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ABSTRACT. A hypergraph is a generalization of graphs to be able
to represent higher-order relations among entities. Since there has
been no canonical notion of random walks on hypergraphs, one
cannot naturally extend the notions of coarse Ricci curvature of
graphs to hypergraphs. In the present paper, we introduce a new
notion of Ricci curvature on hypergraphs associated with a nonlin-
ear Kantorovich difference, which is defined through the resolvent
of the nonlinear Laplacian. We prove that our notion is well-defined
regardless of the nonlinearity of the Laplacian via linear program-
ming and gives a generalization of Lin-Lu-Yau’s coarse Ricci cur-
vature on graphs. Under suitable assumptions of our curvature
we obtain a lower bound of nonzero eigenvalues of the Laplacian,
a gradient estimate of the heat flow, and a diameter bound of

Bonnet-Myers type.

1. INTRODUCTION

The Ricci curvature of Riemannian manifolds plays an important
role to analyze geometric and analytic properties of the manifolds. In
the setting of Riemannian manifolds, though the Ricci tensor needs C?
smooth structure on them, lower bound condition of the Ricci curvature
can be described by only the metric and measure. More precisely, von

Renesse et.al. [43, Section 1] proved that for any smooth, complete,
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connected Riemannian manifold (M, ¢g) endowed with the Riemannian
distance dj, a volume measure vol, on it, the Ricci curvature Ric, (v, v)
for z € M and v € T, M, and any K € R, the following conditions (1)-
(5) are equivalent ([43, Theorems 1.1 and 1.3]):

(1) (Lower bound of Ricci curvature): Ric,(v,v) > K|v|? for any
reMandveT,M.

(2) (Convexity of relative entropy): The relative entropy defined in
[43, P.924] is the displacement K-convex on the L?-Wasserstein
space (Pa(M), Ws) defined in [43, P.923-924] (see [10]).

(3) (Transportation inequality): For the normalized measure re-
stricted to the ball of radius r centered at x € M

vol, (B, (z) N A)

ra(A) = , Borel AC M
My (A) vol, (B,(2)) or any Bore
the following asymptotic estimate holds:

K

Wi (Mg, My y) < (1 — r? + 0(r2)> dy(z,y), asr — oo.

2(n+2)

(4) (Contraction property of the gradient flow of entropy): For the
gradient flow @ : Ry x Py(M) — Po(M) with respect to the
entropy,

W2((I)(t7 :u)v CI)(t, V)) < e_KtW2<:u7 V)

holds for any ¢t > 0 and u,v € Py(M).

(5) (Gradient estimate of the heat flow): Let h; : L?*(M) — L*(M)
be the heat flow on M. For any f € C(M), x € M, and t > 0,
the following holds:

[Vhef?(2) < e 20|V 1 ().
Moreover, the following Bochner inequality (or Bakry—Emery’s curvature-
dimension condition) is also equivalent to (1)-(5) (see [2,3]):

(6) (Bochner inequality, curvature-dimension condition of Bakry-
Emery type): Let A be the Laplace-Beltrami operator on C°(M).
For any f € C°(M), the following holds:

%A|Vf|2 > (VAL V) + K|V [
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Based on these relations, the CD (Curvature Dimension) space, which
was introduced by Sturm [39,40] and Lott-Villani [25, 26] indepen-
dently, is defined by using the convexity of entropy on the L2-Wasserstein
space (Py(M), Ws). In the case of finite dimension, as the entropy, not
the relative entropy but the Rényi entropy is used. The CD space is a
metric measure space (not necessarily manifold) whose Ricci curvature
is bounded from below in a synthetic sense. An important point is that
the definition of CD space is described only in terms of measures and
metrics. For the CD space whose dimension is bounded from above,
many important geometric and functional inequalities such as Bishop-
Gromov inequality [26], Poincaré inequality [40] and Brunn-Minkowski
inequality [36] were proved. However the gradient estimate of the heat
flow does not hold for generic CD spaces (see [33]).

After that, the RCD (Riemannian Curvature-Dimension) space was
introduced in [2, 15], which is a CD space equipped with the infini-
tesimal Hilbertianity condition (defined by Gigli [15, Definition 4.9])
that its associated Sobolev space W12 becomes a Hilbert space. On
RCD space, several theorems such as the Ws-contraction of the gradi-
ent flow of the relative entropy, the Bochner inequality (Bakry—Emery’s
curvature dimension condition) and the gradient estimate of the heat
flow have been proved and these are known as equivalent conditions
in the setting of manifolds. Many geometric results such as Cheeger-
Gromoll’s splitting theorem [14], Cheng’s maximum diameter theorem
[21], isoperimetric inequalities [8] and so on are also proved and they
are known in the setting of Riemannian manifolds.

Both CD and RCD spaces become geodesic metric spaces and RCD
spaces established a position as geodesic spaces whose Ricci curvature
is bounded from below.

It is quite fundamental how to define a concept of Ricci curvature
on generic metric spaces. As we mentioned above, on geodesic metric
measure spaces, a synthetic notion of ”"lower bound of Ricci curva-
ture”, called the curvature-dimension condition, is defined. On the
other hand, there are many different notions of lower bound of Ricci

curvature on discrete spaces. In the case of discrete spaces, several
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definitions whose Ricci curvatures are bounded from below were intro-
duced. However there has not been a canonical definition. For usual
graphs, coarse Ricci curvatures of Ollivier [34] and Lin-Lu-Yau [24] are
related to the above (3) or (4), the curvature dimension condition of
Bakry-Emery type [37] is related to (6), the exponentially curvature-
dimension condition is related to the Li-Yau inequality [6,30,31], and
the definitions by Maas [13, 28] and by Bonciocat-Sturm [7] are re-
lated to (2). Although all of these definitions stem from the definitions
or known facts for geodesic spaces, their relations has not been well
understood.

A hypergraph is a generalization of graphs to be able to represent
relations among not only two but also three or more entities. There has
been no crucial canonical definition of random walks on hypergraphs.
Hence one cannot naturally define a notion of curvature on hypergraphs
in Olliver’s manner [34, Definition 3].

In this paper, we introduce a new definition (see Definition 3.10) of a
coarse Ricci curvature on hypergraphs, which is well-defined and gives
an extension of Lin-Lu-Yau’s one on graphs. Our coarse Ricci curvature
is defined through a nonlinear Kantorovich difference (Definition 3.1).
The Kantrovich difference is inspired by the Kantrovich-Rubinstein
duality formula [42, Theorem 5.10] and defined by the resolvent of the
so-called ”submodular hypergraph Laplacian” (see (2.3) and (2.5)).
The notion of this Laplacian was originally introduced by [16,27, 44].
Following [17], our Laplacian in this paper is a modification of the
definition introduced in [16,27], and a realization of the submodular
transformation introduced in [44] when the submodular transformation
is a hypergraph (see also Subsection 8.2).

Asoodeh et al [4] introduced a different notion of a Ricci curvature on
hypergraphs by using random walks defined by reducing hypergraphs
to usual graphs with clique expansion.

The hypergraph Laplacian was introduced as meaningful from an
information engineering point of view, and some research has shown
that it can yield good information about hypergraphs. In particular,
in [41], it was experimentally proven (in terms of community extrac-

tion, especially in terms of spectral graph theory) that hypergraphs
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can be extracted for their properties as hypergraphs rather than being
attributed to ordinary graphs obtained by clique and star expansions.
Therefore, we considered that by using this hypergraph Laplacian, the
curvature could be defined with more fruitful information about the
hypergraph. However, because this Laplacian is multivalued and non-
linear, there was no canonical way to define the transition probabilities
of random walkers using it. For these reasons, we considered the Lin-
Lu-Yau definition as a definition using resolvents, and by extending
it with resolvents that can be defined even for nonlinear multivalued
Laplacians, we thought we could define curvature suitable for hyper-
graphs.

Recently other notions of Ricci curvature on (directed) hypergraphs
were introduced in [1,11,12,23].

As connections of the value of our coarse Ricci curvature, under
similar assumptions of the lower bound of the curvature as Lin-Lu-
Yau type, we can deduce a lower bound of nonzero eigenvalues of the
normalized Laplacian (Theorem 5.1) and a gradient estimate of the
heat flow of L type (Theorem 5.3). Under positive Ricci curuvature,
we prove a diameter bound of Bonnet-Myer’s type (Theorem 5.5). It
should be noted that these properties do not hold for general CD spaces,
which implies that one cannot necessarily handle the nonlinearity of our
Laplacian.

Our arguments for the proofs except for Theorem 3.13 are applicable
to more general settings for submodular transformations [44, Section
3], which are vector valued set functions consisting of submodular func-
tions and includes the settings of directed (hyper) graphs and mutual
information.

The rest of this paper is organized as follows. In Section 2, we recall
several notions of hypergraphs and basic properties of the submodular
hypergraph Laplacian and its resolvent. In Subsection 2.3, we recall
basic notions of the metric measure space. In Subsection 2.4, we recall
the definition of Lin-Lu-Yau’s coarse Ricci curvature on usual graphs
[24]. In Subsection 2.5, we explain the difficulty of extending Lin-Lu-
Yau’s coarse Ricci curvature on graphs to hypergraphs and our idea

to overcome it. In Section 3, we introduce the definitions of nonlinear
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Kantorovich difference and our coarse Ricci curvature on hypergraphs
and prove their properties. In Section 4, we show that in the case of
usual graphs, our Ricci curvature is equal to Lin-Lu-Yau’s. In Section 5,
as connections of our curvature with analytic and geometric properties
of hypergraphs, we prove a bound of eigenvalues of the Laplacian, a
gradient estimate for the heat flow, and a Bonnet-Myers type diam-
eter bound. In Section 6, we give several examples of our curvature.
As the reader seen, strict calculation of curvature for large networks is
not easy. However, approximate solutions can be computed as follows.
In this paper, the curvature is defined as a limit of the supremum of
the differences of values of the resolvent for the hypergraph Laplacian.
The resolvent itself is a personalized PageRank on a hypergraph, as
expressed in equation (3) of Section 3.3 in [41]. Using the heat method
in [41], an approximate calculation is possible in a short time. To cal-
culate an approximated curvature, we also need to calculate a limit of
the supremum by running the 1-Lipschitz function, but this can also
be done as a coarse approximation. (It may also be possible to com-
pute the approximation using methods such as design of experiments
or Bayesian optimization.) In Section 7, we give a proof of existence
of our coarse Ricci curvature for general hypergraphs via linear pro-
gramming. In Section 8, we review submodular transformations and
the submodular Laplacian and give a sufficient condition for a sub-
modular transformation to be able to generalize our curvature notion
and theorems to submodular transformations. We show examples of
submodular transformations such as directed (hyper)graphs, mutual

information etc. in Subsection 8.3.

2. PRELIMINARIES

2.1. Hypergraph. A weighted undirected hypergraph H = (V, E, w)
is a triple of a set V, a set E C V \ {0} of nonempty subsets of
V, and a function w: E — Ry, where Rog := {¢ € R; ¢ > 0}.
We call an element of V' vertex, an element of E hyperedge, and w
an edge weight. We remark that if |e| = 2 for any e € E, H is a
weighted undirected (usual) graph. Here |A| denotes the cardinality
of a set A. We say that H is finite if V is finite. For x,y € V, we
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write  ~ y if there exists e € E such that x,y € e. We say that H
is connected if for any z,y € V, there exists {z;}7_, C V such that
20=1mx, z, =y, and z; ~ z;1 (1 =0,...,n —1). Throughout of this

paper we assume that
(2.1) any hypergraph H is finite and connected.

For z € V, we define the degree of z by d, :== )"
the degree matrix of V' by D := diag(d,). Since H is connected, then

5z We- We also define
d, > 0 for any x € V, which implies that D is non-singular, i.e. the
inverse D~! of D exists. For S C V, the volume of S is defined by
vol(S) := > ¢ d.. We introduce a distance d on V' defined by

(2.2)

d(z,y) :=min{n; H{z}y, 20 =2, 2o =y, 2i ~ 2iy1}, forax,yeV.

Then (V,d) becomes a metric space. We define a diameter of H, de-
noted by diam(H), as that of the metric space (V,d), i.e., diam(H) :=
max, yev d(x,y). We identify the set of all real-valued maps on V' with
the set RV of vectors indexed by V. We denote by d, € R" the char-
acteristic function at x € V, i.e. 6,(2) =1if z =2 and § =0 if z # x.
We define the stationary distribution 7 € RV by 7(z) := d. /vol(V) for
zeV.

2.2. (Submodular) Laplacian on hypergraph. We recall the def-
initions of the submodular hypergraph Laplacian and the normalized
version in the sense of Tkeda et al [17] and recall their several properties.
We define an inner product (-,-) : RY x RY — R as

(fo9) =1TD7g=7)  fla)g(a)d;".
zeV
Here we use AT to denote the transpose of a matrix A. We note that
(RY,(-,-)) is a finite dimensional Hilbert space. We also introduce a
norm || - || : RY — Rxg given by [|f[| := (f, )"/,
We define the (submodular) hypergraph Laplacian L: RY — 28" by

(2.3) L(f)=Lf = {Z webe(b] f); be € argmaxbeBebe} ,

eck
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where B, denotes the base polytope for e € E, i.e., the subset of RV
defined by

(2.4) B, :=Conv({d, — 9, ; =,y € e}).

Here Conv(X) is the convex hull of X in RY. This Laplacian L might
be multi-valued and nonlinear [18, Remark 3.2], and L is the sub-
differential of the convex function @: RV — R defined by
Q) = 5 - wle) max(f(@) — ()"
ccE
(see [44, Section 2| and [9, P.15:8]). Namely the identity Lf = 0Q(f)
holds for any f € RV, where 9Q : RV — 28 is defined by

0Q(f) :=={g €R" s g"(h— f) < Q(h) = Q(f), for any h € R"}.

Thus we see that L is a maximal monotone operator (or —L is an m-
dissipative operator) such that the domain of L is RV (see [17, Lemmas
14, 15]). When the hypergraph H is a usual graph, the (submodular)
hypergraph Laplacian L becomes linear and single-valued and L(f) =
{(D—A)f}, where A = (w.) € RV*V is the weighted adjacency matrix
of the graph (see [44, Example 3.3] and [18, Remark 2.3]).

We also introduce the normalized hypergraph Laplacian £: RV —
2R" given by

(2.5) L(f) = £f = L(D)).

We note that £ is related to random walk and heat diffusion (see
[41, Subsection 3.3]). By [17, Lemmas 14, 15], £ is also a maximal
monotone operator on the Hilbert space (RY,{(:,-)). More strongly,
Lf is the sub-differential of ) at D~'f, that is, the identity Lf =
JQ(D~1f) holds. We show other properties of £ as follows.

Lemma 2.1. Let f € RY and ¢ € R. Then the following identities
hold:

(1) L(cf) = cL(f),
(2) L(f) = L(f +cr), where 7 € RY is the stationary distribution.

Proof. About (1): When ¢ = 0, the identity is trivial. We note that for
any e € E,if b € B,, then —b € B,, which implies that max,cp, (b, f) >
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0. Assume that ¢ > 0. Then for any e € E, the identity argmax,cp_(b,cf) =
argmaxycp_ (b, f) holds, which implies the conclusion. Next we con-

sider the case ¢ < 0. Then we have

argmaxye . (b,cf) = —argmaxyc g (b, f),

which means the conclusion.
About (2): Let b € B,. Because b is a convex combination of 6, — 4,
for x,y € e and D '7(2) = 1/vol(V) for z € V, we have b" D~!1 = 0.

Hence we have
b" (D' (f+cm)) =b" (D' f)+cb"(D7'm) =b" (D7 f),
which implies that £f = L(f + ¢m) holds. d

For A > 0, the resolvent Jy: RV — 28" of £ is defined as

(2.6) If) = Inf =T+ L) (f).

Here for a multivalued operator A : RV — 28 the invese A! is
defined by

AN ) ={9eR";f € A(g)}

with the domain of A=! equal to the range of A. We summarize several
properties of .Jy as follows (see [29, Corollary 2.10, Lemma 2.11(iii)] and
[38, Proposition 1.8]):

Lemma 2.2. Let A > 0 and Jy be defined by (2.6). Then the following
holds:

(1) Jy is single-valued and its domain and range are RV. In par-
ticular Jy 1s injective.

(2) Jy is non-expansive, i.e., for any f,g € RV, and any f' € J\(f),
g € Ji(g), the estimate

If =gl <1f =gl

holds. FEspecially, Jy is continuous.

(3) For any >0 and f € RY, the following equation is valid:

) ng =, (Br+ 25 r).
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(4) (Moreau’s theorem): The following identity holds:
. f 1 -
@8 f =aguin { ool - gl + QDg) g € R |

We derive other properties of Jy from those of the normalized Lapla-

cian L:

Lemma 2.3. Let A > 0, f € RV and ¢ € R. Then the following
identities hold:

(1) Ja(ef) = eda(f),
(2) Jnf = I\(f —cm) +cm.

Proof. About (1): When ¢ = 0, the identity is trivial. For nonzero
c € R, let g := Jy(cf). Then, c¢f € (I + AL)(g) holds by the definition
of Jy. Thus, we have f € (I + AL)(¢'g) by Lemma 2.1. This implies
¢'g = JA(f), hence g = cJy(f).

About (2): We set g := Jyf and h := J\(f — cr). Then there
exist ¢’ € Lg and b/ € Lh such that the identities f = g + A\¢’ and
f —cm = h+ A/ hold. Thus, we have

(I+XL)(g) 29+ g =f=h+ 0 +cr
€ (h+cm)+ AL(h) = (h+cm) + AL(h+cm) = (I + AL)(h + cm).

Here the inclusion follows from Lemma 2.1. Therefore, acting Jy, =
(I +AL)~! to the both sides, we get g = h+ cm because Jy is injective.
O

Since £ is a maximal monotone operator such that the domain is
RY, by [29, Theorem 4.2], the heat semigroup {e~**};>¢ is well defined
on R and the following identity holds:

(2.9) e f = 1/&101 J)[\t/)‘]f, t>0and f € RY.

Here [a] is the maximum integer less than or equal to a € R. For
f eRY, we set

LA =it LA 5 7€ L}
Then by [29, Lemma 2.11 (ii)] the following holds:

(2.10) IS — fIl < MILSIl, for A>0and f € RY.
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Since Lf is a closed convex set by [29, Lemma 2.15], there exists a
unique [ € Lf such that || f'|| = [[[Lf]l| by [29, Lemma 2.19]. We set
L0f as this f’, i.e. L°f = f'. This defines a single-valued operator
L0 RY — RV, called the canonical restriction of £. Then by [29,
Lemma 2.22 and Theorem 3.5], the following identities hold:

(2.11) —L0f =lm A (L f = f) = lmt 7 (e~ ).

2.3. L'-Wasserstein distance. Let (X,d,m) be a metric measure
space, that is, (X, d) is a complete separable metric space and m is a
locally finite Borel measure on X. We set P(X) as the set of all Borel
probability measures. For p,v € P(X), a measure £ € P(X x X) is

called a coupling between p and v if
§(AX X) = p(4), &(X xA)=v(A)

holds for any Borel set A C X. We set Cpl(u,v) as the set of all
couplings between p and v. Since the product measure p ® v of p and
v is a coupling between u and v, Cpl(u,v) is nonempty. We define the
L'-Wasserstein space Py (X) by

Pi(X) = {,u e P(X); /Xd(x,o) p(dx) < oo for a point o € X}.

For p,v € P1(X), the L'-Wasserstein distance between them, denoted
by Wi(p,v), is defined as

(2.12)  Wi(p,v) :=inf {/X d(z,y) &(dx, dy) ; € € Cpl(p, V)}

xX
It is known that W; is a metric on P;(X) and the following duality
formula for W, holds (see [42, Theorem 5.10] for example).

Proposition 2.4 (Kantorovich-Rubinstein duality). For u,v € Pi(X),

(2.13) Wi(p,v) = sup {/X fdu— /X fdv; fis Z—Lipschitz}

holds. Here we say that f is 1-Lipshitz if for any x,y € X, the estimate
|f(z) = f(y)| < d(x,y) holds.

We call a 1-Lipschitz function f that realizes the supremum of (2.13)

a Kantorovich potential.
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2.4. Coarse Ricci curvature on usual graphs of Lin-Lu-Yau
type. In this subsection we recall the definition of the coarse Ricci
curvature on usual graphs of Lin-Lu-Yau’s type [24, P609]. As shown
in Proposition 4.1 below, our definition of the curvature on hypergraphs
gives a generalization of the Lin-Lu-Yau’s type. Let G = (V, E) be a
simple graph, that is, V isaset and £ C V x V \ {(z,2) ; = € V}.
Here we do not distinguish {z,y} and {y,z} € E. Forz,y € V, x ~y
means {z,y} € E. Given z,y € V, asequence of points {z;}I' , is called
apath fromx toyif 2o =2, 2, =y, 2z, ~ 2.1 fort =0,--- ;n—1, and
n is called the length of path. The distance d(x,y) of z,y € V as the
least number of lengths of paths from z to y. A path {z;}! is said to
be geodesic if it realizes the distance between z; and z,. We introduce
a weight function w : V x V. — Ry such that w(x,y) > 0 if and
only if  ~ y. The degree of x € V is defined by d, := >~ ., w(z,y).
Now that G is a usual graph, the normalized Laplacian £ defined by
(2.5) becomes linear and single-valued and £ = {I — AD™'}, where
A= (w(z,y))ry, € RV is the adjacency matrix of G.

For o € (0,1) and = € V, we introduce a function m¢ from V' to R+,
defined by

o ify=ux,
my(y) = § frw(z,y) ity e~z
0 otherwise.

We can regard m$ as a probability measure on V' and mg$ € Py(V).
For o € (0,1) and two distinct vertices z and y, we define the a-lazy

coarse Ricci curvature k*(z,y) between z and y by

. Wl (mgv mg)

d(z,y)

Lin-Lu-Yau [24] introduced the coarse Ricci curvature < (z,y) on G

(2.14) K*(z,y) =1

given by

(215) K}LLY(I’ y) — ];:gIII /{1 (f?o:éy)

and proved its several properties including existence of the limit (2.15).
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2.5. Rephrase Lin-Lu-Yau’s coarse Ricci curvature. We note

that for o € (0,1) and = € V', m% can be written as
me = (al + (1 —a)AD N6, = (I — (1 — a)L)b,.

However it is difficult to generalize Wi(mg, mg) to the case of hyper-
graphs since our normalized hypergraph Laplacian £ given by (2.5) is
generally multi-valued and nonlinear. To overcome the difficulty, we
give the following observation.

By using the above expression, the identities hold:
[ gams = 5w = 70~ (1 - )08, = (1 - (1= )0)DF.5.).
.
Let y € V. By the Kantorovich-Rubinstein duality (Proposition 2.4),
Wi(mg, mg) can be written as
(2.16)
Wi(mg, my) =sup{(({ — (1 —a)L)Df,d, —6,) ; fis a 1-Lipschitz}.

Let A :=1—a € (0,1) and Jy := (I + AL)~! be the resolvent of L.
Then for any f € RY, the identity

(2.17) (I = AL)(g) = Ia(g) + O(N?)

holds for sufficiently small A > 0. Indeed, since G is a usual graph, L is

a matrix, which enables us to apply Neumann series expansion to get
Jg=g—Ag+Y (=AL)fg=(I—AL)g+O(N\), as A — +0.
k=2

We introduce a A-linear Kantorovich difference KD, (x,y) as
(2.18) KDa(z,y) :=sup {(JxDf, 0, — d,) ; f is 1-Lipschitz}.
Then by the estimate (2.17), we can show

(2.19) Wi(mg,my) = KDx(z,y) +o(}), as A — +0.

We will prove this identity rigorously in Section 4. The crucial point
to extend the definition of Lin-Lu-Yau’s curvature notion on graphs to
hypergraphs is that Al-Kantrovich difference KD, (z, y) can be extended
naturally to hypergraphs, since the resolvent J) of our hypergraph

Laplacian is single-valued (Lemma 2.2).
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3. DEFINITION OF COARSE RICCI CURVATURE ON HYPERGRAPHS

Let H = (V, E,w) be a weighted undirected hypergraph.

3.1. Nonlinear Kantorovich difference. In this subsection we in-
troduce a notion of nonlinear Kantrovich difference, which is a natural
generalization of (2.18), and prove its several fundamental properties.
They are used to derive several properties of our coarse Ricci curvature
on hypergraphs (see Subsection 3.2).

Let d: V x V — Ry be a distance defined by (2.2) and K > 0. A
function f : V — R is said to be weighted K-Lipschitz if D71 f is a
K-Lipschitz function with respect to d, that is, f satisfies

1) 19 g,
for any x,y € V. The left hand side can be written as (f,d, — d,). We
denote the set of all weighted K-Lipschitz functions on V as Lip™ (V).
Note that if f € Lip® (), then so is —f.

(z,9)

Definition 3.1 (A-nonlinear Kantorovich difference). Let A > 0, J, be
the resolvent (2.6) of the normalized hypergraph Laplacian £ and let
x,y € V. Then the A\-nonlinear Kantorovich difference KDy (z,y) of
and y is defined by

KDx(z,y) :=sup {(rf,0z) — (Jnf,0,) ; [ € LipiU(V)} .

Remark 3.2. (1) Since 0 € LipL(V), the estimate KDy(z,y) > 0
holds.
(2) Let A >0, 7,y € V and f € Lip,, (V). We write formally

[ = (hs.6).

If the hypergraph H is a usual graph, p becomes a measure.

We introduce a weighted maximum norm || - ||, on R given by

/()
-

T

1 Fljoo = max

We also introduce a bounded and closed subset of Lip. (V) given by

Liph (V) = {f € LBy (V) ; [|f]lc < diam(H)}.
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Remark 3.3. The subset I_flpvle(V) is a compact subset of (R, (-, -)) since

RY is of finite dimensional.

We can restrict the class of functions i.e. Lipl (V) in the definition

—_—

of KDy to the compact subset Lipl, (V):

Proposition 3.4. Let A > 0 and xz,y € V. Then the following identity
holds:

KD)(x,y) = sup {(JAf, 0o —0y) 5 f € II)E}(V)} :

Proof. Let f € Lip, (V). Take yo € V such that (f,d,,) = min.cy (f,.)
and we set 6 := (f,d,,) and F' := f—0-vol(V)xw. Then for any z,y € V,
the following identities hold:

flx) —0d,  f(y) —6d,
d. d,

<F75x—5y>: <f>(5x_5y>7

which implies F' € Lip,, (V). Thus by the identity (F,§,,) = 0, for any
x € V, the following estimates hold:

(F,05) = (F,05) — (F,dy,) < d(z,y0) < diam(H).
This means that || F||o < diam(H). By Lemma 2.3, the identity J,F' =
Jrf — 0 -vol(V)7 holds. Thus for any =,y € V, the identities hold

LF(z)  LF(y) _ Lf(@) —0d,  Lfly) —0d,  Lf(x) ISy
d, d, d, d, d, d,

which implies the desired property.
O

We prove finiteness of KDy (z,y) and an upper bound of KD,. The
following lemma implies existence of the lower coarse Ricci curvature
(see Remark 3.11).

Lemma 3.5. Let A > 0 and x,y € V. Then the following estimate
hold:

KD (z,y) < 2Xdiam(H )vol(V)'/? max d;Y? + d(z,y).
Moreover, the following inequality holds:

max KD, (z,y) < (2Avol(V)Y? max d;'/? + 1)diam(H) < oc.
zyeV zeV
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Proof.
We first show that for any f € Lip. (V), the following estimate holds:

(3.1) IIL£]l < diam(H)vol(V)*/2,

Let e € E and b, € argmaxycpb' (D71 f). Since f € Lip,(V), the

following estimates hold:
b (D7'f) = max|f(z)/d. = f(y)/dy| < maxd(x,y) < diam(H).
T,y€e

We set f':= > wb.(b, (D7'f)) € Lf. We note that |b.(z)| <1 for
any x € V since b, € B,. Then

(3.2)
"(z)] = Zwebz(D_lf) (2)| < diam(H Zwe = diam(H)d,.
ecx ecx
Consequently, we obtain
ILFII? < = fl(x)’d;" < diam(H)*>  d, = diam(H)?vol(V).
eV zeV

Next we go back to the proof. For any f € Lip.(V), by (2.10), the

estimates hold:

(Inf,02) = (Inf,0y) = (Inf = f.0u) +(f,00) — (f, ) — (Inf — £, )
< [Inf = flI00 + 10y 1) + d(z,y)

< ALY + ' 72) + d(, y)

< 2xdiam(H )vol(V)*/?2 max d; V% + d(x,y).

Because the last quantity is independent of f, we take the supremum

with respect to f to get the conclusion of this lemma. O

Next we prove that for any A > 0, KD, (-, ) is a distance function on
V.

Proposition 3.6. Let A > 0 and x,y € V. Then the following holds:
(1) KDyx(z,y) =0 if and only if x = y.
(2) KDa(z,y) = KDa(y, x).
(3) For z € V, the triangle inequality KDy(z,z) < KD,(z,y) +
KD (y, z) holds.
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Proof. ”If ” part of (1) and (2) follow from the definition. We prove
“only if 7 part of (1). We assume that KD)(xz,y) = 0. Then for
any f € LipL(V), (Jnf,6z — d,) = 0. We can see that the identity
{cf; f € LipL(V),c € R} = RY holds. Indeed, let h € RV\{0}. Set
¢ :=2||hllxc > 0 and h = ¢f. Then for any u,v € V with u # v, noting
that d(u,v) > 1, the following estimates hold:

’M_M N LIORNIC

dy, d

= — | <d .
: < d(u,)

d, d,

Thus by Lemma 2.2, the identity (g, , —d,) = 0 holds for any g € RY.
The non-degeneracy of the inner product implies J, = ¢,, which means
x = y. Next we prove (3). For any ¢ > 0, there exists f = f. € Lip., (V)
such that KDy (x, z) < (Jrf, ) — (Jrf,d.) + €. Thus, we have

KD)\(Z', Z) S <J)\f7 5x> - <J)\f7 5y> + <J)\f7 5y> - <=]/\f7 52) + €
< KDx(z,y) + KDx(y, 2) + €.

Since € > 0 is any positive number, the conclusion holds. Il

Next we study how the function KD, changes with respect to \. We

can prove the following Lipshitz continuity:

Proposition 3.7. Let A\, ;x> 0 Then the following estimate holds:
(3.3)
sup |[KDy(z,y) — KD, (z,y)| < 2diam(H)vol(V)/2 mz%;(dgl/ﬂ/\ — ul.
z,yeVv z€
Proof. Let x,y € V. Let g € Lip. (V). By (2) and (3) of Lemma 2.2
and (3.1), the following estimates hold:

)\ _
(Jxg — Jug, 6, — 8,) = <Ju (ﬁg + 2 H Ag) — ]9, 0, — 6y>

A A
A\ —
< ||Ju Hg'f' MJAQ —Jug '||5a:_5y||
A A
< H +)\_MJ — - 2max d /2
Sl PN W ] e

< Qm((g{d;l/ﬂ/\ — ul||£°f| < 2diam(H)vol(V)'/? ma‘iid;lﬂ\)\ — 1.
zE z€

Let € > 0. Then there exists f € Lip., (V) such that KDy (z,y) — ¢ <
(Jrf,6; — 6,). Thus by the above estimates, the following inequalities



18 M.IKEDA, Y.KITABEPPU, Y.TAKAI, AND T.UEHARA
hold:
KD)\(.T, Z/) —€e< <J)\f7 5% - 5y> = <J)\f - J,LLf7 5:E - 6y> + <=]uf7 51 - 5y>
< 2diam(H)vol(V)'/? max A2\ — p| + KD, (z, ).
ze

Since € > 0 is arbitrary, we obtain KD (z,y)—KD,(z,y) < RHS. of (3.3).

Changing the role of 1 and A, we have the conclusion. O

Next we prove that for A > 0 and z,y € V, there exists a function in
Lip., (V) which attains KDy(z,y). We call such function a A\-nonlinear

Kantorovich potential.

Proposition 3.8. Let A > 0 and x,y € V. Then there exists f €
LipL (V) such that the identity (Jxf,6.) — (Jrf,6,) = KDx(z,y) holds.
Namely the following identity holds:

KDa(z,y) = max {{Jxf,8.) — (Jaf,8,) ; f € Lip,(V)} .

Proof. Let {f,} C Lip. (V) be a maximizing sequence of KDy (z,y). As
mentioned in Proposition 3.4, without loss of generality, we may assume
sup,, || fallee < diam(H). Since G\L)EU(V) is a compact subset of the
finite dimensional Euclidean space (R, (-, -)) by Proposition 3.4, thus
a sequentially compact subset. Hence {f,} has a subsequence {f,};
which converges to an element f’ in Lip, (V). Since .J is continuous

by Lemma 2.2, we have Jy(fn,) — JA(f') as j — oo, which implies

KDA(w. ) = lim (Ja(fa,): 0 = 8,) = (A(F): 62 = 0,).

Corollary 3.9. Let A > 0. Then the following estimate holds:

sup |KDy(z,y) — d(z,y)| < 2Xdiam(H )vol(V)Y? max d; /2.

1-7y€‘/ zeV

Proof. Let x,y € V. By Proposition 3.8, there exists f € Lipl, (V) with
(f, 0, — 0,) < d(x,y) which attains KDy(x,y). In the similar manner

as above, the following estimates hold
KDx(z,y) = (Inf = [, 02) + (f, 0a) = (f,8y) = (Jaf — f.0y)
—1/2 | g-1/2
> =LA + dy ') + dz, y)
> —2diam(H)Avol(V)'/? max d;Y? - d(z,y).
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By combining this and Lemma 3.5, the conclusion holds. U

3.2. Coarse Ricci curvature on hypergraphs. Let H = (V, E, w)
be a weighted undirected hypergraph and z,y € V. In this subsection,
we introduce a coarse Ricci curvature on H along with x,y, denoted

by k(x,y), and show its fundamental properties.

Definition 3.10 (Coarse Ricci curvature on hypergraphs). Let A > 0, x
and y be two distinct vertices and KDy (z,y) be the A-nonlinear Kan-
torovich difference defined in Definition 3.1. Then the A-coarse Ricci
curvature along with z,y, denoted by ky(x,y), is defined by
KD (x,y)

d(z,y)

The lower coarse Ricci curvature k(x,y) and the upper coarse Ricci

(3.4) ra(z,y) =1—

curvature K(z,y) are defined respectively by

— lim nf &Y
(3.5) K(z,y):= hlg\lﬁ)nf )\

and  %(z,y) := limsup /ix(a:,y)'
ALO A

If the identity k(z,y) = ®(z, y) holds, then we call this value the coarse

Ricci curvature for x,y, denoted by k(zx,y).

As shown in Section 8, we can extend the notion of the upper and
lower coarse Ricci curvatures to the setting of submodular transforma-
tions [44, Definition 3.1].

Remark 3.11. For any z,y € V with x # y, the lower coarse Ricci
curvature k(x,y) exists. More precisely by Lemma 3.5 and d(z,y) > 1,

the following estimates hold:

s(z,y) > —2diam(H )vol (V)2 Ina{/xdz_l/2 > —00.
ze

This implies that inf, , x(z,y) > —2diam(H )vol(V)Y/? max,cy .

It is not trivial whether the upper coarse Ricci curvature &(x,y) is

finite or not. However we can prove the following upper estimates.

Lemma 3.12. Let x and y be two distinct vertices. Then for any
f € Lipy (V) with f(x)/d. — f(y)/d, = d(z,y), the following estimate
holds:

(3.6) R(z,y) < d(z,y) ' (L, 6, — 6,).
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where L° is the canonical restriction of L (see (2.11)). Moreover, the
following holds:

(3.7) max & (z, y) < 2diam(H)vol(V)? max d;'/? < co.
z,yeV zeV

Proof. Let A > 0. Then the following estimates hold:

KDx(z,y) = (Inf,0z) — (Inf,0y)
== <=]/\f_ f75x> —i—d(l’,y) - <J/\f_ f75y> :

This implies that the following inequality holds:

A kA, y) < d(z,y) VOIS = £),8,) — AN = £),0)

By taking the superior limit as A — 40 and using (2.11), we have (3.6).
(3.7) follows from (3.6), (3.1) and d(x,y) > 1. d

The following main result means that for any finite connected hy-

pergraphs, the lower and upper coarse Ricci curvatures coincide.

Theorem 3.13 (Existence of the coarse Ricci curvature on hyper-
graphs). The identity k(x,y) = R(z,y) holds for any two distinct ver-

tices x and vy.

We give a proof of this theorem in Section 7 (see Theorem 7.1) via
linear programming. For convenience of the reader we give a proof in
the case of usual graphs as Proposition 4.1 in a more straightforward
way than the case for hypergraphs. And we emphasize that only for
finite hypergraphs and usual graphs, we can prove the coincidence be-
tween the upper and lower Ricci curvature. More general cases, even
for infinite hypergraphs, we don’t know the coincidence between them.

Next we show a relation between the minimum of the coarse Ricci

curvature for any pairs of vertices and that for adjacent vertices. We

set k1= min, , k(z,y) = min,,, £(z,y).

Lemma 3.14. The identity x = min x(x,y) holds.

T~y

Proof. It suffices to prove x > min,., k(z,y). Let x,y € V with z # y
and set n = d(z,y) > 1. Take {z;} be a shortest path connecting
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x and y. Then for any A > 0, by Proposition 3.6 (3) the following
inequality holds:

I{)\(ff,y) Z 1-—

Sy KD, 1) 1 ( KD ( xl,mzﬂ))
n n i—0 (xml‘z—‘rl) ’

(2

which implies that the estimates hold:

—_

n—

K(Zi, Tip1) > mink(z,y). O
Ty

S|

K(T,y) >

Il
=)

i
We show another property of the minimum of the coarse Ricci cur-

vatures. We set k) := min, , k)(z,y) for A > 0.

Lemma 3.15. The identity lirili%nf Kx/A = K holds.

Proof. Since V' is a finite set, so is V' x V. We can take (z),y)) € VxV
with x\ # y such that ky(zy,y)) = kx. We can show that there is a
distinct pair (oo, Yoo) € V' x V such that

lim inf M = lim inf Q.
L0 A A0

Take (zg,y0) € V x V such that kK = k(xg,y0). Then by taking the
limit inf A — 0, we have

(xooa yoo) . . R
< = ANV IR 2
K < K(Too, Yso) = hrf\lﬁ)nf Y hrilﬁ)nf
AL0 A
This concludes the proof. Il

4. CONNECTION OF LIN-LU-YAU’S COARSE RICCI CURVATURE
WITH OURS

The following proposition says that our coarse Ricci curvature gives

a generalization of Lin-Lu-Yau’s one [24] on graphs to hypergraphs.

Proposition 4.1. Assume that H = (V, E,w) is a weighted undirected
graph. Letx,y € V be two distinct vertices. Then the identity k(z,y) =
kM"Y (z,y) holds, where k'Y (z,y) is defined by (2.15).
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Proof. Let A :=1—«a € (0,1) and x,y € V be two distinct vertices.
We recall the definitions of the Lin-Lu-Yau’s coarse Ricci curvature
k'Y (z,y) (2.15), the a-lazy one k%(z,y) (2.14), our Ricci curvature
k(z,y) (3.5) and the A-coarse one ky(x,y) (3.4). We evaluate the dif-

ference of k*(x,y) and ky(x,y). Since the equation
(4.1)
AR (2, y) — k(e y)l = AN (2, y) 7 Wa(mg, my) — KDa(z, )|

holds, it suffices to evaluate A\™H W1 (mg, m$) — KDy (x,y)|. There exist
@) (see [42]) and KDy (z,y) (see

y
Proposition 3.8). Let f¢ be a Kantorovich potential for (mg,ms;).

Noting that f is 1-Lipschitz, i.e. Df € LipL (V), by (2.16), we obtain

some potentials to the both Wyi(mg,m

Wi(mg, my) — KDx(z, y)
<{U=AL) [ = IS} (@) = {( = AL) f* = Inf*} (y)-
Since J, = (I + AL)7!, if X is sufficiently small, then the Neumann

series expansion holds:
If =T =20 [+ (-AL)'f
i=2

Hence as A — 0, we have

)\_I(Wl(ma ma) - KDA(x7y))

<Z AL ) = Y (AL () 0,

1=2
which implies limy o A" (W1 (mg, m§) —KDx(z,y)) < 0. By exchanging
the role of KD, and W7, we obtain the similar result limy o A~ (KD (z, y)—
Wi(mg, mg)) < 0. Consequently, we have

(4.2) 1}1\&)1)\ "W (m 2 my) — KD (z,y)| = 0.

Since the limit lim, £%(2,y)/(1 — «) exists by [24, P.609], so does
the limit limy o ra(z,y)/A. By combining (4.1) and (4.2), we have
R (2, y) = k(2 y). m

Remark 4.2. The argument of the proof of Proposition 4.1 is applicable
for other situations. Indeed we can show that the Ricci curvature on

directed graphs defined by Sakurai et.al [35, Definition 3.6] is same
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as a modification of our Ricci curvature on directed graphs. More
precisely, since the Laplacian A [35, Definition 3.6] is self-adjoint and
non-positive definite operator ([35, Proposition. 2.4]) and the measure

appears in their definition can be calculated as

/Vfdu; (I + A f(2)

[35, Lemma 3.1], we can accomplish the similar proof as Proposi-
tion 4.1.

5. CONNECTIONS OF OUR RICCI CURVATURE WITH ANALYTIC OR
GEOMETRIC PROPERTIES

5.1. Eigenvalue of the submodular hypergraph Laplacian. We
call ;1 € Ry an eigenvalue of £ if there exists f € RY satisfying £°f =
wf. We can prove that the eigenvalue is bounded by the minimum of

the coarse Ricel curvature from below.

Theorem 5.1. Let i be an eigenvalue of L. Then the estimate k <
holds.

Proof. Since p is an eigenvalue of £, there exists f € RY such that
L0f = uf. By multiplying some constant if necessary and Lemma 2.1,
we may assume f € Lip. (V). Moreover, without loss of generality, we
may assume that f(z)/d, — f(y)/d, = d(z,y) holds for some z,y € V.
By Lemma 3.12 and Theorem 3.13, the estimates hold:

d(z,y) ™" ((L7F,02) — (L2f,4,))

<
(f(ﬂj fy)_
d, 4, ) "

k < K(z,y)

g

Remark 5.2. The same conclusion of Theorem 5.1 is proven if inf ., k(z,y) <
k for suitable settings(infinite hypergraphs, submodular transformation
etc.).

5.2. Gradient estimate of the heat flow. Next we prove a relation
between a lower bound of our Ricci curvature and a gradient estimate
of the heat flow.
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Theorem 5.3. Let kg € R. Assume that the inequality Kk > ko holds.
Then any x,y € V, f € Lip. (V) and t > 0, the following inequality
holds:

—tL —tL

Proof. Let A > 0. The definitions of KD, and k) give

If(@)  If)
d, d,

< KDx(z,y) < (1 — ry)d(z,y),

which implies that (1 — )~ Jyf € Lip,, (V). In the similar calculation

with (1) of Lemma 2.3, we have

szl;(:c) - in/(y) — (1= k) (<JA (1{”/;) ,5x> — <J)\ (fl”,;) ,6y>>

< (1= ky)%d(z,y).

Repeating the similar calculation implies that (J{f,d,) — (JYf,d,) <
(1 — ka)"d(z,y) holds for any n € NU {0}. Therefore, by (2.9) and
Lemma 3.15, we have

e f(x) e fly) /] it/
1)Ly ) o)

< Timinf(1 — e /A
_hrg\lilonf(l k)Y Nd(z, y)

< liminf e~ 2 ARG
< lim inf e™ (z,9)

= e "d(z,y) < e d(x,y).

Here the second inequality follows from the inequality (1 4+ z)! < e**

for any |z| < 1 and ¢t > 0. O

Remark 5.4. The same conclusion of Theorem 5.3 is proven if inf,., ®(z,y) <
k for suitable settings(infinite hypergraphs, submodular transformation
etc.).

5.3. Bonnet-Myers diameter bound under positive Ricci cur-
vature. We prove a geometric consequence (Bonnet-Myers diameter
bound) under the Ricci curvature being positive. The following gives
a generalization of [24, Theorem 4.1] and [34, Proposition 23] to the
case of hypergraphs.
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Theorem 5.5 (Bonnet-Myers diameter bound). Assume that k > kg >
0 holds. Then the following holds:

(5.1) diam(H) < 2k,

Proof. Let z,y € V be two distinct vertices which satisfy d(z,y) =
diam(H). By Lemma 3.12 and Theorem 3.13, there exists f € Lip,, (V)
with (f,d, — d,) = d(z,y) such that x(z,y) < d(z,y)~* (LYf, 0, — 0,).
By (3.2), the estimate |£°f(z)| < d, holds for any z € V. By the

assumption, the following inequalities hold:

0 < ro <k <r(w,y) <d(z,y) " (Lf,8, — &)
< 2d(z,y)"' = 2diam(H) .

g

Remark 5.6. The same conclusion of Theorem 5.5 is proven if inf,, ®(z,y) <

k for suitable settings(submodular transformation etc.).

The second author et.al [22, Theorem 1.1] proved Cheng’s maximal
diameter theorem, which means that if the equality of (5.1) holds, then
there exists a pair of vertices =,y with d(z,y) = diam(H) such that all

points on a geodesic from x to y.

6. EXAMPLES

In this section, we calculate the values of our curvature for several
hypergraphs. Let H = (V, E,w) be a weighted undirected hypergraph.

The key formula for calculations is Moreau’s theorem (2.8).

Example 6.1. We consider the case where V := {x,y, 2}, E := {zy, yz, zz, xyz},
and w(e) := 1 for any e € E. We calculate the coarse Ricci curvature
K(z,y)
First we calculate the A-nonlinear Kantrovich difference KD, (z,y)
for a sufficiently small A > 0. Let f € LipL (V). We set the values
f(z) =: 3a, f(y) =: 38, and f(z) =: 3y. In the similar argument as
the proof of Proposition 3.4, we may assume that § = 0. We divide
our argument into the four cases: (1) a >~y >0, (2) v > a > 0, (3)
v=0,4)y=a, (5) a>0>1.
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We set g := J, f. Moreover we divide the cases for the values of g. We
remark that o,y < 1 holds since f € Lip, (V). Since g = Jyf — f as
A — 0 due to (2.10), we write g(z) = 3a+3a, g(y) = 3b, g(z) = 37+3c,
where |a|, |b] and |c| are sufficiently small. We define F': RV — R as

Flg) = o517 — 9>+ QD).

(1) @« > v > 0. Since g = Jyf is closed to f, we may assume o + a >

v4c¢ > b. Then the normalized Laplacian £ of g is uniquely determined
and the following hold:

b:—try(Dilg):a—i—a_b? b;:rz(Dilg):a_‘_a_fy_C? bg—/rz<D71g):’7+C_b7
bl (D7'g)=a+a—b.

TYZ

Hence, we have

1

1
F(g)—2>\ (3a2+362+3c2)+§(2(a+a—b)2+(7+c—b)2+(a+a—7—c)2).

Let r := A~! > 0 be sufficiently large. Since Jyf is a critical point for
F, 0,F = 0,F = 0.F = 0, which is equivalent to

3(1+7) -2 -1 a —3a + 7
-2 31+4+r -1 bl =1 22+~
-1 -1 24 3r & o —29r

This can be solved and we see that (a,b,c)" is equal to

1
9r(1+7)(3r +5)
3(1+7)(2+3r)—1 224+ 3r)+1 2+3(1+r) —3a+ 7
2(2+3r) + 1 31+7r)(2+43r)—1 3(147r)+2 200+
2+3(1+7) 3(1+r)+2 9(1+7r)>—4 a—29r

Since the inner product (Jyf,d, —J,) is represented as o + a — b, we

have

3ar < 3r
3r+5 " 3r+5

Here the last inequality follows from o < 1 and the equality is attained

(If,6p—0y) =a+a—b=

when oo = 1.
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(2) v > a > 0. By a similar argument as above, we may assume y+c¢ >
a+a > b. Then the following holds:

b;—y(D_lg):a_Fa_b? b;—z(D_lg):ry—i_c_O‘_a? b;—z<D_lg):’7+C_b7
by,.(D™'g) =7 +c—b,

TYZ

this implies

1 1
F(g):5(3a2+362+302)+§((a+a—b)2+2(’y+c—b)2+(fy—l—c—a—a)Q).

From 0,F = 0,F = 0.F = 0, we obtain

3r+2 —1 —1 a —2a+ 7y
-1 3(1+r -2 bl =1 a+2y
-1 -2 3(1+7) c a— 3y
This equation can also be solved and we see that (a,b,c)" is equal to
1
9r(1+r)(3r +5)
91 +7r)>—4 3(1+7)+2 3(1+7)+2 —2a+7
31+7r)+2 31+r)(2+3r)—1 22+3r)+1 a4 2y

3(L+7)+2 22+3r)+1 31+r)(2+43r)—1 a— 3y
Then, we have

r(a(3r+5) —7)
(14+7r)3r+5)

(3) v = 0. By the symmetry of H and f, we have b = ¢, which implies

(N[, 0, =0y =a+a—b=

b;cry(Dilg) =a+a-— b7 b;—trz(Dilg> =a+a-— b7 bgjz(Dilg> = 07
bl (D7'g)=a+a—b.

TYZ

Thus we have

1 3
F(g) = o\ (3a® + 6b°) + la+a— b)>.

The identities 9, F = 0,F = 0 give

() () ()= ()00

Hence, we have

2ar < 2r
2r+3 - 2r+3°

(Inf, 0, —0y) =a+a—b=
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The last inequality follows from a < 1 and the identity is attained
when o = 1.

(4) v = . We have a = ¢ similarly as the above, which implies

b, (D7'g) =a+a—b, b (D 'g)=0, by (D'g) =a+a—Db,
bl (D7'g) =a+a—b.

TYZ

Thus we have

1 3
F — 2 2 e o 2.
(9) —2)\(6a +3b)+2(a+a b)

The equations 0,F = O,F" = 0 can be written as

(2 )0 =6)-5()

Consequently, we have

2ar < 2r
2r+3 ~ 2r+3

The last inequality follows from o < 1 and the identity is attained

(Inf, 00 —0y) =a+a—b=

when o = 1.
(5) a > 0> 7. Since f € Lip,(V), a —v < 1 and a < 1. Then the
following holds:

T (-1 T (-1 T (p-1.3 _
b, (D"g)=a+a—b b, (D g)=a+a—-v—c b, (D g)=b—-7y—c,
by, (D7'g) =a+a—v-c

TYz

which implies

1 1
F(g):ﬁ(3a2+362+3c2)+§((oz+a—b)2—|—2(a+a—7—c)2+(b—7—c)2).

In the same manner as before, we obtain

31+7r) -1 -2 a —3a + 2y
-2 -1 3(1+7r) c 2a — 3y

whici implies that (a b ¢)" is equal to
31+7r)Br+2)—1 3(1+r)+2 22+3r)+1

3(1+7)+2 9(1+7)%—4 3(1+7)+2
2(2 4 3r) + 1 3(1+r)+2 3(1+7)(2+3r)—1

1
9r(1+7r)(3r +5)
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Finally we have

(N[, 0, =0y =a+a—b=

1+ )37 +5) {a@r+4)+7}.

By comparing the values of (J,f,d, —d,) for the above all cases,
we can show that the values for the case (1) are less than or equal to
2r/(2r + 3), which is attained for the cases (3) and (4) with o = 1.
Thus, it suffices to compare the cases (2), (3), and (5). We can calculate
the differences as

2r r(a(Br+5)—v) _ r(2(1 —a)r+2—-3a)

3)—(2) = — > >0, and
(8)-@) 2r+3  (1+7r)(3r+5) — (2r+3)(1+7) =5 an
2r r
3)— () = — 3r+4
B) =)= 5 3~ TrnEr g B TU
- 2r  ar r{2(1 —a)r +2 — 3a} >0,
“2r+3 147 2r+3)(1+7) -
Here the most right hand sides are non-negative, since r = \71 is

sufficiently large and 1 > v > « in the case (2) and a < 1, v < 0 in
the case (5). Thus, we have
2171
KD = —\
A(xvy) o\-1 +3

Consequently, the coarse Ricci curvature x(x,y) exists and becomes

Remark 6.2. We conjecture that if one consider the hypergraph H =
(V,E,w) such that |V| =n, E =2V \ {0,V} and w(e) = 1 for any
e € F, then the A-nonlinear Kantorovich potential f satisfies that for
xeV, f(r)=d, and f(2) =0 (2 # z).

We conjecture that the following formula holds, which enables us to
easily calculate our curvatures. The similar formula was proved in the

case of usual graphs [32, Theorem 2.1].

Conjecture 6.3. For any two distinct vertecices x and y, the following
holds:

inf {<£Of, 0y — (5y> ; f € Lip}U(V), <f7 0p — 6y> = d(xvy)}
d(z,y)

/i(xay) =
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Example 6.4. We consider the case where V' = {x,y,z}, E = {e =
{z,y,2}}, and w, = 1. We consider f : V — R such that f(z) = 1,
fly) = 0, f(z) = 0. Then, we have LOf(x) = 1, LOf(y) = —1/2,
L0f(z) = —1/2. Lemma 3.12 gives

Actually we can prove that x(x,y) = 3/2.

Example 6.5 (complete hypergraph). We consider the case where V =
{vi,v9, ..., v}, E =2V \ {{v1},...,{v.},0}, and w, = 1. Then we
have |[E| =2"—n—1and d, =2" ' —1=:d for any x € V. We count
the number of hyperedges e € E including v; and ve. The number of
such e satisfying |e| = k is (Z:g)

Let f: V — R be the function satisfying f(v1) = d and f(v;) = 0
(i =2,...,n). Then, we have L°f(v;) = d. Moreover, for e including
vy and vy such that #e = k, we may choose §,, — (k—1)"1 Y

V1,V € € as b,. Thus, we have
"1 (n-2 on=1 1
0 _ __z -
£ ) = kZQk;—l(k;—Q) n—1 "

Thus Lemma 3.12 gives

1>2,v;€e 61}1‘ ’

n
n—1

(Lf(v1) — L0 f(v2)) =

S

k(vy,vg) <

From this observation, we conjecture that the curvature of the complete
hypergraph H with |V| =n is n/(n — 1). This prediction agrees with

calculation in Example 6.1.

Example 6.6 (Negatively curved hypergraph). We consider 9 points hy-

pergrapha V= {wbw%x7y727U1,U27U3>U4}7 E = {60 = {x7yvz}7€1 -

{wi,wa, 2}, 60 = {y,ur,us},e3 = {2,u3,us}t}, and w,, = 1 for i =
0,1,2,3. Let f: V — R be a function defined by f(w;) = f(wy) =
fx) =2, fly) = f(z) = 0, and f(u;) = —1 for j = 1,2,3,4.

Then f is a weighted 1-Lipschitz function. By using a calculation like
above, we have L°f(z) — L°f(y) = —1/2. Thus Lemma 3.12 implies
k(x,y) < —1/4.
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7. EXISTENCE OF THE COARSE RICCI CURVATURE ON
HYPERGRAPHS

The purpose of this section is to prove Theorem 3.13, i.e. the follow-

ing theorem.

Theorem 7.1. The coarse Ricci curvature

1 KD (2o, Yo)
7.1 =lim—|(1—- ——=
71) o) =ty (1- <

along with xo,yo € V' on a hypergraph H exists, where KDy (xq,yo) is

the A-nonlinear Kantorovich difference, given in Definition 3.1.

Let us consider a generalized hypergraph H = (V, E, w, d) consisting
of a finite set V', a set E of nonempty subsets of V', a function w :
E — R.y, and a function d : V — R.,. For a while, the condition
dy = ) .5, We is not imposed. For simplicity, we set |V| := n and
V :={1,2,...,n}. The vector space R" of real valued functions on V'
can be expressed as the disjoint union

R"= | | U,
pPERR

where R,,, corresponding to the set of orderings, is defined by
R,={p=(0,7) €6, x{0,1}" " |o(i) <o(i+1)if 7(i) = 0},
and for p = (o0, 7) € R, the component U, is defined by
oty = Fotisn if 7(1) = 0 }
foti) < fotirry if 7(1) = 1
Hence two vectors f = (f1,...,fn) "9 = (g1,...,9,)" € R™ belong to

Up: {(fla-'wfn)—r € R"

the same component U, for some p € R, if and only if the elements of
f and g are in the same order, that is, sgn(f, — f,) = sgn(g, — g,) for
any z,y € V with sgn : R — {—1,0, 1} given by

1 (r>0),
sgn(r) =4 0 (r=0),
-1 (r<0).

We notice that the dimension of U, is 1+ 31" 7(i) for p = (0,7) € R,.
Let K := Q({we}eer, {ds}zev) C R be the subfield of R generated by

{we}eer and {d, },cv, and consider the field K (z) of rational functions
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in z with coefficients in K. Moreover, let G = G, = Gg, : R" — oR(2)"
be the (multi-valued) function defined by

(7.2) Gf=G.f=D+=zL)(f) (feR),

which defines G : R — 28" for any A\ > 0, where D = diag(d, ..., d,)
and L: R™ — 2% is the hypergraph Laplacian given in (2.3).

7.1. Piecewise linear inverse. Let H be a generalized hypergraph.

We will show the following proposition.

Proposition 7.2. For any p € R, there exists a symmetric matrix
N, . € M,(K(z)) such that N, » has non-negative entries for any A > 0
and (N, o Gy)(f) = f holds for any f € U,.

In order to prove the proposition, let us prepare the following nota-

tions.

e For each ¢ € F, put ff := max,e. f, and f := minge, f, with
f=f1,..., fa)" €R",

e For each p € Ry, let V' = Urez,I be a unique decomposition
of V.= {1,...,n} such that each f = (f1,...,f,)" € U, sat-
isfies f, = f, if and only if z,y € I for some I € Z,. The
decomposition is independent of the choice of f € U,.

e For each e € F and p € R, let Iejfp C V be the set of points
x € V with f, = fF for f € U, which is also independent of the
choice of f € U,. In particular, we have ]gfp € Z,. Moreover,
either I NI-, =0 oreCIf, =17, holds.

e For each e € IV and p € R, set

M., = Conv({Syy ; x €en I;rp,y cenl,,}),

where S, € M, (Q) is a symmetric matrix, given by

(8
(=

Smy = ]x:p - Izy - Iyw + ]yy =
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with Ly = (02(i) - 6y(J))1<; j<n € Mn(Q) (here Sy = 0if 2 =

y). In particular, each element of M, , is symmetric.

Now we notice that the hypergraph Laplacian L: R™ — 28" defined in

(2.3) is expressed as

(7.3)
L(f) = weLe(f) with Lo(f) := {be(b] f) ; b. € argmax,cz b f},

eck

where B, is given in (2.4). Here the sum of subsets A, B C R" stands
for the Minkowski sum: A+ B :={a+b€R"; a € A/b € B}, and
the multiplication of A C R"™ by a scalar ¢ € R means cA := {ca €
R"™ ; a € A}. Hence the restriction of L. on each component U, is

calculated as

(7.4)
Lelu,(f) = (f& = f2)Conv({d, =0y ; x cenl ycenl })=M.,f.

If 17, = I, then one has e C [, = I, and L.(f) = M,,f = 0 for

e,p?
any f € U,.

Proof of Proposition 7.2. We divide the proof into three steps.

Step 1 Assume that p € R, satisfies 7, = {{1,2,...,n}}, which means
that f = (f1,...,fa)" € U, satisfies f, = f, for any z,y € V. In
this case, one has [;p = I, and thus Lely, = M., = 0 for any
e € E. Therefore, GZ|UP =D+ zZeeE weM,, = D is a single matrix
and N,, = D! is a symmetric matrix with N, , = D~! having non-
negative entries for any A > 0.

Step 2 Assume that p € R, satisfies 7, = {{1},{2},...,{n}}, which
means that f = (f1,...,f,)" € U, satisfies f, # f, for any = # y €
V. In this case, one has #If = #I7, = 1 and thus L.y, = M.,
is a single-valued function for any e € E. Moreover, G|y, = D +
2 eepWeMe, is a symmetric matrix such that G|y, has positive
diagonal entries and non-negative off-diagonal entries for any A > 0,

and it satisfies

1 dy

(D + szeM&p) : =
1

eckE



34 M.IKEDA, Y.KITABEPPU, Y. TAKAI, AND T.UEHARA

Hence it is known (see e.g. [45, Theorem 6.34]) that there exists an
inverse matrix N,. = (D + 23 pweMe,)"! € M,(K(z)), which is
symmetric, and N, has non-negative entries for any A > 0.

Step 3 We prove the proposition by induction on n. The proposition for
the case n = 1 can be proved from Step 1 (or Step 2). Assume that the
proposition holds for n < m, and consider the case n =m. If p € R,,
satisfies Z, = {{1,2,...,m}} or Z, = {{1},{2},...,{m}}, then the
proposition holds from Step 1 or Step 2. Otherwise, by exchanging the
indices if necessary, one may assume that there exists 1 < £ < m such

that {k,...,m} € Z,, that is, f = (f1,..., )" € U, satisfies f, # f,

forany 1 <x<k—1land k<y<mand fy = fry1 = - = fn. Now
we consider contractions of a function f = (fi,..., fn)| € R™, given
by
fi fi
f= eRF,  Fi=| ° € R*,
fr1 fr1
> oi fo Ji

and also consider a contraction of a matrix A = (a;;)1<ij<m € Mn(R),

given by

m
a1 T A1k—1 Zj:k Q15

A= : h : . € My(R).
Qr—11 T Ag—1k—1 Ej:k Qp—1j

Dotk i v D Gike1 Dy G

One may also consider contractions of a function in K'(z)™ or in R(z)™,
and a matrix in M,,(K(z)) or in M,,(R(2)) in the same manner. Note
that if f € U,, that is, fi = -+ = fu, then (Af) = Af. Let p € Ry, be
an index given by the relation U; = {fE R*; feU,} CR"

Then it is seen that there exists a contraction H = (V, E, @, d) of

e~ ——
~

~7 w7
the hypergraph H with V = {1,...,k} such that Gp.(f) = Gi.(f)



COARSE RICCI CURVATURE ON HYPERGRAPHS 35

holds for any f € U,. Indeed, let us prepare the following notations:

vt 27t im0

T:E—sE:={¢;ecE}, nle)=c¢:={r(x);zee}CV,
{E . E — R>0, @’g = ZEEW_I(E) We,
_ _ d, k
d:V —Ryg, d,:= " (v < k)
Zy:kdy ($ 2 k)

Since each matrix S;, with o < y satisfies

Swy (x <y <k)
Smy = Sxk (33' <k< y)
0 (k<z<y),

—~—

M., = {M ; M € M, ,} satisfies /T/l\:p = Mg for any e € E. As
D= diag(gl, o c?k), we have

Gra(f) = (D+2) jweMe,)(f) = (D +2) @:Me;)(f) = G .(])
ecE ecE
for any f € U,.

By our assumption of the induction, there exists a symmetric matrix
N;. = (cij) € My(K(2)) such that N;, has non-negative entries for
any A > 0 and (Nj) o GFM)(J?) — f holds for any f € U,. Since
Gua(f) = Gualf) = Gp\(f), we have (N,x 0 Gua)(f) = f for any
f €U,, where

i - Gk o Cig
Noz=1| k1 -+ e - ke | € Mn(K(2))
Ckr -+ Ckk " Ckk

is also a symmetric matrix with N, having non-negative entires for

A > 0. The proposition is established. Il

7.2. Linear programming. In order to prove Theorem 7.1, we pre-

pare the following lemma.
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Lemma 7.3. Let H be a generalized hypergraph. For any p € R,,
there exist vectors vi(z),...,vp(z) € K(2)" such that for any A > 0,

the closure of the image GA(U,) is expressed as

GA(U,) = ConvConeg ({v1(N), ..., vx(N)}) == ZRzo (N,

where G, is given in (7.2).

Proof. We use the notations in the proof of Proposition 7.2. For each
element f = (f1,...,f.)" € U, let g > > glf be given by
{fi,--, fu} = {g{,...,glf} and put b/ = glf—glfJr1 for1 <i<l-1
and hlf = glf , which gives a one-to-one correspondence between the
sets U, and {(hy,..., )" 5 hy > 0,...,h_1 > 0,y € R}. Since
fi=gl = Zé:k h;»c for some 1 < k <1, (7.3) and (7.4) show that

sz:Df—i—sze(fj—f;)Conv({éx—éy; :ceeﬂf;rp, ycenl,,})

ecE

l

h;-c {m—{—szeConv({(Sx—(Sy; erﬂI;p, yEeﬂI;p})}

1 Jedj

j
for f € U,, where J. = {kT,k* +1,...,k— =1} C {1,...,1 — 1} is
given by f& =g/, and n; = (mj1,...,m)" € Q(d)" is given by
S di (fi = gjf)
! 0 (fi< gjf)

Note that the definitions of J. and 7; are independent of the choice of

f €U, Thus G5(U,) C R" is the set of points

(7.5)
!
Zhj {nj—l—)\ZweConv({éx—éy; xeeﬂf;rp, yEeﬂIe’p})},
Jj=1 Jedj

where (hy,..., ;)" varies over {hy > 0,...,h_; > 0,k € R}. More-

over we also notice that

e the multiplication of a convex set Conv({w;}) by a scalar ¢ € R
is also a convex set: ¢- Conv({u;}) = Conv({c- u;}),
e the Minkowski sum of convex sets Conv({v;}) and Conv({v;}) is

also a convex set: Conv({u;})+ Conv({v;}) = Conv({u; +v;}),
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e the multiplication of a convex set Conv({u;}) by the (non-
negative) real numbers R (R>() is a convex cone: RConv({w;}) =
ConvCone({u; } U{—u;}) (R>oConv({u;}) = ConvCone({u;})),

and

e the Minkowski sum of convex cones ConvCone({w; }) and ConvCone({v;})

is a convex cone: ConvCone({u;})+ConvCone({v,}) = Conv({w; }U
{v;}).

Hence the proposition follows from the expression (7.5). u

From now on, we assume that H is a hypergraph. As G,f = (I +
AL) o D(f), one has

(7.6) Noa(g) = D" o Jx(g)

for g € G5(U,). Since Jy is a (single-valued) continuous function by
Lemma 2.2, the relation (7.6) holds for ¢ € G(U,). Here it follows
from (the proof of) Proposition 3.4 that the A-nonlinear Kantorovich

difference KD, (zo,yo) of zo € V and yo € V is given by
KD (7o, y0) = sup {(Jrg, 62y — dy,) ; 9 € F'},
where F' is the set of functions g € R" satisfying the conditions
(a) 0 < go < dp-diam(H) (z € V), (b) (9,02 —0y) < d(x,y) (z,y€V).

Since N, and D are symmetric matrices and {G»(U,)},er covers the

whole space R", we have

(7.7)
KD (o, yo) = max sup {(J,\g,ém —0y) 5 g€ FN G,\(UP)}
pPER

n

= max sup {(g,D o Npa(6z0 —9y)) 5 g€ FN G,\(Up)} :

pERR

Now we consider an order < on K (z), given so that p(z), ¢(z) € K(z)
satisfy p(z) < q(2) if and only if ¢(2) — p(2) = 2*r(2) for some k € Z
and r(z) € K(z) with 0 < r(0) < co. In other words, p(z),¢(z) € K(z)
satisfy p(z) < q(z) if and only if there exists Ag > 0 such that p(\) <
g(A) for any A € R with 0 < A < XAg. Then < becomes a total order on
K(z) and thus (K(z), <) is an ordered field.
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With the notation in Lemma 7.3, we consider the convex cone

W, := ConvConeg ) ({vi(2), ..., v(2)}) = ZK(Z)ZO-’UZ'(Z) C K(2)".

i=1
It should be noted that some of the concepts of linear programming
over the real numbers, such as Farkas-Minkowski-Weyl theorem and
the simplex method, can be easily extended to that over an arbitrary
ordered field (see [19,20]). Farkas-Minkowski-Weyl theorem says that

there exist vectors wq(2), ..., wn(z) € K(z)" such that the convex cone

W, is expressed as

={9(2) € K(2)"; (9(2),wi(2)) <0 (1 <i <m)}.
In viewing (7.7), we consider the linear program LP(z):

maximize (g(z), D o N, (6, — y0))

subject to  (a) 0 < g(2), < d,-diam(H) (z€V)
(b) (9(2),0: —0y) < d(z,y) (z,y€V)
(©) {9(2),wi(2)) <0 (1 <i<m).

As the range of g(z) is bounded, the simplex method guarantees that
there exists an optimal solution ¢()(z) € K(z)" to the linear pro-
gram LP(z) with optimal value h(?)(z) € K (z). Moreover the following
proposition holds (see [19], 2.3, [20, Corollary 2]).

Proposition 7.4. Under the above notations, there ewists A\, € Ryg
such that for every 0 < XA < \,, g®W(\) € K(\)" is an optimal solution
to the linear program LP(X) with optimal value h?)(\) € K()).

Proof of Theorem 7.1. As #R,, < 0o, h*(z) := max{h\’)(2) ; p € R,}
and A\, := min{\, ; p € R, } satisfy h*(2) € K(z) and A\, > 0. Thanks
to (7.7) and Proposition 7.4, the Kantorovich difference KD, (g, yo) is
expressed as KDy (zg,y0) = h*(\) for any 0 < A < A.. Since h*(z) is
a rational function of z, the limit in (7.1) exists, which establishes the

theorem. 0
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8. MORE GENERAL SETTINGS

Our arguments so far are applicable to more general settings for sub-
modular transformations. Here, submodular transformation is a vector
valued set function consisting of submodular functions. In this section,
we review about submodular functions, submodular transformations,
and these Laplacian and show some examples. We also give a sufficient
condition for a submodular transformation to be able to straightfor-
wardly generalize the curvature notions in Section 3 and theorems in

Section 5. For more details about submodular transformations, see [44].

8.1. Submodular function. Let V' be a nonempty finite set. A func-
tion F': 2¥ — R is a submodular function if for any S,7 C V, F

satisfies
F(S)+ F(T)>F(SUT)+ F(SNT).

An element v € V is relevant in F: 2 — R if thereis a S C V
such that F(S) # F(S U {v}). We say that v is irrelevant in F' if
v is not relevant in F. We define the support supp(F') of F' as the
set of elements which are relevant in F. A set function F': 2 — R
is symmetric if F'(S) = F(V\S) holds for any S. We say that F' is
normalized if FI(V') = 0.

Example 8.1. Let H = (V, E) be a hypergraph, and e € E a hyper-
edge. Then, the cut function F, of e defined as follows is a submodular

function:

F.(S) = 1 ifenS#0and en (V\S) # 0,

0 otherwise.

It is easy to show that a vertex v € V is relevant in F, if and only if

v € e. Furthermore, F, is symmetric and normalized.

For a submodular function F': 2V — R, we define

P(F) := {g eRY ;Zg(x) < F(S) for any S C V} and

€S

B(F) := {g eP(F);Y glx)= F(V)}

zeV
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called the submodular polyhedron and the base polytope respectively.
Then, it is known that B(F) is a bounded polytope.

The Lovész extension f: RV — R of a submodular function F': 2"V —
R is defined by

= bT.
f(g) Jnax b g

It is known that f(xs) = F(S) for any S C V. Here, yg is the
characteristic function of S. In particular, f is indeed an extension
of F. It is also known that the Lovasz extension f of a submodular
function F' is convex ([5, Proposition3.6]).

For the Lovasz extension f of a submodular function F'; we set

0f(g) = angma,cp b g

Then, it is known that df(g) is the sub-differential of f at g.

8.2. Submodular transformation and submodular Laplacian.
Let V and E be nonempty finite sets. A function F: 2" — R¥; S s
F(S) = (F.(5))eek is called a submodular transformation if each F is
a submodular function. A submodular transformation F' is symmetric
(resp. normalized) if any F, is symmetric (resp. normalized).

The Lovész extension f: RY — R¥ of a submodular transformation
F is defined by f = (f.) such that f, is the Lovész extension of F.

For a submodular transformation F: RY — R¥ we consider a weight
function w: E — R.g. Then, we call the quadruple (V. E, F,w) a
weighted submodular transformation. We stand for the quadruple as
F. We define the degree d, for x € V by d, :=>_
the volume vol(S) of S C V by vol(S) := > ¢

and y is adjacent, denoted by x ~ y, if there exists an element ¢ € FE

e€ Eszesupp(F.) We and

dy. Forx,y e V, x

such that x,y € supp(F,). By this relation, we can define the distance
function d: V x V' — R and connectivity of I as in Section 2.1.
We define the degree matrix D := diag(d,).cy € RV*V. We remark
that if F'is connected, D is invertible.
Let FF = (V,E,F,w) be a submodular transformation. Then, we
define the submodular Laplacian L: RY — 28" by

L(g) := {Z w(e)beb, g; be € 8]‘;(9)} CR".

ecE
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We call £ := L o D! the normalized Laplacian. We set the inner
product (f,g) := f'D71g and consider (R",{-,-)) as a Hilbert space.
Then, by a similar argument as in [17, Lemma 14, Lemma 15|, the

following holds:

Proposition 8.2. The normalized Laplacian L is a mazimal monotone

operator on the Hilbert space (RY (-, -)).

More strongly, the normalized Laplacian £ is the sub-differential of
the convex function Q: RV — R defined by
Q) = 5 3" wefi(a)”
c€E
where g = D7 'g with g € RY.

By Proposition 8.2, we can define the resolvent J,, the canonical
restriction Ly, and the heat semigroup {h;}:>¢ for the Laplacian L.
Then, the straight extension of Lemma 2.1 holds.

We define m € RV as 7(x) = d,/vol(V). Then, the following holds:

Lemma 8.3 ([44, Lemma 3.1]). We assume that F' is normalized, i.e.,
F.(V)=0 for any e € E. Then, L(w) =0 holds.

By Lemma 8.3, the similar lemmas as Lemma 2.1 and Lemma 2.3
hold for the normalized submodular Laplacian £. This implies that
by similar arguments, we can obtain the straightforward extensions of
definitions and theorems in Section 3 and Section 5 for any normal-
ized submodular transformation F with the normalized submodular

Laplacian L for F.

8.3. Examples. In [44], Yoshida gave many examples of submodular
transformations such as undirected graphs (Example 1.1, 1.2, and 1.4),
directed graphs (Example 1.5), hypergraphs (Example 1.6), submodu-
lar hypergraphs (Example 1.7), mutual information (Example 1.8), and

directed information (Example 1.9). We here give another example:

Example 8.4 (directed hypergraph). A weighted directed hypergraph
H is defined as the triple H = (V, E,w) of a set of vertices V, a set of
hyperarcs £ C 2 x 2V, and a weight function w: E — R.,. Here, a

hyperarc e € F is an ordered pair (., h.) of a set of tails ¢, and a set of
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heads h.. If the identities |t.| = |he| = 1 hold for any e € E, then H is
a usual directed graph. If £, = h, holds for any e € E, then H can be
regarded as an undirected hypergraph!. Hence, a directed hypergraph
is a generalization of directed graphs and hypergraphs.

We define the set function F.: 2¥ — R as the cut function for e =
(te, he), 1€,

F(S) = 1 if SNt. # 0 and (V\S)Nh # 0,
0 otherwise.

Then, it is easy to show that F, is submodular. Hence, the quadruple
F = (V,E,F = (F.).,w) becomes a submodular transformation. We
remark that F'is normalized and not symmetric.

For this submodular transformation, by a simple calculation from
definition of B(F.), we have

(8.1) B(F.) = Conv({6, — dy;z € te,y € h.} U{0}).

The base polytope for hypergraph (2.4) is a realization of this for ¢, =
he. By the representation (8.1), the Lovész extension f, of F, is written

fe(g) = max{max{g(z) — g(y);x € t.,y € he},0}.

We note that for all examples introduced in this subsection, F is
normalized, i.e., F(V) = 0. Hence, the similar definitions of coarse
Ricci curvatures for F' as in Section 3 and the similar theorems as in
Section 5 hold.

9. CONCLUDING REMARK

Comparing properties of curvatures for the examples in this paper
with those of other curvatures introduced by [12,35] is an interesting
problem. The definitions of Ricci curvature in these two papers deeply
related to random walks. For the authors, the canonical random walks
on hypergraphs are not clear. Of course, one can define the random
walk as in [12], which seems related to the clique expansion. It is
malization seems to be strange. However, from the viewpoint of sub-

modular transformation, this looks natural. Indeed, under the assumption t. = h,,

the cut function is same as that of undirected hypergraphs
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unclear for the authors that the clique expansion of a hypergraph reflect

the characteristics of its own hypergraph structure. At least, because

the hypergraph Laplacian is multivalued and nonlinear, there was no

canonical way to define the transition probabilities of random walkers

using it. For these reasons, still we do not know any essential relation

between theirs and ours. We leave it for a future work.

No data associate for the submission
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