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Abstract. The Upsilon torsion function is a knot invariant in-
troduced by Allen and Livingston as a unification of torsion orders
in certain versions of knot Floer homology. Although it can be
calculated from the full knot Floer complex, the calculation is of-
ten complicated. In this paper, we give the first infinite family of
hyperbolic L–space knots which shares a common Upsilon torsion
function. As a byproduct, we can prove that arbitrarily large val-
ues of two torsion orders can be realized by hyperbolic L–space
knots, most of which are twisted torus knots.

1. Introduction

In [1], Allen and Livingston defined the Upsilon torsion function

Υ
Tor(t)
K for a knot K, which is a piecewise linear continuous function

defined on the interval [0, 2]. In contrast to the classical Upsilon func-
tion, which generalizes Ozsváth and Szabó’s τ–invariant [16], the Up-

silon torsion function Υ
Tor(t)
K can be viewed as a generalization of two

types of knot Floer torsion orders, namely Ord(K) and Ord′(K), as
will be explained later. We remark that the Upsilon torsion function
and two torsion orders are not concordance invariants.

The function Υ
Tor(t)
K can be calculated from the full knot Floer com-

plex CFK∞(K). However, such calculations tend to be complicated,
even in the case of torus knots, and no prior studies have explored the
Upsilon torsion function for a family of knots.

The main purpose of this paper is to calculate the Upsilon torsion
function for a family of twisted torus knots of the form T (p, pk+1; 2, 1)
with p ≥ 2 and k ≥ 1 (see Section 2 for twisted torus knots), and to
establish the following theorem.

Theorem 1.1. There exist infinitely many hyperbolic L–space knots
that share the same Upsilon torsion function.
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As mentioned above, there are two types of torsion orders in knot
Floer homology. The first one is introduced by Juhász, Miller and
Zemke [5]. Recall that the minus version of knot Floer homology
HKF−(K) is a finitely generated module over the polynomial ring
F2[U ]. Let us denote Tor(HFK−(K)) its F2[U ]-torsion submodule.
Then the torsion order of a knot K is defined as

Ord(K) = min{k ≥ 0 | Uk · Tor(HFK−(K)) = 0} ∈ N ∪ {0}.
Of course, for the unknot O, Ord(O) = 0. Since knot Floer homology
detects the unknot [19], Ord(K) ≥ 1 when K is non-trivial.

The second is defined similarly in [3] by using the torsion submod-
ule of Ozsváth, Stipsicz and Szabó’s unoriented knot Floer homol-
ogy HFK′(K), which is also a module over F2[U ] ([17]), instead of
HFK−(K). Hence

Ord′(K) = min{k ≥ 0 | Uk · Tor(HFK′(K)) = 0} ∈ N ∪ {0}.
Again, Ord′(K) = 0 if and only if K is trivial. (For, HFK′(O) = F2[U ],
which is torsion-free [17, Corollary 2.15]. Conversely, if HFK′(K) is
torsion-free, then HFK′(K) = F2[U ] = HFK′(O) [17, Proposition 3.5].
So, the unoriented knot Floer complexes CFK′(K) and CFK′(O) share
the same homology, which implies chain homotopy equivalence between
them [18, Proposition A.8.1]. Since setting U = 0 reduces the complex
into the hat version of knot Floer complex [17, Proposition 2.4], we

have ĤFK(K) ∼= ĤFK(O) by [18, Proposition A.3.5]. This implies
K = O.)

As shown in [1], two types of torsion order can be unified in terms
of the Upsilon torsion function ΥTor

K (t). Specifically, the derivative of
ΥTor

K (t) near 0 equals to Ord(K), and ΥTor
K (1) = Ord′(K).

As a byproduct, we obtain the following corollary.

Corollary 1.2. Let N ≥ 1 be a positive integer. Then there exist
infinitely many hyperbolic knots K1 and K2 with Ord(K1) = N and
Ord′(K2) = N . Furthermore, K1 and K2 are taken so that they are
L–space knots, except Ord(K1) = 1 case.

Remark 1.3. We initially prepared the manuscript under the title “Hy-
perbolic knots with arbitrarily large torsion order in knot Floer homol-
ogy”. However, based on referee’s comment pointing out that hyperbolic
knots with arbitrarily large torsion order can be constructed easily by
the following argument, we have revised the title accordingly.
Let T (p, q) be the (p, q)-torus knot. It is known that Ord(T (p, q)) =

p−1 for 1 < p < q ([5, Corollary 5.3]), and that Ord′(T (p, p+1)) = ⌊p
2
⌋

([3, Lemma 7.1]). On the other hand, every knot can be converted to
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infinitely many hyperbolic knots by a single crossing change [13]. Since
a single crossing change induces a genus one cobordism with two saddle
points, the torsion orders can vary by at most two under such a change
(see [3, Corollary 1.6] and [5, Corollary 1.5]). Therefore, by performing
a single crossing change on a torus knot with sufficiently large torsion
order, one obtains infinitely many hyperbolic knots with arbitrarily large
torsion order.

However, this method does not guarantee the existence of a hyper-
bolic knot realizing any given positive integer torsion order, due to the
indeterminacy caused by the fact that the torsion orders can change by
at most two. Corollary 1.2 addresses this issue: it ensures the exis-
tence of hyperbolic knots realizing every positive integer torsion order.
Moreover, these knots can be L–space knots.

We pose a simple question.

Question 1.4. Let M and N be positive integers. Does there exist a
knot K with (Ord(K),Ord′(K)) = (M,N)?

Remark 1.5. For two types of torsion order, the original symbols are
Ordv(K) and OrdU(K) (see [5, 3]).

2. Twisted torus knots

A twisted torus knot is obtained from a torus knot of type (p, q)
by twisting r adjacent strands by s full twists. The resulting knot is
denoted by T (p, q; r, s) as in literatures [8, 9, 10, 11].

Throughout this section, let K be the twisted torus knot T (p, kp +
1; 2, 1) with p ≥ 2, k ≥ 1. Clearly, if p = 2, then T (2, 2k + 1; 2, 1) =
T (2, 2k+3). Also, Lee [10, 11] shows that T (3, 3k+1; 2, 1) = T (3, 3k+
2), and T (4, 4k+1; 2, 1) is the (2, 8k+3)-cable of T (2, 2k+1). We will
show later that T (p, kp+1; 2, 1) is hyperbolic if p ≥ 5 (Proposition 2.7).
Since these knots are the closure of a positive braid, it is fibered by [21].
In particular, the Seifert algorithm on a positive braided diagram gives
a fiber, which is a minimal genus Seifert surface. Thus we know that
it has genus (kp2 − kp+ 2)/2. Hence K is non-trivial.

Lemma 2.1. K is an L–space knot.

Proof. This follows from [22]. □
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Lemma 2.2. The Alexander polynomial ∆K(t) of K is given by

∆K(t) =



1 +
k∑

i=1

(−t+ tp)t(i−1)p

+

p−3∑
i=1

k∑
j=1

(−tikp+1 + tikp+2 − tikp+2+i + t(ik+1)p)t(j−1)p

+
k+1∑
i=1

(−tkp(p−2)+1 + tkp(p−2)+2)t(i−1)p,

if p ≥ 3,

1− t+ t2 − · · ·+ t2k+2, if p = 2.

Proof. When p = 2, it is well known that

∆K(t) =
(1− t)(1− t2(2k+3))

(1− t2)(1− t2k+3)
= 1− t+ t2 − · · ·+ t2k+2,

since K = T (2, 2k + 3) as mentioned before.
Assume p ≥ 3. The conclusion essentially follows from [15]. In his

notation, our knot K is ∆(p, kp+ 1, 2) with r = p− 1. Hence

∆K(t) =
1− t

(1− tp)(1− tkp+1)
·

(1− (1− t)(t(p−1)(kp+1)+1 + tkp+1)− tp(kp+1)+2).

The second factor is changed as

1− (1− t)(t(p−1)(kp+1)+1 + tkp+1)− tp(kp+1)+2 = 1− t(p−1)(kp+1)+1 − tkp+1

+ t(p−1)(kp+1)+2 + tkp+2 − tp(kp+1)+2 = (1− tkp+1)+

+ tkp+2(1− t(kp+1)(p−2)) + t(p−1)(kp+1)+2(1− tkp+1).

Thus

∆K(t) =
1− t

1− tp
· (1 + tkp+2

p−3∑
i=0

ti(kp+1) + t(p−1)(kp+1)+2).

We set

A =
k∑

i=1

(−t+ tp)t(i−1)p,

B =

p−3∑
i=1

k∑
j=1

(−tikp+1 + tikp+2 − tikp+2+i + t(ik+1)p)t(j−1)p,

C =
k+1∑
i=1

(−tkp(p−2)+1 + tkp(p−2)+2)t(i−1)p.
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Then it is straightforward to calculate

(1− tp)A = −t+ tp + tkp+1 − t(k+1)p,

(1− tp)B = −tkp+1 + t(k+1)p + (1− t)

p−3∑
i=0

t(i+1)kp+i+2 + tkp(p−2)+1 − tkp(p−2)+2,

(1− tp)C = −tkp(p−2)+1 + tkp(p−2)+2 + tkp(p−2)+1+(k+1)p − tkp(p−2)+2+(k+1)p.

Hence

(1− tp)(1 + A+B + C) = 1− t+ (1− t)

p−3∑
i=0

t(i+1)kp+i+2

+ (1− t)tkp(p−2)+1+(k+1)p

= (1− t)(1 + tkp+2

p−3∑
i=0

ti(kp+1) + t(p−1)(kp+1)+2).

This shows that ∆K(t) = 1 + A+B + C as desired. □
For a polynomial, the term“gaps of exponents”refers to the sequence

of differences between the exponents of consecutive non-zero terms.

Corollary 2.3. The gaps of the exponents of the Alexander polynomial
of K are

(1, p−1)k, (1, 1, 1, p−3)k, (1, 1, 2, p−4)k, . . . , (1, 1, p−3, 1)k, 1, 1, (p−1, 1)k

if p ≥ 3, and 12k+2 if p = 2. Here, the power indicates the repetition.
(We remark that the above sequence is (1, 2)k, 1, 1, (2, 1)k when p = 3.)

To prove that our twisted torus knot K = T (p, kp+1; 2, 1) is hyper-
bolic when p ≥ 5, we give a more general result by using [4]. A knot k
is called a fully positive braid knot if it is the closure of a positive braid
which contains at least one full twist.

Proposition 2.4. Let k be a fully positive braid knot. If k is a tunnel
number one, satellite knot, then k is a cable knot.

Proof. By [14], k has a torus knot T (r, s) as a companion. We may
assume that 1 < r < s. Then Theorem 1.2 of [4] claims that the
pattern P is represented by a positive braid in a solid torus.

Let us recall the construction of [14]. Starting from a 2-bridge link
K1 ∪K2, consider the solid torus E(K2) containing K1. Remark that
K1 and K2 are unknotted. For the companion knot T (r, s), consider
a homeomorphism from E(K2) to the tubular neighborhood of T (r, s),
which sends the preferred longitude of E(K2) to the regular fiber of the
Seifert fibration in the exterior of T (r, s). Hence our pattern knot P ,
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which is defined under preserving preferred longitudes, is obtained from
K1 by adding rs positive full twists to E(K2). Since K1 is unknotted,
we can set the pattern P as the closure of a positive braid

σi(1)σi(2) . . . σi(n−1)(σ1σ2 . . . σn−1)
nrs

for some n ≥ 2, where {i(1), i(2), . . . , i(n− 1)} = {1, 2, . . . , n− 1}. (If
the initial part before rs full twists contains more than n−1 generators,
then the Seifert algorithm gives a fiber surface of the closure K1, which
has positive genus.)

For two braids β1 and β2, we write β1 ∼ β2 if they are conjugate or
equivalent.

Claim 2.5. σi(1)σi(2) . . . σi(n−1)(σ1σ2 . . . σn−1)
nrs ∼ (σ1σ2 . . . σn−1)

nrs+1.

Proof of Claim 2.5. Put F = (σ1σ2 . . . σn−1)
nrs, which is central in

the braid group. First, write σi(1)σi(2) . . . σi(n−1)F = U1σ1U2F , where
Ui is a word without σ1, which is possibly empty. Then U1σ1U2F ∼
σ1U2FU1 ∼ σ1U2U1F . Next, set U2U1 = V1σ2V2, where Vi is a (possibly,
empty) word without σ1, σ2. Note that σ1 and V1 commute. Then

σ1U2U1F = σ1V1σ2V2F ∼ V1σ1σ2V2F ∼ σ1σ2V2FV1 ∼ σ1σ2V2V1F.

Repeating this procedure, we have the conclusion. □

Thus the pattern P is the closure of a braid (σ1σ2 . . . σn−1)
nrs+1. This

means that k is a cable knot. □

Remark 2.6. Lee [11, Question 1.2] asks whether T (p, q; r, s) is a cable
knot, if it is a satellite knot under a condition that 1 < p < q, r ̸= q, r
is not a multiple of p, 1 < r ≤ p+ q and s > 0. Proposition 2.4 gives a
positive answer if the knot has tunnel number one, which is known to
be true when r ∈ {2, 3} (see [7]).

Proposition 2.7. If p ≥ 5, then K is hyperbolic.

Proof. First, K = T (p, kp+1; 2, 1) is a torus knot if and only if p = 2, 3
by [10, Theorem 1.1]. Hence we know that our knot is not a torus knot.

Assume that K is a satellite knot for a contradiction. We remark
thatK has tunnel number one. (A short arc at the extra full twist gives
an unknotting tunnel.) Proposition 2.4 shows that K is the (n, nrs+1)-
cable of T (r, s). Then K = T (4, 4m + 1; 2, 1) for some m ≥ 1 by [11].
This is a contradiction, because of Lemma 2.2 and p ≥ 5. Thus we
have shown that K is neither a torus knot nor a satellite knot, so K is
hyperbolic. □
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3. Upsilon torsion function

In this section, we determine the Upsilon torsion function ΥTor(K)
of K = T (p, kp + 1; 2, 1). Since K is an L–space knot (Lemma 2.1),
the full knot Floer complex CFK∞(K) is determined by the Alexander
polynomial ([20]). It has the form of staircase diagram described by
the gaps of Alexander polynomial. If the gaps are given as a sequence
a1, a2, . . . , an, then the terms give the length of horizontal and vertical
steps. More precisely, let g be the genus of K. Start at the vertex
(0, g) on the coordinate plane. Go right a1 steps, and down a2 steps,
and so on. Finally, we reach (g, 0). By the symmetry of the Alexander
polynomial, the staircase inherits the symmetry along the line y = x.

We follow the process in [1, Appendix]. However, we assign a modi-
fied filtration level FL to each generator of the complex. If a generator
x has the coordinate (a, b), then FL(x) = tb+(2− t)a. In fact, for any
t ∈ [0, 2], FL defines a real-valued function on CFK∞(K). Then, for all
s ∈ R, Fs is spanned by all vectors x ∈ CFK∞(K) such that FL(x) ≤ s.
The collection {Fs} gives a filtration on CFK∞(K). See [12]. (Remark
that this filtration level is just the twice of that used in [1].) Since
Fs ⊂ Fu if s ≤ u, a generator xi ∈ Fu can be added by xj ∈ Fs,
without any change of the filtration level. That, FL(xi) = FL(xi+xj).

For the staircase complex, repeating a change of basis gradually
splits the complex into a single isolated generator and separated ar-
rows. Then the value of the Upsilon torsion function is given as the
maximum difference between filtration levels among the arrows.

Since the Upsilon torsion function, defined on [0, 2], is symmetric
along t = 1, it suffices to consider the domain [0, 1].
As the simplest case, we demonstrate the process when p = 2.

Example 3.1. Let p = 2. Then K = T (2, 2k+3) as mentioned before,
and we show that its Upsilon torsion function ΥTor

K (t) = t (0 ≤ t ≤ 1),
independent of k.

By Corollary 2.3, the gaps of the exponents of the Alexander polyno-
mial is 1, 1, . . . , 1 (repeated 2k+2 times). Hence the staircase diagram
has the form as shown in Figure 1, where Ai has Maslov grading 0, but
Bi has grading 1, and each arrow has length one.

Each generator is assigned the filtration level FL. The difference
between filtration levels among the generators is important. We have
FL(Bi+1) − FL(Ai) = 2 − t and FL(Bi) − FL(Ai) = t, because each
arrow has length one. Thus we have

FL(A0) ≤ FL(A1) ≤ · · · ≤ FL(Ak+1),
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Figure 1. Left: The staircase diagram when p = 2.
The generator Ai has grading 0, but Bi has grading 1.
Each arrow has length one. Right: By adding A0 to
A1, . . . , Ak+1, the generator A0 is isolated from the com-
plex.

where each equality occurs only when t = 1. Hence A0 has the low-
est filtration level among the generators with grading 0. Add A0 to
A1, . . . , Ak+1. Then the generator A0 is isolated from the complex as
shown in Figure 1. (Recall that we use F2 coefficients.) In the remain-
ing part of the complex, A1 + A0 is the lowest, since FL(Ai + A0) =
FL(Ai) for i = 1, 2, . . . , k + 1. To simplify the notation, we keep the
same symbol Ai, instead of Ai + A0, after this, if no confusion can
arise.

Add A1 to the other generators with grading 0, except A0. Then the
arrow B1 → A1 is split off from the complex. Repeating this process
leads to the decomposition of the original staircase into one isolated
generator A0 and k + 1 vertical arrows. For each arrow, the difference
of filtration levels is equal to t, so the maximum difference is t among
the arrows. This shows ΥTor

K (t) = t.

Theorem 3.2. Let K = T (p, pk + 1; 2, 1) with p ≥ 4 and k ≥ 1. The
Upsilon torsion function ΥTor

K (t) is given as

ΥTor
K (t) =



(p− 1)t (0 ≤ t ≤ 2
p
)

2− t (2
p
≤ t ≤ 2

p−2
)

(p− 3)t ( 2
p−2
≤ t ≤ 4

p
)

2m+ (−m− 1)t (2m
p
≤ t ≤ 2m

p−1
, m = 2, . . . , ⌊p−1

2
⌋)

(p− 2−m)t ( 2m
p−1
≤ t ≤ 2(m+1)

p
, m = 2, . . . , ⌊p

2
⌋ − 1).
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In particular, ΥTor
K (1) = ⌊p−2

2
⌋.

Proof. Recall that the gaps are

(1, p−1)k, (1, 1, 1, p−3)k, (1, 1, 2, p−4)k, . . . , (1, 1, p−3, 1)k, 1, 1, (p−1, 1)k

by Corollary 2.3. We name the generators of the staircase as in Figures
2, 3 and 4.

Figure 2. The first part corresponds to (1, p−1)k. The
generators Ai have Maslov grading 0, but Bi have 1. The
number p − 1 next to each vertical arrow indicates the
length. Each horizontal arrow has length one. Here,
C1

0 = Ak.

In particular, we have the difference between filtration levels of cer-
tain generators with Maslov grading 0 as in Table 1. The argument is
divided into 4 cases.

Case 1. 0 ≤ t ≤ 2
p
. Then any difference in Table 1 is at least

0. Hence A0 has the lowest filtration level among the generators with
grading 0, whose filtration levels increase when we go to the right.

Exactly as in Example 3.1, the staircase complex is decomposed into
a single isolated generator A0 and separated vertical arrows Bi → Ai,
Dj

i → Ej
i , F

j
i → Cj

i , H → A′
0 and B′

i → A′
i where i = 1, 2, . . . , k, j =

1, . . . , p − 3. Hence the maximum difference of filtration levels on the
arrows is (p− 1)t. This gives ΥTor

K (t) = (p− 1)t for 0 ≤ t ≤ 2/p.

Case 2. 2
p
≤ t ≤ 4

p
. Then FL(A0) ≥ FL(A1) ≥ · · · ≥ FL(Ak). After

Ak, the filtration levels increase among the generators with grading 0,
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Figure 3. Left: The second part corresponds to
(1, 1, j, p − 2 − j)k (j = 1, . . . , p − 3). The generators
Cj

∗ and Ej
∗ have Maslov grading 0, but the others have 1.

Right: This is a connecting part between (1, 1, j, p−2−j)
and (1, 1, j + 1, p− 2− (j + 1)).

Figure 4. The last part corresponds to 1, 1, (p− 1, 1)k.
The generators G and A′

∗ have Maslov grading 0, but the
others have 1.

so Ak is the lowest. Add Ak to the other generators with grading 0.
Then Ak will be isolated, and the complex splits into two parts. We
say that the first part, which starts at A0 and ends at Bk, is N-shaped,
but the second, which starts at D1

1 and ends at A′
k, is mirror N-shaped.

In general, if a “zigzag” complex starts and ends at horizontal arrows,
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Difference Indices

FL(Ai)− FL(Ai−1) = 2− pt i = 0, . . . , k

FL(Ej
i )− FL(Cj

i−1) = 2− 2t ≥ 0 i = 1, . . . , k; j = 1, . . . , p− 3

FL(Cj
i )− FL(Ej

i ) = (2− p)t+ 2j i = 1, . . . , k; j = 1, . . . , p− 3

FL(Cj
i )− FL(Cj

i−1) = −pt+ 2(j + 1) i = 1, . . . , k; j = 1, . . . , p− 3

FL(Cj
0)− FL(Cj−1

0 ) = (−pt+ 2j)k j = 2, . . . , p− 3

FL(A′
0)− FL(G) = 2− 2t ≥ 0

FL(A′
i)− FL(A′

i−1) = −pt+ 2p− 2 > 0 i = 1, . . . , k

Table 1. Difference between filtration levels of the gen-
erators with Maslov grading 0.

then it is N-shaped. If it starts and ends at vertical arrows, then it is
mirror N-shaped.

For the first part, add Ak−1 to the others with grading 0, which
splits the arrow Ak−1 ← Bk off. Repeat this as in Case 1. Then
the N-shaped complex is decomposed into separated horizontal arrows
Ai−1 ← Bi (i = 1, 2, . . . , k), each of which has difference 2−t. The mir-
ror N-shaped complex is also decomposed into vertical arrows similarly.
Thus the maximum difference among them is (p− 3)t.

Compare 2 − t and (p − 3)t. If 2
p
≤ t ≤ 2

p−2
, then 2 − t ≥ (p − 3)t.

If 2
p−2
≤ t ≤ 4

p
, then 2 − t ≤ (p − 3)t. Hence ΥTor

K (t) = 2 − t for
2
p
≤ t ≤ 2

p−2
, and (p− 3)t for 2

p−2
≤ t ≤ 4

p
.

Case 3. 2m
p
≤ t ≤ 2m

p−1
(m = 2, . . . , ⌊(p− 1)/2⌋).

From Table 1, we see that Cm−1
k = Cm

0 is the lowest among the
generators with grading 0. Adding this to the others with grading 0
decomposes the complex into one isolated generator Cm

0 , the N-shaped
one between A0 and Fm−1

k and the mirror N-shaped one between Dm
1

and A′
k.

As before, the mirror N-shaped complex can be decomposed into
vertical arrows. The longest arrows has length (p− 2−m)t.

The N-shaped complex is described in Figure 5. We have

FL(A0) ≥ FL(A1) ≥ · · · ≥ FL(Ak = C1
0) ≥ FL(C1

1) ≥ · · · ≥ FL(C1
k = C2

0)

≥ FL(C2
1) ≥ · · · ≥ FL(Cm−1

k−1 )

and FL(Ej
i ) ≥ FL(Cj

i−1) (i = 1, 2, . . . , k; j = 1, 2 . . . ,m− 1).

Hence Cm−1
k−1 is the lowest. Adding this to the others with grading

0 on the left splits an N-shaped complex Cm−1
k−1 ← Dm−1

k → Em−1
k ←
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Figure 5. The N-shaped complex between A0 and
Fm−1
k after isolating the lowest vertex Cm

0 , where k = 2.
The height indicates the filtration level of each genera-
tor. As before, we keep the same notation for generators
after a change of basis.

Fm−1
k off. For the remaining part, the lowest is Cm−1

k−2 . Again, adding
this to the others with grading 0 on the left splits an N-shaped complex
Cm−1

k−2 ← Dm−1
k−1 → Em−1

k−1 ← Fm−1
k−1 off. Repeat this, then we obtain

an N-shaped complex between A0 and Bk, and N-shaped complexes
Cj

i−1 ← Dj
i → Ej

i ← F j
i (i = 1, . . . , k; j = 1, . . . ,m− 1).

For the former, the process as in Case 2 yields separated southwest
arrows (originally horizontal), each of which has difference 2 − t. Let
us consider the latter N-shaped ones. Since FL(F j

i )− FL(Dj
i ) = −t+

(2 − t)j ≥ 0, add Dj
i to F j

i . After that, add Cj
i−1 to Ej

i . As shown in
Figure 6, this change of basis decomposes the complex into a pair of
arrows. One has difference 2− t, and the other has difference FL(F j

i )−
FL(Cj

i−1) = 2(j + 1) + (−j − 2)t. Note 2 − t ≤ 2(j + 1) + (−j − 2)t.
Furthermore, for 1 ≤ j ≤ m−1, j = m−1 attains the maximum value,
2m+ (−m− 1)t.

Hence we need to compare the values (p−2−m)t and 2m+(−m−1)t.
Since 2m+(−m−1)t ≥ (p−2−m)t, we have ΥTor

K (t) = 2m+(−m−1)t
for this case.

Case 4. 2m
p−1
≤ t ≤ 2(m+1)

p
(m = 2, . . . , ⌊p/2⌋ − 1).
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Figure 6. A change of basis for an N-shaped complex.
Add Dj

i to F j
i , and Cj

i−1 to Ej
i .

As in Case 3, Cm−1
k = Cm

0 is the lowest. So, adding this to the others
with grading 0 decomposes the complex into one isolated generator Cm

0 ,
the N-shaped one and the mirror N-shaped one, again.

For the N-shaped complex, the situation is the same as in Case 3.
Thus we have an arrow with maximum difference 2m+(−m−1)t from
this N-shaped complex.

However, we need to handle the mirror N-shaped complex differently
now.

First, consider the case where 2m
p−1
≤ t ≤ 2m

p−2
. Then the filtration

levels of the generators with grading 0 increase as going to the right.
So, as in Case 3, this part can be decomposed into vertical arrows, and
the longest has length (p− 2−m)t.

Second, consider the case where 2m
p−2
≤ t ≤ 2(m+1)

p
. Then FL(Em

i ) ≥
FL(Cm

i ) ≥ FL(Cm
i−1) (i = 1, 2, . . . , k), but the filtration levels of the re-

maining generators with grading 0, Cm+1
0 , Em+1

1 , Cm+1
1 , . . . , G,A′

0, . . . A
′
k,

increase as going to the right. See Figure 7.
Here, Cm

1 is the lowest. Adding this to the others with grading 0 on
the right splits a mirror N-shaped complex Dm

1 → Em
1 ← Fm

1 → Cm
1

off. Then Cm
2 is the lowest in the remaining part. Repeating this yields

mirror N-shaped complexes Dm
i → Em

i ← Fm
i → Cm

i (i = 1, 2, . . . , k),
and one more mirror N-shaped one between Dm+1

1 and A′
k. For the last

one, the previous process gives southeast arrows (originally vertical).
For each mirror N-complex Dm

i → Em
i ← Fm

i → Cm
i , we remark

FL(Fm
i ) − FL(Dm

i ) = (−m − 1)t + 2m ≥ 0. Hence adding Dm
i to Fm

i

yields a pair of southeast arrows as shown in Figure 8. Thus, only the
arrows that are originally vertical remain, and the longest among them
has length (p− 2−m)t.

Finally, compare 2m + (−m − 1)t and (p − 2 − m)t. Since 2m
p−2
≤

t ≤ 2(m+1)
p

, the latter is bigger. Then ΥTor
K (t) = (p − 2 −m)t for this

case. □
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Figure 7. The mirror N-shaped complex when 2m
p−2
≤

t ≤ 2(m+1)
p

, where k = 2. The generator Cm
1 is the lowest.

Figure 8. A change of basis for a mirror N-shaped com-
plex. AddingDm

i to Fm
i yields a pair of southeast arrows.

Example 3.3. When p = 6,

ΥTor
K (t) =



5t (0 ≤ t ≤ 1
3
)

2− t (1
3
≤ t ≤ 1

2
)

3t (1
2
≤ t ≤ 2

3
)

4− 3t (2
3
≤ t ≤ 4

5
)

2t (4
5
≤ t ≤ 1).

See Figure 9.

Example 3.4. When p = 3, K = T (3, 3k + 1; 2, 1) = T (3, 3k + 2)
as stated before. By Corollary 2.3, the gaps of the exponents of the
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Figure 9. The Upsilon torsion function ΥTor
K (t) of K =

T (6, 6k + 1; 2; 1). Then ΥTor
K (1) = 2.

Alexander polynomial is (1, 2)k, 1, 1, (2, 1)k. Then we have

ΥTor
K (t) =

{
2t (0 ≤ t ≤ 2

3
)

2− t (2
3
≤ t ≤ 1).

We omit the detail.

Proof of Theorem 1.1. Let K = T (p, kp+ 1; 2, 1) with p ≥ 5. Then
K is a hyperbolic L–space knot by Lemma 2.1 and Proposition 2.7.
After fixing p, Theorem 3.2 shows that the Upsilon torsion function
does not depend on k. □

Finally, We prove Corollary 1.2.

Proof of Corollary 1.2. By [1], we have d
dt
ΥTor

K (0) = Ord(K) and
ΥTor

K (1) = Ord′(K). Thus, Theorem 3.2 immediately gives Ord(K) =
p− 1 and Ord′(K) = ⌊(p− 2)/2⌋ when p ≥ 4.

By Lemma 2.1 and Proposition 2.7, the twisted torus knot K =
T (p, kp + 1; 2, 1) is a hyperbolic L–space knot if p ≥ 5. Since K has
genus (kp2−kp+2)/2, distinct choices of k, with a fixed p, give distinct
knots.

Set K2 = K with p = 2N + 3 ≥ 5. Then K2 is hyperbolic and
Ord′(K2) = ⌊(p− 2)/2⌋ = N .

If N ≥ 4, then set K1 = K with p = N + 1. Then K1 is hyperbolic
and Ord(K1) = p− 1 = N .

To complete the proof, we need to give infinitely many hyperbolic
knots K1 whose Ord(K1) takes each of the values 1, 2, 3. Note that
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for an L–space knot K, Ord(K) is equal to the longest gap in the
exponents of its Alexander polynomial [5, Lemma 5.1].

(1) By [5, Corollary 1.8], Ord(L) ≤ br(L)−1 for any knot L, where
br(L) is the bridge number of L. Hence if K1 is a hyperbolic
2-bridge knot, then Ord(K1) = 1.

(2) Let K1 = T (3, 4; 2, s) with s ≥ 2. Then K1 is a hyperbolic L–
space knot ([9, 10, 22]). From the Alexander polynomial [15],
we have Ord(K1) = 2. Since K1 has genus s+3, distinct choices
of s give distinct knots.

(3) Finally, there are infinitely many hyperbolic L–space knots {kn},
defined in [2, Section 2], each of which satisfies Ord(kn) = 3 by
[2, Proposition 3.1 (3)]. (See also [6, Proposition 5.1].)

□
Remark 3.5. The twisted torus knot K = T (p, pk + 1; 2, 1) is an L–
space knot (Lemma 2.1) and twist positive in the sense of [6]. Thus the
proof of [6, Theorem 1.3] concludes that Ord(K) = p − 1 by showing
p − 1 ≤ Ord(K) ≤ br(K) − 1 ≤ i(K) − 1 = p − 1, where i(K) is the
braid index of K.
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19. P. Ozsváth and Z. Szabó: Holomorphic disks and genus bounds, Geom. Topol.
8 (2004), 311–334.

20. P. Ozsváth and Z. Szabó: On knot Floer homology and lens space surgeries,
Topology 44 (2005), 1281–1300.

21. J. R. Stallings: Constructions of fibred knots and links, Proc. Sympos. Pure
Math., XXXII American Mathematical Society, Providence, RI, 1978, pp. 55–
60.

22. F. Vafaee: On the knot Floer homology of twisted torus knots, Int. Math. Res.
Not. IMRN (2015), no. 15, 6516–6537.

Graduate School of Advanced Science and Engineering, Hiroshima
University, 1-3-1 Kagamiyama, Higashi-hiroshima, 7398526, Japan

Email address : himeno-keisuke@hiroshima-u.ac.jp

Department of Mathematics and Mathematics Education, Hiroshima
University, 1-1-1 Kagamiyama, Higashi-hiroshima 7398524, Japan.

Email address : teragai@hiroshima-u.ac.jp


