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Abstract. In this paper we consider embedding problems given by central extensions with
cyclic kernel. We construct their explicit solutions by using the product of certain 1-cochains,
obtained from the vanishing of the obstructions. We also give a simple way to obtain proper
solutions from a weak solution and another general field extension.

1. Introduction

Let m be an integer > 1, and let F be a field of characteristic prime to m, containing the
group µm of m-th roots of unity. Let K/F be a finite Galois extension with Galois group
G = Gal(K/F ). Given a central extension
(1.1) 1 −→ µm

ι−→ G̃
π−→ G −→ 1 ,

we consider a Galois extension E/F with E ⊃ K and an isomorphism ϕ : Gal(E/F ) → G̃ such
that π ◦ϕ = resK , where resK is the canonical restriction homomorphism from Gal(E/F ) to
Gal(K/F ). We call such an extension E/F a proper solution, or simply a solution to the
embedding problem given by K/F and (1.1). We say the embedding problem is solvable if it
has a solution.

The purpose of this paper is to give an explicit construction of a solution E/F . Several
results have been obtained in particular situations: for example, in the case where there is a
homomorphism G→ PSL(A) for a central simple F -algebra A of degree m, Crespo [1] expressed
a solution in terms of reduced norms. Swallow [13] and Vela [14] generalized Crespo’s results
in their own way. There are many results on the case where m is prime and G is an m-
group. Especially, in the case G = (Z/mZ)k, k ∈ N, Massy [6] and Swallow [12] gave methods
to get explicit solutions. Quer [10] generalized some results in [6] to the case where G is an
abelian group. Mináč and Swallow [8] also generalized some results in [6], using Galois module
structures.

To construct a solution explicitly, we use 1-cochains (ξσ)σ∈G obtained from the vanishing of
obstructions to these problems. We consider the product z :=

∏
σ∈G ξσ . If m is equal to the

order of G (we denote it by n), we easily see that solutions have a formK(m
√
rηz−1)/F (r ∈ F×),

where η ∈ K× is an element determined by the extension (1.1). Our goal (Theorem 1) is to
show that we can construct solutions in the same way even if m 6= n. Note that we only assume
m | n and µm ⊂ F×, in particular we don’t require µn ⊂ K×. In addition, if m is prime and G
is a non-cyclic abelian m-group, we can take 1 as η (Proposition 2).

The organization of this paper is as follows. We show our main result on the construction
of weak solutions to the embedding problem in Section 2. In Section 3, we give an explicit
construction of proper solutions to the problem by using a weak solution and a Z/mZ -extension
of F (Proposition 1). We illustrate our method with some examples in Section 4.

Convention: For a Galois extension K/F , we denote by σx the action of σ ∈ Gal(K/F ) on
x ∈ K.
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2. Main results

Let m be an integer > 1, and let F be a field of characteristic prime to m, containing the
group µm of m-th roots of unity. Let K/F be a finite Galois extension with Galois group
G = Gal(K/F ). We consider the embedding problem given by K/F and the central extension
(2.1) 1 −→ µm

ι−→ G̃
π−→ G −→ 1.

First we recall weak solutions to embedding problems.

Definition 1 ([5, p.34]). A weak solution to the embedding problem given by K/F and (2.1)
is a Galois extension E/F which contains K/F together with an injective homomorphism
ϕ : Gal(E/F ) ↪→ G̃ such that π ◦ϕ = resK . Here resK is the canonical restriction homomor-
phism from Gal(E/F ) to Gal(K/F ). If the embedding problem has a weak solution, we say
that it is weakly solvable.

A proper solution to the embedding problem is also clearly a weak solution.

Let c ∈ Z2(G,µm) be a 2-cocycle such that its cohomology class [c] ∈ H2(G,µm) corresponds
to the extension (2.1). It is well-known that the embedding problem given by K/F and (2.1) is
weakly solvable if and only if ι([c]) = 1 holds for the homomorphism ι : H2(G,µm) → H2(G,K×)
induced by the inclusion µm ⊂ K×. Let Br(F ), Br(K) be the Brauer groups of F , K respec-
tively, and let Br(K/F ) be the kernel of the canonical homomorphism Br(F ) → Br(K); [A] 7→
[A⊗F K]. We call ψ (ι([c])) ∈ Br(K/F ) the obstruction to the embedding problem, where ψ is
the isomorphism from H2(G,K×) to Br(K/F ). If K(m

√
ω)/F (ω ∈ K×) is a weak solution, we

have a family (λσ)σ∈G with values inK× such that σω = ωλmσ for all σ ∈ G and that the 2-cocycle
(σ, τ ) 7→ λσ

σλτλ
−1
στ ∈ µm represents [c]. Moreover, all the weak solutions areK(m

√
rω)/F, r ∈ F×

(cf. [5, Theorem 2.4.1]).

Let n = |G|. In the following, we assume that m divides n.

We define a map χ from G to µm by
χ(σ) :=

∏
τ∈G

c(σ, τ ) .

Then we have the following lemmas.

Lemma 1. The map χ only depends on the cohomology class of such a 2-cocycle c.

Proof. Let c′ ∈ Z2(G,µm) be a 2-cocycle contained in the cohomology class of c. Then there
exists a family (θσ)σ∈G of elements of µm such that c′(σ, τ ) = θσ

σθτθ
−1
στ · c(σ, τ ) for all σ, τ ∈ G.

Therefore, we have∏
τ∈G

c′(σ, τ ) =
∏
τ∈G

c(σ, τ ) ·
∏
τ∈G

θσ ·
∏

τ∈G θτ∏
τ∈G θστ

=
∏
τ∈G

c(σ, τ ) · 1 · 1 =
∏
τ∈G

c(σ, τ ).

□

Lemma 2. χ : G→ µm is a group homomorphism and also is a 1-cocycle.

Proof. Since G operates on µm trivially, we only have to check that χ is a homomorphism.
Since c is a 2-cocycle of G with values in µm, we get

χ(σρ)

χ(σ)χ(ρ)
=

∏
τ c(σρ, τ)∏

τ c(σ, τ )
∏

τ c(ρ, τ)
=

∏
τ c(σ,ρτ )∏

τ c(σ, τ )
∏

τ c(σ,ρ)
= 1

by a simple calculation. □
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By Hilbert Satz 90, there exists an element η of K× such that

χ(σ) =
∏
τ∈G

c(σ, τ ) =
ση

η

for arbitrary σ ∈ G. Using η, we can describe a solution to the embedding problem explicitly:
Theorem 1. Let c ∈ Z2(G,µm) be a 2-cocycle whose class [c] ∈ H2(G,µm) corresponds to the
extension (2.1). Assume the embedding problem given by K/F and (2.1) is weakly solvable.
By this assumption, we set a family (ξσ) of elements of K× with ξσ

σξτξ
−1
στ = c(σ, τ ) for all

σ, τ ∈ G. Suppose η is an element of K× with ση/η =
∏

τ∈G c(σ, τ ) for all σ ∈ G, and put
α =

(∏
σ∈G ξσ

)−1
η . Then there exists an element r ∈ F× such that K( n

√
rα)/F is a weak

solution to this embedding problem.

Proof. Let σ be an arbitrary element of G. By a simple calculation, we get
ση

η
=
∏
τ∈G

c(σ, τ ) =
∏
τ∈G

ξσ
σξτ
ξστ

=

(∏
τ∈G ξσ

)
σ
(∏

τ∈G ξτ
)∏

τ∈G ξστ
=
ξnσ

σ
(∏

τ∈G ξτ
)∏

τ∈G ξστ
.

Hence we have σα/α = ξnσ .

Let K be a separable closure of K and let G = Gal(K/F ), N = Gal(K/K). We have
inf([c]) = 1, where inf : H2(G,µm) → H2(G,µm) is the inflation map. As a part of the 5-term
exact sequences,

F×/F×m // (K×/K×m)G
δm // H2(G,µm)

inf // H2(G,µm)

and
F×/F×n // (K×/K×n)G

δn // H2(G,µN
n )

inf // H2(G,µn)

are exact. Here δm is a map which sends the class of x ∈ K× to the class of 2-cocycle c′(σ, τ ) =
λσ

σλτλ
−1
στ , where λσ are elements of K× with σx = xλmσ for each σ ∈ G. We define δn similarly,

and µN
n denotes the subgroup of µn which is stable under the operation of N .

Let ϕ : H2(G,µm) → H2(G,µN
n ) be a map induced by the inclusion µm ⊂ µN

n . Then we have
the following commutative diagram with exact rows:

F×/F×m //

n/m

��

(K×/K×m)G
δm //

n/m
��

H2(G,µm)
inf //

φ

��

H2(G,µm)� _

��

F×/F×n // (K×/K×n)G
δn // H2(G,µN

n )
inf // H2(G,µn) .

Here the symbol n/m denotes the map induced by x 7→ xn/m. Then we see inf(ϕ([c])) = 1 and
δn([α]n) = ϕ([c]), where [α]n is the class of α in (K×/K×n)G.

By the assumption, there exists an element β ∈ K× such that K(m
√
β)/F is a weak solution.

Then δm([β]m) = [c] holds, where [β]m is the class of β in (K×/K×m)G. Now the commutativity
of the diagram shows δn([βn/m]n) = ϕ (δm([β]m)) = ϕ([c]) = δn([α]n), which implies [βn/m]n =
[rα]n for some r ∈ F×. Therefore βn/mxn0 = rα for some x0 ∈ K×. Clearly m

√
βx0 is one of the

n-th roots of rα, and the theorem holds since K(m
√
βx0) = K(m

√
β). □

Remark 1. Let x′ ∈ H1(N,µm) correspond to [x]m by the isomorphism H1(N,µm) ' K×/K×m.
We have δm([x]m) = (tg(x′))−1, where tg is the transgression map in [9, Proposition 1.6.6]. We
also have δn([x]n) = (tg(x′′))−1, where x′′ ∈ H1(N,µn) corresponds to [x]n by the isomorphism
H1(N,µn) ' K×/K×n.
Remark 2. It is also known that one of the weak solutions is given by y =

∑
σ ξ

−m
σ · σ(x) for

some x ∈ K× (for example, see Quer [10, p.187] and Vela [14, proof of Proposition 8.2(b)]).
Our solution is related to Crespo’s results [1], rather than this one.
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See Section 4 for details to determine η and r.

3. From weak solutions to proper solutions

We keep the notation of the previous section.

For a weak solution K(m
√
β)/F to be a proper solution to the embedding problem given by

K/F and (2.1), it is necessary and sufficient that the class [β] of β in K×/K×m is of order
m. Therefore, if there is an element r of F× such that [K(m

√
rβ) : K] = m, then the problem

has a proper solution. The existence of such an r follows from the existence of g ∈ F× in the
following proposition:

Proposition 1. Let g be an element of F× whose class [g] in F×/F× ∩K×m is of order m,
and let β be an element of K× whose class [β] in K×/K×m is of order `. If g and β satisfy the
equalities

[β]Z ∩ [g]Z = [βℓ/h]Z = [gm/h]Z, [βℓ/h] = [gm/h]

for some divisor h of `, then the class [βg1−m/ℓ] in K×/K×m is of order m.

Proof. We just apply the following lemma to the case where M = K×/K×m, ω = β, θ = g,
u = h, w = m and v = `:

Lemma 3. Let M be an abelian group (written additively), and let θ,ω ∈M be of order w and
v, respectively. If v is a divisor of w and equalities

Zθ ∩Zω = Z
w

u
θ = Z

v

u
ω,

w

u
θ =

v

u
ω

hold for some divisor u of v, then the map

ψ : Z/wZ×Z/
(v
u

)
Z −→ Zθ+Zω ⊂M, (x,y) 7−→ xθ+ y

(
−w
v
θ+ω

)
is a group isomorphism. In particular, the order of

(
1− w

v

)
θ+ω ∈M is equal to w.

Proof. It is easy to verify that ψ is well-defined and is a group homomorphism. ψ is surjective
because θ and ω are images of (1,0) and (w/v,1), respectively.

We show that ψ is injective. Let A,B be integers such that Aθ+B (−(w/v)θ+ω) = 0 holds.
Since (A−B(w/v))θ = −Bω and Zθ ∩Zω = Z(v/u)ω we have B ∈ (v/u)Z. This implies Aθ =
0, and then A ∈ wZ. Hence ψ is injective. □

4. Application to some examples

In this section, we illustrate our method with some central extensions, which are, cyclic
groups of square order (see 4.1), the group D4 ⋏Z/4Z (see 4.2) and the modular group M16

(see 4.3).

Before applying our methods to each example, we summarize how to construct weak solutions,
and show useful results in particular situations.

Suppose m is an integer > 1, F is a field of characteristic prime to m containing the group µm

of m-th roots of unity, and K/F is a finite Galois extension with Galois group G = Gal(K/F )
such that n := |G| is a multiple of m. We consider the embedding problem given by K/F and
the central extension
(2.1) 1 −→ µm

ι−→ G̃
π−→ G −→ 1 ,

and suppose that the problem is weakly solvable. To apply Theorem 1 for construction of weak
solutions, we need the following three steps:
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(1) Find a 2-cocycle c ∈ Z2(G,µm) whose cohomology class corresponds to the extension
(2.1), and find a family (ξσ)σ∈G of elements of K× with ξxxξyξ−1

xy = c(x,y) for all x,y in G.
(2) Calculate χ(σ) =

∏
τ∈G c(σ, τ ) for each σ ∈ G, and find η ∈ K× such that ση/η = χ(σ) (∀σ ∈

G). Then calculate α =
(∏

σ∈G ξσ
)−1

η.
(3) Find r ∈ F× such that K( n

√
rα)/F is a weak solution to the embedding problem.

In (1), we can use a section f : G→ G̃ of (2.1) and the 2-cocycle c ∈ Z2(G,µm) defined by
ι(c(σ, τ )) = f(σ)f(τ)f(στ)−1 (σ, τ ∈ G), which we call the associated 2-cocycle with f . Finding
a family (ξσ) is the most difficult step. For the argument of finding (ξσ) using norm properties
when m is prime and G is abelian, see Quer [10].

For (2), we note that χ(σ) does not depend on the choice of f by Lemma 1. The following
proposition is useful to find η in some cases:

Proposition 2. Let M = 〈σ1〉 × · · · × 〈σk〉 be an abelian group, where σi ∈M and m | ord(σi)
(1 ≤ i ≤ k). Regarding µm as an M-module by the trivial action, let c ∈ Z2(M,µm) be a 2-
cocycle whose cohomology class corresponds to a central extension

1 −→ µm
ι−→ M̃

π−→M −→ 1.

We define the map χ from M to µm by χ(σ) =
∏

τ∈M c(σ, τ ). Then we have the following:
(1) If k ≥ 2, we have χ(σ) = 1 for all σ ∈M .
(2) If k = 1, we have χ(σi

1) = ζ i (0 ≤ i ≤ |M | − 1) for some ζ ∈ µm.

Proof. Put ord(σi) = m`i (`i ∈ Z, 1 ≤ i ≤ k). Let si (1 ≤ i ≤ k) be an element of M̃ such that
π(si) = σi. We define the section f : M → M̃ by σh1

1 · · ·σhk
k 7−→ sh1

1 · · ·shk
k (0 ≤ hi ≤ m`i − 1).

Let c ∈ Z2(M,µm) be the associated 2-cocycle with f .

We define ζi ∈ µm (1 ≤ i ≤ k) by smℓi = ι(ζi), and if k ≥ 2 we define ζu,v ∈ µm (1 ≤ u < v ≤
k) by svsu = ι(ζu,v)susv. By these definitions we have

c(σi, σ
h1
1 · · ·σhk

k ) = ζXi
i ζh1

1,iζ
h2
2,i · · · ζ

hi−1

i−1,i, Xi =

{
0 (hi 6= m`i − 1)

1 (hi = m`i − 1)

for 0 ≤ hj ≤ m`j − 1, 1 ≤ j ≤ k. Therefore, we have

χ(σi) =
k∏

j=1

mℓj−1∏
hj=0

(
ζXi
i ζh1

1,iζ
h2
2,i · · · ζ

hi−1

i−1,i

)
= ζYi

i

i−1∏
u=1

ζ
Zu,i

u,i ,

where

Yi =
∏
j 6=i

m`j, Zu,i = {0+ 1+ · · ·+ (m`u − 1)} ·
∏
j 6=u

m`j =
1

2
m`u(m`u − 1)

∏
j 6=u

m`j.

If k ≥ 2, Yi,Zu,i are multiples of m, and we have χ(σi) = 1 for 1 ≤ i ≤ k. Since χ is a
homomorphism (Lemma 2), the assertion (1) holds.

If k = 1, we have M = 〈σ1〉 and χ(σ1) = ζ1. Then the assertion (2) follows from Lemma
2. □

By Proposition 2, we can take η = 1 if G ' G1 × · · · ×Gk (k ≥ 2), where Gi (1 ≤ i ≤ k) are
cyclic and |Gi| are multiples of m. If G is cyclic, we can take η = m

√
x for some x ∈ F×.

In (3), we first search for r′ ∈ F× and γ ∈ K× with γn/m = r′α. We see that ησ := σγ γ−1ξ−m
σ

is an element of K× and also is an n/m-th root of unity. If ησ = 1(∀σ ∈ G), clearly K(m
√
γ)/F

itself is a weak solution to the embedding problem. Otherwise, K(m
√
γ)/F may not be a weak

solution. We have the following criterion:
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Lemma 4. Let γ be an element of K× with σγ/γ = ξmσ ησ, ησ ∈ µn/m ∩K× for all σ ∈ G. Then
K(m

√
γ)/F is a weak solution to the embedding problem if and only if ησ ∈ K×m for all σ ∈ G.

Proof. “if ” -part: There exists a family (xσ)σ∈G with xσ ∈ K× and xmσ = ησ for all σ ∈ G.
Then we have xσσxτx−1

στ ∈ µm for all σ, τ ∈ G. The 2-cocycle c′ ∈ Z2(G,µm) given by c′(σ, τ ) =
(ξσxσ)

σ(ξτxτ )(ξστxστ )
−1 is contained in the cohomology class of c. Hence we see that K(m

√
γ)/F

is a weak solution to the embedding problem.

“only if ” -part: For an element a ∈ K× with σa/a = η−1
σ (∀σ ∈ G), K(m

√
γa)/F is a weak

solution to the embedding problem. If K(m
√
γ)/F is also a weak solution, a = rγk−1ym holds

for some r ∈ F×, y ∈ K× and some integer k prime to m. We have

η−1
σ =

σa

a
=

(
σy

y

)m(σγ

γ

)k−1

=

(
σy

y

)m (
ξk−1
σ

)m
ηk−1
σ .

If we denote zσ = (σyy−1ξk−1
σ )−1 and take u,v ∈ Z such that ku+mv = 1, we obtain ησ =

(zuση
v
σ)

m since ηkuα = zmu
σ . This proves the assertion. □

If F is a field of characteristic 6= 2, we will denote by (a, b) ∈ Br(F ) the class of the quaternion
algebra generated over F by two elements i, j with

i2 = a, j2 = b, ji = −ij
for elements a, b ∈ F×. It is well-known that (a, b) = 1 holds if and only if b is in the image of
the norm of F (

√
a)/F .

4.1. Cyclic group of order m2: Extension 1 −→ µm −→ Z/m2Z −→ Z/mZ −→ 1.

Let F be a field with characteristic prime to m, containing the group µm of m-th roots
of unity. Let K = F (m

√
a), where a is an element of F× whose class of a in F×/F×m is of

order m. Then G := Gal(K/F ) ' Z/mZ. Let σ be a generator of G, and we define ζ ∈ µm by
σ(m
√
a) = ζ m

√
a. We consider the embedding problem given by K/F and the extension

(4.1) 1 −→ µm
ζ 7→sm−−−→ Z/m2Z s 7→σ−−→ G −→ 1,

where s is a generator of Z/m2Z. We remark that every weak solution to this embedding
problem is a proper solution, since we easily see that no proper subgroup of Z/m2Z can be the
Galois group of a weak solution.

If we take the section f : Z/mZ → Z/m2Z of (4.1) defined by f(σi) = si (0 ≤ i ≤ m− 1), the
2-cocycle c ∈ Z2(G,µm) associated with f is given by

c(σi, σj) =

{
1 (i+ j < m)

ζ (i+ j ≥ m)

for 0 ≤ i, j ≤ m− 1.

It is known that this embedding problem has a solution if and only if there exists an element
ρ of K× with ρ σρ · · · σm−1

ρ = ζ (for example, see Vela [14, Theorem 7.1]). We suppose that this
problem is solvable, and take an element ρ ∈ K× such that ρ σρ · · · σm−1

ρ = ζ. If we put
ξσi = ρ σρ · · · σi−1

ρ (0 ≤ i ≤ m− 1),

we get ξxxξyξ−1
xy = c(x,y) for all x,y ∈ G.
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On the other hand, we have χ(σi) =
∏m−1

j=0 c(σ
i, σj) = ζ i for 0 ≤ i, j ≤ m− 1, and we can

take η = m
√
a as an element with σi

η/η = ζ i for all 0 ≤ i ≤ m− 1. Therefore,

α = m
√
a ·

(
m−1∏
i=0

(ρ σρ · · · σi−1

ρ)

)−1

= m
√
a ·
(
ρm−1 σρm−2 · · · σm−2

ρ
)−1

,

and we see that one of the solutions is K(m
√
α)/F . An equivalent expression is

K

(
m

√
m
√
a · ρ σρ2 · · · σm−2ρm−1

)/
F.

Remark. This solution is known, and also stated heuristically by Massy ([6, Théorème 3] and
[7, Théorème 1]) in the case where m is prime. In our viewpoint, the solution is a consequence
of Theorem 1.

4.2. An extension of D4: 1 −→ µ2 −→ D4 ⋏Z/4Z −→ D4 −→ 1.

Let F be a field with characteristic 6= 2, and let K/F be a Galois extension with G :=
Gal(K/F ) ' D4, where D4 = 〈σ, τ | σ4 = τ 2 = 1, τσ = σ3τ〉 is the dihedral group. Then we
have K = F (

√
r(A+B

√
a),

√
b), where a, b ∈ F× are quadratically independent, A2 − aB2 =

ab, r,B ∈ F× and A ∈ F . Let σ, τ ∈ G be given by

σ :

√
r(A+B

√
a) 7−→

√
a
√
b

A+B
√
a

√
r(A+B

√
a) =

√
r(A−B

√
a),

√
b 7−→

√
b ,

τ :

√
r(A+B

√
a) 7−→

√
r(A+B

√
a),

√
b 7−→ −

√
b ,

whence σ4 = τ 2 = 1 and τσ = σ3τ .

Let D4 ⋏Z/4Z be the pull-back
D4 ⋏Z/4Z = D4 ×(g,h) Z/4Z = {(x,y) ∈ D4 ×Z/4Z | g(x) = h(y)},

where g : D4 → Z/2Z and h : Z/4Z = 〈z〉 → Z/2Z are epimorphisms with kernel 〈σ2, τ〉 and
〈z2〉, respectively. It has a presentation

D4 ⋏Z/4Z = 〈u,v,w | u4 = v2 = w2 = 1, vu = u3vw, w is central〉.
We consider the embedding problem given by K/F and

(4.2) 1 −→ µ2
−1 7→w−−−−→ D4 ⋏Z/4Z

u 7→σ
v 7→τ−−−→
π

D4 −→ 1 .

It is known that the obstruction to this embedding problem is (a,−1) ∈ Br(F ) ([3, Example
4.6]).

We remark that every weak solution to this embedding problem is proper. Indeed, we can
easily verify that the exact sequence (4.2) does not split (i.e., there exists no homomorphism
f ′ : D4 → D4 ⋏Z/4Z with π ◦ f ′ = id), which implies that D4 cannot be the Galois group of
a weak solution. It is obvious that the other proper subgroups of D4 ⋏Z/4Z are not Galois
groups of weak solutions.

We take the section f : D4 → D4 ⋏Z/4Z of (4.2) defined by σiτ j 7→ uivj (0 ≤ i ≤ 3, 0 ≤ j ≤
1). Then we have

f(σiτ j)f(σkτ l) = uivjukvl = uiu3jkvjvlwjk = u[i+3jk]4v[j+l]2w[jk]2

f(σiτ jσkτ l) = f(σ[i+3jk]4τ [j+l]2) = u[i+3jk]4v[j+l]2

for 0 ≤ i, k ≤ 3, 0 ≤ j, l ≤ 1. Here [x]y denotes the remainder of an integer x ≥ 0 divided by an
integer y ≥ 1. Hence we see that the associated 2-cocycle is given by

c(σiτ j, σkτ l) =

{
−1 (j, k) = (1,1), (1,3)

1 otherwise
.
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We also see χ(x) = 1 for all x ∈ G and therefore we can take η = 1.

Suppose this embedding problem is solvable. Let ρ be an element of F (
√
a) with ρ σρ = −1.

Then we have ξxxξyξ−1
xy = c(x,y) for all x,y ∈ G if we put

ξσiτ j = ρ σρ · · · σi−1

ρ (0 ≤ i ≤ 3, 0 ≤ j ≤ 1) .

Now we have α = 1 ·
(∏

σ∈D4
ξσ
)−1

= ρ−4. Then 8
√
α =

√
ρ−1, and we see

σ(ρ−1)

ρ−1
=

ρ
σρ

= −ρ2 = −ξ2σ,
τ(ρ−1)

ρ−1
= 1 = ξ2τ .

From these calculations we obtain x(ρ−1
√
a) = ρ−1

√
a · ξ2x for all x ∈ G, and we conclude that

K(
√
ρ
√
a)/F is a solution to this problem.

Remark 1. K(
√
ρ)/F is also a solution to this problem if and only if K× contains µ4 (Lemma

4).

Remark 2. Grundman, Smith and Swallow [2, Section 4.4] also explain constructions of D4 ⋏
Z/4Z-extensions, by considering the extension 1 → µm → D4 ⋏Z/4Z → Z/4Z×Z/2Z → 1.

4.3. Extension of Z/4Z×Z/2Z: 1 −→ µ2 −→M16 −→ Z/4Z×Z/2Z −→ 1.

Let F be a field with characteristic 6= 2, and let K/F be a Galois extension with G :=

Gal(K/F ) ' Z/4Z×Z/2Z. Then we have K = F (
√
u(v+w

√
a),

√
b), where a, b ∈ F× are

quadratically independent, v2 − aw2 = a, u,w ∈ F× and v ∈ F . Let σ, τ ∈ G be given by

σ

(√
u(v+w

√
a)

)
=

√
u(v−w

√
a), τ(

√
b) = −

√
b,

σ(
√
b)√
b

=
τ(
√
u(v+w

√
a))√

u(v+w
√
a)

= 1 .

The center of M16 := 〈s, t | s8 = t2 = 1, ts = s5t〉 is {1, s2, s4, s6}. We consider the embedding
problem given by K/F and the extension

(4.3) 1 −→ µ2
−1 7→s4−−−−→M16

s 7→σ
t 7→τ−−−→ G −→ 1 .

As in the previous examples, every weak solution to this embedding problem is also a proper
solution.

We take the section Z/4Z×Z/2Z →M16 of (4.3) defined by σiτ j 7→ sitj (i = 0,1,2,3, j =
0,1). Then the associated 2-cocycle c ∈ Z2(G,µ2) is

(4.4) c(σiτ j, σkτ l) =

{
(−1)jk+1 (i+ k ≥ 4)

(−1)jk (i+ k < 4)

for 0 ≤ i, k ≤ 3 and 0 ≤ j, l ≤ 1.

The obstruction to this embedding problem is (a,2b)(−1, uv), and it is known that (a,2b)(−1, uv) =

1 if and only if −b2 is a norm of the extension L/F , where L = K(
√
u(v+w

√
a)) (cf. Ledet

[3, p.1263, Remark]). We suppose that this problem is solvable.

Let ρ ∈ L be an element with
∏3

i=0
σi
ρ = −b2 . Then we have ξxxξyξ−1

xy = c(x,y) (∀x,y ∈ G)
if we put

ξσiτ j =
ρ σρ · · · σi−1

ρ
√
b
i (i = 0,1,2,3, j = 0,1) .

By Proposition 2 we have η = 1, and we get

α =
b6

ρ6( σρ)4( σ2ρ)2
.
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Therefore, there exists an element r of F× such that 4
√
rα ∈ K and K( 8

√
rα)/F is a solution to

this problem.

We consider the condition on r. In the following, we assume v 6= 0 (for the case v = 0, see
Remark 3). Since b2rρ2( σ2

ρ)2 ∈ K4, the form of r is one of the followings:
r = C2, C2a, C2b, C2ab (C ∈ F×).

Let z ∈ K be a square root of r. Then a solution is K

(√
b

ρ σρ
√
zρ σ2ρ

)/
F , and

√
zρ σ2ρ ∈ K

holds.

Let δ :=
b

ρ σρ
√
zρ σ2ρ

, and suppose K(
√
δ)/F is a solution to this embedding problem. We

may assume xδ/δ = ξ2x for arbitrary x ∈ G. Since σ(δ2)/δ2 = ξ4σ and τ (δ2)/δ2 = 1, we have
z = C

√
a for some C ∈ F×.

It remains to determine C. Let γ :=
√
C
√
aρ σ2ρ. We may assume γ σγ = bC

√
a. Also, since

γ2 ∈ F (
√
a), γ ∈ K has degree 2 over F (

√
a), and we have τγ = ±γ, and σ2

γ = ±γ. Here,
clearly we need τγ = γ for τδ/δ = 1 = ξ2τ . If we assume σ2

γ = γ, then we have γ ∈ F (
√
a,
√
b),

which contradicts γ σγ = bC
√
a. Hence we see σ2

γ = −γ.

Therefore γ ∈ F (
√
u(v+w

√
a)), and we can put γ = A

√
u(v+w

√
a) +B

√
u(v−w

√
a),

where A,B are elements of F . Putting ρ σ2
ρ = X + Y

√
a (X,Y ∈ F ), we have

γ2 = C
√
a(X + Y

√
a), γ σγ = bC

√
a.

Comparing coefficients, we see that the equalities
Y aC = uv(A2 +B2) ,

XC = u{w(A2 −B2) + 2AB} ,
bC = u{(A2 −B2)− 2wAB}

hold.

Now the problem comes down to solving these equations. Then we obtain
√
C
√
aρ σ2ρ =

A
√
u(v+w

√
a) +B

√
u(v−w

√
a) ∈ K and get a solution to this embedding problem.

Special case of 4.3. As a special case, we also assume uv = a and b = w. In this case, we
have ρ σρ σ2

ρ σ3
ρ = −b2 for

ρ = 1+
1

u

√
u(v+w

√
a) .

Then X = 1− v/u, Y = −w/u and the preceding equalities are
−waC = u2v(A2 +B2) ,

(u− v)C = u2{w(A2 −B2) + 2AB} ,
wC = u{(A2 −B2)− 2wAB} .

Since w 6= 0, the solution of this equation is A = wB, C = −(u/w)(w2 +1)B2. Thus we have

δ =
b

ρ σρ(w
√
u(v+w

√
a) +

√
u(v−w

√
a))

=
bu

(u+
√
a+

√
u(v+w

√
a) +

√
u(v−w

√
a))(w

√
u(v+w

√
a) +

√
u(v−w

√
a))
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and K(
√
δ)/F is a solution to this embedding problem. Also, K(

√
buδ−1)/F is a solution and

buδ−1 =

(
u+

√
a+

√
u(v+w

√
a) +

√
u(v−w

√
a)

)(
w

√
u(v+w

√
a) +

√
u(v−w

√
a)

)
.

Remark 1. Ledet [4] also constructs a solution in a different way, using the equivalence of
quadratic forms. Based on results for Z/8Z-extension in Schneps [11], Grundman, Smith and
Swallow [2] also gave another construction of M16-extension in the case (a,2b) = (−1, uv) = 1.

Remark 2. If µ4 ⊂ F×, the extension K

(
4

√ √
ab3

ρ3( σρ)2( σ2ρ)

)/
F is a weak solution to the em-

bedding problem given by K/F and the extension

1 −→ µ4
ζ4 7→(1,g)−−−−−→ G̃′

(s,1) 7→σ

(t,1) 7→τ−−−−−→ G −→ 1,

where G̃′ is the central product of M16 and Z/4Z = 〈g〉 over subgroups {1, s4} and {1, g2}, i.e.

G̃′ =M16 ×Z/4Z
/
{(1,1), (s4, g2)} .

Indeed, if we define the section f : G→ G̃′ by σiτ j 7→ (sitj,1), the associated 2-cocycle c ∈
Z2(G,µ4) is clearly given by (4.4).

Moreover, if µ8 ⊂ F×, the extension K( 8
√
α)/F itself is a weak solution to the embedding

problem given by K/F and the extension

1 −→ µ8
ζ8 7→(1,h)−−−−−→ G̃′′

(s,1) 7→σ

(t,1) 7→τ−−−−−→ G −→ 1,

where G̃′′ is the central product of M16 and Z/8Z = 〈h〉 over subgroups {1, s4} and {1, h4}, i.e.

G̃′′ =M16 ×Z/8Z
/
{(1,1), (s4, h4)} .

Remark 3. If v = 0, solutions to this problem can be obtained explicitly. Without loss of
generality, we can assume µ4 ⊂ F× and K = F ( 4

√
a,

√
b), and let σ, τ ∈ G be given by

σ( 4
√
a) = ζ 4

√
a, τ(

√
b) = −

√
b,

σ(
√
b)√
b

=
τ( 4
√
a)

4
√
a

= 1,

where ζ is a primitive 4th root of unity. The obstruction is (a,2b), and we can take p, q ∈ F

which satisfies (p+ q
√
a)(p− q

√
a) = 2b. Then ρ σρ σ2

ρ σ3
ρ = −b2 holds for

ρ =
(1+ ζ)(p− q

√
a)

2
=

(1+ ζ)b

p+ q
√
a
,

and ξxxξyξ−1
xy = c(x,y) holds for arbitrary x,y ∈ G if we take

ξτ j = 1, ξστ j =
(1+ ζ)

√
b

p+ q
√
a
, ξσ2τ j = ζ, ξσ3τ j =

(ζ − 1)
√
b

p+ q
√
a

(j = 0,1).

Now we get

α :=

(∏
x∈G

ξx

)−1

=
(p+ q

√
a)4

−4b2

and we have 8
√
rα =

√
(p+ q

√
a) 4
√
a for r = −4ab2. We see that K(

√
(p+ q

√
a) 4
√
a)/F is a

solution. This solution agrees with the one shown in [5, (7.3.6)].
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