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Abstract. We study stability of travelling wave solutions to Korteweg–de Vries type equations
which has the fractional dispersion and integer-indices double power nonlinearities. It may
depend on parity combinations of the two indices and the strength of dispersion whether these
equations have a ground state solution. Therefore, we observe the stability phenomena on
travelling wave solutions from the perspective of the parities and the dispersion, and we give
the classification of phenomena on travelling wave solutions. In this paper, we focus on stable
travelling wave solutions.

1. Introduction

In this paper, we consider the stability of travelling wave solutions to Korteweg–de Vries type
equations

∂tu+ ∂xf(u)− ∂xD
σ
xu = 0, (t, x) ∈ R× R, (1.1)

where u = u(t, x) is a real-valued unknown function, σ is a real number satisfying 1 ≤ σ ≤ 2,
and the operator Dσ

x is the Fourier multiplier with symbol |ξ|σ. The operator Dσ
x is also denoted

as (−∂2x)σ/2.
When σ = 2 and f(s) = s2(s ∈ R), the equation (1.1) coincides with the Korteweg–de

Vries equation, which describes physical dynamics of waves on shallow water (see, e.g. [13]).
When σ = 1 and f(s) = s2, the equation (1.1) is the Benjamin–Ono equation, which physically
describes dynamics of internal waves in stratified fluids (see, e.g. [4, 18]).

A travelling wave solution is a solution to (1.1) of form u(t, x) = φ(x − ct), where c is a
positive constant representing the speed of the wave, and φ ∈ Hσ/2(R) is a nontrivial solution
to the stationary problem

Dσ
xφ+ cφ− f(φ) = 0, x ∈ R. (1.2)

We say that φ ∈ Hσ/2(R) is a ground state solution to (1.2) if φ satisfies

Sc(φ) = inf{Sc(v) : v ∈ Hσ/2(R) \ {0}, v is a solution to (1.2)},

where the functional Sc is the action functional corresponding to the equation (1.2) defined in
Hσ/2(R) as Sc(v) = E(v) + cM(v) with the energy functional E and the mass functional M
defined as

E(v) :=
1

2
‖Dσ/2

x u‖2L2 −
∫
R
F (u) dx, M(v) :=

1

2
‖v‖2L2 ,
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where F (s) is the primitive function of the nonlinearity f(s). We remark that Sc ∈ C2(Hσ/2(R),R)1

and that v ∈ Hσ/2(R) is a solution to (1.2) if and only if S ′
c(v) = 0, where G′ denotes the Fréchet

derivative of a functional G defined in Hσ/2(R). In this paper, we mainly consider travelling
wave solutions to (1.2) constructed by ground state solutions to (1.2).

Next, we define the stability and instability of travelling wave solutions. First, for r > 0 and
v ∈ Hσ/2(R), we set

Ur(v) := {u ∈ Hσ/2(R) : inf
y∈R

‖u− v(· − y)‖2Hσ/2 < r}.

Let φ ∈ Hσ/2(R) be a nontrivial solution to (1.2). We say that a travelling wave solution
φ(x− ct) to (1.1) is stable if for any ε > 0, there exists δ > 0 such that if u0 ∈ Uε(φ), then the
time-global solution u(t) ∈ C([0,∞), Hσ/2(R)) to (1.1) exists and satisfies that u(t) ∈ Uε(φ)

holds for all t ≥ 0. Otherwise, we say that a travelling wave solution φ(x− ct) is unstable.
The stability and instability of travelling wave solutions to (1.1) with single power nonlin-

earities f(s) = sp (p ∈ N, 2 ≤ p < ∞) have been studied well. In this case, it is known that
the stationary problem (1.2) has the unique positive and even ground state solution (existence:
Weinstein [20], uniqueness for 1 ≤ σ < 2: Frank–Lenzmann [8]). By an abstract theory of the
stability and instability of travelling wave solutions developed by Bona–Souganidis–Strauss [5],
we can find that the travelling wave solution to (1.1) constructed with the positive ground state
solution to (1.2) is stable if p < 2σ + 1, or unstable if p > 2σ + 1 (for the stability results,
see also [20]). According to [5], travelling wave solutions are stable if ∂2cd(c) > 0, or unstable
if ∂2cd(c) < 0, where d(c) = Sc(ψc) with ψc denoting a ground state solution for c > 0. When
nonlinearities of (1.1) are single power ones, we can find the scaling property of the ground
state solution to (1.2) such that ψc(x) = c1/(p−1)ψ1(c

1/σx). This property allows us to calculate
∂2cd(c) easily so that we can see that ∂2cd(c) > 0 holds if p < 2σ+1, or ∂2cd(c) < 0 if p > 2σ+1.
Here we remark that the exponent 2σ+1 is the L2-critical one for the KdV type equation (1.1).
When σ = 2 and p = 2σ+1 = 5, Martel–Merle [15] proved that the travelling wave solution to
(1.1) is unstable.

Meanwhile, it is difficult to analyze the stability of travelling wave solutions to the equation
(1.1) with generalized nonlinearities because we can hardly see the signature of ∂2cd(c) so that the
theory of [5] is not applicable. Therefore, the purpose of this study is to focus on the equation
(1.1) with specific nonlinearities and observe stability properties of travelling wave solutions.
In this paper, we consider equations (1.1) with integer-indices double power nonlinearities such
as

∂tu+ ∂x(au
p + uq)− ∂xD

σ
xu = 0, (t, x) ∈ R× R, (1.3)

where a ∈ {+1,−1} and p, q ∈ N satisfying 2 ≤ p < q < ∞. The remarkable example of these
equations is the case that σ = 2, p = 2, and q = 3, where the equation (1.3) coincides with the
so-called Gardner equation, which is introduced by Miura–Gardner–Kruskal [16].

Throughout this paper, we assume the local well-posedness of the Cauchy problem associated
with (1.3) in the energy space Hσ/2(R).

Assumption. Let 1 ≤ σ ≤ 2. Then, for any u0 ∈ Hσ/2(R), there exists T = T (‖u0‖Hσ/2) > 0

and a unique solution u(t) ∈ C([0, T ), Hσ/2(R)) to (1.3) with u(0) = u0 which satisfy the
1In this paper, we mainly consider power type nonlinearities, which are good enough for the functional Sc to

belong to C2(Hσ/2(R),R).
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following conservation laws:

E(u(t)) = E(u0), M(u(t)) =M(u0), t ∈ [0, T ).

We remark that Molinet–Tanaka [17] showed that this assumption actually holds if 4/3 ≤
σ ≤ 2.

The stationary problem derived from (1.3) is the following:

Dσ
xφ+ cφ− aφp − φq = 0, x ∈ R. (1.4)

The author studied the existence of ground state solutions to (1.4) with a = −1 in a previous
paper [12] and found that existence properties of nontrivial solutions to (1.4) depend on parity
combinations of indices p and q. Here we state the results of the existence of ground state
solutions to (1.4) including the case a = +1.

Theorem 1.1. Let 1 ≤ σ ≤ 2, p, q ∈ N, 2 ≤ p < q < ∞, and c > 0. Then the following
properties hold:

(I) The case a = +1.
If q is odd, then there exists a positive ground state solution to (1.4).

(II) The case a = −1.
(1) If p is odd, then there exists a positive ground state solution to (1.4).
(2) If p is even and q is odd, then there exists a negative ground state solution to (1.4).

Remark 1.2. 1. Each ground state solution obtained in Theorem 1.1 can be taken as
an even function, and be decreasing in |x| if positive or increasing in |x| if negative.
Moreover, since p and q are positive integers, we can see that any ground state solution
to (1.4), which is found in Hσ/2(R), belongs to H∞(R). We will prove this in Section 2.

2. In Theorem 1.1, we only consider cases that we can find a ground state solution, while
there are other cases not appearing in the statement where we can find a nontrivial
solution which is (possibly) not ground state solutions. In addition, when we consider
case (II-2), we can show that there exists a positive solution to (1.4) and none of them
are ground state solutions. For details, see the author’s previous paper [12].

Hereafter, whenever we take a ground state solution to (1.4) or any stationary problem
appearing below, we always consider even one.

Now we state the stability result of travelling wave solutions to (1.3) constructed with ground
state solutions to (1.4) obtained in Theorem 1.1.

Theorem 1.3. Let 1 ≤ σ ≤ 2, p, q ∈ N, and 2 ≤ p < q < ∞. Then the following properties
hold:

(I) The case a = +1.
Assume that q is odd, and p < 2σ + 1. Let φc be a positive ground state solution

to (1.4) for c > 0. Then there exists c0 ∈ (0,∞) such that a travelling wave solution
φc(x− ct) to (1.3) is stable for all c ∈ (0, c0).

(II) The case a = −1.
(1) Assume that p is odd and q < 2σ + 1. Let φc be a positive ground state solution to

(1.4) for c > 0. Then there exists c1 ∈ (0,∞) such that a travelling wave solution
φc(x− ct) to (1.3) is stable for all c ∈ (c1,∞).
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(2) Assume that p is even, q is odd, and q < 2σ + 1. Let φc be a negative ground state
solution to (1.4) for c > 0. Then there exists c2 ∈ (0,∞) such that a travelling
wave solution φc(x− ct) to (1.3) is stable for all c ∈ (c2,∞).

Remark 1.4. We can find many examples of indices combinations p and q satisfying the
assumption of case (I) in Theorem 1.3. Meanwhile, we have only one combination of indices
which satisfies the assumption of case (II-j). For instance, the combination p = 3, q = 4 is the
only one satisfying the assumption of case (II-1) under 3/2 < σ ≤ 2. In case (II-2), we can
only find the combination p = 2, q = 3 under 1 < σ ≤ 2.

Plan for the paper. We prove Theorem 1.1 in Section 2. In Section 3, we consider sufficient
conditions for the stability of travelling wave solutions. In section 4, we prove that the sufficient
conditions given in Section 3 hold true.

Notation. For a function u, Fu and û denote the Fourier transform of u defined as

Fu(ξ) = û(ξ) :=
1√
2π

∫
R
u(x)e−ixξ dx.

For s > 0 and u, v ∈ Hs(R), we define an inner product as

(u, v)Hs := (Ds
xu,D

s
xv)L2 + (u, v)L2 .

Let ‖ · ‖Hs denote the norm of Hs(R) naturally defined by the inner product. Moreover,
we let 〈f, v〉 denote a dual product between H−σ/2(R) and Hσ/2(R). For ξ ∈ R, we put
〈ξ〉 := (1 + |ξ|2)1/2.

To simplify the notation, we often use the same letter for constants in different estimates
such as A,B, and C. Any subsequence appearing below will be denoted by original characters.

2. Ground state solutions

As mentioned in Section 1, the existence of ground state solutions to (1.4) for case (II-j)
(j = 1, 2) has been studied by the author. In this section, we will complete the proof of
Theorem 1.1.

2.1. Existence. Here we observe the existence of ground state solutions to (1.4). In this
subsection, we always assume one of the three conditions of (I), (II-1), or (II-2) in Theorem
1.1, and assume that c > 0.

We let Gc denote the set of ground state solutions to (1.4). The action functional Sc corre-
sponding to (1.4) is written as

Sc(v) =
1

2
‖v‖2

H
σ/2
c

− a

p+ 1

∫
R
vp+1 dx− 1

q + 1

∫
R
vq+1 dx

for v ∈ Hσ/2(R), where ‖v‖2
H

σ/2
c

:= ‖Dσ/2
x v‖2L2 + c‖v‖2L2 . We define the Nehari functional Kc

derived from the action functional Sc as

Kc(v) := 〈S ′
c(v), v〉 = ‖v‖2

H
σ/2
c

− a

∫
R
vp+1 dx−

∫
R
vq+1 dx.
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We remark that Kc(v) = 0 holds for any nontrivial solution to (1.4). Moreover, we set

d(c) := inf{Sc(v) : v ∈ Hσ/2(R) \ {0}, Kc(v) = 0},

Mc := {v ∈ Hσ/2(R) \ {0} : Kc(v) = 0, Sc(v) = d(c)}.

Lemma 2.1. If Mc 6= ∅, then Gc = Mc holds.

Proof. First, we show that Mc ⊂ Gc. Let φ ∈ Mc. Then we see that Kc(φ) = 0. Now we
consider the following function:

(0,∞) 3 λ 7→ Kc(λφ) = λ2‖v‖2
H

σ/2
c

− aλp+1

∫
R
φp+1 dx− λq+1

∫
R
φq+1 dx. (2.1)

We show that
∂λKc(λφ)|λ=1 = 〈K ′

c(φ), φ〉 < 0. (2.2)
If q is odd, it is clear that

∫
R φ

q+1 dx > 0. In the case where a = −1 and p is odd, we obtain it
from Kc(φ) = 0 that

0 < ‖φ‖2
H

σ/2
c

+

∫
R
φp+1 dx =

∫
R
φq+1 dx. (2.3)

Considering the graph of the function (2.1), we can conclude (2.2). Therefore, by the Lagrange
multiplier theorem, there exists µ ∈ R such that S ′

c(φ) = µK ′
c(φ). Then we have

µ〈K ′
c(φ), φ〉 = 〈S ′

c(φ), φ〉 = Kc(φ) = 0,

which implies µ = 0 and then S ′
c(φ) = 0. Furthermore, from the definition of Mc, it holds

that Sc(φ) = d(c) ≤ Sc(v) for any nontrivial solution v ∈ Hσ/2(R) to (1.4), which means that
φ ∈ Gc.

Next, we show that Gc ⊂ Mc. Since Mc 6= ∅, we can take some v ∈ Mc. Here we let φ ∈ Gc.
Then, since v ∈ Gc as shown above, we see that Sc(φ) ≤ Sc(v) = d(c). By Kc(φ) = 0, we have
d(c) ≤ Sc(φ). Therefore, we obtain Sc(φ) = d(c), which means that φ ∈ Mc.

Hence, the proof is completed. �

Thanks to Lemma 2.1, in order to prove the existence of ground state solutions to (1.4), we
shall show that Mc 6= ∅. We prove this in what follows.

Here we introduce some auxiliary functionals. For v ∈ Hσ/2(R), we put

Ic(v) = Sc(v)−
1

q + 1
Kc(v)

=

(
1

2
− 1

q + 1

)
‖v‖2

H
σ/2
c

− a

(
1

p+ 1
− 1

q + 1

)∫
R
vp+1 dx, (2.4)

Jc(v) = Sc(v)−
1

p+ 1
Kc(v)

=

(
1

2
− 1

p+ 1

)
‖v‖2

H
σ/2
c

+

(
1

p+ 1
− 1

q + 1

)∫
R
vq+1 dx. (2.5)

We can easily see that

d(c) = inf{Sc(v) : v ∈ Hσ/2(R) \ {0}, Kc(v) = 0}

= inf{Ic(v) : v ∈ Hσ/2(R) \ {0}, Kc(v) = 0}

= inf{Jc(v) : v ∈ Hσ/2(R) \ {0}, Kc(v) = 0}. (2.6)
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Lemma 2.2. (i) Assume condition (I) or (II-2) in Theorem 1.1. Then Jc(v) > d(c) holds
for all v ∈ Hσ/2(R) satisfying Kc(v) < 0.

(ii) Assume condition (II-1) in Theorem 1.1. Then Ic(v) > d(c) holds for all v ∈ Hσ/2(R)
satisfying Kc(v) < 0.

Proof. (i) Let v ∈ Hσ/2(R) satisfying Kc(v) < 0. We note that v 6= 0 and that
∫
R v

q+1 dx > 0

as q is odd. Then, considering the graph of the function (0,∞) 3 λ 7→ Kc(λv), we find some
λ0 ∈ (0, 1) such that Kc(λ0v) = 0. By (2.6), we obtain d(c) ≤ Jc(λ0v) < Jc(v).

(ii) In this case, the functional Ic is written as

Ic(v) =

(
1

2
− 1

q + 1

)
‖v‖2

H
σ/2
c

+

(
1

p+ 1
− 1

q + 1

)∫
R
vp+1 dx.

Furthermore, similarly to (2.3), we can see that
∫
R v

q+1 dx > 0 holds for all v ∈ Hσ/2(R)
satisfying Kc(v) < 0. Then we can prove the statement with almost the same way as (i). �

Lemma 2.3. It holds that d(c) > 0.

Proof. We shall show that there exists some C > 0 such that Ic(v) ≥ C or Jc(v) ≥ C hold for
all v ∈ Hσ/2(R) \{0} satisfying Kc(v) = 0.

Here we let v ∈ Hσ/2(R) \ {0} satisfy Kc(v) = 0. By the Sobolev embedding, we see that

0 = Kc(v) = ‖v‖2
H

σ/2
c

− a

∫
R
vp+1 dx−

∫
R
vq+1 dx

≥ ‖v‖2
H

σ/2
c

{
1− C

(
‖v‖p−1

H
σ/2
c

+ ‖v‖q−1

H
σ/2
c

)}
,

with some constant C > 0. Then we see that 1 ≤ C(‖v‖p−1

H
σ/2
c

+ ‖v‖q−1

H
σ/2
c

). Noting that p < q, we
have

1 ≤

C1‖v‖p−1

H
σ/2
c

, if ‖v‖
H

σ/2
c

≥ 1,

C2‖v‖q−1

H
σ/2
c

, if ‖v‖
H

σ/2
c

≤ 1.

Here we set C0 := min{C−2/(p−1)
1 , C

−2/(q−1)
2 } so that we obtain ‖v‖2

H
σ/2
c

≥ C0 for all v ∈
Hσ/2(R) \ {0} satisfying Kc(v) = 0.

In cases (I) and (II-2) in Theorem 1.1, noting that
∫
R v

q+1 dx ≥ 0, we have

Jc(v) =

(
1

2
− 1

p+ 1

)
‖v‖2

H
σ/2
c

+

(
1

p+ 1
− 1

q + 1

)∫
R
vq+1 dx

≥
(
1

2
− 1

p+ 1

)
‖v‖2

H
σ/2
c

≥
(
1

2
− 1

p+ 1

)
C0,

for all v ∈ Hσ/2(R) satisfying Kc(v) = 0.
We can see that it holds under the condition (II-1) in Theorem 1.1 with a similar discussion

that
Ic(v) ≥

(
1

2
− 1

q + 1

)
C0

holds for all v ∈ Hσ/2(R) satisfying Kc(v) = 0. �

To prove that Mc 6= ∅, we need two more lemmas.
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Lemma 2.4. Let (vn)n be a bounded sequence in Hσ/2(R). Assume that there exists some
r ∈ (2,∞) such that infn∈N ‖vn‖Lr > 0. Then there exists (zn)n ⊂ R such that, up to a
subsequence, there exists some v0 ∈ Hσ/2(R) \ {0} such that vn(·+ zn)⇀ v0 weakly in Hσ/2(R).

The similar statement for a sequence in H1(R) was proved by Lieb [14]. For the proof,
see [12, Appendix A].

Lemma 2.5 (Brezis–Lieb [6]). Let r ∈ (1,∞) and (vn)n be a bounded sequence in Lr(R).
Assume that vn(x) → v(x) a.e. in R with some measurable function v. Then it holds that
v ∈ Lr(R) and that

lim
n→∞

(∫
R
|vn|r dx−

∫
R
|vn − v|r dx

)
=

∫
R
|v|r dx.

Now we prove that Mc 6= ∅ holds.

Proof. Let (vn)n ⊂ Hσ/2(R) satisfy Sc(vn) → d(c) and Kc(vn) → 0. Then we have

Ic(vn) → d(c), (2.7)
Jc(vn) → d(c), (2.8)

a

(
1

2
− 1

p+ 1

)∫
R
vp+1
n dx+

(
1

2
− 1

q + 1

)∫
R
vq+1
n dx = Sc(vn)−

1

2
Kc(vn) → d(c). (2.9)

We can see it from (2.7) or (2.8) that (vn)n is bounded in Hσ/2(R). Moreover, by (2.9), we have
infn∈R ‖vn‖Lp+1 > 0. Then, by Lemma 2.4, there exists (zn)n ⊂ R and v0 ∈ Hσ/2(R) \ {0} such
that vn(· + zn) ⇀ v0 weakly in Hσ/2(R), up to a subsequence. Here we put wn := vn(· + zn).
Then we may assume that wn(x) → v0(x) a.e. in R due to the weak convergence and the Rellich
compact embedding. Therefore, applying Lemma 2.5 to the sequence (wn)n, we have

Ic(wn)− Ic(wn − v0) → Ic(v0), (2.10)
Jc(wn)− Jc(wn − v0) → Jc(v0), (2.11)
Kc(wn)−Kc(wn − v0) → Kc(v0). (2.12)

In cases (I) and (II-2) in Theorem 1.1, we obtain it from (2.8) and (2.11) that

lim
n→∞

Jc(wn − v0) = lim
n→∞

Jc(wn)− Jc(v0)

< lim
n→∞

Jc(wn) = lim
n→∞

Jc(vn) = d(c),

which implies that Jc(wn − v0) ≤ d(c) holds for n ∈ N sufficiently large. Then, by Lemma 2.2
(i), we have Kc(wn − v0) ≥ 0 for large n ∈ N. Moreover, by (2.12), we see that

Kc(v0) = lim
n→∞

Kc(wn)− lim
n→∞

Kc(wn − v0) ≤ 0. (2.13)

Therefore, using Lemma 2.2 (i) again, we have

d(c) ≤ Jc(v0) ≤ lim inf
n→∞

Jc(wn) = lim
n→∞

Jc(vn) = d(c),

that is, Jc(v0) = d(c). Combining this with Lemma 2.2 (i), we obtain Kc(v0) ≥ 0. This and
(2.13) yield that Kc(v0) = 0. Thus, we conclude that v0 ∈ Mc.

In case (II-1), we can similarly conclude that Mc 6= ∅ using (2.10) instead of (2.11).
Hence, the proof is accomplished. �
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Here we observe solutions to the stationary problems (1.4) further.

Lemma 2.6. Let φ ∈ Hσ/2(R) be a nontrivial solution to (1.4). Then φ ∈ H∞(R) holds.

Proof. Let φ ∈ Hσ/2(R) be a nontrivial solution to (1.4). Then, taking the Fourier transform,
we obtain

φ̂(ξ) =
1

|ξ|σ + c
F [aφp + φq] .

First, by the Sobolev embedding, we have

‖Dσ
xφ‖L2 = ‖|ξ|σφ̂‖L2 =

∥∥∥∥ |ξ|σ

|ξ|σ + c
F [aφp + φq]

∥∥∥∥
L2

≤ ‖F [φp] ‖L2 + ‖F [φq] ‖L2

= ‖φ‖pL2p + ‖φ‖qL2q

≤ C
(
‖φ‖p

Hσ/2 + ‖φ‖q
Hσ/2

)
,

which implies that φ ∈ Hσ(R) ↪→ H1(R). Moreover, since p, q ∈ N, we see that ‖φr‖H1 ≤
C‖φ‖rH1 for r ∈ {p, q}. Then, we have

‖Dσ+1
x φ‖L2 = ‖|ξ|σ+1φ̂‖L2 =

∥∥∥∥ |ξ|σ+1

|ξ|σ + c
F [aφp + φq]

∥∥∥∥
L2

≤ ‖|ξ|F [φp] ‖L2 + ‖|ξ|F [φq] ‖L2

≤ ‖φp‖H1 + ‖φq‖H1

≤ C
(
‖φ‖pH1 + ‖φ‖qH1

)
,

which implies that φ ∈ Hσ+1(R). Inductively, we can obtain φ ∈ Hσ+j(R) for all j ∈ N, which
completes the proof. �

2.2. Evenness, positivity, and negativity. In this subsection, we observe properties of
ground state solutions to (1.4).

First, we recall the symmetric decreasing rearrangement of a nonnegative function. Let
v ∈ Hσ/2(R). Then the following inequality holds:

‖Dσ/2
x |v|‖L2 ≤ ‖Dσ/2

x v‖L2 , (2.14)

which implies that |v| ∈ Hσ/2(R). Moreover, we can define the symmetric decreasing rearrange-
ment of |v| with |v|∗ denoting it, and obtain

‖Dσ/2
x |v|∗‖L2 ≤ ‖Dσ/2

x |v|‖L2 , (2.15)

We can prove these inequalities similarly to [3, Lemma 8.15]. In addition, we note that ‖v∗‖Lγ =

‖v‖Lγ holds for any nonnegative function v ∈ Lγ(R) and any γ ∈ [1,∞).

Lemma 2.7. Assume condition (I) or (II-1) in Theorem 1.1. Let φ ∈ Gc. Then |φ|∗ ∈ Gc holds.
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Proof. First, we prove this lemma under condition (I) in Theorem 1.1. Let φ ∈ Gc. Then φ

satisfies that Sc(φ) = d(c) and Kc(φ) = 0. By (2.14) and (2.15), we have

Sc(|φ|∗) =
1

2
‖|φ|∗‖2

H
σ/2
c

− a

p+ 1

∫
R
(|φ|∗)p+1 dx− 1

q + 1

∫
R
(|φ|∗)q+1 dx

≤ 1

2
‖φ‖2

H
σ/2
c

− a

p+ 1

∫
R
|φ|p+1 dx− 1

q + 1

∫
R
|φ|q+1 dx

≤ 1

2
‖φ‖2

H
σ/2
c

− a

p+ 1

∫
R
φp+1 dx− 1

q + 1

∫
R
φq+1 dx = Sc(φ) = d(c), (2.16)

and similarly,

Kc(|φ|∗) ≤ Kc(φ) = 0, (2.17)
Jc(|φ|∗) ≤ Jc(φ) = d(c). (2.18)

By (2.18) and Lemma 2.2, we obtain Kc(|φ|∗) ≥ 0. This and (2.17) give that Kc(|φ|∗) = 0.
Therefore, by (2.16) and the definition of d(c), we see that Sc(|φ|∗) = d(c), which implies that
|φ|∗ ∈ Mc = Gc.

Under condition (II-1) in Theorem 1.1, we can prove this lemma in the similar way above by
using

Ic(|φ|∗) ≤ Ic(φ) = d(c)

instead of (2.18). �

As a consequence of Lemma 2.7, the stationary problem (1.4) has an even and nonnegative
ground state solution in cases (I) or (II-1) in Theorem 1.1.

In case (II-2) in Theorem 1.1, we can see the existence of an even and nonpositive ground
state solution to (1.4).

Lemma 2.8. Assume condition (II-2) in Theorem 1.1. Let φ ∈ Gc. Then −|φ|∗ ∈ Gc holds.

Proof. Since p is even, and q is odd, we see that∫
R
(−|φ|∗)p+1 dx = −

∫
R
(|φ|∗)p+1 dx = −

∫
R
|φ|p+1 dx,∫

R
(−|φ|∗)q+1 dx =

∫
R
(|φ|∗)q+1 dx =

∫
R
|φ|q+1 dx =

∫
R
φq+1 dx.

Then, similarly to Lemma 2.7, we obtain

Sc(−|φ|∗) = 1

2
‖|φ|∗‖2

H
σ/2
c

− 1

p+ 1

∫
R
(|φ|∗)p+1 dx− 1

q + 1

∫
R
(|φ|∗)q+1 dx

≤ 1

2
‖φ‖2

H
σ/2
c

− 1

p+ 1

∫
R
|φ|p+1 dx− 1

q + 1

∫
R
|φ|q+1 dx

≤ 1

2
‖φ‖2

H
σ/2
c

+
1

p+ 1

∫
R
φp+1 dx− 1

q + 1

∫
R
φq+1 dx = Sc(φ) = d(c),

Kc(−|φ|∗) ≤ Kc(φ) = 0,

Jc(−|φ|∗) ≤ Jc(φ) = d(c).

Therefore, we can obtain Kc(−|φ|∗) = 0 and Sc(−|φ|∗) = d(c) with similar way to Lemma 2.7,
and conclude that −|φ|∗ ∈ Mc = Gc. �
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At the end of this subsection, we consider the positivity or negativity of ground state solu-
tions. First, for ν > 0, we define a function Nσ

ν : R → R as

Nσ
ν (x) :=

1√
2π

∫
R

1

|ξ|σ + ν
eiξx dx = F−1

[
1

|ξ|σ + ν

]
(x).

It is known that Nσ
ν is positive, even, and strictly decreasing in |x|. For details, see e.g. [8,

Appendix A].

Lemma 2.9. Assume conditions (I) or (II-1) in Theorem 1.1. Let φ ∈ Hσ/2(R) be a nonnegative
solution to (1.4). Then φ is strictly positive.

Proof. Let φ ∈ Hσ/2(R) be a nonnegative solution to (1.4). By Lemma 2.6, we see that
φ ∈ C∞(R) ∩ L∞(R).

Here we set
λ := sup

x∈R

(
aφp−1(x) + φq−1(x)

)
+ 1.

Then, we see that λ > 0 and

λ− (aφp−1(y) + φq−1(y)) ≥ 1 (2.19)

holds for all y ∈ R. Now adding λφ to both sides of (1.4) and using the function Nσ
ν with

ν = c+ λ, we obtain

φ(x) =
(
Nσ

c+λ ∗ (λφ− (aφp + φq))
)
(x) =

1√
2π

∫
R
Nσ

c+λ(x−y)(λ− (aφp−1(y)+φq−1(y)))φ(y) dy.

(2.20)
Suppose that there exists some x0 ∈ R such that φ(x0) = 0. By (2.20), we obtain∫

R
Nσ

c+λ(x0 − y)(λ− (aφp−1(y) + φq−1(y)))φ(y) dy = 0.

Since Nσ
c+λ > 0 in R, we see it from (2.19) that φ ≡ 0 in R, which contradicts that φ is

nontrivial.
Hence, the proof is completed. �

With almost the same method as Lemma 2.9, we can show the following statement.

Lemma 2.10. Assume condition (II-2) in Theorem 1.1. Let φ ∈ Hσ/2(R) be a nonpositive
solution to (1.4). Then φ is strictly negative.

3. Sufficient conditions for the stability of travelling wave solutions

In this section, we consider sufficient conditions for Theorem 1.3 following the method by
Grillakis–Shatah–Strauss [10].

For c > 0, we let φc ∈ Hσ/2(R) be a ground state solution to (1.4) obtained in Theorem 1.1.
According to Theorem 3.5 of [10], the following statement (A) is sufficient for travelling wave
solutions to be stable:

(A) There exist C0 > 0 and ε0 > 0 such that

E(u)− E(φc) ≥ C0 inf
y∈R

‖u− φc(· − y)‖2Hσ/2

holds for all u ∈ Uε0(φc) satisfying M(u) =M(φc).
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We can show that statement (A) holds if we assume the following statement:
(B) There exists C1 > 0 which satisfies the following statement:

〈S ′′
c (φc)v, v〉 ≥ C1‖v‖2Hσ/2

holds for all v ∈ Hσ/2(R) satisfying (v, φc)L2 = (v, ∂xφc)L2 = 0.

Proof that (B) =⇒ (A). First, with the idea of Cipolatti [7, Lemma 3.4], we can see that there
exists ε1 > 0 such that, for all ε ∈ (0, ε1) and u ∈ Uε(φc), there exists ỹ ∈ R such that

‖u− φc(· − ỹ)‖Hσ/2 = min
y∈R

‖u− φc(· − y)‖Hσ/2 . (3.1)

Here we put v := u(·+ ỹ)− φc. Then, by the Taylor expansion, we have

Sc(u) = Sc(u(·+ ỹ)) = Sc(v + φc)

= Sc(φc) + 〈S ′
c(φc), v〉+

1

2
〈S ′′

c (φc)v, v〉+ o(‖v‖2Hσ/2),

M(φc) =M(u) =M(u(·+ y)) =M(φc + v)

=M(φc) + 〈M ′(φc), v〉+O(‖v‖2Hσ/2).

Therefore, we have it from S ′
c(φc) = 0 that

Sc(u)− Sc(φc) =
1

2
〈S ′′

c (φc)v, v〉+ o(‖v‖2Hσ/2) (3.2)

and
〈M ′(φc), v〉 = O(‖v‖2Hσ/2). (3.3)

Next, since ‖φc(·+y)‖L2 = ‖φc‖L2 holds for all y ∈ R, we can see that (φc, ∂xφc)L2 = 0. From
this, we can decompose v as v = kφc + l∂xφc + w with some k, l ∈ R and some w ∈ Hσ/2(R)
which satisfies (w, φc)L2 = (w, ∂xφc)L2 = 0. Then, we have

〈M ′(φc), v〉 = (φc, kφc + l∂xφc + w)L2 = k‖φc‖2L2 . (3.4)

Combining (3.3) and (3.4) yields k = O(‖v‖2
Hσ/2).

In addition, we can see that (v, ∂xφc)Hσ/2 = 0. Indeed, we put

g(y) := ‖u− φc(· − y)‖2Hσ/2 = ‖u‖2Hσ/2 − 2(u, φc(· − y))Hσ/2 + ‖φc‖2Hσ/2 , y ∈ R.

Since ‖φc(·+ y)‖Hσ/2 = ‖φc‖Hσ/2 holds for all y ∈ R, we have (φc, ∂xφc)Hσ/2 = 0. This and (3.1)
give

0 = ∂yg(ỹ) = 2(u, ∂xφc(· − ỹ))Hσ/2 = 2(u(·+ ỹ), ∂xφc)Hσ/2

= 2(v + φc, ∂xφc)Hσ/2 = 2(v, ∂xφc)Hσ/2 .

Moreover, we see that

(v, ∂xφc)Hσ/2 = l‖∂xφc‖2Hσ/2 + (w, ∂xφc)Hσ/2 .

Therefore, we obtain

|l|‖∂xφc‖2Hσ/2 ≤ ‖w‖Hσ/2‖∂xφc‖Hσ/2 ,
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that is, |l|‖∂xφc‖Hσ/2 ≤ ‖w‖Hσ/2 . Then we have

‖v‖Hσ/2 ≤ |k|‖φc‖Hσ/2 + |l|‖∂xφc‖Hσ/2 + ‖w‖Hσ/2

≤ |k|‖φc‖Hσ/2 + 2‖w‖Hσ/2 = 2‖w‖Hσ/2 +O(‖v‖2Hσ/2),

which implies
1

4
‖v‖2Hσ/2 +O(‖v‖3Hσ/2) ≤ ‖w‖2Hσ/2 . (3.5)

Next, since S ′
c(φc(· + y)) = 0 for all y ∈ R, we can see that ∂y{S ′

c(φc(·+ y))}|y=0 =

S ′′
c (φc)∂xφc = 0. This yields that

〈S ′′
c (φc)w,w〉 = 〈S ′′

c (φc)v, v〉 − 2k〈S ′′
c (φc)v, φc〉+ k2〈S ′′

c (φc)φc, φc〉
= 〈S ′′

c (φc)v, v〉+O(‖v‖3Hσ/2). (3.6)

Since statement (B) is assumed, there exists C1 > 0 such that

〈S ′′
c (φc)w,w〉 ≥ C1‖w‖2Hσ/2 . (3.7)

Then, we obtain it from M(u) =M(φc), (3.2), (3.6), (3.7), and (3.5) that

E(u)− E(φc) = Sc(u)− Sc(φc) ≥
1

2
〈S ′′

c (φc)v, v〉+ o(‖v‖2Hσ/2)

=
1

2
〈S ′′

c (φc)w,w〉+ o(‖v‖2Hσ/2)

≥ C1

2
‖w‖2Hσ/2 + o(‖v‖2Hσ/2)

≥ C1

8
‖v‖2Hσ/2 + o(‖v‖2Hσ/2).

Finally, since u ∈ Uε(φc) and v = u− φc(· − ỹ), we take ε0 ∈ (0, ε1) so small that

E(u)− E(φc) ≥
C1

16
‖v‖2Hσ/2

holds. Then, taking C0 = C1/16 completes the proof. �

Due to the discussion above, we shall show that statement (B) holds so that travelling wave
solutions are stable. Actually, the statement (B) holds conditionally on c > 0 as follows:

Proposition 3.1. (I) Assume condition (I) in Theorem 1.3. Let φc be a positive ground
state solutions to (1.4) for c > 0. Then there exists c0 ∈ (0,∞) such that the statement
(B) holds for all c ∈ (0, c0).

(II) (1) Assume condition (II-1) in Theorem 1.3. Let φc be a positive ground state solution
to (1.4) for c > 0. Then there exists c1 ∈ (0,∞) such that the statement (B) holds
for all c ∈ (c1,∞).

(2) Assume condition (II-2) in Theorem 1.3. Let φc be a negative ground state solutions
to (1.4) for c > 0. Then there exists c1 ∈ (0,∞) such that the statement (B) holds
for all c ∈ (c2,∞).
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4. Proof of Proposition 3.1

In this section, we consider the proof of Proposition 3.1. The method of the proof is inspired
by Fukuizumi [9].

First, we give a formal observation of solutions to (1.4). Let φ ∈ Hσ/2(R) be a solution to
(1.4). Then we put

φ(x) = c1/(p−1)φ̃(c1/σx) (4.1)

so that φ̃ solves
Dσ

x φ̃+ φ̃− aφ̃p − cαφ̃q = 0, x ∈ R, (4.2)

where α = (q − p)/(p− 1). Similarly, putting

φ(x) = c1/(q−1)φ̆(c1/σx), (4.3)

we see that φ̆ solves
Dσ

x φ̆+ φ̆− ac−βφ̆p − φ̆q = 0, x ∈ R, (4.4)

where β = (q − p)/(q − 1). Then, letting c → +0 in (4.2) or c → +∞ in (4.4), the following
equation appears:

Dσ
xψ + ψ − ψr = 0, x ∈ R, (4.5)

where r ∈ {p, q}. This equation has been observed well, and it is known that there exists a
unique, positive and even ground state solution (up to translation) belonging to H∞(R). For
details, see Frank–Lenzmann [8].

Here we observe properties of ground state solutions to (4.5). We define the functional S0,r
1

as

S0,r
1 (v) :=

1

2
‖v‖2Hσ/2 −

1

r + 1

∫
R
vr+1 dx, v ∈ Hσ/2(R),

which is the action functional corresponding to (4.5). Moreover, we define the Nehari functional
K0,r

1 derived from S0,r
1 as

K0,r
1 (v) := 〈(S0,r

1 )′(v), v〉 = ‖v‖2Hσ/2 −
∫
R
vr+1 dx.

Let ψ1,r ∈ Hσ/2(R) be the positive ground state solution to (4.5). Then we can see it in a
similar way to the discussion in Section 2.1 that the following characterization holds:

S0,r
1 (ψ1,r) = inf{S0,r

1 (v) : v ∈ Hσ/2(R) \ {0}, K0,r
1 (v) = 0}.

Suppose that r is an odd integer and put χ1,r := −ψ1,r. Then we see that χ1,r is a negative
ground state solution to (4.5). Indeed, it is clear that S0,r

1 (χ1,r) = S0,r
1 (ψ1,r) and K0,r

1 (χ1,r) = 0

hold. Otherwise, if r is an even integer, we see that

K0,r
1 (w) = ‖w‖2Hσ/2 −

∫
R
wr+1 dx = ‖w‖2Hσ/2 +

∫
R
|w|r+1 dx ≥ 0

holds for any nonpositive function w ∈ Hσ/2(R). This means that there exist no negative
solutions to (4.5).

One of the key lemmas to prove Proposition 3.1 is the following.
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Lemma 4.1. Let 1 ≤ σ ≤ 2, r ∈ N, and 2 ≤ r <∞. Moreover, let ψ1,r be the positive ground
state solution to (4.5). Then there exists C2 > 0 such that

〈(S0,r
1 )′′(ψ1,r)v, v〉 ≥ C2‖v‖2Hσ/2

holds for all v ∈ Hσ/2(R) satisfying (v, ψ1,r)L2 = (v, ∂xψ1,r)L2 = 0.

Remark 4.2. If r is odd, we can replace ψ1,r appearing in Lemma 4.1 with the negative ground
state solution χ1,r.

Next, we observe the convergence properties of ground state solutions to (1.4).

Lemma 4.3. (I) Assume condition (I) in Theorem 1.1. Let φc be a positive ground state
solution to (1.4) for c > 0, and φ̃c be a function given by the scaling (4.1). Moreover,
let ψ1,p be the positive ground state solution to (4.5) with r = p. Then it holds that
φ̃c → ψ1,p strongly in Hσ/2(R) as c→ +0.

(II) (1) Assume condition (II-1) in Theorem 1.1. Let φc be a positive ground state solution
to (1.4) for c > 0, and φ̆c be a function given by the scaling (4.3). Moreover, let
ψ1,q be the positive ground state solution to (4.5) with r = q. Then it holds that
φ̆c → ψ1,q strongly in Hσ/2(R) as c→ +∞.

(2) Assume condition (II-2) in Theorem 1.1. Let φc be a negative ground state solution
to (1.4) for c > 0, and φ̆c be a function given by the scaling (4.3). Moreover, let
ψ1,q be the positive ground state solution to (4.5) with r = q, and χ1,q := −ψ1,q.
Then, it holds that φ̆c → χ1,q strongly in Hσ/2(R) as c→ +∞.

We will give the proofs of Lemmas 4.1 and 4.3 later in this section. Here we prove Proposition
3.1 by applying these lemmas.

Proof of Proposition 3.1. First, We consider case (I).
We define the action functional S̃c corresponding to (4.2) as

S̃c(v) :=
1

2
‖v‖2Hσ/2 −

1

p+ 1

∫
R
vp+1 dx− cα

q + 1

∫
R
vq+1 dx, v ∈ Hσ/2(R).

Moreover, for v ∈ Hσ/2(R) and c > 0, we put

〈Lcv, v〉 := 〈S ′′
c (φc)v, v〉 = ‖v‖2

H
σ/2
c

− p

∫
R
φp−1
c v2 dx− q

∫
R
φq−1
c v2 dx,

〈L̃cv, v〉 := 〈S̃ ′′
c (φ̃c)v, v〉 = ‖v‖2Hσ/2 − p

∫
R
φ̃p−1
c v2 dx− cαq

∫
R
φ̃q−1
c v2 dx,

〈L0,p
1 v, v〉 := 〈(S0,p

1 )′′(ψ1,p)v, v〉 = ‖v‖2Hσ/2 − p

∫
R
ψp−1
1,p v

2 dx.

Then we can see that 〈Lcv, v〉 = c1+2/(p−1)−1/σ〈L̃cṽ, ṽ〉 with the scaling v(x) = c1/(p−1)ṽ(c1/σx).
Now we prove this proposition with contradiction. Suppose that the statement is failed.

Then we can take sequences (cn)n ⊂ (0,∞) and (vn)n ⊂ Hσ/2(R) which satisfy the following
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conditions:

cn → 0 as n→ ∞;

‖vn‖Hσ/2 = 1 for all n ∈ R; (4.6)

lim sup
n→∞

〈L̃cnvn, vn〉 ≤ 0; (4.7)

(vn, φ̃cn)L2 = (vn, ∂xφ̃cn)L2 = 0 for all n ∈ R. (4.8)

By Lemma 4.3, we see that
φ̃cn → ψ1,p in Hσ/2(R). (4.9)

Additionally, by (4.6), we can see that

vn ⇀ v0 weakly in Hσ/2(R) (4.10)

with some v0 ∈ Hσ/2(R), up to a subsequence. By (4.8), (4.9), and (4.10), we obtain (v0, ψ1,p)L2 =

0. Moreover, we can see that

∂xφ̃cn → ∂xψ1,p strongly in H−σ/2(R). (4.11)

Indeed, since σ ≥ 1, we have

‖∂xφ̃cn − ∂xψ1,p‖H−σ/2 ≤ C‖〈ξ〉−σ/2F [∂xφ̃cn − ∂xψ1,p]‖L2

≤ C‖〈ξ〉1−σ/2F [φ̃cn − ψ1,p]‖L2

≤ C‖〈ξ〉σ/2F [φ̃cn − ψ1,p]‖L2

≤ C‖φ̃cn − ψ1,p‖Hσ/2

with some constant C > 0 independent of n. This estimate and (4.9) imply (4.11). By (4.11),
we have

(v0, ∂xψ1,p)L2 = 〈∂xψ1,p, v0〉 = lim
n→∞

〈∂xφ̃cn , vn〉 = lim
n→∞

(vn, ∂xφ̃cn)L2 = 0.

Therefore, we can apply Lemma 4.1 to v0 so that we have

C2‖v0‖2Hσ/2 ≤ 〈L0,p
1 v0, v0〉. (4.12)

Furthermore, by (4.9) and (4.10), we see that∫
R
φ̃γ−1
cn v2n dx→

∫
R
ψγ−1
1,p v

2
0 dx (4.13)

for γ ∈ (1,∞). Combining (4.7), and (4.13), we obtain

〈L0,p
1 v0, v0〉 = ‖v0‖2Hσ/2 − p

∫
R
ψp−1
1,p v

2
0 dx ≤ lim inf

n→∞
〈L̃cnvn, vn〉 ≤ 0. (4.14)

Then (4.12) and (4.14) yield that v0 = 0.
However, (4.6) gives

‖v0‖Hσ/2 ≤ lim inf
n→∞

‖vn‖Hσ/2 = 1. (4.15)

Then (4.7), (4.13), and (4.15) imply that

0 ≥ lim inf
n→∞

〈L̃cnvn, vn〉 ≥ 1− p

∫
R
ψp−1
1,p v

2
0 dx = 1,

which is impossible. Hence, the proof for case (I) is accomplished.
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In case (II-j) (j = 1, 2), we put

〈L̆cv, v〉 := 〈S̆ ′′
c (φ̆c)v, v〉 = ‖v‖2Hσ/2 − ac−βp

∫
R
φ̆p−1
c v2 dx− q

∫
R
φ̆q−1
c v2 dx,

so that we see that 〈Lcv, v〉 = c1+2/(q−1)−1/σ〈L̆cv̆, v̆〉 holds for v ∈ Hσ/2(R), where S̆c is the
action functional corresponding to stationary problem (4.4) defined as

S̆c(v) :=
1

2
‖v‖2Hσ/2 +

c−β

p+ 1
‖v‖p+1

Lp+1 −
1

q + 1

∫
R
vq+1 dx,

and v̆ is a function given by the scaling v(x) = c1/(q−1)v̆(c1/σx). Then we can prove Proposition
3.1 for case (II-j) similarly to case (I). �

4.1. Proof of Lemma 4.1. First, we observe the regularity of ground state solutions (4.5).

Lemma 4.4. Let ψ1,r ∈ Hσ/2(R) be the positive ground state solution to (4.5). Then x∂xψ1,r ∈
Hσ/2(R) holds.

Here we consider the case that 1 < σ ≤ 2.

Lemma 4.5. Let 1 < σ ≤ 2 and f ∈ H−σ/2(R). Moreover, assume that ψ ∈ Hσ+1(R) satisfies

Dσ
xψ + ψ = f in H−σ/2(R). (4.16)

If xf ∈ H1−σ/2(R), then x∂xψ ∈ Hσ/2(R) holds.

Proof. In this proof, we let û denote the Fourier transform of u. Here we remark that there
exists some C > 0 such that C〈ξ〉σ ≤ 1 + |ξ|σ ≤ C〈ξ〉σ holds for ξ ∈ R.

First, rewriting (4.16), we have

ψ̂ =
1

1 + |ξ|σ
f̂ . (4.17)

Then a direct calculation yields

F [x∂xψ] = i∂ξF [∂xψ] = −∂ξ{ξψ̂} = −ψ̂ − ξ∂ξψ̂. (4.18)

Moreover, we have

∂ξ

{
1

1 + |ξ|σ
f̂

}
= − σ|ξ|σ−2ξ

(1 + |ξ|σ)2
f̂ +

1

1 + |ξ|σ
∂ξf̂ . (4.19)

Additionally, it is clear that
F [xf ] = i∂ξf̂ . (4.20)

Then, by (4.17), (4.18), (4.19), and (4.20), we have∣∣〈ξ〉σ/2F [x∂xψ]
∣∣ ≤ C

(
〈ξ〉σ/2|ψ̂|+ 〈ξ〉−σ/2|f̂ |+ 〈ξ〉1−σ/2|F [xf ]|

)
Since we assume that f ∈ H−σ/2(R) and xf ∈ H1−σ/2(R), we obtain 〈ξ〉σ/2F [x∂xψ] ∈ L2(R),
which means x∂xψ ∈ Hσ/2(R). �

Now we prove Lemma 4.4 for 1 < σ ≤ 2.
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Proof. According to Lemma 4.5, it suffices to show that xψr
1,r ∈ H1−σ/2(R).

When σ = 2, it is known that ψ1,r and x∂xψ1,r decay exponentially as |x| → +∞. Then we
can see that xψr

1,r ∈ H1−σ/2(R).
Now we consider the case 1 < σ < 2. First, we remark that, for 1 ≤ σ < 2, it holds that

|ψ1,r(x)|+ |x∂xψ1,r(x)| ≤
C

1 + |x|1+σ
(4.21)

for all x ∈ R with some constant C > 0, which is observed by Kenig–Martel–Robibiano [11]
and Frank–Lenzmann [8] with the method of Amick–Toland [2].

Similarly to the proof of Lemma 2.6, we can see that ψr
1,r ∈ H1(R), which implies that

ψr
1,r ∈ H−σ/2(R).
Moreover, we can see that |x||ψ1,r(x)|r = O(|x|−(σ+1)r+1) as |x| → +∞. From this, it is

sufficient for xψr
1,r to be in L2(R) that

−(σ + 1)r + 1 < −1

2
⇐⇒ r >

3

2(σ + 1)
,

which holds true under r ≥ 2 and 1 ≤ σ ≤ 2.
Next, since xψr

1,r ∈ C1(R), we see that∣∣∂x {xψr
1,r(x)

}∣∣ ≤ |ψ1,r(x)|r + r|ψ1,r(x)|r−1|x∂x(ψ1,r)(x)| = O(|x|−(σ+1)r)

as |x| → +∞. Then, similarly above, we obtain ∂x
{
xψr

1,r

}
∈ L2(R). Hence, we see that

xψr
1,r ∈ H1(R) ↪→ H1−σ/2(R) and that the statement follows from Lemma 4.5. �

We cannot prove Lemma 4.4 for σ = 1 in the same way as the case 1 < σ ≤ 2 since the
differentiability of (4.18) is failed. For the case σ = 1, we observe decay estimate of the second
derivative of the ground state solution ψ1,r with the idea of Amick–Toland [2].

Differentiating x∂xψ1,r with respect to x, we obtain

∂x{x∂xψ1,r} = ∂xψ1,r + x∂2xψ1,r.

Therefore, in order to prove Lemma 4.4, it suffices to show that x∂xψ1,r ∈ L2(R) and x∂2xψ1,r ∈
L2(R). The first integrability follows from the decay estimate (4.21). Now we prove the second
integrability.

Lemma 4.6. There exists some C > 0 such that

|∂2xψ1,r(x)| ≤
C

|x|1+σ

holds for all |x| > 1.

Proof. We consider the following function:

G1(x, y) :=
1

π

∫ ∞

0

(y + s)e−s

x2 + (y + s)2
ds

for x ∈ R and y ≥ 0, which is introduced by Amick–Toland [1,2]. We can see that the function
G1 is harmonic in {(x, y) ∈ R2 : y > 0} and that

∫
RG1(x, y) dx = 1 holds for any y ≥ 0.
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Moreover, for |x| > 1/2 and y ≥ 0, we can see that

|∂xG1(x, y)| ≤
C

|x|
G1(x, y), (4.22)

|∂2xG1(x, y)| ≤
C

x2
G1(x, y). (4.23)

As a consequence of Amick–Toland’s discussion in [1, 2], we can write the positive ground
state solution ψ1,r as

ψ1,r(x) = (G1(·, 0) ∗ ψr
1,r)(x) =

∫ ∞

−∞
G1(x− t, 0)ψr

1,r(t) dt.

Since ψ1,r ∈ C∞(R), we obtain

∂2xψ1,r(x) =

∫ ∞

−∞
G1(x− t, 0)∂2t {ψr

1,r(t)} dt. (4.24)

Let x > 1. Then we split the right hand side of (4.24) as

∂2xψ1,r(x) =

∫ x/2

−∞
G1(x− t, 0)∂2t {ψr

1,r(t)} dt+
∫ ∞

x/2

G1(x− t, 0)∂2t {ψr
1,r(t)} dt =: I1(x) + I2(x).

Now we evaluate I1. Doing integration by parts twice, we obtain

I1(x) = rG1

(x
2
, 0
)
ψr−1
1,r

(x
2

)
∂xψ1,r

(x
2

)
+∂xG1

(x
2
, 0
)
ψr
1,r

(x
2

)
+

∫ x/2

−∞
∂2xG1(x− t, 0)ψr

1,r(t) dt.

Then, by (4.21), (4.22), and (4.23), we have

|I1(x)| ≤ C

(
x−2x−2(r−1)x−3 + x−3x−2r +

∫ x/2

−∞

G1(x− t, 0)

(x− t)2
ψr
1,r(t) dt

)
≤ C

(
x−(2r+3) + x−2ψ1,r(x)

)
≤ Cx−4. (4.25)

Next, we consider I2. A direct calculation yields

|I2(x)| ≤ r(r−1)

∣∣∣∣∫ ∞

x/2

G1(x− t, 0)ψr−2
1,r (t)(∂tψ1,r(t))

2 dt

∣∣∣∣+r ∣∣∣∣∫ ∞

x/2

G1(x− t, 0)ψr−1
1,r (t)∂2t ψ1,r(t) dt

∣∣∣∣ .
By the decay estimate (4.21), we have∣∣∣∣∫ ∞

x/2

G1(x− t, 0)ψr−2
1,r (t)(∂tψ1,r(t))

2 dt

∣∣∣∣ ≤ Cx−2(r−1)x−6

∫ ∞

−∞
G1(x− t, 0) dt = Cx−(2r−4).

Moreover, we see that∣∣∣∣∫ ∞

x/2

G1(x− t, 0)ψp−1
1,r (t)∂2t ψ1,r(t) dt

∣∣∣∣ ≤ Cx−2(r−1)‖∂2xψ1,r‖L∞

∫ ∞

−∞
G1(x− t, 0) dx

≤ Cx−2(r−1).

Therefore, we obtain that
|I2(x)| ≤ Cx−2(r−1). (4.26)

Finally, (4.25) and (4.26) yield that

|∂2xψ1,r(x)| ≤ Cx−2(r−1) ≤ Cx−2
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holds for x > 1.
Since ψ1,r is an even function, we conclude the desired estimate. �

By Lemma 4.6, it holds for |x| > 1 that

|x∂2xψ1,r(x)| ≤ C|x|−1,

which implies that x∂2xψ1,r ∈ L2(R). Hence, the proof of Lemma 4.4 for σ = 1 is completed.
Now we proceed the proof of Lemma 4.1. First, we claim an abstract lemma.

Lemma 4.7. Let X be a Hilbert space over R, S,K ∈ C2(X,R), and f ∈ X∗, where X∗ is the
dual space of X. Let ψ ∈ X \ {0} satisfy K(ψ) = 0 and

S(ψ) = min{S(v) : v ∈ X \ {0}, K(v) = 0}.

Moreover, assume the following five conditions:
(C1) There exists v1 ∈ X such that

〈S ′(ψ), v1〉 = 0, 〈K ′(ψ), v1〉 6= 0.

(C2) There exists v2 ∈ X such that

S ′′(ψ)v2 = −f, 〈K ′(ψ), v2〉 6= 0, 〈f, v2〉 > 0

and that
〈S ′′(ψ)v2, v〉 = 〈S ′′(ψ)v, v2〉

holds for all v ∈ X.
(C3) The functional X 3 v 7→ 〈S ′′(ψ)v, v〉 ∈ R is weakly lower semicontiuous.
(C4) Let (vn)n ⊂ X satisfy that ‖vn‖X = 1 for all n ∈ R and that vn ⇀ 0 weakly in X. Then

it holds that
lim inf
n→∞

〈S ′′(ψ)vn, vn〉 > 0.

(C5) 〈f, v〉 = 0 holds for all v ∈ kerS ′′(ψ).
Then there exists C3 > 0 such that

〈S ′′(ψ)v, v〉 ≥ C3‖v‖X
holds for all v ∈ W satisfying 〈f, v〉 = 0, where W is a closed subspace of X satisfying that
W ∩ kerS ′′(ψ) = {0}.

Now we prove Lemma 4.7. Hereafter, we let 〈·, ·〉 denote a dual product between X∗ and X

until the proof is accomplished.

Lemma 4.8. Let S,K ∈ C2(X,R) and assume (C1). Then 〈S ′′(ψ)v, v〉 ≥ 0 holds for all v ∈ X

satisfying 〈K ′(ψ), v〉 = 0.

Proof. Let Ω ⊂ R2 be a suitable neighborhood of (0, 0) ∈ R2 and put

f(s, t) := S(ψ + sv + tv1)

g(s, t) := K(ψ + sv + tv1)

for (s, t) ∈ Ω. We can see that f, g ∈ C2(Ω) and that

g(0, 0) = K(ψ) = 0, ∂tg(0, 0) = 〈K ′(ψ), v1〉 6= 0.
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Then, by applying the implicit function theorem, there exists γ ∈ C2(−δ, δ) which satisfies
γ(0) = 0 and g(s, γ(s)) = 0 for s ∈ (−δ, δ) with some constant δ > 0. Therefore, we can obtain

∂sg(0, 0) + ∂tg(0, 0)γ
′(0) = 0,

which gives

γ′(0) = −∂sg(0, 0)
∂tg(0, 0)

= − 〈K ′(ψ), v〉
〈K ′(ψ), v1〉

= 0.

Here we put h(s) := f(s, γ(s)) = S(ψ + sv + γv1). Since ψ + sv + γ(s)v1 6= 0 and K(ψ + sv +

γ(s)v1) = 0 hold for s ∈ (−δ, δ), we see that h attains its local minimum at s = 0. Therefore,
we have

0 ≤ h′′(0) = ∂2sf(0, 0) + 2∂s∂tf(0, 0)γ
′(0) + ∂2t f(0, 0)γ

′(0)2 + ∂tf(0, 0)γ
′′(0)

= 〈S ′′(ψ)v, v〉+ γ′′(0)〈S ′(ψ), v1〉 = 〈S ′′(ψ)v, v〉.

This completes the proof. �

Lemma 4.9. Let S,K ∈ C2(X,R) and assume (C1) and (C2). Then 〈S ′′(ψ)v, v〉 ≥ 0 holds for
all v ∈ X satisfying 〈f, v〉 = 0

Proof. Let v ∈ X satisfy 〈f, v〉 = 0 and set

κ := − 〈K ′(ψ), v〉
〈K ′(ψ), v2〉

so that 〈K ′(ψ), v + κv2〉 = 0 holds. Then, by Lemma 4.8 and (C2), we have

0 ≤ 〈S ′′(ψ)(v + κv2), v + κv2〉
= 〈S ′′(ψ)v, v〉+ κ〈S ′′(ψ)v2, v〉+ κ〈S ′′(ψ)v, v2〉+ κ2〈S ′′(ψ)v2, v2〉
= 〈S ′′(ψ)v, v〉 − 2κ〈f, v〉 − κ2〈f, v2〉
≤ 〈S ′′(ψ)v, v〉.

This completes the proof. �

Now we proceed the proof of Lemma 4.7

Proof of Lemma 4.7. We prove this lemma with contradiction.
Suppose that the statement is failed. Then there exists a sequence (vn)n ⊂ X which satisfies

that ‖vn‖X = 1, vn ∈ W , and 〈f, vn〉 = 0 for all n ∈ N, and that

lim sup
n→∞

〈S ′′(ψ)vn, vn〉 ≤ 0. (4.27)

Since (vn)n is bounded in X and W is closed, up to a subsequence, we obtain vn ⇀ v0 weakly
in X with some v0 ∈ W , which gives 〈f, v0〉 = 0. By (C3) and (4.27), we have

0 ≤ 〈S ′′(ψ)v0, v0〉 ≤ lim inf
n→∞

〈S ′′(ψ)vn, vn〉 ≤ 0,

that is, 〈S ′′(ψ)v0, v0〉 = 0. Moreover, we can see that v0 6= 0 from (C4). Therefore, by Lemma
4.9, we obtain

〈S ′′(ψ)v0, v0〉 = 0 = min{〈S ′′(ψ)v, v〉 : v ∈ X \ {0}, 〈f, v〉 = 0}.
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Then, there exists a Lagrange multiplier µ ∈ R such that S ′′(ψ)v0 = µf . Using S ′′(ψ)v2 = −f
in (C2), we see that S ′′(ψ)(v0 + µv2) = 0, which implies that there exists w ∈ kerS ′′(ψ) which
satisfies v0 = −µv2 + w. By (C5), we obtain

0 = 〈f, v0〉 = 〈f,−µv2 + w〉 = −µ〈f, v2〉.

Combining this with 〈f, v2〉 > 0, we see that µ = 0, which gives v0 = w. This means that
0 6= v0 ∈ W ∩ kerS ′′(ψ) = {0}, which is impossible.

Hence, the proof is completed. �

Finally, we prove Lemma 4.1 by applying Lemma 4.7.

Proof. First, we show that the functionals S0,r
1 and K0,r

1 satisfy the condition (C1)–(C5) with
X = Hσ/2(R) and f =M ′(ψ1,r) = ψ1,r.

(C1): We can take v1 = ψ1,r. Indeed, since ψ1,r solves (4.5), we immediately see that
〈(S0,r

1 )′(ψ1,r), ψ1,r〉 = K0,r
1 (ψ1,r) = 0. Moreover, considering the graph of the function (0,∞) 3

λ 7→ K0,r
1 (λψ1,r), we see that

〈(K0,r
1 )′(ψ1,r), ψ1,r〉 = ∂λK

0,r
1 (λψ1,r)

∣∣
λ=1

< 0.

(C2): We introduce the following stationary problem:

Dσ
xψ + cψ − ψr = 0, x ∈ R, (4.28)

where c > 0. Here we put

S0,r
c (v) =

1

2
‖v‖2

H
σ/2
c

− 1

r + 1

∫
R
vr+1 dx,

K0,r
c (v) = 〈(S0,r

c )′(v), v〉,

which are the action functional and the Nehari functional corresponding to (4.28), respectively.
Let ψc,r be the positive ground state solution to (4.28). Then, we can see that

ψc,r(x) = c1/(r−1)ψ1,r(c
1/σx). (4.29)

Differentiating this with respect to c, we obtain

∂cψc,r|c=1 =
1

r − 1
ψ1,r +

1

σ
x∂xψ1,r.

Then ∂cψc,r|c=1 ∈ Hσ/2(R) follows from Lemma 4.4. Now we put v2 = ∂cψc,r|c=1 and show that
v2 satisfies the conditions in (C2).

Since (S0,r
c )′(ψ0,r

c ) = 0 for all c > 0, we have

0 = ∂c(S
0,r
c )′(ψc,r) = (S0,r

c )′′(ψc,r)∂cψc,r + ψc,r.

Then we obtain (S0,r
1 )′′(ψ1,r)v2 = −ψ1,r.

Next, using (4.29), we have

M(ψc,r) = c2/(r−1)−1/σM(ψ1,r).

Then we obtain

〈M ′(ψ1,r), v2〉 = ∂cM(ψc,r)|c=1 =

(
2

r − 1
− 1

σ

)
M(ψ1,r).

Therefore, if r < 2σ + 1, then 〈M ′(ψ1,r), v2〉 > 0.
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Additionally, since K0,r
c (ψc,r) = 0 holds for all c > 0, we have

0 = ∂cK
0,r
c (ψc,r)

∣∣
c=1

= 〈(K0,r
1 )′(ψ1,r), v2〉+ ‖ψ1,r‖2L2 ,

which gives that 〈(K0,r
1 )′(ψ1,r), v2〉 6= 0.

Finally, by the definition of the dual product, we see that

〈(S0,r
1 )′′(ψ1,r)v2, v〉 =

∫
R
Dσ/2

x v2D
σ/2
x v dx+

∫
R
v2v dx− r

∫
R
ψr−1
1,r v2v dx

= 〈(S0,r
1 )′′(ψ1,r)v, v2〉

holds for any v ∈ Hσ/2(R).
Therefore, the function v2 satisfies the conditions in (C2).
(C3): Let (vn)n ∈ Hσ/2(R) satisfy vn ⇀ v weakly in Hσ/2(R) with some v ∈ Hσ/2(R). Since

ψ1,r(x) → 0 as |x| → +∞, we can see that∫
R
ψr−1
1,r v

2
n dx→

∫
R
ψr−1
1,r v

2 dx. (4.30)

This convergence and the Fatou lemma yield that

〈(S0,r
1 )′′(ψ1,r)v, v〉 ≤ lim inf

n→∞
〈(S0,r

1 )′′(ψ1,r)vn, vn〉,

which implies the weak lower semicontinuity.
(C4): We can easily see that (C4) holds from (4.30).
(C5): First, it is known that ker(S0,r

1 )′′(ψ1,r) = span{∂xψ1,r} holds. For details, see Frank–
Lenzmann [8].

Since M(ψ1,r(·+ y)) =M(ψ1,r) holds for all y ∈ R, we have

0 = ∂yM(ψ1,r(·+ y))|y=0 = 〈M ′(ψ1,r), ∂xψ1,r〉 = (ψ1,r, ∂xψ1,r)L2 .

Then 〈M ′(ψ1,r), v〉 = 0 holds for all v ∈ ker(S0,r
1 )′′(ψ1,r).

Next we introduce a suitable subspace W of Hσ/2(R). We put

W := {v ∈ Hσ/2(R) : (v, ∂xψ1,r)L2 = 0}

= {v ∈ Hσ/2(R) : (v, w)L2 = 0 for all w ∈ ker(S1,r)
′′(ψ1,r)}.

Then we can see that W is a subspace of Hσ/2(R) and satisfies W ∩ ker(S0,r
1 )′′(ψ1,r) = {0}.

Therefore, by Lemma 4.7, there exists C2 > 0 such that

〈(S0,r
1 )′′(ψ1,r)v, v〉 ≥ C2‖v‖2Hσ/2 (4.31)

holds for all v ∈ W satisfying 〈M ′(ψ1,r), v〉 = 0. Namely, (4.31) holds for all v ∈ Hσ/2(R)
satisfying (v, ψ1,r)L2 = (v, ∂xψ1,r)L2 = 0.

Hence, the proof is accomplished. �

4.2. Proof of Lemma 4.3. In this subsection, we prove the convergence properties of ground
state solutions to (1.4).

First, we consider case (I), where a = +1 and q is odd. Here we define the Nehari functional
K̃c derived from S̃c as

K̃c(v) := 〈S̃ ′
c(v), v〉 = ‖v‖2Hσ/2 −

∫
R
vp+1 dx− cα‖v‖q+1

Lq+1
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for v ∈ Hσ/2(R). Similarly to (2.5), we put

J̃c(v) := S̃c(v)−
1

p+ 1
K̃c(v)

=

(
1

2
− 1

p+ 1

)
‖v‖2Hσ/2 + cα

(
1

p+ 1
− 1

q + 1

)
‖v‖q+1

Lq+1 .

Then we can see that the following characterizations are equivalent:

S̃c(φ̃c) = inf{S̃c(v) : v ∈ Hσ/2(R) \ {0}, K̃c(v) = 0},

= inf{J̃c(v) : v ∈ Hσ/2(R) \ {0}, K̃c(v) = 0},

= inf{J̃c(v) : v ∈ Hσ/2(R) \ {0}, K̃c(v) ≤ 0}, (4.32)

where φc is a positive ground state solution to (1.4) and φ̃c is a function obtained by the scaling
(4.1). Similar characterizations of the ground state solution hold for the stationary problem
(4.5). Namely, we put

J0,r
1 (v) := S0,r

1 (v)− 1

r + 1
K0,r

1 (v) =

(
1

2
− 1

r + 1

)
‖v‖2Hσ/2 .

Then, we can see that

S0,r
1 (ψ1,r) = inf{S0,r

1 (v) : v ∈ Hσ/2(R) \ {0}, K0,r
1 (v) = 0},

= inf{J0,r
1 (v) : v ∈ Hσ/2(R) \ {0}, K0,r

1 (v) = 0},

= inf{J0,r
1 (v) : v ∈ Hσ/2(R) \ {0}, K0,r

1 (v) ≤ 0}, (4.33)

where ψ1,r is the positive ground state solution to (4.5) and r ∈ {p, q}. The first and second
equalities in (4.32) and (4.33) immediately holds. The third equalities in (4.32) and (4.33) can
be shown via a similar discussion in Lemma 2.2.

Lemma 4.10. Assume condition (I) in Theorem 1.1. Then there exist M1 > 0 and c̃1 ∈ (0,∞)

such that ‖φ̃c‖Hσ/2 ≤M1 for all c ∈ (0, c̃1).

Proof. By K0,p
1 (ψ1,p) = 0, we see that

K̃c(ψ1,p) = ‖ψ1,p‖2Hσ/2 −
∫
R
ψp+1
1,p dx− cα‖ψ1,p‖q+1

Lq+1 = −cα‖ψ1,p‖q+1
Lq+1 < 0

holds for all c > 0. Combining this with (4.32), we obtain

J̃c(φ̃c) ≤ J̃c(ψ1,p) =

(
1

2
− 1

p+ 1

)
‖ψ1,p‖2Hσ/2 + cα

(
1

p+ 1
− 1

q + 1

)
‖ψ1,p‖q+1

Lq+1 . (4.34)

Since the right hand side of (4.34) converges to J0,p
1 (ψ1,p) as c → +0, there exist M0 > 0 and

c̃1 ∈ (0,∞) such that J̃c(φ̃c) ≤ M0 holds for all c ∈ (0, c̃1). Finally, by the definition of J̃c, we
find some constant C > 0 independent of c such that

‖φ̃c‖2Hσ/2 ≤ CJ̃c(φ̃c) ≤ CM0.

Then, replacing (CM0)
1/2 with M1 concludes the proof. �

Lemma 4.11. Assume condition (I) in Theorem 1.1. Then, for any µ > 1, there exists
c̃2 ∈ (0, c̃1] such that K0,p

1 (µφ̃c) < 0 holds for all c ∈ (0, c̃2).
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Proof. Let µ > 1 be arbitrary. By K̃c(φ̃c) = 0, the Sobolev embedding, and Lemma 4.10, we
see that

µ−2K0,p
1 (µφ̃c) = ‖φ̃c‖2Hσ/2 − µp−1

∫
R
φ̃p+1
c dx

= −(µp−1 − 1)‖φ̃c‖2Hσ/2 + µp−1cα‖φ̃c‖q+1
Lq+1

≤ −‖φ̃c‖2Hσ/2

{
(µp−1 − 1)− Cµp−1cα‖φ̃c‖q−1

Hσ/2

}
≤ −‖φ̃c‖2Hσ/2

{
(µp−1 − 1)− CM q−1

1 µp−1cα
}

holds for c ∈ (0, c̃1) with some constant C > 0. Then, taking c̃2 ∈ (0, c̃1] so small that
K0,p

1 (µφ̃c) < 0 holds for c ∈ (0, c̃2). �

Lemma 4.12. Assume condition (I) in Theorem 1.1. Then the following hold:
(i) lim

c→+0
J0,p
1 (φ̃c) = J0,p

1 (ψ1,p);

(ii) lim
c→+0

K0,p
1 (φ̃c) = 0.

Proof. (i) First, (4.34) implies lim supc→+0 J̃c(φ̃c) ≤ J0,p
1 (ψ1,p).

Let µ > 1. By (4.33) and Lemma 4.11, we have

J0,p
1 (ψ1,p) ≤ J0,p

1 (µφ̃c) ≤ µ2J̃c(φ̃c)

for c > 0 sufficiently small. By the arbitrary of µ > 1, we obtain

J0,p
1 (ψ1,p) ≤ lim inf

c→+0
J̃c(φ̃c).

Thus, we conclude that limc→+0 J̃c(φ̃c) = J0,p
1 (ψ1,p).

Since we can write

J0,p
1 (v) = J̃c(v)− cα

(
1

p+ 1
− 1

q + 1

)
‖v‖q+1

Lq+1 ,

we obtain
lim
c→+0

J0,p
1 (φ̃c) = lim

c→+0
J̃c(φ̃c) = J0,p

1 (ψ1,p).

(ii) By K̃c(φ̃c) = 0, we have
K0,p

1 (φ̃c) = cα‖φ̃c‖q+1
Lq+1 .

Since the family {φ̃c}c>0 is also bounded in Lq+1(R), we can conclude that limc→+0K
0
1(φ̃c) =

0. �

To prove Lemma 4.3, we recall a compactness lemma obtained by Strauss [19].

Lemma 4.13 (Strauss [19]). Assume that P, Q : R → R are continuous functions satisfying
P (s)

Q(s)
→ 0 as |s| → ∞ and |s| → 0.

Moreover, let (un)n be a sequence of measurable functions defined in R which satisfies

sup
n∈N

∫
R
|Q(un)| dx <∞
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and assume that P (un(x)) → v(x) a.e. in R with some measurable function v : R → R, and
that un(x) → 0 as |x| → ∞ uniformly with respect to n ∈ N. Then it holds that P (un) → v in
L1(R).

Lemma 4.14. Let (un)n ⊂ Hσ/2(R) be a sequence of nonnegative and even function which
decrease in |x|. If (un)n is bounded in Hσ/2(R), then there exists C > 0 which is independent
of n ∈ R and satisfies

sup
n∈N

un(x) ≤ C|x|−1/2

for all x ∈ R.

Proof. Here we put M := supn∈N ‖un‖Hσ/2 . Without loss of generality, we may assume that
x > 0. Then, for all n ∈ N, direct calculation yields that

‖un‖2L2 = 2

∫ ∞

0

un(y)
2 dy ≥ 2

∫ x

0

un(y)
2 dy ≥ 2xun(x)

2.

Therefore, we obtain

un(x) ≤ 2−1/2x−1/2‖un‖L2 ≤ Cx−1/2‖un‖Hσ/2 ≤ CMx−1/2

holds for all n ∈ N. Replacing CM with C concludes the proof. �

Finally, we give the proof of Lemma 4.3.

Proof. First, we remark that the minimizers of (4.33) coincide with the ground state solutions
to (4.5). We can see it with similar way to Section 2.1.

Let (cn)n ⊂ (0,∞) satisfy cn → +0. By Lemma 4.12, we have

J0,p
1 (φ̃cn) → J0,p

1 (ψ1,p), (4.35)

K0,p
1 (φ̃cn) → 0. (4.36)

Since (4.35) implies that (φ̃cn)n is bounded in Hσ/2(R), up to a subsequence, there exists
v0 ∈ Hσ/2(R) such that φ̃cn ⇀ v0 weakly in Hσ/2(R). This yields that

J0,p
1 (v0) ≤ lim inf

n→∞
J0,p
1 (φ̃cn) = J0,p

1 (ψ1,p). (4.37)

By the weak convergence, we can see that φ̃cn(x) → v0(x) a.e. in R. Moreover, we put
P (s) := |s|p+1, Q(s) := s2 + |s|p+2 for s ∈ R. Applying Lemma 4.14 to the sequence (φ̃cn)n,
we can verify that the functions P and Q, and (φ̃cn)n satisfy the assumptions of Lemma 4.13.
Therefore, we see that ‖φ̃cn‖Lp+1 → ‖v0‖Lp+1 . By this and φ̃cn ⇀ v0 weakly in Hσ/2(R), we
obtain

K0,p
1 (v0) ≤ lim inf

n→∞
K0,p

1 (φ̃cn) = 0.

Combining this with (4.33) gives J0,p
1 (ψ1,p) ≤ J0,p

1 (v0). This and (4.37) yield J0,p
1 (ψ1,q) =

J0,p
1 (v0), that is, ‖ψ1,p‖Hσ/2 = ‖v0‖Hσ/2 . Then, by (4.35), we obtain ‖φ̃cn‖Hσ/2 → ‖v0‖Hσ/2 .

Since φ̃cn ⇀ v0 weakly in Hσ/2(R), we conclude that φ̃cn → v0 strongly in Hσ/2(R). Then, by
(4.35) and (4.36), we obtain

K0,p
1 (v0) = lim

n→∞
K0,p

1 (φ̃cn) = 0,

J0,p
1 (v0) = lim

n→∞
J0,p
1 (φ̃cn) = J0,p

1 (ψ1,p) > 0.
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The second equality implies that v0 6= 0 and that S0,p
1 (v0) = S0,p

1 (ψ1,p). Since K0,p
1 (v0) = 0,

we see that v0 is a minimizer of S0,p
1 (ψ1,p), which means that v0 is a ground state solution to

(4.5). Moreover, since φ̃cn is positive and even for each n ∈ N and that φ̃cn(x) → v0(x) a.e. in
R, we see that v0 is nonnegative and even. Then, by Proposition 1.1 of [8], we see that v0 is
strictly positive. Since the positive and even ground state solution to (4.5) is unique, we obtain
v0 = ψ1,p. Thus, we conclude that φ̃cn → ψ1,p strongly in Hσ/2(R). �

Next, we consider case (II-1), where p is odd. The Nehari functional K̆c derived from S̆c is
given as

K̆c(v) := 〈S̆ ′
c(v), v〉 = ‖v‖2Hσ/2 − c−β‖v‖p+1

Lp+1 −
∫
R
vq+1 dx.

Here we define similar functional Ĭc to (2.4) as

Ĭc(v) := S̆c(v)−
1

q + 1
K̆c(v)

=

(
1

2
− 1

q + 1

)
‖v‖2Hσ/2 + c−β

(
1

p+ 1
− 1

q + 1

)
‖v‖p+1

Lp+1 .

Then, similarly to (4.32), we can see that

S̆c(φ̆c) = inf{S̆c(v) : v ∈ Hσ/2(R) \ {0}, K̆c(v) = 0},

= inf{Ĭc(v) : v ∈ Hσ/2(R) \ {0}, K̆c(v) = 0},

= inf{Ĭc(v) : v ∈ Hσ/2(R) \ {0}, K̆c(v) ≤ 0}, (4.38)

where φc is a positive ground state solution to (1.4), and φ̆c is a function obtained by the scaling
(4.3).

To prove Lemma 4.3 in this case, it is sufficient to show the following statement:

Lemma 4.15. Assume condition (II-1) in Theorem 1.1. Let φc be a positive ground state
solution to (1.4) for c > 0, and φ̆c is a function obtained by the scaling (4.3). Moreover, let ψ1,q

be the positive ground state solution to (4.5) with r = q. Then, the following hold:
(i) lim

c→+∞
J0,q
1 (φ̆c) = J0,q

1 (ψ1,q);

(ii) lim
c→+∞

K0,q
1 (φ̆c) = 0.

The method to prove this lemma is almost the same as that of Lemma 4.12, but the way to
obtain the boundedness of the family {φ̆c}c>0 in Hσ/2 is slightly different.

Proof of Lemma 4.15. Let µ > 1 be arbitrary. By K0,q
1 (ψ1,q) = 0, we have

µ−2K̆c(µψ1,q) = ‖ψ1,q‖2Hσ/2 + µp−1c−β‖ψ1,q‖p+1
Lp+1 − µq−1

∫
R
ψq+1
1,q dx

≤ −‖ψ1,q‖2Hσ/2

{
(µq−1 − 1)− Cµq−1c−β‖ψ1,q‖p−1

Hσ/2

}
with some constant C > 0. Then we can see that there exists c̆1 ∈ (0,∞) such that K̆c(µψ1,q) <

0 for c ∈ (c̆1,∞). Therefore, by (4.38), we obtain

Ĭc(φ̆c) ≤ Ĭc(µψ1,q) ≤ µq+1

{(
1

2
− 1

q + 1

)
‖ψ1,q‖2Hσ/2 + c−β

(
1

p+ 1
− 1

q + 1

)
‖ψ1,q‖p+1

Hσ/2

}
.

(4.39)
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The right hand side of (4.39) converges to µq+1J0,q
1 (ψ1,q) as c → +∞. Then the arbitrarity of

µ > 1 gives
lim sup
c→+∞

Ĭc(φ̆c) ≤ J0,q
1 (ψ1,q). (4.40)

Moreover, by (4.39), we can see that

‖φ̆c‖2Hσ/2 ≤ Cµq+1
(
‖ψ1,q‖2Hσ/2 + c−β‖ψ1,q‖p+1

Hσ/2

)
holds for c > c̆1.

Next, since K̆c(φ̆c) = 0, we have

µ−2K0,q
1 (φ̆c) = ‖φ̆c‖2Hσ/2 − µq−1

∫
R
φ̆q+1
c dx

= −(µq−1 − 1)‖φ̆c‖2Hσ/2 + µq−1c−β‖φ̆c‖p+1
Lp+1

≤ −‖φ̆c‖2Hσ/2

{
(µq−1 − 1)− Cµq−1c−β‖φ̆c‖p−1

Hσ/2

}
≤ −‖φ̆c‖2Hσ/2

{
(µq−1 − 1)− Cµ(q−1)(q+1)θ

(
c−β‖ψ1,q‖p−1

Hσ/2 + c−β(θ+1)‖ψ1,q‖(p+1)θ

Hσ/2

)}
,

where θ = (p − 1)/2. Then there exists c̆2 ∈ [c̆1,∞) such that K0,q
1 (µφ̆c) < 0 holds for c > c̆2.

Therefore, by (4.33), we obtain

J0,q
1 (ψ1,q) ≤ J0,q

1 (µφ̆c) ≤ µ2Ĭc(φ̆)

for c > c̆2. Finally, since µ > 1 is arbitrary, we see that

J0,q
1 (ψ1,q) ≤ lim inf

c→+∞
Ĭc(φ̆c).

Combining this with (4.40), we conclude that limc→+∞ Ĭc(φ̆c) = J0,q
1 (ψ1,q).

The rest of the proof is almost the same as in Lemma 4.12. �

Using Lemma 4.15, we can prove Lemma 4.3 similarly to case (I).
Now we consider case (II-2), where a = −1, p is even, and q is odd. We claim the following

statement.

Lemma 4.16. Assume condition (II-2) in Theorem 1.1. Let φc be a negative ground state
solution to (1.4) for c > 0, and φ̆c is a function obtained by the scaling (4.3). Moreover, let ψ1,q

be the positive ground state solution to (4.5) with r = q, and χ1,q = −ψ1,q. Then the following
hold:

(i) lim
c→∞

J0,q
1 (φ̆c) = J0,q

1 (χ1,q);

(ii) lim
c→∞

K0,q
1 (φ̆c) = 0.

Proof. Now we put

I(v) :=

(
1

2
− 1

p+ 1

)
‖v‖2Hσ/2 +

(
1

p+ 1
− 1

q + 1

)
‖v‖q+1

Lq+1 ,

for v ∈ Hσ/2(R). We can see that

I(v) = S̆c(v)−
1

p+ 1
K̆c(v) = S0,q

1 (v)− 1

p+ 1
K0,q

1 (v).
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Then, we can see the following characterizations:

S̆c(φ̆c) = inf{S̆c(v) : v ∈ Hσ/2(R) \ {0}, K̆c(v) = 0}

= inf{I(v) : v ∈ Hσ/2(R) \ {0}, K̆c(v) = 0}

= inf{I(v) : v ∈ Hσ/2(R) \ {0}, K̆c(v) ≤ 0}, (4.41)

S0,q
1 (χ1,q) = S0,q

1 (ψ1,q) = inf{S0,q
1 (v) : v ∈ Hσ/2(R) \ {0}, K0,q

1 (v) = 0}

= inf{J0,q
1 (v) : v ∈ Hσ/2(R) \ {0}, K0,q

1 (v) = 0}

= inf{J0,q
1 (v) : v ∈ Hσ/2(R) \ {0}, K0,q

1 (v) ≤ 0}

= inf{I(v) : v ∈ Hσ/2(R) \ {0}, K0,q
1 (v) = 0}

= inf{I(v) : v ∈ Hσ/2(R) \ {0}, K0,q
1 (v) ≤ 0}. (4.42)

Since K0,q
1 (χ1,q) = 0, we have

K̆c(χ1,q) = c−β

∫
R
χp+1
1,q dx = −c−β

∫
R
ψp+1
1,q dx < 0

for c > 0. Combining this with (4.41) and (4.42), we obtain

J0,q
1 (φ̆c) ≤ I(φ̆c) ≤ I(ψ1,q) = J0,q

1 (ψ1,q),

which implies that lim supc→+∞ J0,q
1 (φ̆c) ≤ J0,q

1 (ψ1,q) and that the family {φ̆c}c>0 is bounded in
Hσ/2(R).

The rest of the proof is almost the same as in Lemmas 4.11 and 4.12. �

By Lemma 4.16, we can prove Lemma 4.3 for case (II-2) in a similar way to case (I).
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