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Abstract. This is a report of a computation of the homology groups of

Grassmannians G̃r(m,n) of oriented m-subspaces in Rm+n for (m,n) =
(3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5), which shows that the integral ho-

mology of G̃r(5, 5) has 4-torsion in dimensions 10 and 14. The computa-
tion method in this report can be applied to all oriented Grassmannians.

1. Introduction

Although the cohomology of the Grassmannian Gr(m,n) consisting of m
dimensional subspaces in the real vector space Rm+n is fully understood,

even the homology of the oriented Grassmannian G̃r(m,n) consisting of
oriented subspaces is still not clearly understood. The reason is due to the
existence of torsions other than 2.

A Morse-Smale function on a manifold induces a chain complex whose ho-
mology is isomorphic to the singular homology of the manifold. This chain
complex is called a Morse complex. In [5], the author investigated integral

Morse complexes on the Grassmannians G̃r(m,n), and obtained a matrix
representation of the boundary maps (see Theroem 2.1). This allows us to
compute the elementary divisors of the boundary maps. The computation
results, which are check by Sage, for the cases (m,n) = (3, 3), (3, 4), (3, 5),
(4, 4), (4, 5), (5, 5) are shown in Tables in Section 4. Through a general
method (see Proposition 3.1) of homology computation of finitely gener-
ated chain complexes, we can use the results in Section 4 to get explicitly
the singular homologies of those oriented Grassmannians as summarized in
Table in Section 5.1. The method of computation based on Therorem 2.1
is applicable to all oriented Grassmannians.

In [2], the homology groups were computed for oriented Grassmannians

G̃r(m,n), including the cases (m,n) = (3, 3), (3, 4), (3, 5), (4, 4). The
results agree with ours except for (m,n) = (4, 4) in dimensions 6 and 9.

Other computation of H∗(G̃r(3, 3);Z) is described in [1, Table 6].
Both the existence and non-existence of 4-torsion in various oriented

Grassmannians are investigated in [3, Theorem 8.8, Remark 8.10]. As shown
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in Table 7, the oriented Grassmannian G̃r(5, 5) has 4-torsion in the homol-

ogy groups of dimensions 10 and 14. In light of the results in [3], G̃r(5, 5)
is considered to be the lowest dimensional oriented Grassmannian having
torsion other than 2.

2. Boundary maps of the Morse complex

The integral curves t 7→ γ(t) of the gradient flow, called gradient lines, of
a function on a closed Riemannian manifold converge to critical points of the
function as t → ±∞. If the function satisfies the Morse-Smale transversality
condition, the space of gradient lines between two critical points with Morse
indices differing by k is a k − 1 dimensional manifold. The Morse complex
is a chain complex over Z generated by critical points of the Morse-Smale
function and with boundary maps defined by counting the gradient lines
with sign between critical points with Morse indices differing by 1. The
homology of a Morse complex is isomorphic to the singular homology of the
manifold (see [5] and references cited therein).

Given a subspace V of dimension m in the real vector space Rm+n, there
exists a unique symmetric matrix XV whose +1 eigenspace is V and −1
eigenspace is the orthogonal complement of V . Let H be a diagonal matrix
with diagonal elements h1, · · · , hm+n. If h1 < · · · < hm+n, then the function
defined by V 7→ XV 7→ trace(HXV ) on the Grassmannian Gr(m,n) of m-
subspaces is a Morse-Smale function, which we denote by h : Gr(m,n) → R.

Let [k] be the set of integers {1, · · · , k}, and M(m,n) the set of increasing
functions µ : [m] → [m + n]. For each µ ∈ M(m,n) and α ∈ [m], define a
function µα by

µα(a) =

{
µ(a) ( a 6= α )
µ(a)− 1 ( a = α )

and set c(µ) = {α ∈ [m] |µα ∈ M(m,n)}.
Let {e1, · · · , em+n} be the standard basis of Rm+n. For each µ ∈ M(m,n),

we denote by Vµ ∈ Gr(m,n) the subspace spanned by vectors eµ(1), · · · , eµ(m).
Then the set of critical points of the function h coincides with the set
{Vµ |µ ∈ M(m,n)}, and the Morse index Ind(Vµ) of a critical point Vµ

equals
∑m

a=1(µ(a) − a). The Grassmannian Gr(m,n) has dimension mn,
and the Morse indices are 0 ≤ Ind(Vµ) ≤ mn. For two critical points Vµ

and Vµ′ , there exist gradient lines from Vµ to Vµ′ if and only if µ′ = µα for
some α ∈ c(µ).

Given an integer k, let sk be the number of elements µ ∈ M(m,n) such
that the Morse index Ind(Vµ) of the critical point Vµ is equal to k. The
generating function of {sk} equals the q-binomial coefficient;

(2.1)
mn∑
k=0

skq
k =

(
m+ n

m

)
q

.
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We denote by G̃r(m,n) the Grassmannian of oriented m-subspaces of

Rm+n. Let V ±1
µ ∈ G̃r(m,n) be the subspace Vµ ∈ Gr(m,n) endowed with

orientation defined by an ordered basis {±eµ(1), eµ(2), · · · , eµ(m)}. A cov-

ering map G̃r(m,n) → Gr(m,n) is defined by ignoring orientations. The

composition h̃ of this covering and the function h is a Morse-Smale function

of G̃r(m,n), whose Morse complex will be denote by C∗(m,n). The critical

point set of h̃ is {V ϵ
µ |µ ∈ M(m,n), ε = ±1}. Denote by

〈
V ε
µ

〉
the generators

of C∗(m,n). In [5] we proved the following :

Theorem 2.1. The k-th boundary map ∂∗ of Ck(m,n) is given by

∂k
〈
V ε
µ

〉
= −

∑
α∈c(µ)

(−1)
∑α−1

a=1 (µ(a)−a)
(
(−1)m+µ(α)

〈
V ε
µα

〉
+
〈
V −ε
µα

〉)
3. A general method of computing homology

Given a chain complex C = (C∗, ∂∗) with coefficients in Z, let rk denote
the rank of Ck, σk the number of elementary divisors of ∂k : Ck → Ck−1

equal to 1, and ρk the number of those greater than 1. The rank βk of free
part of k dimensional homology group is called the k-th Betti number. The
homology of the chain complex C is computed as follows (see, for example,
[4]) :

Proposition 3.1. The k-th Betti number βk of C equals rk − (σk +
σk+1 + ρk + ρk+1). Let {ϵ1, · · · , ϵρk+1

} denote the elementary divisors of the
boundary map ∂k+1 greater than 1. Then we have

Hk(C) ∼= Zβk ⊕ Z/ϵ1Z⊕ · · · ⊕ Z/ϵρk+1
Z.

4. Elementary divisors of the boundary maps

We denote the boundary map Ck(m,n) → Ck−1(m,n) of the Morse com-

plex of h̃ : G̃r(m,n) → R by ∂k, the rank of Ck(m,n) by rk, the number
of elementary divisors of ∂k equal to 1 by σk, those greater than 1 by ρk,
respectively. The rank rk equals 2sk, where sk is obtained in formula (2.1).

Since Theorem 2.1 yields all data to represent the boundary map ∂k as
a matrix, if a linear order is specified on the sets {

〈
V ε
µ

〉
} of generators

of both Ck(m,n) and Ck−1(m,n), we obtain the matrix representing ∂k by
a straightforward computation. Then it is possible to use, for example,
SageMath to get the elementary divisors of ∂k.
As an example of the above computation, we show that the boundary

map ∂11 : C11(5, 5) → C10(5, 5) is represented by the matrix

(
A B
B A

)
,
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where the blocks A and B are given by

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 −1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 −1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



B =



−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 1 0 1 −1 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


Then by using Sage function ”elementary_divisor”, we find that the non-
zero elementary divisors of ∂11 consist of eighteen 1’s and one 4, namely
σ11 = 18 and ρ11 = 1 in this case.

The resulting values of rk, σk, and ρk are shown in Tables 1 through 6 in
the cases (m,n) = (3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5). The elementary
divisors greater than 1 of those boundary maps equal to 2, except ∂11 and
∂15 of the case (m,n) = (5, 5), which have an elementary divisor equal to 4.
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k 0 1 2 3 4 5 6 7 8 9
rk 2 2 4 6 6 6 6 4 2 2
σk 0 1 1 2 3 2 3 2 1 1
ρk 0 0 0 1 0 0 0 1 0 0

Table 1. The case (3, 3)

k 0 1 2 3 4 5 6 7 8 9 10 11 12
rk 2 2 4 6 8 8 10 8 8 6 4 2 2
σk 0 1 1 2 3 3 4 4 3 3 2 1 1
ρk 0 0 0 1 0 0 1 1 0 0 1 0 0

Table 2. The case (3, 4)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
rk 2 2 4 6 8 10 12 12 12 12 10 8 6 4 2 2
σk 0 1 1 2 3 4 5 6 5 6 5 4 3 2 1 1
ρk 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

Table 3. The case (3, 5)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
rk 2 2 4 6 10 10 14 14 16 14 14 10 10 6 4 2 2
σk 0 1 1 2 3 4 5 6 6 6 6 5 4 3 2 1 1
ρk 0 0 0 1 0 0 1 2 0 0 2 1 0 0 1 0 0

Table 4. The case (4, 4)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
rk 2 2 4 6 10 12 16 18 22 22 24 22 22 18 16 12 10 6 4 2 2
σk 0 1 1 2 3 5 6 8 9 10 11 11 10 9 8 6 5 3 2 1 1
ρk 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0

Table 5. The case (4, 5)

k 0 1 2 3 4 5 6 7 8 9 10 11 12
rk 2 2 4 6 10 14 18 22 28 32 36 38 40
σk 0 1 1 2 3 5 7 9 11 14 16 18 18
ρk 0 0 0 1 0 1 1 1 1 0 1 1 1

k 13 14 15 16 17 18 19 20 21 22 23 24 25
rk 40 38 36 32 28 22 18 14 10 6 4 2 2
σk 20 18 18 16 14 11 9 7 5 3 2 1 1
ρk 0 1 1 1 0 1 1 1 1 0 1 0 0

Table 6. The case (5, 5)

5. Main result

5.1. Hk(G̃r(m,n);Z). Applying Proposition 3.1 to the results in Section

4, we obtain Table 7 of the homology groups Hk = Hk(G̃r(m,n);Z) for
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(m,n) = (3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5). We see thatH10(G̃r(5, 5);Z)
and H14(G̃r(5, 5);Z) are isomorphic to Z/4Z.

(m,n) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)
H0 Z Z Z Z Z Z
H1 0 0 0 0 0 0
H2 Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z
H3 0 0 0 0 0 0
H4 Z Z2 Z Z3 Z2 Z⊕ Z/2Z
H5 Z Z/2Z Z/2Z Z/2Z Z/2Z Z/2Z
H6 Z/2Z Z/2Z 0 (Z/2Z)2 Z/2Z Z/2Z
H7 0 0 Z 0 0 Z/2Z
H8 0 Z2 Z Z4 Z3 Z2

H9 Z Z/2Z Z/2Z (Z/2Z)2 Z/2Z Z⊕ Z/2Z
H10 0 0 Z/2Z Z/2Z Z/4Z
H11 0 Z 0 0 Z/2Z
H12 Z Z/2Z Z3 Z3 Z
H13 0 Z/2Z Z/2Z Z⊕ Z/2Z
H14 0 0 Z/2Z Z/4Z
H15 Z 0 0 Z/2Z
H16 Z Z2 Z
H17 Z/2Z Z2 ⊕ Z/2Z
H18 0 Z/2Z
H19 0 Z/2Z
H20 Z Z/2Z
H21 Z
H22 Z/2Z
H23 0
H24 0
H25 Z

Table 7. H∗(G̃r(m,n);Z) with (m,n) = (3, 3), (3, 4), (3, 5),
(4, 4), (4, 5), (5, 5).

5.2. Hk(G̃r(m,n);Z/2Z). We remark that the universal coefficient theorem
describes Z/2Z homology in terms of Z homology;

Hk(G̃r(m,n);Z/2Z) ∼= Hk(G̃r(m,n);Z)⊗Z/2Z⊕Tor(Hk−1(G̃r(m,n);Z),Z/2Z).

On the other hand, if we use Z/2Z as coefficients of the Morse complex of

h̃ : G̃r(m,n) → R, the resulting Morse complex C∗(m,n)⊗Z/2Z calculates

the singular homology Hk(G̃r(m,n);Z/2Z). Since the rank of the boundary
map of C∗(m,n) ⊗ Z/2Z equals the number σk of the elementary divisors

equal to 1, we also get the Z/2Z Betti numbers of G̃r(m,n) directly from
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Tables in Section 4;

dimZ/2ZHk(G̃r(m,n);Z/2Z) = rk − (σk + σk+1).
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