
COARSE RICCI CURVATURE ON HYPERGRAPHS
ASSOCIATED WITH NONLINEAR KANTOROVICH

DIFFERENCE

MASAHIRO IKEDA, YU KITABEPPU, YUUKI TAKAI,

AND TAKATO UEHARA

Abstract. A hypergraph is a generalization of graphs to be able

to represent higher-order relations among entities. Since there has

been no canonical notion of random walks on hypergraphs, one

cannot naturally extend the notions of coarse Ricci curvature of

graphs to hypergraphs. In the present paper, we introduce a new

notion of Ricci curvature on hypergraphs associated with a nonlin-

ear Kantorovich difference, which is defined through the resolvent

of the nonlinear Laplacian. We prove that our notion is well-defined

regardless of the nonlinearity of the Laplacian via linear program-

ming and gives a generalization of Lin-Lu-Yau’s coarse Ricci cur-

vature on graphs. Under suitable assumptions of our curvature

we obtain a lower bound of nonzero eigenvalues of the Laplacian,

a gradient estimate of the heat flow, and a diameter bound of

Bonnet-Myers type.

1. Introduction

The Ricci curvature of Riemannian manifolds plays an important

role to analyze geometric and analytic properties of the manifolds. In

the setting of Riemannian manifolds, though the Ricci tensor needs C2

smooth structure on them, lower bound condition of the Ricci curvature

can be described by only the metric and measure. More precisely, von

Renesse et.al. [43, Section 1] proved that for any smooth, complete,
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connected Riemannian manifold (M, g) endowed with the Riemannian

distance dM , a volume measure volg on it, the Ricci curvature Ricx(v, v)

for x ∈ M and v ∈ TxM , and any K ∈ R, the following conditions (1)-

(5) are equivalent ([43, Theorems 1.1 and 1.3]):

(1) (Lower bound of Ricci curvature): Ricx(v, v) ≥ K|v|2 for any

x ∈ M and v ∈ TxM .

(2) (Convexity of relative entropy): The relative entropy defined in

[43, P.924] is the displacement K-convex on the L2-Wasserstein

space (P2(M),W2) defined in [43, P.923–924] (see [10]).

(3) (Transportation inequality): For the normalized measure re-

stricted to the ball of radius r centered at x ∈ M

mr,x(A) :=
volg(Br(x) ∩ A)

volg(Br(x))
, for any Borel A ⊂ M

the following asymptotic estimate holds:

W1(mr,x,mr,y) ≤
(
1− K

2(n+ 2)
r2 + o(r2)

)
dM(x, y), as r → ∞.

(4) (Contraction property of the gradient flow of entropy): For the

gradient flow Φ : R+ × P2(M) → P2(M) with respect to the

entropy,

W2(Φ(t, µ),Φ(t, ν)) ≤ e−KtW2(µ, ν)

holds for any t ≥ 0 and µ, ν ∈ P2(M).

(5) (Gradient estimate of the heat flow): Let ht : L
2(M) → L2(M)

be the heat flow on M . For any f ∈ C∞
c (M), x ∈ M , and t > 0,

the following holds:

|∇htf |2(x) ≤ e−2Ktht|∇f |2(x).

Moreover, the following Bochner inequality (or Bakry-Émery’s curvature-

dimension condition) is also equivalent to (1)-(5) (see [2, 3]):

(6) (Bochner inequality, curvature-dimension condition of Bakry-

Émery type): Let ∆ be the Laplace-Beltrami operator on C∞
c (M).

For any f ∈ C∞
c (M), the following holds:

1

2
∆|∇f |2 ≥ 〈∇∆f,∇f〉+K|∇f |2.
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Based on these relations, the CD (Curvature Dimension) space, which

was introduced by Sturm [39, 40] and Lott-Villani [25, 26] indepen-

dently, is defined by using the convexity of entropy on the L2-Wasserstein

space (P2(M),W2). In the case of finite dimension, as the entropy, not

the relative entropy but the Rényi entropy is used. The CD space is a

metric measure space (not necessarily manifold) whose Ricci curvature

is bounded from below in a synthetic sense. An important point is that

the definition of CD space is described only in terms of measures and

metrics. For the CD space whose dimension is bounded from above,

many important geometric and functional inequalities such as Bishop-

Gromov inequality [26], Poincaré inequality [40] and Brunn-Minkowski

inequality [36] were proved. However the gradient estimate of the heat

flow does not hold for generic CD spaces (see [33]).

After that, the RCD (Riemannian Curvature-Dimension) space was

introduced in [2, 15], which is a CD space equipped with the infini-

tesimal Hilbertianity condition (defined by Gigli [15, Definition 4.9])

that its associated Sobolev space W 1,2 becomes a Hilbert space. On

RCD space, several theorems such as the W2-contraction of the gradi-

ent flow of the relative entropy, the Bochner inequality (Bakry-Émery’s

curvature dimension condition) and the gradient estimate of the heat

flow have been proved and these are known as equivalent conditions

in the setting of manifolds. Many geometric results such as Cheeger-

Gromoll’s splitting theorem [14], Cheng’s maximum diameter theorem

[21], isoperimetric inequalities [8] and so on are also proved and they

are known in the setting of Riemannian manifolds.

Both CD and RCD spaces become geodesic metric spaces and RCD

spaces established a position as geodesic spaces whose Ricci curvature

is bounded from below.

It is quite fundamental how to define a concept of Ricci curvature

on generic metric spaces. As we mentioned above, on geodesic metric

measure spaces, a synthetic notion of ”lower bound of Ricci curva-

ture”, called the curvature-dimension condition, is defined. On the

other hand, there are many different notions of lower bound of Ricci

curvature on discrete spaces. In the case of discrete spaces, several
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definitions whose Ricci curvatures are bounded from below were intro-

duced. However there has not been a canonical definition. For usual

graphs, coarse Ricci curvatures of Ollivier [34] and Lin-Lu-Yau [24] are

related to the above (3) or (4), the curvature dimension condition of

Bakry-Émery type [37] is related to (6), the exponentially curvature-

dimension condition is related to the Li-Yau inequality [6, 30, 31], and

the definitions by Maas [13, 28] and by Bonciocat-Sturm [7] are re-

lated to (2). Although all of these definitions stem from the definitions

or known facts for geodesic spaces, their relations has not been well

understood.

A hypergraph is a generalization of graphs to be able to represent

relations among not only two but also three or more entities. There has

been no crucial canonical definition of random walks on hypergraphs.

Hence one cannot naturally define a notion of curvature on hypergraphs

in Olliver’s manner [34, Definition 3].

In this paper, we introduce a new definition (see Definition 3.10) of a

coarse Ricci curvature on hypergraphs, which is well-defined and gives

an extension of Lin-Lu-Yau’s one on graphs. Our coarse Ricci curvature

is defined through a nonlinear Kantorovich difference (Definition 3.1).

The Kantrovich difference is inspired by the Kantrovich-Rubinstein

duality formula [42, Theorem 5.10] and defined by the resolvent of the

so-called ”submodular hypergraph Laplacian” (see (2.3) and (2.5)).

The notion of this Laplacian was originally introduced by [16, 27, 44].

Following [17], our Laplacian in this paper is a modification of the

definition introduced in [16, 27], and a realization of the submodular

transformation introduced in [44] when the submodular transformation

is a hypergraph (see also Subsection 8.2).

Asoodeh et al [4] introduced a different notion of a Ricci curvature on

hypergraphs by using random walks defined by reducing hypergraphs

to usual graphs with clique expansion.

The hypergraph Laplacian was introduced as meaningful from an

information engineering point of view, and some research has shown

that it can yield good information about hypergraphs. In particular,

in [41], it was experimentally proven (in terms of community extrac-

tion, especially in terms of spectral graph theory) that hypergraphs
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can be extracted for their properties as hypergraphs rather than being

attributed to ordinary graphs obtained by clique and star expansions.

Therefore, we considered that by using this hypergraph Laplacian, the

curvature could be defined with more fruitful information about the

hypergraph. However, because this Laplacian is multivalued and non-

linear, there was no canonical way to define the transition probabilities

of random walkers using it. For these reasons, we considered the Lin-

Lu-Yau definition as a definition using resolvents, and by extending

it with resolvents that can be defined even for nonlinear multivalued

Laplacians, we thought we could define curvature suitable for hyper-

graphs.

Recently other notions of Ricci curvature on (directed) hypergraphs

were introduced in [1, 11,12,23].

As connections of the value of our coarse Ricci curvature, under

similar assumptions of the lower bound of the curvature as Lin-Lu-

Yau type, we can deduce a lower bound of nonzero eigenvalues of the

normalized Laplacian (Theorem 5.1) and a gradient estimate of the

heat flow of L∞ type (Theorem 5.3). Under positive Ricci curuvature,

we prove a diameter bound of Bonnet-Myer’s type (Theorem 5.5). It

should be noted that these properties do not hold for general CD spaces,

which implies that one cannot necessarily handle the nonlinearity of our

Laplacian.

Our arguments for the proofs except for Theorem 3.13 are applicable

to more general settings for submodular transformations [44, Section

3], which are vector valued set functions consisting of submodular func-

tions and includes the settings of directed (hyper) graphs and mutual

information.

The rest of this paper is organized as follows. In Section 2, we recall

several notions of hypergraphs and basic properties of the submodular

hypergraph Laplacian and its resolvent. In Subsection 2.3, we recall

basic notions of the metric measure space. In Subsection 2.4, we recall

the definition of Lin-Lu-Yau’s coarse Ricci curvature on usual graphs

[24]. In Subsection 2.5, we explain the difficulty of extending Lin-Lu-

Yau’s coarse Ricci curvature on graphs to hypergraphs and our idea

to overcome it. In Section 3, we introduce the definitions of nonlinear
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Kantorovich difference and our coarse Ricci curvature on hypergraphs

and prove their properties. In Section 4, we show that in the case of

usual graphs, our Ricci curvature is equal to Lin-Lu-Yau’s. In Section 5,

as connections of our curvature with analytic and geometric properties

of hypergraphs, we prove a bound of eigenvalues of the Laplacian, a

gradient estimate for the heat flow, and a Bonnet-Myers type diam-

eter bound. In Section 6, we give several examples of our curvature.

As the reader seen, strict calculation of curvature for large networks is

not easy. However, approximate solutions can be computed as follows.

In this paper, the curvature is defined as a limit of the supremum of

the differences of values of the resolvent for the hypergraph Laplacian.

The resolvent itself is a personalized PageRank on a hypergraph, as

expressed in equation (3) of Section 3.3 in [41]. Using the heat method

in [41], an approximate calculation is possible in a short time. To cal-

culate an approximated curvature, we also need to calculate a limit of

the supremum by running the 1-Lipschitz function, but this can also

be done as a coarse approximation. (It may also be possible to com-

pute the approximation using methods such as design of experiments

or Bayesian optimization.) In Section 7, we give a proof of existence

of our coarse Ricci curvature for general hypergraphs via linear pro-

gramming. In Section 8, we review submodular transformations and

the submodular Laplacian and give a sufficient condition for a sub-

modular transformation to be able to generalize our curvature notion

and theorems to submodular transformations. We show examples of

submodular transformations such as directed (hyper)graphs, mutual

information etc. in Subsection 8.3.

2. Preliminaries

2.1. Hypergraph. A weighted undirected hypergraph H = (V,E,w)

is a triple of a set V , a set E ⊂ V \ {∅} of nonempty subsets of

V , and a function w : E → R>0, where R>0 := {c ∈ R ; c > 0}.
We call an element of V vertex, an element of E hyperedge, and w

an edge weight. We remark that if |e| = 2 for any e ∈ E, H is a

weighted undirected (usual) graph. Here |A| denotes the cardinality

of a set A. We say that H is finite if V is finite. For x, y ∈ V , we



COARSE RICCI CURVATURE ON HYPERGRAPHS 7

write x ∼ y if there exists e ∈ E such that x, y ∈ e. We say that H

is connected if for any x, y ∈ V , there exists {zi}ni=0 ⊂ V such that

z0 = x, zn = y, and zi ∼ zi+1 (i = 0, . . . , n − 1). Throughout of this

paper we assume that

(2.1) any hypergraph H is finite and connected.

For x ∈ V , we define the degree of x by dx :=
∑

e∋x we. We also define

the degree matrix of V by D := diag(dx). Since H is connected, then

dx > 0 for any x ∈ V , which implies that D is non-singular, i.e. the

inverse D−1 of D exists. For S ⊆ V , the volume of S is defined by

vol(S) :=
∑

x∈S dx. We introduce a distance d on V defined by

d(x, y) := min{n ; ∃{zi}ni=0, z0 = x, zn = y, zi ∼ zi+1}, for x, y ∈ V.

(2.2)

Then (V, d) becomes a metric space. We define a diameter of H, de-

noted by diam(H), as that of the metric space (V, d), i.e., diam(H) :=

maxx,y∈V d(x, y). We identify the set of all real-valued maps on V with

the set RV of vectors indexed by V . We denote by δx ∈ RV the char-

acteristic function at x ∈ V , i.e. δx(z) = 1 if z = x and δ = 0 if z 6= x.

We define the stationary distribution π ∈ RV by π(z) := dz/vol(V ) for

z ∈ V .

2.2. (Submodular) Laplacian on hypergraph. We recall the def-

initions of the submodular hypergraph Laplacian and the normalized

version in the sense of Ikeda et al [17] and recall their several properties.

We define an inner product 〈·, ·〉 : RV × RV → R as

〈f, g〉 := f⊤D−1g =
∑
x∈V

f(x)g(x)d−1
x .

Here we use A⊤ to denote the transpose of a matrix A. We note that

(RV , 〈·, ·〉) is a finite dimensional Hilbert space. We also introduce a

norm ‖ · ‖ : RV → R≥0 given by ‖f‖ := 〈f, f〉1/2.
We define the (submodular) hypergraph Laplacian L : RV → 2R

V
by

L(f) = Lf :=

{∑
e∈E

webe(b
⊤
e f) ; be ∈ argmaxb∈Be

b⊤f

}
,(2.3)
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where Be denotes the base polytope for e ∈ E, i.e., the subset of RV

defined by

Be := Conv({δx − δy ; x, y ∈ e}).(2.4)

Here Conv(X) is the convex hull of X in RV . This Laplacian L might

be multi-valued and nonlinear [18, Remark 3.2], and L is the sub-

differential of the convex function Q : RV → R defined by

Q(f) :=
1

2

∑
e∈E

w(e)max
x,y∈e

(f(x)− f(y))2,

(see [44, Section 2] and [9, P.15:8]). Namely the identity Lf = ∂Q(f)

holds for any f ∈ RV , where ∂Q : RV → 2R
V
is defined by

∂Q(f) := {g ∈ RV ; g⊤(h− f) ≤ Q(h)−Q(f), for any h ∈ RV }.

Thus we see that L is a maximal monotone operator (or −L is an m-

dissipative operator) such that the domain of L is RV (see [17, Lemmas

14, 15]). When the hypergraph H is a usual graph, the (submodular)

hypergraph Laplacian L becomes linear and single-valued and L(f) =

{(D−A)f}, where A = (we) ∈ RV×V is the weighted adjacency matrix

of the graph (see [44, Example 3.3] and [18, Remark 2.3]).

We also introduce the normalized hypergraph Laplacian L : RV →
2R

V
given by

L(f) = Lf := L(D−1f).(2.5)

We note that L is related to random walk and heat diffusion (see

[41, Subsection 3.3]). By [17, Lemmas 14, 15], L is also a maximal

monotone operator on the Hilbert space (RV , 〈·, ·〉). More strongly,

Lf is the sub-differential of Q at D−1f , that is, the identity Lf =

∂Q(D−1f) holds. We show other properties of L as follows.

Lemma 2.1. Let f ∈ RV and c ∈ R. Then the following identities

hold:

(1) L(cf) = cL(f),
(2) L(f) = L(f + cπ), where π ∈ RV is the stationary distribution.

Proof. About (1): When c = 0, the identity is trivial. We note that for

any e ∈ E, if b ∈ Be, then −b ∈ Be, which implies that maxb∈Be〈b, f〉 ≥
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0. Assume that c > 0. Then for any e ∈ E, the identity argmaxb∈Be
〈b, cf〉 =

argmaxb∈Be
〈b, f〉 holds, which implies the conclusion. Next we con-

sider the case c < 0. Then we have

argmaxb∈Be
〈b, cf〉 = −argmaxb∈Be

〈b, f〉 ,

which means the conclusion.

About (2): Let b ∈ Be. Because b is a convex combination of δx− δy

for x, y ∈ e and D−1π(z) = 1/vol(V ) for z ∈ V , we have b⊤D−1π = 0.

Hence we have

b⊤(D−1(f + cπ)) = b⊤(D−1f) + cb⊤(D−1π) = b⊤(D−1f),

which implies that Lf = L(f + cπ) holds. □

For λ > 0, the resolvent Jλ : RV → 2R
V
of L is defined as

(2.6) Jλ(f) = Jλf := (I + λL)−1(f).

Here for a multivalued operator A : RV → 2R
V
, the invese A−1 is

defined by

A−1(f) := {g ∈ RV ; f ∈ A(g)}

with the domain of A−1 equal to the range of A. We summarize several

properties of Jλ as follows (see [29, Corollary 2.10, Lemma 2.11(iii)] and

[38, Proposition 1.8]):

Lemma 2.2. Let λ > 0 and Jλ be defined by (2.6). Then the following

holds:

(1) Jλ is single-valued and its domain and range are RV . In par-

ticular Jλ is injective.

(2) Jλ is non-expansive, i.e., for any f, g ∈ RV , and any f ′ ∈ Jλ(f),

g′ ∈ Jλ(g), the estimate

‖f ′ − g′‖ ≤ ‖f − g‖

holds. Especially, Jλ is continuous.

(3) For any µ > 0 and f ∈ RV , the following equation is valid:

Jλf = Jµ

(
µ

λ
f +

λ− µ

λ
Jλf

)
.(2.7)
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(4) (Moreau’s theorem): The following identity holds:

Jλf = argmin

{
1

2λ
‖f − g‖2 +Q(D−1g) ; g ∈ RV

}
.(2.8)

We derive other properties of Jλ from those of the normalized Lapla-

cian L:

Lemma 2.3. Let λ > 0, f ∈ RV and c ∈ R. Then the following

identities hold:

(1) Jλ(cf) = cJλ(f),

(2) Jλf = Jλ(f − cπ) + cπ.

Proof. About (1): When c = 0, the identity is trivial. For nonzero

c ∈ R, let g := Jλ(cf). Then, cf ∈ (I + λL)(g) holds by the definition

of Jλ. Thus, we have f ∈ (I + λL)(c−1g) by Lemma 2.1. This implies

c−1g = Jλ(f), hence g = cJλ(f).

About (2): We set g := Jλf and h := Jλ(f − cπ). Then there

exist g′ ∈ Lg and h′ ∈ Lh such that the identities f = g + λg′ and

f − cπ = h+ λh′ hold. Thus, we have

(I + λL)(g) 3 g + λg′ = f = h+ λh′ + cπ

∈ (h+ cπ) + λL(h) = (h+ cπ) + λL(h+ cπ) = (I + λL)(h+ cπ).

Here the inclusion follows from Lemma 2.1. Therefore, acting Jλ =

(I +λL)−1 to the both sides, we get g = h+ cπ because Jλ is injective.

□

Since L is a maximal monotone operator such that the domain is

RV , by [29, Theorem 4.2], the heat semigroup {e−tL}t≥0 is well defined

on RV and the following identity holds:

e−tLf = lim
λ↓0

J
[t/λ]
λ f, t ≥ 0 and f ∈ RV .(2.9)

Here [a] is the maximum integer less than or equal to a ∈ R. For

f ∈ RV , we set

9Lf9 := inf {‖f ′‖ ; f ′ ∈ Lf} .

Then by [29, Lemma 2.11 (ii)] the following holds:

‖Jλf − f‖ ≤ λ9Lf9, for λ > 0 and f ∈ RV .(2.10)
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Since Lf is a closed convex set by [29, Lemma 2.15], there exists a

unique f ′ ∈ Lf such that ‖f ′‖ = 9Lf9 by [29, Lemma 2.19]. We set

L0f as this f ′, i.e. L0f = f ′. This defines a single-valued operator

L0 : RV → RV , called the canonical restriction of L. Then by [29,

Lemma 2.22 and Theorem 3.5], the following identities hold:

−L0f = lim
λ↓0

λ−1(Jλf − f) = lim
t↓0

t−1(e−tLf − f).(2.11)

2.3. L1-Wasserstein distance. Let (X, d,m) be a metric measure

space, that is, (X, d) is a complete separable metric space and m is a

locally finite Borel measure on X. We set P(X) as the set of all Borel

probability measures. For µ, ν ∈ P(X), a measure ξ ∈ P(X × X) is

called a coupling between µ and ν if

ξ(A×X) = µ(A), ξ(X × A) = ν(A)

holds for any Borel set A ⊂ X. We set Cpl(µ, ν) as the set of all

couplings between µ and ν. Since the product measure µ⊗ ν of µ and

ν is a coupling between µ and ν, Cpl(µ, ν) is nonempty. We define the

L1-Wasserstein space P1(X) by

P1(X) :=

{
µ ∈ P(X) ;

∫
X

d(x, o)µ(dx) < ∞ for a point o ∈ X

}
.

For µ, ν ∈ P1(X), the L1-Wasserstein distance between them, denoted

by W1(µ, ν), is defined as

W1(µ, ν) := inf

{∫
X×X

d(x, y) ξ(dx, dy) ; ξ ∈ Cpl(µ, ν)

}
.(2.12)

It is known that W1 is a metric on P1(X) and the following duality

formula for W1 holds (see [42, Theorem 5.10] for example).

Proposition 2.4 (Kantorovich-Rubinstein duality). For µ, ν ∈ P1(X),

W1(µ, ν) = sup

{∫
X

f dµ−
∫
X

f dν ; f is 1-Lipschitz

}
(2.13)

holds. Here we say that f is 1-Lipshitz if for any x, y ∈ X, the estimate

|f(x)− f(y)| ≤ d(x, y) holds.

We call a 1-Lipschitz function f that realizes the supremum of (2.13)

a Kantorovich potential.
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2.4. Coarse Ricci curvature on usual graphs of Lin-Lu-Yau

type. In this subsection we recall the definition of the coarse Ricci

curvature on usual graphs of Lin-Lu-Yau’s type [24, P609]. As shown

in Proposition 4.1 below, our definition of the curvature on hypergraphs

gives a generalization of the Lin-Lu-Yau’s type. Let G = (V,E) be a

simple graph, that is, V is a set and E ⊂ V × V \ {(x, x) ; x ∈ V }.
Here we do not distinguish {x, y} and {y, x} ∈ E. For x, y ∈ V , x ∼ y

means {x, y} ∈ E. Given x, y ∈ V , a sequence of points {zi}ni=0 is called

a path from x to y if z0 = x, zn = y, zi ∼ zi+1 for i = 0, · · · , n− 1, and

n is called the length of path. The distance d(x, y) of x, y ∈ V as the

least number of lengths of paths from x to y. A path {zi}ni=0 is said to

be geodesic if it realizes the distance between z0 and zn. We introduce

a weight function w : V × V → R≥0 such that w(x, y) > 0 if and

only if x ∼ y. The degree of x ∈ V is defined by dx :=
∑

y∈V w(x, y).

Now that G is a usual graph, the normalized Laplacian L defined by

(2.5) becomes linear and single-valued and L = {I − AD−1}, where
A := (w(x, y))x,y ∈ RV×V is the adjacency matrix of G.

For α ∈ (0, 1) and x ∈ V , we introduce a function mα
x from V to R>0

defined by

mα
x(y) :=


α if y = x,

1−α
dx

w(x, y) if y ∼ x,

0 otherwise.

We can regard mα
x as a probability measure on V and mα

x ∈ P1(V ).

For α ∈ (0, 1) and two distinct vertices x and y, we define the α-lazy

coarse Ricci curvature κα(x, y) between x and y by

κα(x, y) := 1−
W1(m

α
x ,m

α
y )

d(x, y)
.(2.14)

Lin-Lu-Yau [24] introduced the coarse Ricci curvature κLLY(x, y) on G

given by

κLLY(x, y) := lim
α↑1

κα(x, y)

1− α
(2.15)

and proved its several properties including existence of the limit (2.15).
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2.5. Rephrase Lin-Lu-Yau’s coarse Ricci curvature. We note

that for α ∈ (0, 1) and x ∈ V , mα
x can be written as

mα
x = (αI + (1− α)AD−1)δx = (I − (1− α)L)δx.

However it is difficult to generalize W1(m
α
x ,m

α
y ) to the case of hyper-

graphs since our normalized hypergraph Laplacian L given by (2.5) is

generally multi-valued and nonlinear. To overcome the difficulty, we

give the following observation.

By using the above expression, the identities hold:∫
V

f dmα
x = f⊤mα

x = f⊤(I − (1− α)L)δx = 〈(I − (1− α)L)Df, δx〉 .

Let y ∈ V . By the Kantorovich-Rubinstein duality (Proposition 2.4),

W1(m
α
x ,m

α
y ) can be written as

W1(m
α
x ,m

α
y ) = sup {〈(I − (1− α)L)Df, δx − δy〉 ; f is a 1-Lipschitz} .

(2.16)

Let λ := 1 − α ∈ (0, 1) and Jλ := (I + λL)−1 be the resolvent of L.
Then for any f ∈ RV , the identity

(I − λL)(g) = Jλ(g) +O(λ2)(2.17)

holds for sufficiently small λ > 0. Indeed, since G is a usual graph, L is

a matrix, which enables us to apply Neumann series expansion to get

Jλg = g − λLg +
∞∑
k=2

(−λL)kg = (I − λL)g +O(λ2), as λ → +0.

We introduce a λ-linear Kantorovich difference KDλ(x, y) as

KDλ(x, y) := sup {〈JλDf, δx − δy〉 ; f is 1-Lipschitz} .(2.18)

Then by the estimate (2.17), we can show

W1(m
α
x ,m

α
y ) = KDλ(x, y) + o(λ), as λ → +0.(2.19)

We will prove this identity rigorously in Section 4. The crucial point

to extend the definition of Lin-Lu-Yau’s curvature notion on graphs to

hypergraphs is that λ-Kantrovich difference KDλ(x, y) can be extended

naturally to hypergraphs, since the resolvent Jλ of our hypergraph

Laplacian is single-valued (Lemma 2.2).
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3. Definition of coarse Ricci curvature on hypergraphs

Let H = (V,E,w) be a weighted undirected hypergraph.

3.1. Nonlinear Kantorovich difference. In this subsection we in-

troduce a notion of nonlinear Kantrovich difference, which is a natural

generalization of (2.18), and prove its several fundamental properties.

They are used to derive several properties of our coarse Ricci curvature

on hypergraphs (see Subsection 3.2).

Let d : V × V → R≥0 be a distance defined by (2.2) and K > 0. A

function f : V → R is said to be weighted K-Lipschitz if D−1f is a

K-Lipschitz function with respect to d, that is, f satisfies

f(x)

dx
− f(y)

dy
≤ Kd(x, y)

for any x, y ∈ V . The left hand side can be written as 〈f, δx − δy〉. We

denote the set of all weighted K-Lipschitz functions on V as LipKw (V ).

Note that if f ∈ LipKw (V ), then so is −f .

Definition 3.1 (λ-nonlinear Kantorovich difference). Let λ > 0, Jλ be

the resolvent (2.6) of the normalized hypergraph Laplacian L and let

x, y ∈ V . Then the λ-nonlinear Kantorovich difference KDλ(x, y) of x

and y is defined by

KDλ(x, y) := sup
{
〈Jλf, δx〉 − 〈Jλf, δy〉 ; f ∈ Lip1w(V )

}
.

Remark 3.2. (1) Since 0 ∈ Lip1w(V ), the estimate KDλ(x, y) ≥ 0

holds.

(2) Let λ > 0, x, y ∈ V and f ∈ Lip1w(V ). We write formally∫
f dµλ

x := 〈Jλf, δx〉.

If the hypergraph H is a usual graph, µλ
x becomes a measure.

We introduce a weighted maximum norm ‖ · ‖∞ on RV given by

‖f‖∞ := max
x∈V

∣∣∣∣f(x)dx

∣∣∣∣ .
We also introduce a bounded and closed subset of Lip1w(V ) given by

L̃ip1w(V ) := {f ∈ Lip1w(V ) ; ‖f‖∞ ≤ diam(H)}.
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Remark 3.3. The subset L̃ip1w(V ) is a compact subset of (RV , 〈·, ·〉) since
RV is of finite dimensional.

We can restrict the class of functions i.e. Lip1w(V ) in the definition

of KDλ to the compact subset L̃ip1w(V ):

Proposition 3.4. Let λ > 0 and x, y ∈ V . Then the following identity

holds:

KDλ(x, y) = sup
{
〈Jλf, δx − δy〉 ; f ∈ L̃ip1w(V )

}
.

Proof. Let f ∈ Lip1w(V ). Take y0 ∈ V such that 〈f, δy0〉 = minz∈V 〈f, δz〉
and we set θ := 〈f, δy0〉 and F := f−θ ·vol(V )π. Then for any x, y ∈ V ,

the following identities hold:

〈F, δx − δy〉 =
f(x)− θdx

dx
− f(y)− θdy

dy
= 〈f, δx − δy〉 ,

which implies F ∈ Lip1w(V ). Thus by the identity 〈F, δy0〉 = 0, for any

x ∈ V , the following estimates hold:

〈F, δx〉 = 〈F, δx〉 − 〈F, δy0〉 ≤ d(x, y0) ≤ diam(H).

This means that ‖F‖∞ ≤ diam(H). By Lemma 2.3, the identity JλF =

Jλf − θ · vol(V )π holds. Thus for any x, y ∈ V , the identities hold

JλF (x)

dx
− JλF (y)

dy
=

Jλf(x)− θdx
dx

− Jλf(y)− θdy
dy

=
Jλf(x)

dx
− Jλf(y)

dy
,

which implies the desired property.

□

We prove finiteness of KDλ(x, y) and an upper bound of KDλ. The

following lemma implies existence of the lower coarse Ricci curvature

(see Remark 3.11).

Lemma 3.5. Let λ > 0 and x, y ∈ V . Then the following estimate

hold:

KDλ(x, y) ≤ 2λdiam(H)vol(V )1/2 max
z∈V

d−1/2
z + d(x, y).

Moreover, the following inequality holds:

max
x,y∈V

KDλ(x, y) ≤ (2λvol(V )1/2 max
z∈V

d−1/2
z + 1)diam(H) < ∞.
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Proof.

We first show that for any f ∈ Lip1w(V ), the following estimate holds:

(3.1) 9Lf9 ≤ diam(H)vol(V )1/2.

Let e ∈ E and be ∈ argmaxb∈Be
b⊤(D−1f). Since f ∈ Lip1w(V ), the

following estimates hold:

b⊤e (D
−1f) = max

x,y∈e
|f(x)/dx − f(y)/dy| ≤ max

x,y∈e
d(x, y) ≤ diam(H).

We set f ′ :=
∑

e webe(b
⊤
e (D

−1f)) ∈ Lf . We note that |be(x)| ≤ 1 for

any x ∈ V since be ∈ Be. Then

|f ′(x)| =

∣∣∣∣∣∑
e∈x

web
⊤
e (D

−1f)be(x)

∣∣∣∣∣ ≤ diam(H)
∑
e∈x

we = diam(H)dx.

(3.2)

Consequently, we obtain

9Lf92 ≤ 〈f ′, f ′〉 =
∑
x∈V

f ′(x)2d−1
x ≤ diam(H)2

∑
x∈V

dx = diam(H)2vol(V ).

Next we go back to the proof. For any f ∈ Lip1w(V ), by (2.10), the

estimates hold:

〈Jλf, δx〉 − 〈Jλf, δy〉 = 〈Jλf − f, δx〉+ 〈f, δx〉 − 〈f, δy〉 − 〈Jλf − f, δy〉

≤ ‖Jλf − f‖(‖δx‖+ ‖δy‖) + d(x, y)

≤ λ9Lf9(d−1/2
x + d−1/2

y ) + d(x, y)

≤ 2λdiam(H)vol(V )1/2 max
z∈V

d−1/2
z + d(x, y).

Because the last quantity is independent of f , we take the supremum

with respect to f to get the conclusion of this lemma. □

Next we prove that for any λ > 0, KDλ(·, ·) is a distance function on

V :

Proposition 3.6. Let λ > 0 and x, y ∈ V . Then the following holds:

(1) KDλ(x, y) = 0 if and only if x = y.

(2) KDλ(x, y) = KDλ(y, x).

(3) For z ∈ V , the triangle inequality KDλ(x, z) ≤ KDλ(x, y) +

KDλ(y, z) holds.



COARSE RICCI CURVATURE ON HYPERGRAPHS 17

Proof. ”If ” part of (1) and (2) follow from the definition. We prove

”only if ” part of (1). We assume that KDλ(x, y) = 0. Then for

any f ∈ Lip1w(V ), 〈Jλf, δx − δy〉 = 0. We can see that the identity

{cf ; f ∈ Lip1w(V ), c ∈ R} = RV holds. Indeed, let h ∈ RV \{0}. Set

c := 2‖h‖∞ > 0 and h = cf . Then for any u, v ∈ V with u 6= v, noting

that d(u, v) ≥ 1, the following estimates hold:∣∣∣∣f(u)du
− f(v)

dv

∣∣∣∣ = 1

c

∣∣∣∣h(u)du
− h(v)

dv

∣∣∣∣ ≤ d(u, v).

Thus by Lemma 2.2, the identity 〈g, δx− δy〉 = 0 holds for any g ∈ RV .

The non-degeneracy of the inner product implies δx = δy, which means

x = y. Next we prove (3). For any ϵ > 0, there exists f = fε ∈ Lip1w(V )

such that KDλ(x, z) ≤ 〈Jλf, δx〉 − 〈Jλf, δz〉+ ϵ. Thus, we have

KDλ(x, z) ≤ 〈Jλf, δx〉 − 〈Jλf, δy〉+ 〈Jλf, δy〉 − 〈Jλf, δz〉+ ϵ

≤ KDλ(x, y) + KDλ(y, z) + ϵ.

Since ϵ > 0 is any positive number, the conclusion holds. □

Next we study how the function KDλ changes with respect to λ. We

can prove the following Lipshitz continuity:

Proposition 3.7. Let λ, µ > 0 Then the following estimate holds:

(3.3)

sup
x,y∈V

|KDλ(x, y)− KDµ(x, y)| ≤ 2diam(H)vol(V )1/2 max
z∈V

d−1/2
z |λ− µ|.

Proof. Let x, y ∈ V . Let g ∈ Lip1w(V ). By (2) and (3) of Lemma 2.2

and (3.1), the following estimates hold:

〈Jλg − Jµg, δx − δy〉 =
〈
Jµ

(
µ

λ
g +

λ− µ

λ
Jλg

)
− Jµg, δx − δy

〉
≤
∥∥∥∥Jµ(µ

λ
g +

λ− µ

λ
Jλg

)
− Jµg

∥∥∥∥ · ‖δx − δy‖

≤
∥∥∥∥µλg + λ− µ

λ
Jλg − g

∥∥∥∥ · 2max
z∈V

d−1/2
z

≤ 2max
z∈V

d−1/2
z |λ− µ|‖L0f‖ ≤ 2diam(H)vol(V )1/2 max

z∈V
d−1/2
z |λ− µ|.

Let ϵ > 0. Then there exists f ∈ Lip1w(V ) such that KDλ(x, y) − ϵ ≤
〈Jλf, δx − δy〉. Thus by the above estimates, the following inequalities
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hold:

KDλ(x, y)− ϵ ≤ 〈Jλf, δx − δy〉 = 〈Jλf − Jµf, δx − δy〉+ 〈Jµf, δx − δy〉

≤ 2diam(H)vol(V )1/2 max
z∈V

d−1/2
z |λ− µ|+ KDµ(x, y).

Since ϵ > 0 is arbitrary, we obtain KDλ(x, y)−KDµ(x, y) ≤ RHS. of (3.3).

Changing the role of µ and λ, we have the conclusion. □

Next we prove that for λ > 0 and x, y ∈ V , there exists a function in

Lip1w(V ) which attains KDλ(x, y). We call such function a λ-nonlinear

Kantorovich potential.

Proposition 3.8. Let λ > 0 and x, y ∈ V . Then there exists f ∈
Lip1w(V ) such that the identity 〈Jλf, δx〉 − 〈Jλf, δy〉 = KDλ(x, y) holds.

Namely the following identity holds:

KDλ(x, y) = max
{
〈Jλf, δx〉 − 〈Jλf, δy〉 ; f ∈ Lip1w(V )

}
.

Proof. Let {fn} ⊂ Lip1w(V ) be a maximizing sequence of KDλ(x, y). As

mentioned in Proposition 3.4, without loss of generality, we may assume

supn ‖fn‖∞ ≤ diam(H). Since L̃ip1w(V ) is a compact subset of the

finite dimensional Euclidean space (RV , 〈·, ·〉) by Proposition 3.4, thus

a sequentially compact subset. Hence {fn} has a subsequence {fnj
}j

which converges to an element f ′ in Lip1w(V ). Since Jλ is continuous

by Lemma 2.2, we have Jλ(fnj
) → Jλ(f

′) as j → ∞, which implies

KDλ(x, y) = lim
j→∞

〈
Jλ(fnj

), δx − δy
〉
= 〈Jλ(f ′), δx − δy〉 .

□

Corollary 3.9. Let λ > 0. Then the following estimate holds:

sup
x,y∈V

|KDλ(x, y)− d(x, y)| ≤ 2λdiam(H)vol(V )1/2 max
z∈V

d−1/2
z .

Proof. Let x, y ∈ V . By Proposition 3.8, there exists f ∈ Lip1w(V ) with

〈f, δx − δy〉 ≤ d(x, y) which attains KDλ(x, y). In the similar manner

as above, the following estimates hold

KDλ(x, y) ≥ 〈Jλf − f, δx〉+ 〈f, δx〉 − 〈f, δy〉 − 〈Jλf − f, δy〉

≥ −λ9Lf9(d−1/2
x + d−1/2

y ) + d(x, y)

≥ −2diam(H)λvol(V )1/2 max
z∈V

d−1/2
z + d(x, y).
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By combining this and Lemma 3.5, the conclusion holds. □

3.2. Coarse Ricci curvature on hypergraphs. Let H = (V,E,w)

be a weighted undirected hypergraph and x, y ∈ V . In this subsection,

we introduce a coarse Ricci curvature on H along with x, y, denoted

by κ(x, y), and show its fundamental properties.

Definition 3.10 (Coarse Ricci curvature on hypergraphs). Let λ > 0, x

and y be two distinct vertices and KDλ(x, y) be the λ-nonlinear Kan-

torovich difference defined in Definition 3.1. Then the λ-coarse Ricci

curvature along with x, y, denoted by κλ(x, y), is defined by

κλ(x, y) := 1− KDλ(x, y)

d(x, y)
.(3.4)

The lower coarse Ricci curvature κ(x, y) and the upper coarse Ricci

curvature κ(x, y) are defined respectively by

κ(x, y) := lim inf
λ↓0

κλ(x, y)

λ
and κ(x, y) := lim sup

λ↓0

κλ(x, y)

λ
.(3.5)

If the identity κ(x, y) = κ(x, y) holds, then we call this value the coarse

Ricci curvature for x, y, denoted by κ(x, y).

As shown in Section 8, we can extend the notion of the upper and

lower coarse Ricci curvatures to the setting of submodular transforma-

tions [44, Definition 3.1].

Remark 3.11. For any x, y ∈ V with x 6= y, the lower coarse Ricci

curvature κ(x, y) exists. More precisely by Lemma 3.5 and d(x, y) ≥ 1,

the following estimates hold:

κ(x, y) ≥ −2diam(H)vol(V )1/2 max
z∈V

d−1/2
z > −∞.

This implies that infx,y κ(x, y) ≥ −2diam(H)vol(V )1/2 maxz∈V d
−1/2
z .

It is not trivial whether the upper coarse Ricci curvature κ(x, y) is

finite or not. However we can prove the following upper estimates.

Lemma 3.12. Let x and y be two distinct vertices. Then for any

f ∈ Lip1w(V ) with f(x)/dx − f(y)/dy = d(x, y), the following estimate

holds:

κ(x, y) ≤ d(x, y)−1
〈
L0f, δx − δy

〉
.(3.6)
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where L0 is the canonical restriction of L (see (2.11)). Moreover, the

following holds:

(3.7) max
x,y∈V

κ(x, y) ≤ 2diam(H)vol(V )1/2 max
z∈V

d−1/2
z < ∞.

Proof. Let λ > 0. Then the following estimates hold:

KDλ(x, y) ≥ 〈Jλf, δx〉 − 〈Jλf, δy〉

= 〈Jλf − f, δx〉+ d(x, y)− 〈Jλf − f, δy〉 .

This implies that the following inequality holds:

λ−1κλ(x, y) ≤ d(x, y)−1
〈
λ−1(Jλf − f), δy

〉
−
〈
λ−1(Jλf − f), δx

〉
.

By taking the superior limit as λ → +0 and using (2.11), we have (3.6).

(3.7) follows from (3.6), (3.1) and d(x, y) ≥ 1. □

The following main result means that for any finite connected hy-

pergraphs, the lower and upper coarse Ricci curvatures coincide.

Theorem 3.13 (Existence of the coarse Ricci curvature on hyper-

graphs). The identity κ(x, y) = κ(x, y) holds for any two distinct ver-

tices x and y.

We give a proof of this theorem in Section 7 (see Theorem 7.1) via

linear programming. For convenience of the reader we give a proof in

the case of usual graphs as Proposition 4.1 in a more straightforward

way than the case for hypergraphs. And we emphasize that only for

finite hypergraphs and usual graphs, we can prove the coincidence be-

tween the upper and lower Ricci curvature. More general cases, even

for infinite hypergraphs, we don’t know the coincidence between them.

Next we show a relation between the minimum of the coarse Ricci

curvature for any pairs of vertices and that for adjacent vertices. We

set κ := minx,y κ(x, y) = minx ̸=y κ(x, y).

Lemma 3.14. The identity κ = min
x∼y

κ(x, y) holds.

Proof. It suffices to prove κ ≥ minx∼y κ(x, y). Let x, y ∈ V with x 6= y

and set n := d(x, y) ≥ 1. Take {xi} be a shortest path connecting
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x and y. Then for any λ > 0, by Proposition 3.6 (3) the following

inequality holds:

κλ(x, y) ≥ 1−
∑n−1

i=0 KDλ(xi, xi+1)

n
=

1

n

n−1∑
i=0

(
1− KDλ(xi, xi+1)

d(xi, xi+1)

)
,

which implies that the estimates hold:

κ(x, y) ≥ 1

n

n−1∑
i=0

κ(xi, xi+1) ≥ min
x∼y

κ(x, y). □

We show another property of the minimum of the coarse Ricci cur-

vatures. We set κλ := minx,y κλ(x, y) for λ > 0.

Lemma 3.15. The identity lim inf
λ↓0

κλ/λ = κ holds.

Proof. Since V is a finite set, so is V ×V . We can take (xλ, yλ) ∈ V ×V

with xλ 6= yλ such that κλ(xλ, yλ) = κλ. We can show that there is a

distinct pair (x∞, y∞) ∈ V × V such that

lim inf
λ↓0

κλ(x∞, y∞)

λ
= lim inf

λ↓0

κλ

λ
.

Take (x0, y0) ∈ V × V such that κ = κ(x0, y0). Then by taking the

limit inf λ → 0, we have

κ ≤ κ(x∞, y∞) = lim inf
λ↓0

κλ(x∞, y∞)

λ
= lim inf

λ↓0

κλ

λ

≤ lim inf
λ↓0

κλ(x0, y0)

λ
= κ.

This concludes the proof. □

4. Connection of Lin-Lu-Yau’s coarse Ricci curvature

with ours

The following proposition says that our coarse Ricci curvature gives

a generalization of Lin-Lu-Yau’s one [24] on graphs to hypergraphs.

Proposition 4.1. Assume that H = (V,E,w) is a weighted undirected

graph. Let x, y ∈ V be two distinct vertices. Then the identity κ(x, y) =

κLLY(x, y) holds, where κLLY(x, y) is defined by (2.15).
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Proof. Let λ := 1 − α ∈ (0, 1) and x, y ∈ V be two distinct vertices.

We recall the definitions of the Lin-Lu-Yau’s coarse Ricci curvature

κLLY(x, y) (2.15), the α-lazy one κα(x, y) (2.14), our Ricci curvature

κ(x, y) (3.5) and the λ-coarse one κλ(x, y) (3.4). We evaluate the dif-

ference of κα(x, y) and κλ(x, y). Since the equation

λ−1 |κα(x, y)− κλ(x, y)| = λ−1d(x, y)−1|W1(m
α
x ,m

α
y )− KDλ(x, y)|

(4.1)

holds, it suffices to evaluate λ−1|W1(m
α
x ,m

α
y )−KDλ(x, y)|. There exist

some potentials to the both W1(m
α
x ,m

α
y ) (see [42]) and KDλ(x, y) (see

Proposition 3.8). Let fα be a Kantorovich potential for (mα
x ,m

α
y ).

Noting that fα is 1-Lipschitz, i.e. Df ∈ Lip1w(V ), by (2.16), we obtain

W1(m
α
x ,m

α
y )− KDλ(x, y)

≤ {(I − λL) fα − Jλf
α} (x)− {(I − λL) fα − Jλf

α} (y).

Since Jλ = (I + λL)−1, if λ is sufficiently small, then the Neumann

series expansion holds:

Jλf = (I − λL)f +
∞∑
i=2

(−λL)if.

Hence as λ → 0, we have

λ−1(W1(m
α
x ,m

α
y )− KDλ(x, y))

≤
∞∑
i=2

(−λ)i−1Lifα(x)−
∞∑
i=2

(−λ)i−1Lifα(y) → 0,

which implies limλ↓0 λ
−1(W1(m

α
x ,m

α
y )−KDλ(x, y)) ≤ 0. By exchanging

the role of KDλ andW1, we obtain the similar result limλ↓0 λ
−1(KDλ(x, y)−

W1(m
α
x ,m

α
y )) ≤ 0. Consequently, we have

lim
λ↓0

λ−1
∣∣W1(m

α
x ,m

α
y )− KDλ(x, y)

∣∣ = 0.(4.2)

Since the limit limα↑1 κ
α(x, y)/(1 − α) exists by [24, P.609], so does

the limit limλ↓0 κλ(x, y)/λ. By combining (4.1) and (4.2), we have

κLLY(x, y) = κ(x, y). □

Remark 4.2. The argument of the proof of Proposition 4.1 is applicable

for other situations. Indeed we can show that the Ricci curvature on

directed graphs defined by Sakurai et.al [35, Definition 3.6] is same
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as a modification of our Ricci curvature on directed graphs. More

precisely, since the Laplacian ∆ [35, Definition 3.6] is self-adjoint and

non-positive definite operator ([35, Proposition. 2.4]) and the measure

appears in their definition can be calculated as∫
V

f dνϵ
x = (I + ϵ∆)f(x)

[35, Lemma 3.1], we can accomplish the similar proof as Proposi-

tion 4.1.

5. Connections of our Ricci curvature with analytic or

geometric properties

5.1. Eigenvalue of the submodular hypergraph Laplacian. We

call µ ∈ R>0 an eigenvalue of L if there exists f ∈ RV satisfying L0f =

µf . We can prove that the eigenvalue is bounded by the minimum of

the coarse Ricci curvature from below.

Theorem 5.1. Let µ be an eigenvalue of L. Then the estimate κ ≤ µ

holds.

Proof. Since µ is an eigenvalue of L, there exists f ∈ RV such that

L0f = µf . By multiplying some constant if necessary and Lemma 2.1,

we may assume f ∈ Lip1w(V ). Moreover, without loss of generality, we

may assume that f(x)/dx − f(y)/dy = d(x, y) holds for some x, y ∈ V .

By Lemma 3.12 and Theorem 3.13, the estimates hold:

κ ≤ κ(x, y) ≤ d(x, y)−1
(
〈L0f, δx〉 − 〈L0f, δy〉

)
=

µ

d(x, y)

(
f(x)

dx
− f(y)

dy

)
= µ.

□

Remark 5.2. The same conclusion of Theorem 5.1 is proven if infx∼y κ(x, y) ≤
κ for suitable settings(infinite hypergraphs, submodular transformation

etc.).

5.2. Gradient estimate of the heat flow. Next we prove a relation

between a lower bound of our Ricci curvature and a gradient estimate

of the heat flow.
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Theorem 5.3. Let κ0 ∈ R. Assume that the inequality κ ≥ κ0 holds.

Then any x, y ∈ V , f ∈ Lip1w(V ) and t > 0, the following inequality

holds:

e−tLf(x)

dx
− e−tLf(y)

dy
≤ e−κ0td(x, y).

Proof. Let λ > 0. The definitions of KDλ and κλ give

Jλf(x)

dx
− Jλf(y)

dy
≤ KDλ(x, y) ≤ (1− κλ)d(x, y),

which implies that (1−κλ)
−1Jλf ∈ Lip1w(V ). In the similar calculation

with (1) of Lemma 2.3, we have

J2
λf(x)

dx
− J2

λf(y)

dy
= (1− κλ)

(〈
Jλ

(
Jλf

1− κλ

)
, δx

〉
−
〈
Jλ

(
Jλf

1− κλ

)
, δy

〉)
≤ (1− κλ)

2d(x, y).

Repeating the similar calculation implies that 〈Jn
λ f, δx〉 − 〈Jn

λ f, δy〉 ≤
(1 − κλ)

nd(x, y) holds for any n ∈ N ∪ {0}. Therefore, by (2.9) and

Lemma 3.15, we have

e−tLf(x)

dx
− e−tLf(y)

dy
= lim

λ↓0

〈
J
[t/λ]
λ f, δx

〉
−
〈
J
[t/λ]
λ f, δy

〉
≤ lim inf

λ↓0
(1− κλ)

[t/λ]d(x, y)

≤ lim inf
λ↓0

e−
κλ
λ

[t/λ]λd(x, y)

= e−κtd(x, y) ≤ e−κ0td(x, y).

Here the second inequality follows from the inequality (1 + x)t ≤ ext

for any |x| < 1 and t > 0. □

Remark 5.4. The same conclusion of Theorem 5.3 is proven if infx∼y κ(x, y) ≤
κ for suitable settings(infinite hypergraphs, submodular transformation

etc.).

5.3. Bonnet-Myers diameter bound under positive Ricci cur-

vature. We prove a geometric consequence (Bonnet-Myers diameter

bound) under the Ricci curvature being positive. The following gives

a generalization of [24, Theorem 4.1] and [34, Proposition 23] to the

case of hypergraphs.
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Theorem 5.5 (Bonnet-Myers diameter bound). Assume that κ ≥ κ0 >

0 holds. Then the following holds:

diam(H) ≤ 2κ−1
0 .(5.1)

Proof. Let x, y ∈ V be two distinct vertices which satisfy d(x, y) =

diam(H). By Lemma 3.12 and Theorem 3.13, there exists f ∈ Lip1w(V )

with 〈f, δx − δy〉 = d(x, y) such that κ(x, y) ≤ d(x, y)−1 〈L0f, δx − δy〉.
By (3.2), the estimate |L0f(z)| ≤ dz holds for any z ∈ V . By the

assumption, the following inequalities hold:

0 < κ0 ≤ κ ≤ κ(x, y) ≤ d(x, y)−1
〈
L0f, δx − δy

〉
≤ 2d(x, y)−1 = 2diam(H)−1.

□

Remark 5.6. The same conclusion of Theorem 5.5 is proven if infx∼y κ(x, y) ≤
κ for suitable settings(submodular transformation etc.).

The second author et.al [22, Theorem 1.1] proved Cheng’s maximal

diameter theorem, which means that if the equality of (5.1) holds, then

there exists a pair of vertices x, y with d(x, y) = diam(H) such that all

points on a geodesic from x to y.

6. Examples

In this section, we calculate the values of our curvature for several

hypergraphs. Let H = (V,E,w) be a weighted undirected hypergraph.

The key formula for calculations is Moreau’s theorem (2.8).

Example 6.1. We consider the case where V := {x, y, z}, E := {xy, yz, zx, xyz},
and w(e) := 1 for any e ∈ E. We calculate the coarse Ricci curvature

κ(x, y)

First we calculate the λ-nonlinear Kantrovich difference KDλ(x, y)

for a sufficiently small λ > 0. Let f ∈ Lip1w(V ). We set the values

f(x) =: 3α, f(y) =: 3β, and f(z) =: 3γ. In the similar argument as

the proof of Proposition 3.4, we may assume that β = 0. We divide

our argument into the four cases: (1) α > γ > 0, (2) γ > α > 0, (3)

γ = 0, (4) γ = α, (5) α > 0 > γ.



26 M.IKEDA, Y.KITABEPPU, Y.TAKAI, AND T.UEHARA

We set g := Jλf . Moreover we divide the cases for the values of g. We

remark that α, γ ≤ 1 holds since f ∈ Lip1w(V ). Since g = Jλf → f as

λ → 0 due to (2.10), we write g(x) = 3α+3a, g(y) = 3b, g(z) = 3γ+3c,

where |a|, |b| and |c| are sufficiently small. We define F : RV → R as

F (g) :=
1

2λ
‖f − g‖2 +Q(D−1g).

(1) α > γ > 0. Since g = Jλf is closed to f , we may assume α + a >

γ+c > b. Then the normalized Laplacian L of g is uniquely determined

and the following hold:

b⊤xy(D
−1g) = α + a− b, b⊤xz(D

−1g) = α + a− γ − c, b⊤yz(D
−1g) = γ + c− b,

b⊤xyz(D
−1g) = α + a− b.

Hence, we have

F (g) =
1

2λ

(
3a2 + 3b2 + 3c2

)
+

1

2

(
2(α + a− b)2 + (γ + c− b)2 + (α + a− γ − c)2

)
.

Let r := λ−1 > 0 be sufficiently large. Since Jλf is a critical point for

F , ∂aF = ∂bF = ∂cF = 0, which is equivalent to3(1 + r) −2 −1

−2 3(1 + r) −1

−1 −1 2 + 3r


a

b

c

 =

−3α + γ

2α + γ

α− 2γr

 .

This can be solved and we see that (a, b, c)⊤ is equal to

1

9r(1 + r)(3r + 5)
·3(1 + r)(2 + 3r)− 1 2(2 + 3r) + 1 2 + 3(1 + r)

2(2 + 3r) + 1 3(1 + r)(2 + 3r)− 1 3(1 + r) + 2

2 + 3(1 + r) 3(1 + r) + 2 9(1 + r)2 − 4


−3α + γ

2α + γ

α− 2γr

 .

Since the inner product 〈Jλf, δx − δy〉 is represented as α + a − b, we

have

〈Jλf, δx − δy〉 = α + a− b =
3αr

3r + 5
≤ 3r

3r + 5
.

Here the last inequality follows from α ≤ 1 and the equality is attained

when α = 1.
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(2) γ > α > 0. By a similar argument as above, we may assume γ+c >

α + a > b. Then the following holds:

b⊤xy(D
−1g) = α + a− b, b⊤xz(D

−1g) = γ + c− α− a, b⊤yz(D
−1g) = γ + c− b,

b⊤xyz(D
−1g) = γ + c− b,

this implies

F (g) =
1

2λ
(3a2 + 3b2 + 3c2) +

1

2

(
(α + a− b)2 + 2(γ + c− b)2 + (γ + c− α− a)2

)
.

From ∂aF = ∂bF = ∂cF = 0, we obtain3r + 2 −1 −1

−1 3(1 + r) −2

−1 −2 3(1 + r)


a

b

c

 =

−2α + γ

α + 2γ

α− 3γ

 .

This equation can also be solved and we see that (a, b, c)⊤ is equal to

1

9r(1 + r)(3r + 5)
·9(1 + r)2 − 4 3(1 + r) + 2 3(1 + r) + 2

3(1 + r) + 2 3(1 + r)(2 + 3r)− 1 2(2 + 3r) + 1

3(1 + r) + 2 2(2 + 3r) + 1 3(1 + r)(2 + 3r)− 1


−2α + γ

α + 2γ

α− 3γ

 .

Then, we have

〈Jλf, δx − δy〉 = α + a− b =
r (α(3r + 5)− γ)

(1 + r)(3r + 5)
.

(3) γ = 0. By the symmetry of H and f , we have b = c, which implies

b⊤xy(D
−1g) = α + a− b, b⊤xz(D

−1g) = α + a− b, b⊤yz(D
−1g) = 0,

b⊤xyz(D
−1g) = α + a− b.

Thus we have

F (g) =
1

2λ

(
3a2 + 6b2

)
+

3

2
(α + a− b)2.

The identities ∂aF = ∂bF = 0 give(
1 + r −1

−1 1 + 2r

)(
a

b

)
=

(
−α

α

)
⇐⇒

(
a

b

)
=

α

2r + 3

(
−2

1

)
.

Hence, we have

〈Jλf, δx − δy〉 = α + a− b =
2αr

2r + 3
≤ 2r

2r + 3
.
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The last inequality follows from α ≤ 1 and the identity is attained

when α = 1.

(4) γ = α. We have a = c similarly as the above, which implies

b⊤xy(D
−1g) = α + a− b, b⊤xz(D

−1g) = 0, b⊤yz(D
−1g) = α + a− b,

b⊤xyz(D
−1g) = α + a− b.

Thus we have

F (g) =
1

2λ
(6a2 + 3b2) +

3

2
(α + a− b)2.

The equations ∂aF = ∂bF = 0 can be written as(
1 + 2r −1

−1 1 + r

)(
a

b

)
=

(
−α

α

)
⇐⇒

(
a

b

)
=

α

2r + 3

(
−1

2

)
.

Consequently, we have

〈Jλf, δx − δy〉 = α + a− b =
2αr

2r + 3
≤ 2r

2r + 3
.

The last inequality follows from α ≤ 1 and the identity is attained

when α = 1.

(5) α > 0 > γ. Since f ∈ Lip1w(V ), α − γ ≤ 1 and α < 1. Then the

following holds:

b⊤xy(D
−1g) = α + a− b, b⊤xz(D

−1g) = α + a− γ − c, b⊤yz(D
−1g) = b− γ − c,

b⊤xyz(D
−1g) = α + a− γ − c,

which implies

F (g) =
1

2λ

(
3a2 + 3b2 + 3c2

)
+

1

2

(
(α + a− b)2 + 2(α + a− γ − c)2 + (b− γ − c)2

)
.

In the same manner as before, we obtain3(1 + r) −1 −2

−1 3r + 2 −1

−2 −1 3(1 + r)


a

b

c

 =

−3α + 2γ

α + γ

2α− 3γ

 ,

whici implies that (a b c)⊤ is equal to

1

9r(1 + r)(3r + 5)

3(1 + r)(3r + 2)− 1 3(1 + r) + 2 2(2 + 3r) + 1

3(1 + r) + 2 9(1 + r)2 − 4 3(1 + r) + 2

2(2 + 3r) + 1 3(1 + r) + 2 3(1 + r)(2 + 3r)− 1

 .
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Finally we have

〈Jλf, δx − δy〉 = α + a− b =
r

(1 + r)(3r + 5)
{α(3r + 4) + γ} .

By comparing the values of 〈Jλf, δx − δy〉 for the above all cases,

we can show that the values for the case (1) are less than or equal to

2r/(2r + 3), which is attained for the cases (3) and (4) with α = 1.

Thus, it suffices to compare the cases (2), (3), and (5). We can calculate

the differences as

(3)− (2) =
2r

2r + 3
− r (α(3r + 5)− γ)

(1 + r)(3r + 5)
≥ r (2(1− α)r + 2− 3α)

(2r + 3)(1 + r)
≥ 0, and

(3)− (5) =
2r

2r + 3
− r

(1 + r)(3r + 5)
{α(3r + 4) + γ}

≥ 2r

2r + 3
− αr

1 + r
=

r{2(1− α)r + 2− 3α}
(2r + 3)(1 + r)

≥ 0.

Here the most right hand sides are non-negative, since r = λ−1 is

sufficiently large and 1 ≥ γ > α in the case (2) and α < 1, γ < 0 in

the case (5). Thus, we have

KDλ(x, y) =
2λ−1

2λ−1 + 3
.

Consequently, the coarse Ricci curvature κ(x, y) exists and becomes

κ(x, y) = lim
λ→+0

1

λ

(
1− KDλ(x, y)

d(x, y)

)
=

3

2
.

Remark 6.2. We conjecture that if one consider the hypergraph H =

(V,E,w) such that |V | = n, E = 2V \ {∅, V } and w(e) = 1 for any

e ∈ E, then the λ-nonlinear Kantorovich potential f satisfies that for

x ∈ V , f(x) = dx and f(z) = 0 (z 6= x).

We conjecture that the following formula holds, which enables us to

easily calculate our curvatures. The similar formula was proved in the

case of usual graphs [32, Theorem 2.1].

Conjecture 6.3. For any two distinct vertecices x and y, the following

holds:

κ(x, y) =
inf
{
〈L0f, δx − δy〉 ; f ∈ Lip1w(V ), 〈f, δx − δy〉 = d(x, y)

}
d(x, y)

.
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Example 6.4. We consider the case where V = {x, y, z}, E = {e =

{x, y, z}}, and we = 1. We consider f : V → R such that f(x) = 1,

f(y) = 0, f(z) = 0. Then, we have L0f(x) = 1, L0f(y) = −1/2,

L0f(z) = −1/2. Lemma 3.12 gives

κ(x, y) ≤
〈
L0f, δx − δy

〉
= 1− (−1/2) = 3/2.

Actually we can prove that κ(x, y) = 3/2.

Example 6.5 (complete hypergraph). We consider the case where V =

{v1, v2, . . . , vn}, E = 2V \ {{v1}, . . . , {vn}, ∅}, and we = 1. Then we

have |E| = 2n−n− 1 and dx = 2n−1− 1 =: d for any x ∈ V . We count

the number of hyperedges e ∈ E including v1 and v2. The number of

such e satisfying |e| = k is
(
n−2
k−2

)
.

Let f : V → R be the function satisfying f(v1) = d and f(vi) = 0

(i = 2, . . . , n). Then, we have L0f(v1) = d. Moreover, for e including

v1 and v2 such that #e = k, we may choose δv1 −(k−1)−1
∑

i≥2,vi∈e δvi ,

v1, v2 ∈ e as be. Thus, we have

L0f(v2) = −
n∑

k=2

1

k − 1

(
n− 2

k − 2

)
= −2n−1 − 1

n− 1
.

Thus Lemma 3.12 gives

κ(v1, v2) ≤
1

d

(
L0f(v1)− L0f(v2)

)
=

n

n− 1
.

From this observation, we conjecture that the curvature of the complete

hypergraph H with |V | = n is n/(n − 1). This prediction agrees with

calculation in Example 6.1.

Example 6.6 (Negatively curved hypergraph). We consider 9 points hy-

pergraph, V = {w1, w2, x, y, z, u1, u2, u3, u4}, E = {e0 = {x, y, z}, e1 =
{w1, w2, x}, e2 = {y, u1, u2}, e3 = {z, u3, u4}}, and wei = 1 for i =

0, 1, 2, 3. Let f : V → R be a function defined by f(w1) = f(w2) =

f(x) = 2, f(y) = f(z) = 0, and f(uj) = −1 for j = 1, 2, 3, 4.

Then f is a weighted 1-Lipschitz function. By using a calculation like

above, we have L0f(x) − L0f(y) = −1/2. Thus Lemma 3.12 implies

κ(x, y) ≤ −1/4.
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7. Existence of the coarse Ricci curvature on

hypergraphs

The purpose of this section is to prove Theorem 3.13, i.e. the follow-

ing theorem.

Theorem 7.1. The coarse Ricci curvature

κ(x0, y0) = lim
λ↓0

1

λ

(
1− KDλ(x0, y0)

d(x0, y0)

)
(7.1)

along with x0, y0 ∈ V on a hypergraph H exists, where KDλ(x0, y0) is

the λ-nonlinear Kantorovich difference, given in Definition 3.1.

Let us consider a generalized hypergraph H = (V,E,w, d) consisting

of a finite set V , a set E of nonempty subsets of V , a function w :

E → R>0, and a function d : V → R>0. For a while, the condition

dx =
∑

e∋x we is not imposed. For simplicity, we set |V | := n and

V := {1, 2, . . . , n}. The vector space Rn of real valued functions on V

can be expressed as the disjoint union

Rn =
⊔

ρ∈Rn

Uρ,

where Rn, corresponding to the set of orderings, is defined by

Rn = {ρ = (σ, τ) ∈ Sn × {0, 1}n−1 | σ(i) < σ(i+ 1) if τ(i) = 0},

and for ρ = (σ, τ) ∈ Rn, the component Uρ is defined by

Uρ =

{
(f1, . . . , fn)

⊤ ∈ Rn

∣∣∣∣∣ fσ(i) = fσ(i+1) if τ(i) = 0

fσ(i) < fσ(i+1) if τ(i) = 1

}
.

Hence two vectors f = (f1, . . . , fn)
⊤, g = (g1, . . . , gn)

⊤ ∈ Rn belong to

the same component Uρ for some ρ ∈ Rn if and only if the elements of

f and g are in the same order, that is, sgn(fx − fy) = sgn(gx − gy) for

any x, y ∈ V with sgn : R → {−1, 0, 1} given by

sgn(r) =


1 (r > 0),

0 (r = 0),

−1 (r < 0).

We notice that the dimension of Uρ is 1+
∑n−1

i=1 τ(i) for ρ = (σ, τ) ∈ Rn.

Let K := Q({we}e∈E, {dx}x∈V ) ⊂ R be the subfield of R generated by

{we}e∈E and {dx}x∈V , and consider the field K(z) of rational functions
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in z with coefficients in K. Moreover, let G = Gz = GH,z : Rn → 2R(z)
n

be the (multi-valued) function defined by

Gf = Gzf := (D + zL)(f) (f ∈ Rn),(7.2)

which defines Gλ : Rn → 2R
n
for any λ > 0, where D = diag(d1, . . . , dn)

and L : Rn → 2R
n
is the hypergraph Laplacian given in (2.3).

7.1. Piecewise linear inverse. Let H be a generalized hypergraph.

We will show the following proposition.

Proposition 7.2. For any ρ ∈ Rn, there exists a symmetric matrix

Nρ,z ∈ Mn(K(z)) such that Nρ,λ has non-negative entries for any λ > 0

and (Nρ,λ ◦Gλ)(f) = f holds for any f ∈ Uρ.

In order to prove the proposition, let us prepare the following nota-

tions.

• For each e ∈ E, put f+
e := maxx∈e fx and f−

e := minx∈e fx with

f = (f1, . . . , fn)
⊤ ∈ Rn.

• For each ρ ∈ Rn, let V = tI∈IρI be a unique decomposition

of V = {1, . . . , n} such that each f = (f1, . . . , fn)
⊤ ∈ Uρ sat-

isfies fx = fy if and only if x, y ∈ I for some I ∈ Iρ. The

decomposition is independent of the choice of f ∈ Uρ.

• For each e ∈ E and ρ ∈ Rn, let I±e,ρ ⊂ V be the set of points

x ∈ V with fx = f±
e for f ∈ Uρ, which is also independent of the

choice of f ∈ Uρ. In particular, we have I±e,ρ ∈ Iρ. Moreover,

either I+e,ρ ∩ I−e,ρ = ∅ or e ⊂ I+e,ρ = I−e,ρ holds.

• For each e ∈ E and ρ ∈ Rn, set

Me,ρ := Conv({Sxy ; x ∈ e ∩ I+e,ρ, y ∈ e ∩ I−e,ρ}),

where Sxy ∈ Mn(Q) is a symmetric matrix, given by

Sxy = Ixx − Ixy − Iyx + Iyy =

x y
⌣ ⌣


x ) 1 −1

y ) −1 1
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with Ixy = (δx(i) · δy(j))1≤i,j≤n ∈ Mn(Q) (here Sxy = 0 if x =

y). In particular, each element of Me,ρ is symmetric.

Now we notice that the hypergraph Laplacian L : Rn → 2R
n
defined in

(2.3) is expressed as

L(f) =
∑
e∈E

ωeLe(f) with Le(f) :=
{
be(b

⊤
e f) ; be ∈ argmaxb∈Be

b⊤f
}
,

(7.3)

where Be is given in (2.4). Here the sum of subsets A,B ⊂ Rn stands

for the Minkowski sum: A + B := {a + b ∈ Rn ; a ∈ A, b ∈ B}, and
the multiplication of A ⊂ Rn by a scalar c ∈ R means cA := {ca ∈
Rn ; a ∈ A}. Hence the restriction of Le on each component Uρ is

calculated as

Le|Uρ(f) = (f+
e − f−

e )Conv({δx − δy ; x ∈ e ∩ I+e,ρ, y ∈ e ∩ I−e,ρ}) = Me,ρf.

(7.4)

If I+e,ρ = I−e,ρ, then one has e ⊂ I+e,ρ = I−e,ρ and Le(f) = Me,ρf = 0 for

any f ∈ Uρ.

Proof of Proposition 7.2. We divide the proof into three steps.

Step 1 Assume that ρ ∈ Rn satisfies Iρ = {{1, 2, . . . , n}}, which means

that f = (f1, . . . , fn)
⊤ ∈ Uρ satisfies fx = fy for any x, y ∈ V . In

this case, one has I+e,ρ = I−e,ρ and thus Le|Uρ = Me,ρ = 0 for any

e ∈ E. Therefore, Gz|Uρ = D + z
∑

e∈E weMe,ρ = D is a single matrix

and Nρ,z = D−1 is a symmetric matrix with Nρ,λ = D−1 having non-

negative entries for any λ > 0.

Step 2 Assume that ρ ∈ Rn satisfies Iρ = {{1}, {2}, . . . , {n}}, which
means that f = (f1, . . . , fn)

⊤ ∈ Uρ satisfies fx 6= fy for any x 6= y ∈
V . In this case, one has #I+e,ρ = #I−e,ρ = 1 and thus Le|Uρ = Me,ρ

is a single-valued function for any e ∈ E. Moreover, Gz|Uρ = D +

z
∑

e∈E weMe,ρ is a symmetric matrix such that Gλ|Uρ has positive

diagonal entries and non-negative off-diagonal entries for any λ > 0,

and it satisfies(
D + z

∑
e∈E

weMe,ρ

)
1
...

1

 =


d1
...

dn

 .
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Hence it is known (see e.g. [45, Theorem 6.34]) that there exists an

inverse matrix Nρ,z = (D + z
∑

e∈E weMe,ρ)
−1 ∈ Mn(K(z)), which is

symmetric, and Nρ,λ has non-negative entries for any λ > 0.

Step 3 We prove the proposition by induction on n. The proposition for

the case n = 1 can be proved from Step 1 (or Step 2). Assume that the

proposition holds for n < m, and consider the case n = m. If ρ ∈ Rm

satisfies Iρ = {{1, 2, . . . ,m}} or Iρ = {{1}, {2}, . . . , {m}}, then the

proposition holds from Step 1 or Step 2. Otherwise, by exchanging the

indices if necessary, one may assume that there exists 1 < k < m such

that {k, . . . ,m} ∈ Iρ, that is, f = (f1, . . . , fm)
⊤ ∈ Uρ satisfies fx 6= fy

for any 1 ≤ x ≤ k − 1 and k ≤ y ≤ m and fk = fk+1 = · · · = fm. Now

we consider contractions of a function f = (f1, . . . , fm)
⊤ ∈ Rm, given

by

f̃ :=


f1
...

fk−1∑n
x=k fx

 ∈ Rk, f̂ :=


f1
...

fk−1

fk

 ∈ Rk,

and also consider a contraction of a matrix A = (aij)1≤ij≤m ∈ Mm(R),
given by

Ã :=


a11 · · · a1k−1

∑m
j=k a1j

...
. . .

...
...

ak−11 · · · ak−1k−1

∑m
j=k ak−1j∑m

i=k ai1 · · ·
∑m

i=k aik−1

∑m
i,j=k aij

 ∈ Mk(R).

One may also consider contractions of a function in K(z)m or in R(z)m,
and a matrix in Mm(K(z)) or in Mm(R(z)) in the same manner. Note

that if f ∈ Uρ, that is, fk = · · · = fm, then (̃Af) = Ãf̂ . Let ρ̃ ∈ Rk be

an index given by the relation Uρ̃ = {f̂ ∈ Rk ; f ∈ Uρ} ⊂ Rk.

Then it is seen that there exists a contraction H̃ = (Ṽ , Ẽ, w̃, d̃) of

the hypergraph H with Ṽ = {1, . . . , k} such that G̃H,z(f) = GH̃,z(f̂)
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holds for any f ∈ Uρ. Indeed, let us prepare the following notations:

π : V = {1, . . . ,m} → Ṽ := {1, . . . , k}, π(x) :=

{
x (x < k)

k (x ≥ k),

π : E → Ẽ := {ẽ ; e ∈ E}, π(e) = ẽ := {π(x) ; x ∈ e} ⊂ Ṽ ,

w̃ : Ẽ → R>0, w̃ẽ :=
∑

e∈π−1(ẽ) we,

d̃ : Ṽ → R>0, d̃x :=

{
dx (x < k)∑m
y=k dy (x ≥ k).

Since each matrix Sxy with x < y satisfies

S̃xy =


Sxy (x < y < k)

Sxk (x < k ≤ y)

0 (k ≤ x < y),

M̃e,ρ := {M̃ ; M ∈ Me,ρ} satisfies M̃e,ρ = Mẽ,ρ̃ for any e ∈ E. As

D̃ = diag(d̃1, . . . , d̃k), we have

G̃H,z(f) = (D̃ + z
∑
e∈E

weM̃e,ρ)(f̂) = (D̃ + z
∑
ẽ∈Ẽ

w̃ẽMẽ,ρ̃)(f̂) = GH̃,z(f̂)

for any f ∈ Uρ.

By our assumption of the induction, there exists a symmetric matrix

Nρ̃,z = (cij) ∈ Mk(K(z)) such that Nρ̃,λ has non-negative entries for

any λ > 0 and (Nρ̃,λ ◦ GH̃,λ)(f̂) = f̂ holds for any f ∈ Uρ. Since

G̃H,λ(f) = G̃H,λ(f̂) = GH̃,λ(f̂), we have (Nρ,λ ◦ GH,λ)(f) = f for any

f ∈ Uρ, where

Nρ,z :=



c11 · · · c1k · · · c1k
...

. . .
...

...

ck1 · · · ckk · · · ckk
...

...
...

ck1 · · · ckk · · · ckk


∈ Mm(K(z))

is also a symmetric matrix with Nρ,λ having non-negative entires for

λ > 0. The proposition is established. □

7.2. Linear programming. In order to prove Theorem 7.1, we pre-

pare the following lemma.
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Lemma 7.3. Let H be a generalized hypergraph. For any ρ ∈ Rn,

there exist vectors v1(z), . . . , vk(z) ∈ K(z)n such that for any λ > 0,

the closure of the image Gλ(Uρ) is expressed as

Gλ(Uρ) = ConvConeR({v1(λ), . . . , vk(λ)}) :=
k∑

i=1

R≥0 · vi(λ),

where Gλ is given in (7.2).

Proof. We use the notations in the proof of Proposition 7.2. For each

element f = (f1, . . . , fn)
⊤ ∈ Uρ, let gf1 > · · · > gfl be given by

{f1, . . . , fn} = {gf1 , . . . , g
f
l } and put hf

i := gfi − gfi+1 for 1 ≤ i ≤ l − 1

and hf
l := gfl , which gives a one-to-one correspondence between the

sets Uρ and {(h1, . . . , hl)
⊤ ; h1 > 0, . . . , hl−1 > 0, hl ∈ R}. Since

fi = gfk =
∑l

j=k h
f
j for some 1 ≤ k ≤ l, (7.3) and (7.4) show that

Gzf =Df + z
∑
e∈E

we(f
+
e − f−

e )Conv({δx − δy ; x ∈ e ∩ I+e,ρ, y ∈ e ∩ I−e,ρ})

=
l∑

j=1

hf
j

{
ηj + z

∑
Je∋j

weConv({δx − δy ; x ∈ e ∩ I+e,ρ, y ∈ e ∩ I−e,ρ})

}

for f ∈ Uρ, where Je = {k+, k+ + 1, . . . , k− − 1} ⊂ {1, . . . , l − 1} is

given by f±
e = gfk± , and ηj = (ηj1, . . . , ηjn)

⊤ ∈ Q(d)n is given by

ηji =

{
di (fi ≥ gfj )

0 (fi < gfj ).

Note that the definitions of Je and ηj are independent of the choice of

f ∈ Uρ. Thus Gλ(Uρ) ⊂ Rn is the set of points

l∑
j=1

hj

{
ηj + λ

∑
Je∋j

weConv({δx − δy ; x ∈ e ∩ I+e,ρ, y ∈ e ∩ I−e,ρ})

}
,

(7.5)

where (h1, . . . , hl)
⊤ varies over {h1 ≥ 0, . . . , hl−1 ≥ 0, hl ∈ R}. More-

over we also notice that

• the multiplication of a convex set Conv({ui}) by a scalar c ∈ R
is also a convex set: c · Conv({ui}) = Conv({c · ui}),

• the Minkowski sum of convex sets Conv({ui}) and Conv({vj}) is
also a convex set: Conv({ui})+Conv({vj}) = Conv({ui+ vj}),
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• the multiplication of a convex set Conv({ui}) by the (non-

negative) real numbers R (R≥0) is a convex cone: RConv({ui}) =
ConvCone({ui} ∪ {−ui}) (R≥0Conv({ui}) = ConvCone({ui})),
and

• the Minkowski sum of convex cones ConvCone({ui}) and ConvCone({vj})
is a convex cone: ConvCone({ui})+ConvCone({vj}) = Conv({ui}∪
{vj}).

Hence the proposition follows from the expression (7.5). □

From now on, we assume that H is a hypergraph. As Gλf = (I +

λL) ◦D(f), one has

Nρ,λ(g) = D−1 ◦ Jλ(g)(7.6)

for g ∈ Gλ(Uρ). Since Jλ is a (single-valued) continuous function by

Lemma 2.2, the relation (7.6) holds for g ∈ Gλ(Uρ). Here it follows

from (the proof of) Proposition 3.4 that the λ-nonlinear Kantorovich

difference KDλ(x0, y0) of x0 ∈ V and y0 ∈ V is given by

KDλ(x0, y0) = sup {〈Jλg, δx0 − δy0〉 ; g ∈ F} ,

where F is the set of functions g ∈ Rn satisfying the conditions

(a) 0 ≤ gx ≤ dx·diam(H) (x ∈ V ), (b) 〈g, δx − δy〉 ≤ d(x, y) (x, y ∈ V ).

Since Nρ,λ and D are symmetric matrices and {Gλ(Uρ)}ρ∈R covers the

whole space Rn, we have

KDλ(x0, y0) =max
ρ∈Rn

sup
{
〈Jλg, δx0 − δy0〉 ; g ∈ F ∩Gλ(Uρ)

}(7.7)

=max
ρ∈Rn

sup
{
〈g,D ◦Nρ,λ(δx0 − δy0)〉 ; g ∈ F ∩Gλ(Uρ)

}
.

Now we consider an order < on K(z), given so that p(z), q(z) ∈ K(z)

satisfy p(z) < q(z) if and only if q(z) − p(z) = zkr(z) for some k ∈ Z
and r(z) ∈ K(z) with 0 < r(0) < ∞. In other words, p(z), q(z) ∈ K(z)

satisfy p(z) < q(z) if and only if there exists λ0 > 0 such that p(λ) <

q(λ) for any λ ∈ R with 0 < λ < λ0. Then < becomes a total order on

K(z) and thus (K(z), <) is an ordered field.
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With the notation in Lemma 7.3, we consider the convex cone

Wρ := ConvConeK(z)({v1(z), . . . , vk(z)}) =
k∑

i=1

K(z)≥0 ·vi(z) ⊂ K(z)n.

It should be noted that some of the concepts of linear programming

over the real numbers, such as Farkas-Minkowski-Weyl theorem and

the simplex method, can be easily extended to that over an arbitrary

ordered field (see [19, 20]). Farkas-Minkowski-Weyl theorem says that

there exist vectors w1(z), . . . , wm(z) ∈ K(z)n such that the convex cone

Wρ is expressed as

Wρ = {g(z) ∈ K(z)n ; 〈g(z), wi(z)〉 ≤ 0 (1 ≤ i ≤ m)}.

In viewing (7.7), we consider the linear program LP(z):

maximize 〈g(z), D ◦Nρ,z(δx0 − δy0)〉

subject to (a) 0 ≤ g(z)x ≤ dx · diam(H) (x ∈ V )

(b) 〈g(z), δx − δy〉 ≤ d(x, y) (x, y ∈ V )

(c) 〈g(z), wi(z)〉 ≤ 0 (1 ≤ i ≤ m).

As the range of g(z) is bounded, the simplex method guarantees that

there exists an optimal solution g(ρ)(z) ∈ K(z)n to the linear pro-

gram LP(z) with optimal value h(ρ)(z) ∈ K(z). Moreover the following

proposition holds (see [19], 2.3, [20, Corollary 2]).

Proposition 7.4. Under the above notations, there exists λρ ∈ R>0

such that for every 0 < λ < λρ, g
(ρ)(λ) ∈ K(λ)n is an optimal solution

to the linear program LP(λ) with optimal value h(ρ)(λ) ∈ K(λ).

Proof of Theorem 7.1. As #Rn < ∞, h∗(z) := max{h(ρ)(z) ; ρ ∈ Rn}
and λ∗ := min{λρ ; ρ ∈ Rn} satisfy h∗(z) ∈ K(z) and λ∗ > 0. Thanks

to (7.7) and Proposition 7.4, the Kantorovich difference KDλ(x0, y0) is

expressed as KDλ(x0, y0) = h∗(λ) for any 0 < λ < λ∗. Since h∗(z) is

a rational function of z, the limit in (7.1) exists, which establishes the

theorem. □
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8. More general settings

Our arguments so far are applicable to more general settings for sub-

modular transformations. Here, submodular transformation is a vector

valued set function consisting of submodular functions. In this section,

we review about submodular functions, submodular transformations,

and these Laplacian and show some examples. We also give a sufficient

condition for a submodular transformation to be able to straightfor-

wardly generalize the curvature notions in Section 3 and theorems in

Section 5. For more details about submodular transformations, see [44].

8.1. Submodular function. Let V be a nonempty finite set. A func-

tion F : 2V → R is a submodular function if for any S, T ⊂ V , F

satisfies

F (S) + F (T ) ≥ F (S ∪ T ) + F (S ∩ T ).

An element v ∈ V is relevant in F : 2V → R if there is a S ⊂ V

such that F (S) 6= F (S ∪ {v}). We say that v is irrelevant in F if

v is not relevant in F . We define the support supp(F ) of F as the

set of elements which are relevant in F . A set function F : 2V → R
is symmetric if F (S) = F (V \S) holds for any S. We say that F is

normalized if F (V ) = 0.

Example 8.1. Let H = (V,E) be a hypergraph, and e ∈ E a hyper-

edge. Then, the cut function Fe of e defined as follows is a submodular

function:

Fe(S) =

1 if e ∩ S 6= ∅ and e ∩ (V \S) 6= ∅,

0 otherwise.

It is easy to show that a vertex v ∈ V is relevant in Fe if and only if

v ∈ e. Furthermore, Fe is symmetric and normalized.

For a submodular function F : 2V → R, we define

P (F ) :=

{
g ∈ RV ;

∑
x∈S

g(x) ≤ F (S) for any S ⊂ V

}
and

B(F ) :=

{
g ∈ P (F ) ;

∑
x∈V

g(x) = F (V )

}
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called the submodular polyhedron and the base polytope respectively.

Then, it is known that B(F ) is a bounded polytope.

The Lovász extension f : RV → R of a submodular function F : 2V →
R is defined by

f(g) := max
b∈B(F )

b⊤g.

It is known that f(χS) = F (S) for any S ⊂ V . Here, χS is the

characteristic function of S. In particular, f is indeed an extension

of F . It is also known that the Lovász extension f of a submodular

function F is convex ([5, Proposition3.6]).

For the Lovász extension f of a submodular function F , we set

∂f(g) := argmaxb∈B(F )b
⊤g.

Then, it is known that ∂f(g) is the sub-differential of f at g.

8.2. Submodular transformation and submodular Laplacian.

Let V and E be nonempty finite sets. A function F : 2V → RE;S 7→
F (S) = (Fe(S))e∈E is called a submodular transformation if each Fe is

a submodular function. A submodular transformation F is symmetric

(resp. normalized) if any Fe is symmetric (resp. normalized).

The Lovász extension f : RV → RE of a submodular transformation

F is defined by f = (fe) such that fe is the Lovász extension of Fe.

For a submodular transformation F : RV → RE, we consider a weight

function w : E → R>0. Then, we call the quadruple (V,E, F, w) a

weighted submodular transformation. We stand for the quadruple as

F . We define the degree dx for x ∈ V by dx :=
∑

e∈E;x∈supp(Fe)
we and

the volume vol(S) of S ⊂ V by vol(S) :=
∑

x∈S dx. For x, y ∈ V , x

and y is adjacent, denoted by x ∼ y, if there exists an element e ∈ E

such that x, y ∈ supp(Fe). By this relation, we can define the distance

function d : V × V → R≥0 and connectivity of F as in Section 2.1.

We define the degree matrix D := diag(dx)x∈V ∈ RV×V . We remark

that if F is connected, D is invertible.

Let F = (V,E, F, w) be a submodular transformation. Then, we

define the submodular Laplacian L : RV → 2R
V
by

L(g) :=

{∑
e∈E

w(e)beb
⊤
e g; be ∈ ∂fe(g)

}
⊂ RV .
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We call L := L ◦ D−1 the normalized Laplacian. We set the inner

product 〈f, g〉 := f⊤D−1g and consider (RV , 〈·, ·〉) as a Hilbert space.

Then, by a similar argument as in [17, Lemma 14, Lemma 15], the

following holds:

Proposition 8.2. The normalized Laplacian L is a maximal monotone

operator on the Hilbert space (RV , 〈·, ·〉).

More strongly, the normalized Laplacian L is the sub-differential of

the convex function Q : RV → R defined by

Q(g) =
1

2

∑
e∈E

wefe(g)
2,

where g = D−1g with g ∈ RV .

By Proposition 8.2, we can define the resolvent Jλ, the canonical

restriction L0, and the heat semigroup {ht}t≥0 for the Laplacian L.
Then, the straight extension of Lemma 2.1 holds.

We define π ∈ RV as π(x) = dx/vol(V ). Then, the following holds:

Lemma 8.3 ([44, Lemma 3.1]). We assume that F is normalized, i.e.,

Fe(V ) = 0 for any e ∈ E. Then, L(π) = 0 holds.

By Lemma 8.3, the similar lemmas as Lemma 2.1 and Lemma 2.3

hold for the normalized submodular Laplacian L. This implies that

by similar arguments, we can obtain the straightforward extensions of

definitions and theorems in Section 3 and Section 5 for any normal-

ized submodular transformation F with the normalized submodular

Laplacian L for F .

8.3. Examples. In [44], Yoshida gave many examples of submodular

transformations such as undirected graphs (Example 1.1, 1.2, and 1.4),

directed graphs (Example 1.5), hypergraphs (Example 1.6), submodu-

lar hypergraphs (Example 1.7), mutual information (Example 1.8), and

directed information (Example 1.9). We here give another example:

Example 8.4 (directed hypergraph). A weighted directed hypergraph

H is defined as the triple H = (V,E,w) of a set of vertices V , a set of

hyperarcs E ⊂ 2V × 2V , and a weight function w : E → R>0. Here, a

hyperarc e ∈ E is an ordered pair (te, he) of a set of tails te and a set of
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heads he. If the identities |te| = |he| = 1 hold for any e ∈ E, then H is

a usual directed graph. If te = he holds for any e ∈ E, then H can be

regarded as an undirected hypergraph1. Hence, a directed hypergraph

is a generalization of directed graphs and hypergraphs.

We define the set function Fe : 2
V → R as the cut function for e =

(te, he), i.e.,

Fe(S) :=

1 if S ∩ te 6= ∅ and (V \S) ∩ he 6= ∅,

0 otherwise.

Then, it is easy to show that Fe is submodular. Hence, the quadruple

F = (V,E, F = (Fe)e, w) becomes a submodular transformation. We

remark that F is normalized and not symmetric.

For this submodular transformation, by a simple calculation from

definition of B(Fe), we have

B(Fe) = Conv({δx − δy; x ∈ te, y ∈ he} ∪ {0}).(8.1)

The base polytope for hypergraph (2.4) is a realization of this for te =

he. By the representation (8.1), the Lovász extension fe of Fe is written

as

fe(g) = max{max{g(x)− g(y); x ∈ te, y ∈ he}, 0}.

We note that for all examples introduced in this subsection, F is

normalized, i.e., F (V ) = 0. Hence, the similar definitions of coarse

Ricci curvatures for F as in Section 3 and the similar theorems as in

Section 5 hold.

9. Concluding Remark

Comparing properties of curvatures for the examples in this paper

with those of other curvatures introduced by [12, 35] is an interesting

problem. The definitions of Ricci curvature in these two papers deeply

related to random walks. For the authors, the canonical random walks

on hypergraphs are not clear. Of course, one can define the random

walk as in [12], which seems related to the clique expansion. It is

1This specialization seems to be strange. However, from the viewpoint of sub-

modular transformation, this looks natural. Indeed, under the assumption te = he,

the cut function is same as that of undirected hypergraphs
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unclear for the authors that the clique expansion of a hypergraph reflect

the characteristics of its own hypergraph structure. At least, because

the hypergraph Laplacian is multivalued and nonlinear, there was no

canonical way to define the transition probabilities of random walkers

using it. For these reasons, still we do not know any essential relation

between theirs and ours. We leave it for a future work.

No data associate for the submission
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