, a’e™? dz)

N

a
(g’ w) — (_Me(—l—%a)z’ _€(l+2ia)z dZ> '
a—1
Making a change of coordinate via w := ¢, we may normalize the Weierstrass data as

Therefore, we have:

Theorem 5.1. Every helicoid in Q3 is in the associated family of some catenoid in Q3.
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However, the converse is not true, namely, there are catenoids that do not have helicoids in
the associated family. To see this, we note that for

ala — 1)
oa) = ————%
(@) (2a — )2
one can directly check that for real functions of x and y of a given by
1
x(a) + i y(a) = — — O(a),
we have
2 1 1
(x(@)* +y(a)*)” + Jx(a) (x(a)* +y(a)®) = c2v(@)* = 0,

which is the formula for a cardioid. As a varies from —oc to oo, the image starts from
(—1/4,0) and wraps around in the counterclockwise direction.

In particular, we have
5(a)] € (0, 5241,
so that when |c| > ﬁg,

helicoids in its associated family. We summarize:

the catenoids with Weierstrass data (g,w.) = (z,ci—g”) have no

Theorem 5.2. Let X; be the ZMC catenoid in Q3 given by the Weierstrass data
)
g=g, WZEdC for 5 €RT.

Then the number of helicoids and catenoids in the associated family of Xs varies depending
upon §, which can be described as follows (see also Figure 3):

e << i: two elliptic catenoids and two helicoids (Fig. /),

e )= i: one elliptic catenoid, two helicoids, and one parabolic catenoid (Fig. 5),

° i <0< ﬁg: one elliptic catenoid, one hyperbolic catenoid, four helicoids (Fig. ),

° )= ﬁg: one elliptic catenoid, one hyperbolic catenoid, two helicoids (Fig. 7),

° ﬁg < 0: one elliptic catenoid, one hyperbolic catenoid.

5.3. Associated family of catenoids under Lawson-type correspondence between
I* and Q3. Lawson-type correspondence between ZMC surfaces in the isotropic 3-space I?
and the 3-dimensional light cone Q7 has been established in [17] as a generalization of the
Umehara-Yamada perturbation [23].

In this section, we derive a similar type of correspondence between ZMC surfaces in I? and
%, and consider the correspondence between the associated family of catenoids in I? and Q3.

The derivation is obtained efficiently by viewing both classes of surfaces as graphs: Suppose

that X : U — Qi is an immersion represented as a graph of a function f : U/ — R, that is,

X(u 'U)—ef(“’”) ’LL2+’U2 u—l—iv
A U — v 1 '
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Im(6)

03

0.2

_d_d_a_u_‘——‘—‘———-(

-02 0.1

-0.2

=03

FIGURE 3. Types of surface given by the Weierstrass data (g,w) = (w,§9%),
depending on the value of § € C\ {0}. The dashed line corresponds to elliptic
catenoids, the black point parabolic catenoid, dotted line hyperbolic catenoids,
and cardioid helicoids.

Y ¢

\
© ¥

-

(»,

-03 = -0.2 -0.1 0.1 02 03

FIGURE 4. Associated families of catenoid given by the Weierstrass data

(9,w) = (w, 5=55)-

We have seen in (2.3) that X is a ZMC surface if and only if f is a harmonic map. However,
it is known [21] that any ZMC surface in I? must be a graph of a harmonic map, giving us
the following correspondence between ZMC surfaces in I? and Q3 :

Lemma 5.3. The following map

2 | 2 '
.3 3 . (X +y X+Zy
(5.1) T:I° = Q, T(x,y,l):=e (X—iy 1 )

sends ZMC surfaces in I* to ZMC surfaces in Q3.
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-03 -0.2 -0.1 0.1 0.2 0.3

FIGURE 5. Associated families of catenoid given by the Weierstrass data

VYe

(9.w) = (w, 158).

©

03  -02  -04 0.1 02 03

FIGURE 6. Associated families of catenoid given by the Weierstrass data

9@
@{Q

03  -02  -01 0.1 0.2 03

FIGURE 7. Associated families of catenoid given by the Weierstrass data
(g,bd) - ( ’23[;10%))

Note that

19
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EXAMPLE 5.4. The image of the plane | = f(x,y) = ax + by + ¢ in I¥ under T in (5.1) is

X(U U) _ 62(au-i—bv-i—c) u’ + v? u + 1w
’ u— 1w 1 ’

which is the parabolic catenoid.

We shall now examine the relationship between the associated families of catenoids in I* and
Q% . For arbitrary real constants o and 3, consider

(%) 1= e*TP(2, —iz,In %) € C3, 7= et e C.
With r := e?,
Xop(u,v) = Re(®(2))
=r (e"cos(v + ), e"sin(v + ), ucos 3 — vsin 3)
are associate families of catenoids under homotheties in I*. By Lemma 5.3,

62(u+o¢) €u+aei(v+6)>

Xoaﬁ(“)”) = er(ucosﬁ—vsmﬁ) (eu-i-oze—i(v-‘rﬁ) 1

is a ZMC surface in Q3 for each «, 5 € R. Then using ¢ := %e‘”iﬁ € C\ {0}, we can rewrite
Xap= X, as
Xe(u,v) = Xo 5(u, v)
(5:2) = e"Da(ex M) pu(2)e(2)" Da(ex )
~ o(2)pe(2)",

where p.(z) := e <€1 )

To find the Weierstrass data for X, we use (5.2) to assume without loss of generality that

Xe(2) = pe(2)pe(2),
that is, the lift of X, to C? is ¢.(z). Then the lift F, of X, to SL(2,C) for ¢ # —% can be
found using (2.4) as

Fis) = ez 0\ (1 -ar (ecz 0) ez 0
C . 0 6_5 1 _2§+1 O e—cz 0 6_5 ?

and we can see that F. is indeed null-holomorphic. Direct calculations then show that
(G,Q) = ((1+ 1)e*, —Pe?dz) ,

(gy) = (~Setemtort, ez g

Now we make a coordinate change w := g so that

(Ger:) = <w_(02(§+11>)2i—f>

Since the map 6(c) given by
<~ clc+1)
o) =~ ae 1)
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is a surjection onto C\ {—1}, we conclude that every surface in the associated families of
elliptic or hyperbolic catenoids in Q% corresponds to a surface in the associated familiy of
catenoids in I?, under the correspondence in Lemma 5.3.

In particular, if X, is a ZMC surface constructed using Weierstrass data (g., @), then it is

e an elliptic catenoid when ¢ € R\ {—3} so that d(c) € (—3%,00),

e a hyperbolic catenoid when ¢ = —3 +ic for ¢ € R\ {0} so that 5(c) € (—o0, —1), or

1
e a helicoid when ¢ € iR\ {0} or c € —1 +iR \ {—1}.

REMARK 5.5. When ¢ = —2 X_%(z) and its lift F__1(z) are

-5

z+Z z2—Z z ., Z
2 2 2 Ze2
X)) =| Tae i and  Fa()=(": 37 ..
’ e 2 e 2 2 e 2 (1+%)e 2

Direct calculations show that
(G,Q) = (—ez, < dz) , (g,w) = (-2, —dz2) .

Now we use the coordinate change w := g to see that the Weierstrass data of this case is

(g 1,0 1) = (w,4dw).

_1
2

NI

Thus, X _1 is the trivial Enneper cousin (see [5] or [22]), and with z = u + iv,

1
2

e eiv
Xfé(ua U) = (e—iv e—u)

It is bi-rotationally invariant with constant K = —1.
We take a change of parameters via
(u,v) = (G + 0,0 — ).

Then we have

X (6,7) = e 0 N0 11\ (e o Tl 0\
-2 Y= 0 e M 0 eV 11 0 e 0 e )

where A = %(1 + 7). Thus the surface is also bi-helicoidal, obtained by applying two screw
motions to a single point.

REMARK 5.6. The example of trivial Enneper cousin (5.3) is an example of a helicoidal ZMC
surface in Q3 that is not in the associated family of catenoids. Thus it would be interesting
to classify all helicoidal ZMC surface in Q3. Also it remains to see if the example of trivial
Enneper cousin is the only bi-helicoidal ZMC surface in Q2.
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5.4. Lightlike Gauss maps of catenoids and helicoids. Let X : U/ — Q2 be a confor-
mally parametrized ZMC immersion with conformal coordinates (u,v). Then the lightlike
Gauss map G : U — Q3 can be viewed as a surface into Q3 , called the associated surface of
X in [14], and the following facts are known:

REMARK 5.7. Let X : U — Q3% be a ZMC immersion with conformal coordinates (u,v) € U.
If the lightlike Gauss map G is immersed, then G is also a conformally parametrized ZMC
immersion. Furthermore, the first fundamental form gg of G is given in terms of the first
fundamental form of X via

ga = —Kgx.

Normalizing helicoids H*(u,v) in (4.2) with b = 5 so that
2u u~+1iv
rra __—2av € ) €
H (u7 U) =€ (euw 1 ) )

the lightlike Gauss map G®(u, v) of H®(u,v) is given by

a’+1 ala —i)e v
(a+i)e v ™ a’e v '

G*(u,v) = —2e*™ (a

Setting e*™ := a — i for o, B € R, we then notice

Ga( ) . . 62a aea+i[367u+iv
u,v) = € aea—iﬁe—u—iv a2€—2u

— —QGBQDQ(\/L;)DI (6_%(a+iﬂ))ﬁ]a(_u’ —U)Dl (6—%(04—&—1‘6))*1)2(

~ H(—u, —v),

)*

<

so that G*(u, v) is again a helicoid. We can similarly check that if a ZMC surface in Q3 is a
catenoid, then its lightlike Gauss map is also a catenoid:

Proposition 5.8. Let X : U — Q2 be a helicoid or (an elliptic, a hyperbolic, a parabolic)
catenoid. Then the lightlike Gauss map of X is also a helicoid or (an elliptic, a hyperbolic, a
parabolic) catenoid in Q2 , respectively.

6. CLASSIFICATION OF RULED ZMC SURFACES IN Qi

In this section, we show that any ruled ZMC surface in Q2 must be either a helicoid (4.2)
or a parabolic catenoid (4.4) up to isometry and homothety. As noted in Lemma 4.5, the
surface obtained by applying screw motions to a geodesic results in a ZMC surface, which
we call a helicoid; however, helices and geodesics do not meet orthogonally (even though
they meet at a constant angle). Therefore, the standard techniques of classifying ruled ZMC
surfaces do not work in Q3.

To overcome this obstacle, we will view a ruled surface as an application of isometries to a
geodesic, and find the condition on the isometries for the resulting surface to have zero mean
curvature.
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Thus, without loss of generality, we assume that any spacelike ruled surface in Q3 is param-
eterlzed as

X(s,t) = F(s)5(t)F(s)*

t2

for the geodesic 6(t) := (t

i) and some curve F' in SL(2,C) with F'(0) = I5. Let

X (s,t) = F(s) " Xu(s,)(F(s) 7)), Qs) = F(s) ' F(s) = <a(5) B(s) ) .

Then, direct calculations show that
X(s,t)=0(t), X (s,t) = Qs)d(t) +8(t)2s)", X[ (s,8) = (1),
Xoo(s,t) = F(s)7 F(5)"6(t) + 2Q(s)d(£)2(s)" + 0(1) (F(s) ™ F(s)")*,

xie=ae (3 o)+ (T o) xiso=(g o

Here we note that
F(s)'F(s)" = (F'F) + (F'F')? = Q(s) — det Q(s) 1y,
where [5 is the 2 x 2 identity matrix.

Now let G(s,t) be the lightlike Gauss map of X (s,?). Then
GF(s,t) := F(s)'G(s,t)(F(s) ")

satisfies
(GF,GFYy = (GF, XEy = (GF, X]) = (GF, XT)y —1=0.
To proceed further, let

(=20 (01 (0 (00
“w-=Vo o) “T\10) 27 \=io0o) BT \o 1)

We regard as as a point in Q3 , and ag, a1, as as a basis of T,,Q3 .

We realize that 6(1) is obtained by rotating as by the parabolic rotation P(f) — ((1) i)
That is, 5(f) = P(t)asP(t)*. We let
£(t) == P()a,P(t), ©1=0,1,2,3,

Then for any ¢, {fo(t), f1(t), fo(t)} is a basis of Ty Q?%, and we see that

XF(s,t) = fa(t), X[ (s,t) = fult),

Q(s) = %(a(tQ — D)+ (B+)t)fo+ %(20475 +B+7)f1— %(5 — 72— afs,

XTI (s,t) = (2ton(s) + Bi(s) — t*7(s)) fu(t)

§ (2fn(3) + als) — P1a(9) Folt) — 2an(5) — 11a() Fo(t)

where %, := Re(%), 5 i= Tm(x) for % = a, 3, 7.
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Then
GT(s,t) = fo(t) + 2ta22($1458ﬁ)2z32)€7—1(:2)f)yg(s) fa(t)
B 2 (al(s) — tvl(s))z .
(2tas(s) + Ba(s) — t272(s))2f3< )
and
E = <XS,XS :<X£,XSF>, L= <G7Xss>:<GF7X£9>v
F = (X,, X,) = (X, xF, M = (G, Xq) = (G", XL,
G = (X, X;) = (XF, X[, N := (G, X,;) = (GF, X[).

The mean curvature H of X is
C(s,t)
2 (t2f}/2(8) — 2t(12($) — ﬁQ(S))g ’
where C(s,t) is a fourth-order polynomial

C(s,t) := co(s) + c1(8)t + ca(8)t* + c3(s)t? + ca(s)t!

of t, such that

ca(s) == 270(s) (1 (s)* +72(s)%)
(6.1) c3(s) 1= —8aa(s) (11(5)* +72(s)?) + 272(5)71(5) — 2m ()0 (s).
Thus X has zero mean curvature if and only if

co(s) = c1(s) = ca(s) = c3(s) = ca(s) =0 for all s.

From c¢4(s) = 0, we see that y2(s) = 0 for all s. Now to use (6.1), we distinguish two cases:

as(so) # 0 for some s or ap(s) = 0 for all s.

Case 1. ay(so) # 0 for some sg. We may assume that as(s) # 0 for all s in some interval
containing so. From the vanishing of ¢3(s) in (6.1), we conclude that v;(s) = 0 for all s. Then
Q(s) is an upper triangular matrix, and an interesting analysis can be carried out. In this
case, the coefficients of the numerator of the ZMC surface equation become the following:

co(s) = 2Ba(s)ar(s)" + ai(s) (daz(s)Bi(s) — 26a(s)") — dan(s)*Ba(s),
c1(s) = dag(s)ar(s) — daq(s)aa(s), c2(s) = c3(s) = cu(s) = 0.

From the vanishing of ¢;(s), we conclude that

(6.2) a1(s) = das(s)

for some real constant d. We distinguish two cases.

Case 1-1. Suppose that d # 0 so that

(6.3) a(s) #0 for all s.

Let ¢ = 1/d. Then,

D) yai o (58) T achi(s),
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and ¢o(s) = 0 is equivalent to

1

(6.4) Bu(s) = 2Bu(s) + = ( ii;) .

Thus, X has zero mean curvature if and only if (6.2) and (6.4) hold while «; and S, are
arbitrary smooth functions.

By defining f and g by

(65 on(s) =), Bals) = F()g(s),
we have

()= egls), Buls) = L S)gls) + 5 ),
so that

where

Q1(5) = (<1 +Zg)g(8) (%_(41:)_“];(0‘;2]%2;)) ) QQ(S) =" <%)/

With G(s) := [ g(s)ds,
p(1+i0)G(s) 0 1 1)
(6.6) Fi(s) = ( 0 o—(riog(s) |+ F2(s) = o 1)

and the matrix-valued function
F(s) == Fi(s) Fx(s)
is the (unique) solution to F(s)™'F(s)" = Q(s) with F(0) = I. Therefore
X(s,t) = F1(s)Fy(8)0(t) Fo(s) Fi(s)*

with Fy, F» as in (6.6) for some smooth real-valued functions f,G. Note that for fixed s,
the image of t — F5(s)0(t)Fa(s)* is the same as the image of ¢ — §(t). Hence, X(s,t) =
F1<S)(5(t)F1(S)*.

Finally we notice from (6.3) and (6.5) that ¢g(s) # 0, hence we conclude that G is a strictly
monotone function, hence it has an inverse function s = h(G) and we can take G as a new
variable. We abuse notation by calling it s again, and conclude that

(1+ic)s 0 2t (1+ic)s 0 *
(& €
X(87 t) = ( 0 e—(l-{—ic)s) ( t 1) ( 0 e—(l—i—z’c)s

Then for any nonzero real number a, we may set s = as’ and b = ca, and by calling s’ as s
again, and conclude that

olatib)s 0 2 1\ [ elativ)s 0 *
(67) X(87 t) = ( 0 67(a+ib)s t 1 0 6f(a+ib)s

That is, any generic ruled ZMC surface in Q3 is congruent to one of the above.

It is already shown that the surface in (6.7) is a ruled ZMC surface in Q3.
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Case 1-2. Suppose that d = 0. Then «;(s) = 0 for all s, from which it follows that
co(s) = c1(s) = 0 for all s. In this case, we have

Q(s) = (ia%(s) 51(2;?5;(3)) '

We can easily solve F'(s)"'F(s) = Q(s) with F(0) = I, to obtain

s) 4+ iBs(s etA(s)
(6.8) F(s) = ([1) Bl Hi Bal )> ( :; 6—194(5)> :

where A(s) := [ aa(5)ds, Bi(s) +iBs(s) := [; (B1(5) +ifa2(5))e* 4 9d5. So we conclude that
F(s)is of the form in (6.8) for some real—valued functions A, By, Bs.

Case 2. ay(s) =0 for all s. Then cy(s) = —662(s)71(s)*. We again have two cases:

Case 2-1. Suppose that S2(s1) # 0 for some s;. By continuity, we may assume without loss
of generality that fs(s) # 0 for all s, so that v;(s) = 0 for all s. Then

co(s) = 2a1(s) Ba(s) — 201 (5)Ba(s) — 4y (5)?Ba(s),
c1(s) = ca(s) = e3(s) = ca(s) = 0.
Hence the mean curvature is identically zero if and only if
a1(s) Ba(s) — a1 (s)Ba(s) — 201 (s)?Ba(s) =
or equivalently
Ba(s) = cray(s)e? Jooa®ds e A(s) e ),

In this case,

(6.9) Q(s) = (O”és) ’ 1<S_)a+l(ig?(s)) ,

and F~'F" = Q with F(0) = I, yield
(1 By(s) +iBy(s)\ [eA®)/? 0
(6.10) F(s) = (O 1 T ]

where A(s) := 2[0 a1(8)ds, By(s fo B1(8)eAB®)ds, and By(s) := cyA(s).

Conversely, if F'is defined by (6.1 0) with arbltrary A(s) and Bi(s) with Ba(s) := e A(s),
where ¢, is an arbitrary real number, then Q(s) := F(s)"'F(s)’ satisfies (6.9) with a;(s) =

LA(sY, Ba(s) = Bi(s)'e A1), Ba(s) = Ba(s)'e 4.

Case 2-2. Suppose that [5(s) = 0 for all s. Then coefficients ¢y, ¢1, ¢2, ¢3, ¢4 are all zero. In
this case, Q(s) is real and trace-free, i.e. Q(s) € sl(2,R). Then F such that F~'F' = Q is
real-valued, i.e. F(s) € SL(2,R). This means that X = F(s)0(t)F(s)* is real-valued, which
in turn means that the xo-component of X(s,t) is zero, hence the image of X lies in

Q% N {x1 =0} = {(x0,x1,%2,%3) 1 xp +x; +x35 =0, xp = 0}.
Since it is not spacelike, we exclude this case.

In summary, we have the following:
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Proposition 6.1. A surface given by X (s,t) := F(s)d(t)F(s)* is a ruled ZMC surface in
. ot
3 ._
3. if o(t) = (t 1) and

s 0 6ibs 0
F(S> = (O eas) ( 0 e—ibs) ) or

s) 4+ iBs(s etA(s)
(6.11) Fls) = ((1) Bils) 4 1B )> ( g 6_94(5)> o

s) + icoA(s eA(s)/2
(6.12) F(s) = (3 Bils) 4 iead( >)< . _A?s>/2>

for arbitrary real numbers a, b, ¢ and arbitrary real-valued functions A, By, Bo, is a Tuled ZMC
surface.

Conversely, any ruled ZMC' surface in Q3 is congruent to one of the above.

Now we analyse the shapes of the ruled ZMC surfaces given by (6.11) and (6.12). First of
all, we see that for Fin (6.11),

k kk
xeo=(,1. 7))
that is, the surface is the intersection of Q3 and the hyperplane xo — x3 = 1 in L*. So it is
simply the horosphere.

Now let X be given by F in (6.12). Direct calculations show that

Xo(8) = a5, Xo($) — x3(s) =€~

25.
Then
(6.13) Xo = c3(Xp — x3) In(x¢ — x3), c3 = —co/2 € R\ {0},

that is, the ruled ZMC surface in (6.12) is the intersection of Q3 and the surface given by
(6.13).

We show that this is a ruled surface. If we let

Xp — X3 = 68,

then
X2 o
X = a<s)51 +b(s)x1 + é(s),

where )

v (270 - . (01 oy s [ (e38)? icss

a(s) == ( 0 O> . b(s) = (1 0) , C(s)=e (—ic;;s 1 ) .
If we let

X1 = u, C3S =0,
then
2¢O\ uv* [0 1 w (V2 i

(6.14) X(u,v)—( 0 O)?—l—(l 0)u+€ (—iv 1).
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Note that if ¢ = 0 then

w? + 02 u+iv
U — 1 ’

X(u,v) = (
which is the surface given in (6.11).

To see how (6.14) is obtained from the geodesic X (u,0), we see that

X (u,v) = (@1@)@2(@) G‘)) <(I>1(U)CI>2(U) G‘))

2

= (@4(v)®y(v)) (“ “) (@1(0)@2(v))",

u 1

1 w e~z 0
w) =5 ). <1>2<v>=< i /)

that is, we apply to the geodesic ®(u,0) the screw motion which is a composition of the
hyperbolic rotation ®5(v) and the parabolic rotation ®;(v).

where

Theorem 6.2. The following maps

(a+ib)v 0 2 (a+ib)v 0 *
ab e u® u\ (e
H (u7 U) = ( 0 6_(a+ib)v) (u 1) ( 0 e—(a+ib)v>
~p (1 )\ [e 2 0 u? u\ [e”2 0 ’ 1 iv\”
Ce () = (0 1)L o e¥)\u 1)L 0 ev) \0 1

are ruled ZMC surfaces in Q%, where a,b, ¢ are real constants with b # 0. H®" is the helicoid
and CT is the parabolic catenoid. When a =0, ¢ = 0, they are standard horosphere.

and

Conversely, any spacelike ruled ZMC surface in Q3 must be one of the above up to the
homothety and isometries of Q3.

Proof. The first claim follows from Subsections 4.2 and 4.4. The second claim follows from
the contents of this section. O
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