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ABSTRACT. In this paper, for given mass c > 0, we study the exis-

tence of normalized solutions to the following nonlinear p-Kirchhoff

equation


(
a + b

∫
RN
|∇u|pdx

)
(−∆pu) − V(x)|u|p−2u + λ|u|p−2u = |u|q−2u, in RN ,∫

RN
|u|pdx = cp,

where a > 0, b > 0, 1 < p < N < 2p, N ≥ 2, p +
2p2

N
< q < p∗ =

N p
N − p

and λ ∈ R appears as a Lagrange multiplier. Firstly, we get a

normalized solution to the equation with potential V(x) ≡ 0. Second-

ly, when V(x) ≥ 0, and under some assumptions on V , we prove the

existence of mountain pass solution with positive energy to the above

equation.
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1. Introduction

In this paper, we study the existence of normalized solutions to the following

nonlinear Kirchhoff equation with potential

(1.1)
(
a + b

∫
RN
|∇u|pdx

)
(−∆pu) − V(x)|u|p−2u + λ|u|p−2u = |u|q−2u, in RN ,

where a > 0, b > 0, 1 < p < N < 2p, N ≥ 2, p +
2p2

N
< q < p∗ =

N p
N − p

. To

begin with, we consider equation (1.1) with V ≡ 0. There has been a large number

of studies on normalized solutions of Kirchhoff equation without potential. Many

scholars have recently focused their attention to study the situation of p-Laplacian

equation such as [3] and [6]. They considered the following p-Laplacian equation

−∆pu = λ|u|p−2u + µ|u|q−2u + |u|p
∗−2u, in RN .

In [3], the authors obtained several existence results under µ > 0 and other as-

sumptions by using concentration compactness lemma, Schwarz rearrangement,

Ekeland variational principle and mini-max theorems. In [6], the authors obtained

the existence of ground state solution by virtue of truncation technique, and ob-

tained multiplicity of normalized solutions in the purely Lp-subcritical case. In

[11], the authors got a ground state solution to Eq.(1.1) and derived several as-

ymptotic results on the obtained normalized solutions with p = 2. There has been

less studies for normalized solutions of p-Kirchhoff equation. Inspired by [11], we

prove equation (1.1) has a normalized solution if V ≡ 0 holds.

Then we study the existence of normalized solutions to the nonlinear Kirch-

hoff equation with potential. When V . 0, there are many scholars studied the

existence of normalized solutions of Eq.(1.1). In [2], the authors discussed the

existence of solutions for a class of Kirchhoff equations with p = 2, and then they

studied the behavior of the Palais-Smale sequences by splitting lemma. And some

scholars studied the problem with p = 2 in [14] and [17]. In [14], the authors

used a new concentration compactness type result to recover compactness in the
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Sobolev critical case, and then they proved the existence of positive ground state

solutions to the equation under an explicit assumption on V . In [17], the authors

proved the existence of ground state normalized solution via variational method-

s. This paper is inspired by [4], which they studied the existence of normalized

solutions for the p-Laplacian equation. We are interested in the existence of nor-

malized solution of Eq.(1.1) and extend the results of [14]. We use the minimax

method and Splitting lemma to study the existence of a mountain pass normalized

solution of Eq.(1.1).

We define

S c =
{
u ∈ W1,p(RN) : ||u||p = c

}
where W1,p(RN) is endowed with the usual norm ||u|| = (

∫
RN

(|∇u|p + |u|p)dx)
1
p and

|| ||q stands for the Lq-norm. Solutions to Eq.(1.1) are critical points of the energy

functional I : W1,p(RN)→ R with

I(u) =
a
p
||∇u||pp +

b
2p
||∇u||2p

p −
1
q
||u||qq −

1
p

∫
RN

V(x)|u|pdx

on the constraint S c with a Lagrange multiplier λ ∈ R. If u is a weak solution of

(1.1), then

P(u) := (a+b||∇u||pp)||∇u||pp−γq||u||
q
q−

N
p

∫
RN

V(x)|u|pdx−
∫
RN

V(x)|u|p−2u∇u·xdx = 0

where γq =
N(q − p)

pq
.

For u ∈ W1,p(RN) and s ∈ R, let s ∗ u = e
Ns
p u(esx) ∈ S c, we define the fiber map

Ψu(s) := I(s ∗ u).

Then we introduce the following Pohozaev constrained set

Pc = {u ∈ W1,p(RN) : P(u) = 0} ∩ S c.

Consider the decomposition of Pc into the disjoint union,

Pc = P+
c ∪ P0

c ∪ P−c ,



4 YUAN XU AND YONGYI LAN

where P+
c = {u ∈ S c : Ψ′u(0) = 0,Ψ′′u (0) > 0}.

2. Results

Our main results are the following:

Theorem 1 Assume that N ≥ 2, 1 < p < N < 2p, p +
2p2

N
< q < p∗ =

N p
N − p

and V ≡ 0 holds, let a > 0, b > 0, c > 0, then equation (1.1) has a mountain pass

solution u on S c. In addition, u is a radial ground state solution.

Theorem 2 Assume that N ≥ 2, 1 < p < N < 2p, p +
2p2

N
< q < p∗ =

N p
N − p

and

V . 0 holds, let a > 0, b > 0, c > 0, if fixed δ ∈ (0, a), we assume that

(2.1) ||V ||N/p ≤ (a − δ)S ,

(2.2)

||W ||N/(p−1) < min
{S

p−1
p

p2 [aY − N(q − 2p)S −1||V ||N/p],

S
p−1

p

Xp2 + Zp

(
aXY − [XN(q − 2p) + (N − p)Z]S −1||V ||N/p

)}
,

where

X = N p− (N − p)q, Y = N(q− p)− p2, Z = N(q− p)2, W(x) := V(x) · |x| and

S denotes the Sobolev constant.

Then equation (1.1) has a mountain pass solution on S c for every c > 0 with

positive energy.

3. The proof of non-potential case

In this section, we study the structure of Pc and I to locate the position of

critical points of I|S c with V ≡ 0. To prove the Theorem 1, we mainly establish

some preliminaries by showing the following definitions and lemmas.



NORMALIZED SOLUTIONS FOR p-KIRCHHOFF EQUATION 5

3.1. Preliminaries. (1) W1,p
r (RN) =

{
u ∈ W1,p(RN) : u(x) = u(|x|)

}
is equipped

with the standard norm || ||. S c,r = S c ∩W1,p
r (RN).

(2) Since V ≡ 0, we define

I∞(u) =
a
p
||∇u||pp +

b
2p
||∇u||2p

p −
1
q
||u||qq

and

P∞(u) := (a + b||∇u||pp)||∇u||pp − γq||u||
q
q.

In this section, we abbreviate I∞ and P∞ as I and P.

(3) Gagliardo-Nirenberg inequality: there exists a constant CN,p,q > 0 such that

||u||q ≤ CN,p,q||∇u||
N(q−p)

pq
p ||u||

1−N(q−p)
pq

p .

(4) We define

T (s) :=

s, if |s| ≤ 1,
s
|s|
, if |s| > 1.

(5) Using a well known inequality found in [13, Lemma A.0.5], we know that

(3.1) (|η|p−2η − |ξ|p−2ξ) · (η − ξ) ≥

d1|η − ξ|
p, if p ≥ 2,

d2(|η| + |ξ|)p−2|η − ξ|2, if 1 < p < 2,

where d1, d2 are positive constants.

Lemma 3.1([4 Lemma 2.1]) Let N ≥ 1, p > 1 and {un} ⊂ D1,p(RN) such that

un ⇀ u in D1,p(RN), where D1,p denotes the completion of C∞c (RN) with respect

to the norm ||u||D1,p := ||∇u||p. Assume that for every ϕ ∈ C∞c (RN), there is

(3.2) lim
n→∞

∫
RN
ϕ(|∇un|

p−2∇un − |∇u|p−2∇u) · ∇T (un − u)dx = 0.

Then, up to a subsequence, ∇un → ∇u a.e. in RN .

In the proof, let k ∈ N+ and ϕ ∈ C∞c (R) satisfies

0 ≤ ϕ ≤ 1 ϕk = 1 in Bk and ϕk = 0 in Bc
k+1.

Lemma 3.2([7 Lemma 5.2]) Let φ be a C1-functional on a complete connected

C1-Finsler manifold X and consider a homotopy-stable family F with an extended
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closed boundary B. Set m = m(φ,F ) and let F be a closed subset of X satisfying

(1) (A ∩ F) \ B , ∅ for every A ∈ F ;

(2) sup φ(B) ≤ m ≤ inf φ(F).

Then, for any sequence of sets {An} in F such that lim
n→∞

sup
An

φ = m, there exists a

sequence {xn} in X such that

lim
n→∞

φ(xn) = m, lim
n→∞
||dφ(xn)|| = 0, lim

n→∞
dist(xn, F) = 0, lim

n→∞
dist(xn, An) = 0.

3.2. Proof of Theorem 1. Firstly, we give the compactness analysis of Palais-

Smale sequences for I|S c .

Proposition 3.1 Let a > 0, b > 0, c > 0, p +
2p2

N
< q < p∗ and V ≡ 0. Let

{un} ⊂ S c,r be a Palais-Smale sequence for energy I|S c level m , 0 with P(un)→ 0

as n → ∞, then up to a subsequence un → u strongly in W1,p(RN) for some

u ∈ W1,p(RN). Moreover, u ∈ S c and u is a radial solution to (1.1) for some λ > 0.

Proo f . The proof is divided into three main steps.

(1) Boundedness of {un} in W1,p(RN). If p +
2p2

N
< q < p∗ and V ≡ 0, then

qγq > 2p and

I(un) =
a
p
||∇un||

p
p +

b
2p
||∇un||

2p
p −

1
q
||un||

q
q.

By P(un) → 0, a||∇un||
p
p + b||∇un||

2p
p − γq||un||

q
q + on(1) = 0, where on(1) → 0 as

n→ ∞, then we have

I(un) −
1

2p
P(un) =

a
2p
||∇un||

p
p + (

γq

2p
−

1
q

)||un||
q
q + on(1) ≤ m + 1.

Hence, {un} is bounded in W1,p(RN) and Lq(RN) by qγq > 2p.

(2) There exist Lagrange multipliers λn → λ ∈ R and λ > 0. Since W1,p
r (RN) ↪→

Lq(RN), we deduce that there exists u ∈ W1,p
r (RN) such that, up to a subsequence,

un ⇀ u in W1,p
r (RN), un → u in Lq(RN) for p < q < p∗, un → u a.e. on RN .
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Since {un} is a Palais-Smale sequence of I|S c, by the Lagrange multipliers rule,

there exists λn ∈ R such that

(3.3)
(a + b||∇un||

p
p)

∫
RN
|∇un|

p−2∇un∇ψdx + λn

∫
RN
|un|

p−2unψdx

=

∫
RN
|un|

q−2unψdx + on(1)||ψ||

for every ψ ∈ W1,p(RN). In particular, take ψ = un, then

λncp = −a||∇un||
p
p − b||∇un||

2p
p + ||un||

q
q + on(1).

The boundedness of {un} in W1,p(RN) ∩ Lq(RN) implies that λn → λ ∈ R, up to a

subsequence.

Recalling that P(un)→ 0, by γq < 1 we have

λcp = lim
n→∞
{λn||un||

p
p}

= lim
n→∞
{−a||∇un||

p
p − b||∇un||

2p
p + ||un||

q
q}

= lim
n→∞
{(1 − γq)||un||

q
q}

= (1 − γq)||u||qq ≥ 0.

Hence, we deduce that λ ≥ 0, and λ = 0 if and only if u ≡ 0. If λn → 0, we have

||un||
q
q → 0. Using again P(un) → 0, we have lim

n→∞
{a||∇un||

p
p + b||∇un||

2p
p } = 0, then

I(un) → 0. There is a contradiction with I(un) → m , 0 and thus λn → λ > 0 and

u . 0.

(3) un → u in W1,p
r (RN). Firstly, we will show that

(3.4) ∇un → ∇u a.e. in RN .

Since un ⇀ u . 0 in W1,p(RN), let B := lim
n→∞
||∇un||

p
p, then we get B ≥ ||∇u||pp > 0.

By Egorov’s theorem, then for every δ > 0, there exists Fδ ⊂ suppϕ such that

un → u uniformly in Fδ and m(suppϕ\Fδ) < δ. Hence, |un(x) − u(x)| ≤ 1 for all

x ∈ Fδ as long as n sufficiently large.
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Then, since un ⇀ u in W1,p(RN), we have

(3.5)

lim sup
n→∞

∣∣∣(a + bB)
∫
RN
ϕ|∇u|p−2∇u · ∇T (un − u)dx

∣∣∣
≤ lim sup

n→∞

∣∣∣(a + bB)
∫

Fδ

ϕ|∇u|p−2∇u · ∇T (un − u)dx
∣∣∣

+ lim sup
n→∞

∣∣∣(a + bB)
∫

Fc
δ

ϕ|∇u|p−2∇u · ∇T (un − u)dx
∣∣∣

= lim sup
n→∞

∣∣∣(a + bB)
∫

Fc
δ

ϕ|∇u|p−2∇u · ∇T (un − u)dx
∣∣∣.

For every ε > 0, by the definition of T ,∣∣∣(a + bB)
∫

Fc
δ

ϕ|∇u|p−2∇u · ∇T (un − u)dx
∣∣∣ ≤ (a + bB)

∫
Fc
δ

|ϕ||∇u|p−1dx < Cδ,

as long as δ sufficiently small, which implies

(3.6) lim
n→∞

∫
RN
ϕ|∇u|p−2∇u · ∇T (un − u)dx = 0.

By Hölder inequality and the dominated convergence theorem,

(a + bB)
∣∣∣ ∫
RN
ϕ|∇un|

p−2∇un · ∇(T (un − u))dx
∣∣∣

≤
∣∣∣ ∫
RN
|un|

q−2un · ϕT (un − u)dx
∣∣∣ +

∣∣∣λn

∫
RN
|un|

p−2un · ϕT (un − u)dx
∣∣∣

+ (a + bB)
∣∣∣ ∫
RN
|∇un|

p−2∇un · T (un − u) · ∇ϕdx
∣∣∣ + on(1)

≤ C ·
( ∫
RN
|ϕT (un − u)|qdx

) 1
q

+ C ·
( ∫
RN
|ϕT (un − u)|pdx

) 1
p

+ C ·
( ∫
RN
|T (un − u) · ∇ϕ|pdx

) 1
p

+ on(1)

≤ Cε

which implies

lim
n→∞

∫
RN
ϕ|∇un|

p−2∇un · ∇T (un − u)dx = 0.
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By Lemma 3.1, (3.4) holds. Let n→ ∞, (3.3) implies that

(3.7) (a + bB)
∫
RN
|∇u|p−2∇u∇ψdx + λ

∫
RN
|u|p−2uψdx =

∫
RN
|u|q−2uψdx.

That is, u is a weak solution of the equation
(
a + bB

)
(−∆pu) + λ|u|p−2u = |u|q−2u.

So we have the Pohozaev identity

Q(u) := (a + Bb)||∇u||pp − γq||u||
q
q = 0.

Let vn = un − u and by the Brezis-Lieb Lemma leads to

||∇un||
p
p = ||∇vn||

p
p + ||∇u||pp and ||un||

q
q = ||vn||

q
q + ||u||qq.

Then

Q(un) = (a+Bb)||∇un||
p
p−γq||un||

q
q = (a+Bb)||∇vn||

p
p−γq||vn||

q
q+(a+Bb)||∇u||pp−γq||u||

q
q.

We have (a + Bb)||∇vn||
p
p = γq||vn||

q
q + on(1)→ 0. Hence, un → u in D1,p.

Take ψ = un − u in (3.3) and (3.7), we obtain

(a + bB)
∫
RN

(|∇un|
p−2∇un − |∇u|p−2∇u)∇(un − u)dx

+

∫
RN

(λn|un|
p−2un − λ|u|p−2u)(un − u)dx

=

∫
RN

(|un|
q−2un − |u|q−2u)(un − u)dx + on(1)||un − u||.

Now the first and the third integrals tend to 0. As a consequence,

(3.8)
0 = lim

n→∞
{

∫
RN

(λn|un|
p−2un − λ|u|p−2u)(un − u)dx}

= lim
n→∞

λ{

∫
RN

(|un|
p−2un − |u|p−2u)(un − u)dx}.
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For 1 < p < 2, we deduce from (3.8) and (3.1) that( ∫
RN
|un − u|pdx

) 2
p

=

( ∫
RN

|un − u|p

(|un| + |u|)p(2−p)/2 · (|un| + |u|)p(2−p)/2dx
) 2

p

≤

( ∫
RN

|un − u|2

(|un| + |u|)2−p dx
)( ∫

RN
(|un| + |u|)pdx

) 2−p
p

≤ C
∫
RN

(|un|
p−2un − |u|p−2u)(un − u)dx→ 0.

If p ≥ 2, we have∫
RN
|un − u|pdx ≤ C

∫
RN

(|un|
p−2un − |u|p−2u)(un − u)dx→ 0.

The above limits lead to un → u in Lp(RN). Hence, un → u in W1,p(RN).

�

Lemma 3.3 Let ã, b̃, c̃, q̃ ∈ (0,+∞) and f (t) = ãtp + b̃t2p − c̃tq̃ for t ≥ 0. If

q̃ ∈ (2p,+∞), f (t) has a unique maximum point at a positive level on [0,+∞).

Proo f . Direct calculations give

f ′(t) = tp−1g(t) for g(t) = pã + 2pb̃tp − q̃c̃tq̃−p;

g′(t) = tp−1w(t) for h(t) = 2p2b̃ − q̃(q̃ − p)c̃tq̃−2p;

h′(t) = −q̃(q̃ − p)(q̃ − 2p)c̃tq̃−2p−1.

Since q̃ ∈ (2p,+∞), then h′(t) < 0 for t > 0, we know that h(t)↘ on [0,+∞). The

fact that h(0) > 0 and h(+∞) = −∞ imply that there exists unique t1 > 0 such that

h(t1) = 0, h(t) > 0 if t ∈ (0, t1) and h(t) < 0 if t ∈ (t1,+∞).

Consequently, g(t) ↗ on [0, t1) and ↘ on (t1,+∞). The fact that g(0) > 0

and g(+∞) = −∞ imply that there exists unique t2 > t1 such that g(t2) = 0,

g(t) > 0 if t ∈ (0, t2) and g(t) < 0 if t ∈ (t2,+∞). We get f ′(t) > 0 if t ∈ (0, t2)

and f ′(t) < 0 if t ∈ (t2,+∞), which implies that f (t) ↗ on [0, t2) and ↘ on

(t2,+∞). Since f (0) = 0, then f (t) has a unique maximum point at t2 and f (t2) > 0.

�
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Lemma 3.4 Let a > 0, b > 0, c > 0, p +
2p2

N
< q < p∗ and V ≡ 0. For every

u ∈ S c, Ψu has a unique critical point su ∈ R, which is a strict maximum point at a

positive level. Moreover:

(1) Pc = P−c .

(2) Ψu is strictly decreasing on (su,+∞), and su < 0⇔ P(u) < 0.

(3) The maps u ∈ S c → su ∈ R are of class C1.

Proo f . Set

Ψu(s) =
aeps

p
||∇u||pp +

be2ps

2p
||∇u||2p

p −
eγq·qs

q
||u||qq

and

P(s ∗ u) = aeps||∇u||pp + be2ps||∇u||2p
p − γqeγq·qs||u||qq.

Obviously, Ψ′u(s) = 0 if and only if P(s∗u) = 0, then s∗u ∈ Pc. Clearly Ψu(s)→ 0+

as s → −∞, and Ψu(s) → −∞ as s → +∞, for every u ∈ S c. By Lemma 3.3, let

t = es, ã =
a
p
||∇u||pp, b̃ =

b
2p
||∇u||2p

p , c̃ =
1
q
||u||qq and q̃ = γq · q, then Ψu has a

unique maximum point su at positive level. We assume that there exists u ∈ P0
c,

then Ψ′u(0) = a||∇u||pp +b||∇u||2p
p −γq||u||

q
q = 0 and Ψ′′u (0) = ap||∇u||pp +2pb||∇u||2p

p −

γ2
q · q||u||

q
q = 0. We deduce that

ap||∇u||pp = (2pγq − γ
2
qq)||u||qq

if and only if u ≡ 0. This shows that P0
c = ∅. Since su is a maximum point of

Ψu(s), we have Ψ′′u (su) ≤ 0. Hence, su ∗u ∈ P−c ∩P0
c. Since P0

c = ∅, we deduce that

su ∗ u ∈ P−c . By Lemma 3.3, we have Ψu is strictly decreasing on (su,+∞). We

observe that Ψ′u(s) < 0 if and only if s > su. Since P(u) = Ψ′u(0), then if su < 0,

P(u) < 0. Therefore, if P(u) = Ψ′u(0) < 0, then su < 0.

We apply the implicit function theorem: we let Φ(s, u) = Ψ′u(s), and observe

that Φ is of class C1 in the two variables (s, u) ∈ R × S c, Φ(su, u) = 0, and

∂sΦ(su, u) = Ψ′′u (su) < 0. Therefore, u ∈ W1,p(RN) 7→ su is of class C1.

�
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Lemma 3.5 Let a > 0, b > 0, c > 0, p +
2p2

N
< q < p∗ and V ≡ 0, then

m0,c := inf
u∈Pc

I(u) > 0.

Proo f . For ∀ u ∈ Pc, we have P(u) = 0, then by Gagliardo-Nirenberg inequality

a||∇u||pp + b||∇u||2p
p = γq||u||

q
q

≤ γq ·C
q
N,p,q||∇u||qγq

p cq(1−γq).

Since qγq > 2p, then inf
u∈Pc
||∇u||p ≥ C > 0. For ∀ u ∈ Pc,

inf
u∈Pc

I(u) = inf
u∈Pc
{I(u) −

1
qγq

P(u)}

= inf
u∈Pc
{(

a
p
−

a
qγq

)||∇u||pp + (
b

2p
−

b
qγq

)||∇u||2p
p }

> 0.

�

Lemma 3.6 Let a > 0, b > 0, c > 0, p +
2p2

N
< q < p∗ and V ≡ 0. There exists

ρ > 0 sufficiently small such that

0 < sup
u∈Āρ

I(u) < m0,c and u ∈ Āρ ⇒ I(u) > 0, P(u) > 0,

where Aρ := {u ∈ S c : ||∇u||p < ρ}.

Proo f . By the Gagliardo-Nirenberg inequalities,

I(u) =
a
p
||∇u||pp +

b
2p
||∇u||2p

p −
1
q
||u||qq

≥
a
p
||∇u||pp +

b
2p
||∇u||2p

p −
1
q

Cq
N,p,q||∇u||qγq

p · cq(1−γq)

≥
b

2p
||∇u||2p

p −
1
q

Cq
N,p,q||∇u||qγq

p · cq(1−γq)

and

P(u) ≥ b||∇u||2p
p − γqCq

N,p,q||∇u||qγq
p · cq(1−γq).
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Therefore, for any u ∈ Āρ with ρ small enough, we have

I(u) > 0, P(u) > 0.

If necessary replacing ρ with a smaller quantity, we also have

I(u) ≤
a
p
||∇u||pp +

b
2p
||∇u||2p

p < m0,c, ∀u ∈ Āρ

since m0,c > 0 by Lemma 3.5.

�

Proo f o f Theorem 1. Let ρ > 0 be defined by Lemma 3.6. For every r ∈ R,

define Ir = {u ∈ S c : I(u) ≤ r}. We consider the augmented functional Ĩ :

R ×W1,p(RN)→ R defined by

Ĩ(s, u) := I(s ∗ u) =
aeps

p
||∇u||pp +

be2ps

2p
||∇u||2p

p −
eγq·qs

q
||u||qq

and the minimax class

(3.9) Γ :=
{
γ = (α, β) ∈ C([0, 1],R × S c) : γ(0) ∈ (0, Āρ), γ(1) ∈ (0, I0)

}
,

with associated minimax level

δ0,c = inf
γ∈Γ

max
(s,u)∈γ([0,1])

Ĩ(s, u).

Fixing u ∈ S c, since ||∇(s ∗ u)||p → 0+ as s → −∞, and Ψu(s) → −∞ as s → +∞,

there exists s0 � −1 and s1 � 1 such that

γu : τ ∈ [0, 1] 7→ (0, ((1 − τ)s0 + τs1) ∗ u) ∈ R × S c

is a path in Γ(the continuity follows from [6, Lemma 2.3]). Then δ0,c is a real

number.

For any γ = (α, β) ∈ Γ, let us consider the function

Pγ : τ ∈ [0, 1] 7−→ P(α(τ) ∗ β(τ)) ∈ R.

We have Pγ(0) = P(α(0)∗β(0)) > 0, then we prove that Pγ(1) = P(α(1)∗β(1)) < 0:

since Ψβ(1)(s) > 0 for every s ∈ (−∞, sβ(1)] and Ψβ(1)(0) = I(β(1)) ≤ 0, it is
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necessary that sβ(1) < 0. By Lemma 3.4, we have Pγ(1) < 0. Moreover, Pγ is

continuous by [6, Lemma 2.3], hence we deduce that there exists τγ ∈ (0, 1) such

that Pγ(τγ) = 0, namely α(τγ) ∗ β(τγ) ∈ Pc, this implies that

(3.10) max
γ([0,1])

Ĩ ≥ Ĩ(γ(τγ)) = I(α(τγ) ∗ β(τγ)) ≥ inf
Pc

I = m0,c.

Then, we have δ0,c ≥ m0,c.

In addition, if u ∈ Pc, then γu is a path in Γ with

I(u) = max
γu([0,1])

Ĩ ≥ δ0,c

then we have the reverse inequality m0,c ≥ δ0,c. Then m0,c = δ0,c. By Lemma 3.6,

we infer that

(3.11) δ0,c = m0,c = inf
u∈Pc

I(u) > sup
(Āρ∪I0)∩S c

I = sup
(0,Āρ)∪(0,I0)∩(R×S c)

Ĩ.

In the following, we will apply Lemma 3.2 to achieve our result. For this purpose,

let

X = R × S c, F = {γ([0, 1]) : γ ∈ Γ}, B = (0, Āρ) ∪ (0, I0),

F = {(s, u) ∈ R × S c|Ĩ ≥ δ0,c}, A = γ([0, 1]), An = γn([0, 1]) = γn([0, 1]) × {0}.

We need to check that F is a homotopy stable family of compact subsets of X

with extended closed boundary B and F satisfies the assumptions (1) and (2) in

Lemma 3.2. In fact, for every γ ∈ Γ, since γ(0) ∈ (0, Āk) and γ(1) ∈ (0, I0), we

have γ(0), γ(1) ∈ B. For any set A in F and any η in C([0, 1] × X, X) satisfying

η(t, x) = x for all (t, x) ∈ ({0} × X)∪ {[0, 1]× B}, there holds that η(1, γ(0)) = γ(0),

η(1, γ(1)) = γ(1). Hence, we have that η({1} × A) ∈ F . We have A ∩ F , ∅ by

(3.10) and F ∩ B = ∅ by (3.11). Hence, we can deduce that the assumptions (1)

and (2) in Lemma 3.2 are valid.

Therefore, taking any minimizing sequence {γn = (αn, βn)} ⊂ Γn for δ0,c with the

property that αn ≡ 0 and βn(τ) ≥ 0 a.e. in RN for every τ ∈ [0, 1], there exists a
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Palais-Smale sequence {(sn, ωn)} ⊂ R × S c for I|R×S c at level δ0,c, that is

(3.12) ∂s Ĩ(sn, ωn)→ 0 and ||∂u Ĩ(sn, ωn)||(TωnS c)∗ → 0 as n→ ∞,

with the additional property that

|sn| + dist(ωn, βn[0, 1])→ 0 as n→ ∞.

By the definition of Ĩ, the first condition in (3.12) reads P(sn ∗ ωn)→ 0, while the

second condition gives

(3.13)

dĨ(sn ∗ ωn)[sn ∗ ϕ] = on(1)||ϕ|| = on(1)||sn ∗ ϕ|| as n→ ∞, for every ϕ ∈ TωnS c.

Then let un := sn∗ωn. By Lemma 3.6, equation (3.13) establishes that {un} ∈ S c is a

Palais-Smale sequence for I|S c at level δ0,c = m0,c with P(un)→ 0. By Proposition

3.1, we have that u ∈ S c and u is a radial solution to (1.1) for some λ > 0 as V ≡ 0.

In addition, u is a ground state solution by δ0,c = m0,c.

4. The proof of potential case

4.1. Preliminaries. Throughout this section we will make the following assump-

tions on V:

(4.1) V ≥ 0 but V . 0,

and we define W(x) := V(x) · |x|.

Then we define

I∞,λ(u) =
a
p
||∇u||pp +

b
2p
||∇u||2p

p +
λ

p
||u||pp −

1
q
||u||qq

and

Iλ(u) =
a
p
||∇u||pp +

b
2p
||∇u||2p

p +
λ

p
||u||pp −

1
q
||u||qq −

1
p

∫
RN

V(x)|u|pdx.

Lemma 4.1 Let 1 < p < N < 2p, p +
2p2

N
< q < p∗, N ≥ 2, V ∈ LN/p(B1) and

V ∈ Lr̃(RN\B1) for some r̃ ∈ [N/p,+∞]. If {un} is a bounded PS sequence for Iλ
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in W1,p(RN) and un ⇀ u in W1,p(RN). Then, ∇un → ∇u a.e. in RN .

Proo f . Since {un} is bounded in W1,p(RN), without loss of generality, there exists

a subsequence of {un}, still denoted by {un}, and A ∈ R such that

||∇un||
p
p → Ap.

Then we define

Iλ,A(u) =
1
p

(a + bAp)||∇u||pp +
λ

p
||u||pp −

1
q
||u||qq −

1
p

∫
RN

V(x)|u|pdx.

Since un ⇀ u in W1,p(RN), we have un → u a.e. in RN . Similar to the proof of

Proposition 3.1, we have

(4.2) lim
n→∞

∫
RN
ϕ|∇u|p−2∇u · ∇T (un − u)dx = 0.

By Lemma 3.1, we just need to prove (3.2). Then, we need to prove

(4.3) lim
n→∞

∫
RN
ϕ|∇un|

p−2∇un · ∇T (un − u)dx = 0.

Since {un} is a PS sequence for Iλ, then for every ψ ∈ W1,p(RN),

〈I′λ,A(un), ψ〉 = (a + bAp)
∫
RN
|∇un|

p−2∇un · ∇ψdx + λ

∫
RN
|un|

p−2un · ψdx

−

∫
RN
|un|

q−2un · ψdx −
∫
RN

V(x)|un|
p−2un · ψdx

= 〈I′λ(un), ψ〉 + b(Ap − ||∇un||
p
p)

∫
RN
|∇un|

p−2∇un · ∇ψdx

= 〈I′λ(un), ψ〉 + on(1)||ψ||W1,p.

We obtain 〈I′λ,A(un), ψ〉 → 0 as n→ ∞, then

(a + bAp)
∫
RN
|∇un|

p−2∇un · ∇ψdx = −λ

∫
RN
|un|

p−2un · ψdx +

∫
RN
|un|

q−2un · ψdx

+

∫
RN

V(x)|un|
p−2un · ψdx + on(1)||ψ||W1,p.
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Let ψ = ϕT (un − u), then

(4.4)

lim sup
n→∞

∣∣∣(a + bAp)
∫
RN
ϕ|∇un|

p−2∇un∇T (un − u)dx
∣∣∣

≤ lim sup
n→∞

(
(a + bAp)

∫
RN
|∇un|

p−1|T (un − u)∇ϕ|dx + |λ|

∫
RN
|un|

p−1|ϕT (un − u)|dx

+

∫
RN
|un|

q−1|ϕT (un − u)|dx +

∫
RN
|V(x)||un|

p−1|ϕT (un − u)|dx
)
.

We know

lim sup
n→∞

∫
RN
|V(x)||un|

p−1 · |ϕT (un − u)|dx ≤ lim sup
n→∞

∫
Fc
δ

|V(x)||un|
p−1 · |ϕ|dx.

Since 1 < p < N < 2p, by Hölder inequality and take δ sufficiently small, for

every ε > 0, we have

lim sup
n→∞

∫
Fc
δ

⋂
B1

|V(x)||un|
p−1 · |ϕ|dx ≤ lim sup

n→∞
||V ||

L
N
p (B1)
||un||

p−1
p∗ ||ϕ||L

N p
N−p (Fc

δ)
< ε

and

lim sup
n→∞

∫
Fc
δ

⋂
Bc

1

|V(x)||un|
p−1·|ϕ|dx ≤ lim sup

n→∞
||V ||Lr̃(Bc

1)||un||
p−1
p∗ ||ϕ||L

N pr̃
N p(r̃−1)−r̃(N−p)(p−1) (Fc

δ)
< ε.

Therefore, we obtain

lim sup
n→∞

∫
RN
|V(x)||un|

p−1 · |ϕT (un − u)|dx ≤ Cε.

Similarly, we have

lim sup
n→∞

(a + bAp)
∫
RN
|∇un|

p−1 · |T (un − u)∇ϕ|dx ≤ Cε,

lim sup
n→∞

|λ|

∫
RN
|un|

p−1 · |ϕT (un − u)|dx ≤ Cε

and

lim sup
n→∞

∫
RN
|un|

q−1 · |ϕT (un − u)|dx ≤ Cε.

Hence, by (4.4), we obtain

lim sup
n→∞

∣∣∣(a + bAp)
∫
RN
ϕ|∇un|

p−2∇un · ∇T (un − u)dx
∣∣∣ ≤ Cε
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which implies

lim
n→∞

∫
RN
ϕ|∇un|

p−2∇un · ∇T (un − u)dx = 0.

�

Similarly, we define

IA(u) :=
1
p

(a + bAp)||∇u||pp −
1
p

∫
RN

V(x)|u|pdx −
1
q
||u||qq,

I∞,A(u) :=
1
p

(a + bAp)||∇u||pp −
1
q
||u||qq,

I∞,λ,A(u) :=
1
p

(a + bAp)||∇u||pp +
λ

p
||u||pp −

1
q
||u||qq,

PA(u) := (a + bAp)||∇u||pp − γq||u||
q
q −

N
p

∫
RN

V(x)|u|pdx −
∫
RN

V(x)|u|p−2u∇u · xdx

and

P∞,A(u) := (a + bAp)||∇u||pp − γq||u||
q
q.

Remark 4.1 ([4] Remark 2.1) If {un} is a PS sequence for Iλ in W1,p(RN) and

un ⇀ u in W1,p(RN). Then, by Lemma 4.1 and weak convergence, u is a solution

of (1.1).

Lemma 4.2 Let 1 < p < N < 2p, and V satisfies the assumptions of Lemma

4.1. Assume {un} is a bounded PS sequence for Iλ in W1,p(RN), and un ⇀ u in

W1,p(RN). Let vn = un − u. Then, {vn} is a PS sequence for I∞,λ,A.

Proo f . Since un ⇀ u, we have vn ⇀ 0 in W1,p(RN), vn → 0 in Lp
loc(R

N), Lq
loc(R

N)

and a.e. in RN . Then we prove that as n→ ∞,∫
RN

V(x)|vn|
pdx→ 0.

Now, set ∫
RN

V(x)|vn|
pdx =

∫
B1

V(x)|vn|
pdx +

∫
Bc

1

V(x)|vn|
pdx.
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Firstly, we assume r̃ < +∞. Since
N

N − p
be the conjugate exponent of

N
p

, by

Hölder inequality, we have∫
B1

V(x)|vn|
pdx ≤ ||V ||

L
N
p (B1)
|||vn|

p||
L

N
N−p (B1)

.

Since {|vn|
p} is bounded in LN/(N−p)(B1) and V ∈ LN/p(B1), we have |vn|

p ⇀ 0

in LN/(N−p)(B1), hence
∫

B1

V(x)|vn|
pdx → 0 as n → ∞. Similarly, let r̃′ be the

conjugate exponent of r̃. Since V ∈ Lr̃(Bc
1), we have

∫
Bc

1

V(x)|vn|
pdx → 0 as

n→ ∞.

Next, we assume r̃ = +∞. By V ∈ LN/p(B1), it is not difficult to prove that∫
B1

V(x)|vn|
pdx→ 0 as n→ ∞. Since vn → 0 in Lp

loc(R
N), then for every R > 1,

lim sup
n→∞

∣∣∣ ∫
Bc

1

V(x)|vn|
pdx

∣∣∣ = lim sup
n→∞

∣∣∣ ∫
Bc

R

V(x)|vn|
pdx +

∫
BR\B1

V(x)|vn|
pdx

∣∣∣
= lim sup

n→∞

∣∣∣ ∫
Bc

R

V(x)|vn|
pdx

∣∣∣ ≤ C sup
Bc

R

|V |,

which implies
∫

Bc
1

V(x)|vn|
pdx→ 0 as n→ ∞. To sum up, we obtain

∫
RN

V(x)|vn|
pdx→

0. Then

(4.5)
∫
RN

V(x)|un|
pdx→

∫
RN

V(x)|u|pdx.

Since {un} is a PS sequence for Iλ, there exists m ∈ R such that

Iλ(un)→ m and ||I′λ(un)|| → 0 in W−1,p(RN) as n→ ∞.

By Brézis-Lieb lemma and Lemma 4.1, we have

Iλ(un) = Iλ,A(u) + I∞,λ,A(vn) −
b

2p
A2p + on(1),

which implies

(4.6) I∞,λ,A(vn)→ m +
b

2p
A2p − Iλ,A(u) as n→ ∞.
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Finally, we prove that

||I′∞,λ,A(vn)|| → 0 in W−1,p(RN).

We just need to prove that for every ψ ∈ W1,p(RN),

〈I′∞,λ,A(vn), ψ〉 = on(1)||ψ||W1,p,

that is

(4.7)

(a+bAp)
∫
RN
|∇vn|

p−2∇vn∇ψdx+

∫
RN
λ|vn|

p−2vnψdx−
∫
RN
|vn|

q−2vnψdx = on(1)||ψ||W1,p.

By Hölder inequality,∣∣∣ ∫
RN

(|∇un|
p−2∇un − |∇vn|

p−2∇vn − |∇u|p−2∇u) · ∇ψdx
∣∣∣

≤

( ∫
RN

∣∣∣|∇un|
p−2∇un − |∇vn|

p−2∇vn − |∇u|p−2∇u)
∣∣∣ p

p−1 dx
) p−1

p

||∇ψ||p

≤

( ∫
RN

∣∣∣|∇un|
p−2∇un − |∇vn|

p−2∇vn − |∇u|p−2∇u)
∣∣∣ p

p−1 dx
) p−1

p

||ψ||W1,p.

From [12, Lemma 3.2], we know∫
RN

∣∣∣|∇un|
p−2∇un − |∇vn|

p−2∇vn − |∇u|p−2∇u
∣∣∣ p

p−1 dx = on(1)

which implies

(4.8)

∫
RN
|∇vn|

p−2∇vn · ∇ψdx =

∫
RN
|∇un|

p−2∇un · ∇ψdx

−

∫
RN
|∇u|p−2∇u · ∇ψdx + on(1)||ψ||W1,p.

Similarly, we have

(4.9)∫
RN
|vn|

p−2vn · ψdx =

∫
RN
|un|

p−2un · ψdx −
∫
RN
|u|p−2u · ψdx + on(1)||ψ||W1,p
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and

(4.10)∫
RN
|vn|

q−2vn · ψdx =

∫
RN
|un|

q−2un · ψdx −
∫
RN
|u|q−2u · ψdx + on(1)||ψ||W1,p.

Now, we use (4.5), (4.8), (4.9), (4.10), Lemma 4.1 and the fact that {un} is a PS

sequence for Iλ, we obtain (4.7).

�

Lemma 4.3 Let 1 < p < N < 2p, and assume that

(i)V ∈ LN/p(B1) and V ∈ Lr̃(RN\B1) for some r̃ ∈ [N/p,+∞],

(ii)in case r̃ = +∞, V satisfies V(x)→ 0 as |x| → +∞,

(iii)λ > 0.

If {un} is a bounded PS sequence for Iλ in W1,p(RN), and un ⇀ u but not strongly,

then there exist an integer k ≥ 1, k nontrivial solutions ω1, . . . , ωk ∈ W1,p(RN) to

the equation

(4.11) (a + bAp)(−∆pω) + λ|ω|p−2ω = |ω|q−2ω,

and k sequence {y j
n} ⊂ R

N , 1 ≤ j ≤ k, such that |y j
n| → +∞ as n→ ∞, |y j1

n − y j2
n | →

+∞ for j1 , j2 as n→ ∞, and

(4.12) un = u +

k∑
j=1

ω j(· − y j
n) + on(1) in W1,p(RN).

Moreover, we have

(4.13) ||un||
p
p = ||u||pp +

k∑
j=1

||ω j||
p
p + on(1),

(4.14) Ap = ||∇u||pp +

k∑
j=1

||∇ω j||
p
p
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and

(4.15) Iλ(un) = Iλ,A(u) +

k∑
j=1

I∞,λ,A(ω j) −
b

2p
A2p + on(1).

Proo f . Let u1
n = un − u. Then u1

n ⇀ 0 in W1,p(RN), un → u in Lp
loc(R

N), Lq
loc(R

N)

and a.e. in RN . Similar to the proof of Lemma 4.2, we can prove that

(4.16)
∫
RN

V(x)|u1
n|

pdx→ 0 as n→ ∞.

Since un ⇀ u in W1,p(RN) but not strongly, then there is

lim inf
n→∞

||u1
n||

p > 0.

By Lemma 4.2, we know {u1
n} is a PS sequence for I∞,λ,A, hence

(a + bAp)||∇u1
n||

p
p + λ||u1

n||
p
p = ||u1

n||
q
q + on(1),

Since λ > 0,

lim inf
n→∞

||u1
n||

q
q > 0.

Let us decompose RN into N-dimensional unit hypercubes Qi and set

ln = sup
i∈N+

||u1
n||Lq(Qi).

Since u1
n ∈ Lp(RN), for any ε > 0, there exist R such that

∫
Rc
|u1

n|
pdx < ε. Then

there exist limited in ∈ N+ such that ln can be attained. We claim that

lim inf
n→∞

ln > 0.

Since

||u1
n||

q
q =

∞∑
i=1

||u1
n||

q
Lq(Qi)

≤ lq−p
n

∞∑
i=1

||u1
n||

p
Lq(Qi)

≤ Clq−p
n

∞∑
i=1

||∇u1
n||

p
Lp(Qi)

≤ Clq−p
n .

Then, since lim inf
n→∞

||u1
n||

p > 0, we have lim inf
n→∞

ln > 0.

Let y1
n be the center of Qin and

v1
n := u1

n(· + y1
n),
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then {v1
n} is a PS sequence for I∞,λ,A and there exists ω1 ∈ W1,p(RN)\{0} such that

v1
n ⇀ ω1 in W1,p(RN). By weak convergence, we know ω1 satisfies (4.11). Since

u1
n ⇀ 0 in W1,p(RN) implies that {y1

n} is unbounded, we assume that |y1
n| → +∞ as

n→ ∞.Moreover, by (4.5), Brézis-Lieb Lemma and Lemma 4.1, we have

un = u + u1
n = u + v1

n(· − y1
n) = u + ω1(· − y1

n) + [v1
n(· − y1

n) − ω1(· − y1
n)],

||un||
p
p = ||u||pp + ||ω1||

p
p + ||v1

n − ω
1||

p
p + on(1),

Ap = ||∇u||pp + ||∇ω1||
p
p + ||∇(v1

n − ω
1)||pp + on(1),

and

Iλ(un) = Iλ,A(u) + I∞,λ,A(ω1) + I∞,λ,A(v1
n − ω

1) −
b

2p
A2p + on(1).

Now, set

u2
n = v1

n(· − y1
n) − ω1(· − y1

n),

and iterate the above procedure. To complete the proof, we just need to prove that

the iteration will be ended in finite steps. Suppose the iteration will not be ended,

then we have

||∇un||
p
p ≥

∞∑
j=1

||∇ω j||
p
p.

By Lemma 4.4, there exists a constant C such that ||∇ω j||
p
p ≥ C, then we have

||∇un||p = +∞, which is an absurd.

�

Lemma 4.4 Let ω ∈ W1,p(RN) be a non-trivial solution of

(a + bAp)(−∆pω) + λ|ω|p−2ω = |ω|q−2ω

for some λ > 0. Then there exists a constant C depending on N, p, q, and λ such

that

||ω||W1,p ≥ C.
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Proo f . By the Pohozaev identity, we have

(a + bAp)||∇ω||pp =
N(q − p)

pq
||ω||

q
q,

which together with

(a + bAp)||∇ω||pp + λ||ω||
p
p = ||ω||

q
q

implies

λ||ω||
p
p =

pq − N(q − p)
N(q − p)

(a + bAp)||∇ω||pp.

By Gagliardo-Nirenberg inequality, we have

pq
N(q − p)

(a + bAp)||∇ω||pp = ||ω||
q
q ≤ Cq

N,p,q||∇ω||
N(q−p)

p
p ||ω||

q−N(q−p)
p

p = C||∇ω||qp.

Hence, since q > p, ||ω||W1,p ≥ C(N, p, q, λ).

�

Define

(4.17) Zc := {υ ∈ S c : ∃λ > 0, s.t.(a + b||∇υ||pp)(−∆pυ) + λ|υ|p−2υ = |υ|q−2υ}

and

(4.18) mc := inf
υ∈Zc

I∞(υ).

Recalling Theorem 1, we have mc > 0 and mc can be achieved by some υ ∈ Zc.

Lemma 4.5 mc is decreasing on (0,+∞).

Proo f . Fix ρ2 > ρ1 > 0, let u := uρ1 ∈ P∞ρ1
and satisfy I∞(u) = mρ1. Set υ(x) =

(
ρ1

ρ2
)

N−p
p u(

ρ1

ρ2
x) for x ∈ R. Then ||υ||p = ρ2. Let s ∗ u = e

N
p su(esx),

I∞(s ∗ u) =
aeps

p
||∇u||pp +

be2ps

2p
||∇u||2p

p −
e

N(q−p)
p s

q
||u||qq.

Since q > p +
2p2

N
, we have I∞(s ∗ υ) → −∞ as s → +∞ and I∞(s ∗ υ) → 0+ as

s→ −∞. Then, there exists s0 < 0 such that I(s0 ∗ υ) > 0 for s < s0. Hence, there
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exists sυ ∈ R such that I∞(sυ ∗ υ) = max
s∈R

I∞(s ∗ υ) and sυ ∗ υ ∈ P∞ρ2
. Moreover,

||∇(sυ ∗ υ)||pp = ||∇(sυ ∗ u)||pp, ||sυ ∗ υ||
q
q = (

ρ2

ρ1
)

N p−q(N−p)
p ||sυ ∗ u||qq.

For any q ∈ (p +
2p2

N
,

N p
N − p

), denote

φq(sυ ∗ u) =
1
q

e
N(q−p)

p sυ[1 − (
ρ2

ρ1
)

N p−q(N−p)
p ]||u||qq.

Then, φq(sυ ∗ u) < 0 for q ∈ (p +
2p2

N
,

N p
N − p

). Thus, we can deduce that

mρ2 ≤ I∞(sυ ∗ υ) = I∞(sυ ∗ u) + φq(sυ ∗ u) < I∞(sυ ∗ u) < I∞(u) = mρ1,

which indicates mc is decreasing on (0,∞).

�

4.2. Proof of Theorem 2. For some fixed δ ∈ (0, a), we give following assump-

tions on V and W.

(4.19) ||V ||N/p ≤ (a − δ)S ,

(4.20) ||W ||N/(p−1) <
S

p−1
p

p2

(
aY − N(q − 2p)S −1||V ||N/p

)
,

and

(4.21) ||W ||N/(p−1) <
S

p−1
p

Xp2 + Zp
(
aXY − [XN(q − 2p) + (N − p)Z]S −1||V ||N/p

)
,

where

X = N p − (N − p)q, Y = N(q − p) − p2 and Z = N(q − p)2.

Firstly, we prove that the functional I has a mountain pass geometry.

Lemma 4.6 For every u ∈ S c,

I(u) ≥
δ

p
||∇u||pp −

1
q

Cq
N,p,qcq−N(q−p)

p ||∇u||
N(q−p)

p
p .



26 YUAN XU AND YONGYI LAN

Proo f . By Gagliardo-Nirenberg inequality, we have

||u||qq ≤ Cq
N,p,qcq−N(q−p)

p ||∇u||
N(q−p)

p
p .

And by the Hölder inequality and Sobolev inequality, we have∫
RN

V(x)|u|pdx ≤ ||V ||N
p
||u||pp∗ ≤ S −1||V ||N

p
||∇u||pp.

Hence, by (4.19)

I(u) =
a
p
||∇u||pp +

b
2p
||∇u||2p

p −
1
q
||u||qq −

1
p

∫
RN

V(x)|u|pdx

≥
1
p

(a − S −1||V ||N
p
)||∇u||pp −

1
q

Cq
N,p,qcq−N(q−p)

p ||∇u||
N(q−p)

p
p

≥
δ

p
||∇u||pp −

1
q

Cq
N,p,qcq−N(q−p)

p ||∇u||
N(q−p)

p
p .

�

Lemma 4.7 For every u ∈ S c,

(4.22) lim
s→−∞

||∇(s ∗ u)||p = 0, lim
s→+∞

||∇(s ∗ u)||p = +∞,

(4.23) lim
s→−∞

I(s ∗ u) = 0, lim
s→+∞

I(s ∗ u) = −∞.

Proo f . Since

||∇(s ∗ u)||pp =

∫
RN
|∇(e

N
p su(esx))|pdx = eps||∇u||pp.

It is obvious to obtain (4.22), then we prove (4.23). By Hölder inequality∫
RN

V(x)|s ∗ u|pdx ≤ ||V ||N/p||s ∗ u||pp∗ = eps||V ||N/p||u||
p
p∗ → 0

as s→ −∞. Moreover, since q > p, we have

||s ∗ u||qq = e
q−p

p Ns
||u||qq → 0

as s→ −∞. Then,

lim
s→−∞

I(s ∗ u) = lim
s→−∞

I∞(s ∗ u) −
1
p

lim
s→−∞

∫
RN

V(x)|s ∗ u|pdx = 0.
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Since V(x) ≥ 0, we have

lim
s→+∞

I(s ∗ u) ≤ lim
s→+∞

I∞(s ∗ u).

Since q > p +
2p2

N
,

lim
s→+∞

I∞(s ∗ u) = lim
s→+∞

(
aeps||∇u||pp + be2ps||∇u||2p

p − e
q−p

p Ns
||u||qq

)
→ −∞.

as s→ +∞.

�

For every r ∈ R and R > 0, define Ir = {u ∈ S c : I(u) ≤ r} and

MR = inf{I(u) : u ∈ S c, ||∇u||p = R}.

From Lemma 4.6 and 4.7, it is easy to know that I0 , ∅ and there exist R̃ > R0 > 0

such that for all 0 < R ≤ R0, 0 < MR < MR̃. Thus, we can construct a min-max

structure

(4.24) Γ := {γ ∈ C([0, 1],R × S c) : γ(0) ∈ (0, AR0), γ(1) ∈ (0, I0)}

with associated min-max level

(4.25) mV,c = inf
γ∈Γ

max
t∈[0,1]

Ĩ(γ(t)) > 0,

where

AR = {u ∈ S c : ||∇u||p ≤ R}, Ĩ(s, u) = I(s ∗ u).

Then, we prove I has a bounded PS sequence.

Lemma 4.8 There exists a bounded PS sequence {un} for I|S c at the level mV,c that

is

(4.26) I(un)→ mV,c and ||I′(un)||(TunS c)∗ → 0 as n→ ∞,
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such that

(4.27)
a||∇un||

p
p + b||∇un||

2p
p −

N(q − p)
pq

||un||
q
q −

N
p

∫
RN

V(x)|un|
pdx

−

∫
RN

V(x)|un|
p−2un∇un · xdx→ 0.

Moreover, the related Lagrange multipliers of {un}

(4.28) λn = −
1
cp I′(un)un,

converges to λ > 0 as n→ ∞.

Proo f . The proof is divided into three steps.

(1) Existence of PS sequence. Let

X = R × S c, F = Γ and B = (0, AR0) ∪ (0, I0).

By [7, Definition 5.1], Γ is a homotopy-stable family of compact subsets of R×S c

with extend closed boundary (0, AR0) ∪ (0, I0). Let

φ = Ĩ(s, u) and F = {(s, u) ∈ R × S c : Ĩ(s, u) ≥ mV,c}.

Similar to the proof of Theorem 1, we can deduce that the assumptions (1) and (2)

in Lemma 3.2 are valid. We consider the sequence

{An} := {γn} = {(αn, βn)} ⊂ Γ

such that lim
n→∞

sup
An

φ = mV,c. (We may assume that αn = 0, if not, replacing

{(αn, βn)} with {(0, αn ∗ βn)}). By Lemma 3.2, there exist a sequence {(sn, vn)}

for I|S c at the level mV,c such that

∂s Ĩ(sn, vn)→ 0 and ||∂Ĩ(sn, vn)||(TvnS c)∗ → 0 as n→ ∞.

Moreover, by Lemma 3.2 we have

|sn| + distW1,p(vn, βn([0, 1]))→ 0 as n→ ∞

which implies sn → 0 as n→ ∞. Therefore, we have

I(sn ∗ vn) = Ĩ(sn, vn)→ mV,c as n→ ∞
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and

I′(sn ∗ vn)(sn ∗ ψ) = ∂Ĩu(sn, vn)ψ = on(1)||ψ|| = on(1)||sn ∗ ψ||

for every ψ ∈ TvnS c. Let {un} = {(sn ∗ vn)}, then {un} is a PS sequence for I|S c at the

level mV,c. Differentiating Ĩ with respect to s, we obtain (4.27).

(2) Boundedness of {un} in W1,p(RN). Set

an := ||∇un||
p
p, bn := ||un||

q
q,

cn :=
∫
RN

V(x)|un|
pdx and dn :=

∫
RN

V(x)|un|
p−2un∇un · xdx.

By (4.26), we have

(4.29)
a
p

an +
b

2p
a2

n −
1
q

bn −
1
p

cn = mV,c + on(1),

and by (4.27), we have

(4.30) (a + ban)an −
N(q − p)

pq
bn −

N
p

cn − dn = on(1)

which implies

a
N(q − p) − p2

N p(q − p)
·an+b

N(q − p) − 2p2

2N p(q − p)
·a2

n−
q − 2p

p(q − p)
cn+

p
N(q − p)

dn = mV.c+on(1).

Since

(4.31) |cn| ≤ S −1||V ||N/pan, and |dn| ≤ S −
p−1

p ||W ||N/(p−1)an,

we get(
aY − N(q − 2p)S −1||V ||N/p − p2S −

p−1
p ||W ||N/(p−1)

)
an + b

N(q − p) − 2p2

2
· a2

n

≤ N p(q − p)mV,c + on(1).

By q > p +
2p2

N
and assumption (4.20), {an} is bounded and

(4.32) an ≤
N p(q − p)mV,c

aY − N(q − 2p)S −1||V ||N/p − p2S −
p−1

p ||W ||N/(p−1)

+ on(1).
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(3) λ > 0. By (4.26), there exist λn such that

I′(un)ψ + λn

∫
RN
|un|

p−2unψdx = on(1)||ψ||W1,p,

and hence we can choose λn as (4.28). Since an is bounded, so bn, cn, dn and λn are

also bounded, we assume that they converge to a0, b0, c0, d0 and λ respectively. By

(4.29), (4.30), (4.31) and (4.32), we have

λcp = − lim
n→∞

I′(un)un = −a · a0 − b · a2
0 + b0 + c0

=
pX
Y

mV,c +
b
2
·

X
Y

a2
0 −

(N − p)(q − p)
Y

c0 −
qp − p2

Y
d0

≥
pX
Y

mV,c −
(N − p)(q − p)

Y
S −1||V ||N/pa0 −

qp − p2

Y
S −

p−1
p ||W ||N/(p−1)a0

≥
p
Y

(
X −

Z(N − p)S −1||V ||N/p + ZpS −
p−1

p ||W ||N/(p−1)

aY − N(q − 2p)S −1||V ||N/p − p2S −
p−1

p ||W ||N/(p−1)

)
mV,c

=
p
Y

aXY − [XN(q − 2p) + Z(N − p)]S −1||V ||N/p − p[pX + Z]S −
p−1

p ||W ||N/(p−1)

aY − N(q − 2p)S −1||V ||N/p − p2S −
p−1

p ||W ||N/(p−1)

mV,c.

Therefore, assumption (4.21) implies λ > 0.

�

Lemma 4.9 For every c > 0, there holds mV,c < mc.

Proo f . By Theorem 1, there exist υc ∈ Zc such that I∞(υc) = mc. By Lemma 4.7,

let

γ(t) = (0, [(1 − t)h0 + th1] ∗ υc),

where h0 << −1 such that ||∇(h0 ∗ υc)||p < R0 and h1 >> 1 such that I(h1 ∗ υc) < 0.

Then, γ ∈ Γ and max
t∈[0,1]

Ĩ(γ(t)) ≥ mV,c. Since V(x) ≥ 0,

max
t∈[0,1]

Ĩ(γ(t)) = max
t∈[0,1]

I
(
[(1 − t)h0 + th1] ∗ υc

)
< max

t∈[0,1]
I∞

(
[(1 − t)h0 + th1] ∗ υc

)
≤ max

s∈R
I∞(s ∗ υc) = mc,
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we have mV,c < mc.

�

Proo f o f Theorem 2.Now, let us prove the existence result. By Lemma 4.8, there

exist PS sequence {un} for I|S c at level mV,c and u ∈ W1,p(RN) such that un ⇀ u in

W1,p(RN) and λn → λ > 0 as n→ ∞.

Then, we prove un → u in W1,p(RN). It is not difficult to prove that {un} is a PS

sequence for Iλ at level mV,c+
λ

p
cp. Suppose that {un} does not strongly convergence

to u in W1,p(RN). By Lemma 4.3, there exists k ∈ N+ and y j
n ∈ R

N(1 ≤ j ≤ k) such

that

un = u +

k∑
j=1

ω j(· − y j
n) + on(1) in W1,p(RN),

where ω j satisfies

(a + bAp)(−∆pω) + λ|ω|p−2ω = |ω|q−2ω.

We claim that

(4.33) IA(u) −
bAp

2p
||∇u||pp ≥ 0.

Since I′λ(un)→ 0 gives that I′λ,A(u) = 0, then PA(u) = 0, by assumption (4.20),

IA(u) −
bAp

2p
||∇u||pp −

p
N(q − p)

PA(u)

=

(
a

N(q − p) − p2

N p(q − p)
+ b

N(q − p) − 2p2

2N p(q − p)
Ap

)
||∇u||pp −

q − 2p
p(q − p)

∫
RN

V(x)|u|pdx

+
p

N(q − p)

∫
RN

V(x)|u|p−2u∇u · xdx

≥
1

N p(q − p)

(
aY − N(q − 2p)S −1||V ||N/p − p2S −

p−1
p ||W ||N/(p−1)

)
||∇u||pp

≥ 0.
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Then by (4.14), we have

P∞(ω j) = a||∇ω j||
p
p + b||∇ω j||

2p
p − γq||ω

j||
q
q

< a||∇ω j||
p
p + bAp||∇ω j||

p
p − γq||ω

j||
q
q = P∞A (ω j) = 0.

By Lemma 3.4, we derive s j := sω j ≤ 0 such that sω j ∗ ω j ∈ P∞
||ω j||p

=
{
u ∈

W1,p(RN) : P∞(u) = 0
}
∩ S ||ω j||p. Then, we claim

(4.34) I∞,A(ω j) −
bAp

2p
||∇ω j||

p
p ≥ mc.

Since ||ω j||
p
p ≤ cp, by Lemma 4.5

I∞,A(ω j) −
bAp

2p
||∇ω j||

p
p −

p
N(q − p)

P∞,A(ω j)

= a
N(q − p) − p2

N p(q − p)
||∇ω j||

p
p + b

N(q − p) − 2p2

2N p(q − p)
Ap||∇ω j||

p
p

≥ a
N(q − p) − p2

N p(q − p)
||∇ω j||

p
p + b

N(q − p) − 2p2

2N p(q − p)
||∇ω j||

2p
p

≥ a
N(q − p) − p2

N p(q − p)
eps j ||∇ω j||

p
p + b

N(q − p) − 2p2

2N p(q − p)
e2ps j ||∇ω j||

2p
p

= I∞(s j ∗ ω
j) −

p
N(q − p)

P∞(s j ∗ ω
j)

= I∞(s j ∗ ω
j) ≥ m||ω j||p ≥ mc.

Let n→ ∞, by (4.15), we have

mV,c +
λ

p
cp = Iλ,A(u) +

k∑
j=1

I∞,λ,A(ω j) −
b

2p
A2p

= IA(u) −
b

2p
A2p +

k∑
j=1

I∞,A(ω j) +
λ

p
||u||pp +

λ

p

k∑
j=1

||ω j||
p
p.

By (4.13), we know

cp = lim
n→∞
||un||

p
p = ||u||pp +

k∑
j=1

||ω j||
p
p.
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Hence, by (4.14), (4.33) and (4.34)

mV,c = IA(u) −
b

2p
A2p +

k∑
j=1

I∞,A(ω j)

≥
bAp

2p
(||∇u||pp +

k∑
j=1

||∇ω j||
p
p) −

b
2p

A2p + kmc

≥ mc,

which is a contradiction with Lemma 4.9. By strong convergence, we know u ∈ S c

satisfies Eq.(1.1).
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