NORMALIZED SOLUTIONS FOR THE MASS SUPERCRITICAL p-KIRCHHOFF
EQUATION WITH POTENTIAL

YUAN XU AND YONGYI LAN

ABSTRACT. In this paper, for given mass ¢ > 0, we study the exis-
tence of normalized solutions to the following nonlinear p-Kirchhoff

equation

a+b IVulPdx)(=A,u) = VOOlulP2u + AulPu = [u|7%u, in RY,
P
RN

lulPdx = c?,
RN

2 2
Wherea>0,b>0,1<p<N<2p,N22,p+%<q<p*=
Np
N-p
normalized solution to the equation with potential V(x) = 0. Second-

and A € R appears as a Lagrange multiplier. Firstly, we get a

ly, when V(x) > 0, and under some assumptions on V, we prove the
existence of mountain pass solution with positive energy to the above

equation.
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1. INTRODUCTION

In this paper, we study the existence of normalized solutions to the following

nonlinear Kirchhoff equation with potential

(1.1)  (a+b f \VulPdx)(—=Apu) — VOlul’*u + Aul’*u = [ul?>u, in RY,
RN

2p? . N
where a > 0, b > 0, 1<p<N<2p,N22,p+%<q<p*:N—p.
4

begin with, we consider equation (1.1) with V = 0. There has been a large number

To

of studies on normalized solutions of Kirchhoff equation without potential. Many
scholars have recently focused their attention to study the situation of p-Laplacian

equation such as [3] and [6]. They considered the following p-Laplacian equation
—Apu = Al 2u + gl u + |ulP "*u, inRY.

In [3], the authors obtained several existence results under ¢ > 0 and other as-
sumptions by using concentration compactness lemma, Schwarz rearrangement,
Ekeland variational principle and mini-max theorems. In [6], the authors obtained
the existence of ground state solution by virtue of truncation technique, and ob-
tained multiplicity of normalized solutions in the purely L”-subcritical case. In
[11], the authors got a ground state solution to Eq.(1.1) and derived several as-
ymptotic results on the obtained normalized solutions with p = 2. There has been
less studies for normalized solutions of p-Kirchhoff equation. Inspired by [11], we
prove equation (1.1) has a normalized solution if V' = 0 holds.

Then we study the existence of normalized solutions to the nonlinear Kirch-
hoff equation with potential. When V # 0, there are many scholars studied the
existence of normalized solutions of Eq.(1.1). In [2], the authors discussed the
existence of solutions for a class of Kirchhoff equations with p = 2, and then they
studied the behavior of the Palais-Smale sequences by splitting lemma. And some
scholars studied the problem with p = 2 in [14] and [17]. In [14], the authors

used a new concentration compactness type result to recover compactness in the
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Sobolev critical case, and then they proved the existence of positive ground state
solutions to the equation under an explicit assumption on V. In [17], the authors
proved the existence of ground state normalized solution via variational method-
s. This paper is inspired by [4], which they studied the existence of normalized
solutions for the p-Laplacian equation. We are interested in the existence of nor-
malized solution of Eq.(1.1) and extend the results of [14]. We use the minimax
method and Splitting lemma to study the existence of a mountain pass normalized
solution of Eq.(1.1).

We define
Se={uewr®): |ull, = |

where WP(R") is endowed with the usual norm ||u|| = (f (IVul? + Iulp)dx)% and
|| ll; stands for the L?-norm. Solutions to Eq.(1.1) are criti]%gl points of the energy
functional 7 : W'?(R") — R with

a b 1 1
I(u) = —||Vull}, + —IIVuII,Zf’ — —lull? - —f V(xX)lulPdx
p 2p q P Jry

on the constraint S, with a Lagrange multiplier A € R. If u is a weak solution of
(1.1), then

N

P(u) := (a+b||Vul)IIVull—y llullg—— f V(x)lul’dx— f V(OlulPuVu-xdx = 0
P JrN RV

N(q - p)

P4
Foru € W'?(RV) and s € R, let s * u = e » u(e*x) € S, we define the fiber map

where y, =

Yu(s) = I(s * u).
Then we introduce the following Pohozaev constrained set
P.={ueW*R"): Pw)=0}NnS..
Consider the decomposition of P, into the disjoint union,

P.=P'uUP'UP,,



4 YUAN XU AND YONGYI LAN

where PY = {(u € S, : ¥.(0) = 0,¥(0) > 0}.

2. REsuLTrs

Our main results are the following:
2p° ._ Np
Theorem 1 Assume that N > 2,1 < p < N < 2p,p+7 <g<p = o
- P
and V = 0 holds, leta > 0, b > 0, ¢ > 0, then equation (1.1) has a mountain pass

solution u on S .. In addition, u is a radial ground state solution.

2p° . Np
Theorem 2 Assume that N > 2,1 < p <N <2p, p + A <qg<p = N and
- P
V #0holds,leta>0,b >0, c > 0, if fixed 6 € (0, a), we assume that
(2.1) IVilnp < (a—9)S,
(2.2)
S

Wil y(p-1) < min{=—-[a¥ = N(g = 2p)S ~"|[Vlln,].

p2

p—1

Zp(aXY — [XN(q = 2p) + (N = p)ZIS ' Vlly)}-

where

X=Np-(N-p)g, Y=Ng-p)-p’, Z=N(g-py’, W(x):=V(x)xl and
S denotes the Sobolev constant.

Then equation (1.1) has a mountain pass solution on S, for every ¢ > 0 with

positive energy.

3. THE PROOF OF NON-POTENTIAL CASE

In this section, we study the structure of P, and [ to locate the position of
critical points of I|g, with V = 0. To prove the Theorem 1, we mainly establish

some preliminaries by showing the following definitions and lemmas.
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3.1. Preliminaries. (1) W'’(RY) = {u e WPRN) : u(x) = u(|x|)} is equipped
with the standard norm || ||. S, = S. N W, "(RY).
(2) Since V = 0, we define

a b 2 1
Lo(w) = =||Vulll + —||Vull;? = =|lull?
p Po2p P g

and
Poo(u) := (a + blIVullDIIVullh — ygllullf.
In this section, we abbreviate I, and P, as I and P.

(3) Gagliardo-Nirenberg inequality: there exists a constant Cy,, , > 0 such that

N(g—p) __N(g-p)
lully < CnpgllVull,™ lull, ™ .

(4) We define
S, if [s] < 1,
I(s) = ﬁ if |s] > 1.
s
(5) Using a well known inequality found in [13, Lemma A.0.5], we know that

_ _ diln — €17, if p>2,
G (=P - -6 2 _ .
dy(lnl + 1€ I - €7, if 1 <p<2,
where d, d, are positive constants.
Lemma 3.1([4 Lemma 2.1])) Let N > 1, p > 1 and {u,} ¢ D""(R") such that

u, — u in D"P(RY), where D'? denotes the completion of C;”(RN ) with respect

to the norm ||u||pr» := |[Vul|,. Assume that for every ¢ € C?(RN), there 1s
(3.2) lim f O(IVun”~>Vu, — |VulP~>Vu) - VT (4, — u)dx = 0.
n—o Jpn

Then, up to a subsequence, Vi, — Vu a.e. in RV,

In the proof, let k € N, and ¢ € C.°(R) satisfies
0<¢<1 ¢g=1in By and ¢ =0 in B_,.

Lemma 3.2([7 Lemma 5.2]) Let ¢ be a C'-functional on a complete connected

C'-Finsler manifold X and consider a homotopy-stable family ¥ with an extended
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closed boundary B. Set m = m(¢, ¥) and let F be a closed subset of X satisfying
(D)(ANF)\ B+ 0forevery A € F,

(2) sup@(B) < m < inf ¢(F).

Then, for any sequence of sets {A,} in ¥ such that lim sup ¢ = m, there exists a

n—>oo An

sequence {x,} in X such that

lim ¢(x,) = m, lim ||d¢(x,)|| =0, lim dist(x,, F) =0, lim dist(x,,A,) =0.

3.2. Proof of Theorem 1. Firstly, we give the compactness analysis of Palais-
Smale sequences for I[g, .

Proposition 3.1 Leta > 0,5 > 0,¢c > 0, p + %pz <g<pandV = 0. Let
{u,} C S, be a Palais-Smale sequence for energy I|s_level m # 0 with P(u,) — 0
as n — oo, then up to a subsequence u, — u strongly in W'*(R") for some
u € WHP(RYM). Moreover, u € S, and u is a radial solution to (1.1) for some A > 0.
Proof. The proof is divided into three main steps.

(1) Boundedness of {u,} in W'PRY). If p + 27192 < qg < p-and V = 0, then
qyq > 2p and

a b 2 1
() = =IVun|lh + —|IVull,l = =l
p P2p Pog

By P(u,) — 0, allVullh + blIVunll2? = yollualll + 0,(1) = 0, where 0,(1) — 0 as

n — oo, then we have
Hty) = = PGaty) = 2Vl + (2L = Dl + 0,1 < m + 1.
2p 2p 2p q

Hence, {u,} is bounded in W'?(R") and LI(R") by qy4 > 2p.
(2) There exist Lagrange multipliers 4, = 4 € R and 4 > 0. Since W,1 PRY) —

LY(RY), we deduce that there exists u € er P(RY) such that, up to a subsequence,

U, — uin WP@®RM), u, - uin LIRY) for p < g < p*, u, — u a.e. on RV,
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Since {u,} is a Palais-Smale sequence of I|s_, by the Lagrange multipliers rule,

there exists 4, € R such that

(a + bl|Vu,|l,) f Vi, |P>Vu, Vipdx + A, f | |P~upd x
(3.3) RY R

- f al 2t + 0, (DI
RN

for every Y € whr (RN ). In particular, take ¥ = u,, then

AP = —al|Vuy|lh - bIIVunII,Z,p + |lunll] + 0n(1).

The boundedness of {u,} in W'"P(RY) n LIRY) implies that 4, - A € R,uptoa
subsequence.

Recalling that P(u,) — 0, by v, < 1 we have
Ac? = 1im {4, [[uy|[}}

= tim {=al|Vity [} = DIVl + 12

= lim{(1 = )l Iy

= (1 = ypllullg = 0.
Hence, we deduce that 4 > 0, and 4 = 0 if and only if u = 0. If 4, — 0, we have
lluall] — 0. Using again P(u,) — 0, we have lim{a||Vu,||} + b||Vun||?,p} = 0, then
I(u,) — 0. There is a contradiction with I(u,) —» m # 0 and thus 4, - 4 > 0 and

uz0.
(3) u, — uin WP(RY). Firstly, we will show that

(3.4) Vu, — Vu a.e. in RY.

Since u, — u # 0in W"P(RY), let B := lim ||Vu,l|[, then we get B > ||Vull> > 0.
n—oo

By Egorov’s theorem, then for every 6 > 0, there exists F's C suppg such that

u, — u uniformly in Fs and m(suppe\Fs) < 6. Hence, |u,(x) — u(x)| < 1 for all

x € Fg as long as n sufficiently large.
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Then, since u, — u in WHP(RY), we have

limsup |(a + bB) f @|VulP>Vu - VT (u, — u)dx|
RN

n—oo

< lim sup |(a + bB)f o|\VulP>Vu - VT (u, — u)dx|
n—o00 Fs

(3.5)
+ limsup |(a + bB) f @VulP>Vu - VT (u, — u)dx|

n—oo

n—00

= lim sup |(a + bB) f o\VulP>Vu - VT (u, — u)dxl.
F3
For every &€ > 0, by the definition of 7,

|(a +bB) f e|VulP>Vu - VT (u, — u)dx| < (a + bB) | |¢llVul’™'dx < C,
; Fs

as long as ¢ sufficiently small, which implies

(3.6) lim goquIp_ZVu - VT (u, —u)dx = 0.

—00
n R

By Holder inequality and the dominated convergence theorem,

(a + bB)| f @IV uy?~ Vi, - V(T (u, — u))dx|
RN

<| | lualPun - T (= w)dx| + |4, f 4”14y - T (1t — w)dx|
RN RN

+ (a + bB)| f \Vu,|P>Vu, - T(u, — u) - Vgodx| + 0,(1)
RN

<C- ( fR Ty u)|4dx)é +C- ( fR Ty u)|de)é

L C. ( T, — u) - Vgolpdx); +o,(1)
RN

< Ceg
which implies

lim f OVl >Vu, - VT (u, — u)dx = 0.
RN

n—oo
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By Lemma 3.1, (3.4) holds. Let n — oo, (3.3) implies that

(3.7)  (a+bB) | |VulP*VuVydx+ A | |ulP2updx = f |72 updx.
RN RN RN

That is, u is a weak solution of the equation (a + bB)(—A,u) + AulP~u = |ul72u.

So we have the Pohozaev identity
Qu) := (a + BD)|IVull, — y,llully = 0.
Let v, = u,, — u and by the Brezis-Lieb Lemma leads to
IVutally = Vvl + [IVully, and [lullg = [vallg + [lullg.
Then
O(un) = (a+Bb)|[Vuyll=ygllually = (@+Bb)IVv,llp=y,lvallg+(a+Bb)IVullp—yllullg.

We have (a + Bb)|[Vv,|[5 = y,lv,lld + 0,(1) — 0. Hence, u, — uin D'
Take ¥ = u, — uin (3.3) and (3.7), we obtain

(a + bB) f (IVu,|P~>Vu, — |VulP>Vu)V(u, — u)dx
RN
+ (/1n|un|p_2un - /llulp_zu)(un - u)dx

RN

= f (a1t = |l " 1)1ty — 1)dx + 05 (Dt — .
RN
Now the first and the third integrals tend to 0. As a consequence,

0= lim{ | (Aulual”u, — Aul’2u)(u, — u)dx)
n—oo  JpN

(3.8)

= lim A | (ual? 1, — |ul”u)(u, — u)dx}.
n—o0 RN
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For 1 < p < 2, we deduce from (3.8) and (3.1) that

2 2
’ |tn — ul? 2-p)2 5.\
( i = u|pdx) B ( (let] +n|u|)p(2‘1”)/2 ol 0 dx)
RN RN n
lu, — ul? =
<( ) [l + )
ry ([ten] + |ul)=? RN

<C | (u)"%u, = lulP*u)(u, — u)dx — 0.
RN

If p > 2, we have

f lu, — ulPdx < C f (unl”2u,, — ulP2u)(u, — u)dx — 0.
RN RN

The above limits lead to u, — u in LP(RY). Hence, u, — u in W"?(R").

O
Lemma 3.3 Let @, b, & § € (0,+o) and f(t) = at’ + br*? — ¢t fort > 0. If
g € (2p, +00), f(¢) has a unique maximum point at a positive level on [0, +c0).

Proof. Direct calculations give

(1) = " g(¢) for g(t) = pa + 2pbt? — GctTP;

g'(t) = 1"~ 'w(1) for h(r) = 2p*b - 4(G — py&T";

K1) = -4 - p)(@ - 2p)ett7".
Since g € (2p, +0), then /h'(t) < 0 for t > 0, we know that A(f) \, on [0, +00). The
fact that 2(0) > 0 and h(+o00) = —oco imply that there exists unique #; > 0 such that
h(t;) =0, h(r) > 0if r € (0,1;) and h(r) < 0 if 1 € (11, +0).

Consequently, g(¢) /" on [0,#;) and \, on (f], +00). The fact that g(0) > 0
and g(4+o00) = —oo imply that there exists unique #, > f; such that g(¢;) = 0,
g(t) > 0ifr € (0,1r) and g(¢r) < 0 if ¢ € (£, +o0). We get f'(¢t) > 0if € (0, 1,)
and f'(r) < 0 if t € (tp,+0c0), which implies that f() / on [0,%) and Y\, on
(tp, +00). Since f(0) = 0, then f(¢) has a unique maximum point at t, and f(#,) > 0.

O
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Lemma 3.4 Leta > 0,b > 0, ¢ > O,p+27p2 < g < p“and V = 0. For every
u e S, ¥, has aunique critical point s, € R, which is a strict maximum point at a
positive level. Moreover:
(1) P, = P,.
(2) ¥, is strictly decreasing on (s, +00), and 5, < 0 & P(u) < 0.
(3) The maps u € S. — s, € R are of class cl.

Proof. Set
el’ be?Ps ), €'
IVull, + IVull,” —

a
Y. (s) =
P 2p

lullg

and
P(s * u) = aeP||Vull’, + be**||Vul[2? — y e’ 4| ul|Z.

Obviously, ¥/ (s) = 0if and only if P(s*u) = 0, then s*u € P.. Clearly ¥,(s) — 0"
as s — —oo, and W,(s) — —oo as s — +oo, for every u € S§.. By Lemma 3.3, let

a ~ 1
t=¢e',a = ;IIVMIIP, b = IVullip, ¢ = 5”””3 and § = vy, - g, then ¥, has a

’ |
2p
unique maximum point s, at positive level. We assume that there exists u € Pg,
then ¥/,(0) = a||Vull, +b||Vu||[2,p — v llulll = 0 and ¥, (0) = ap||Vull} +2pb||Vu||12,p—

vz - qllullf = 0. We deduce that

aplVully = 2pyy — vi)llull]

if and only if u = 0. This shows that Pg = (). Since s, 1s a maximum point of
V. (s), we have ¥/ (s,) < 0. Hence, s, *u € P_ N P?. Since Pg = (0, we deduce that
s, *u € P_. By Lemma 3.3, we have ¥, 1s strictly decreasing on (s,, +o0). We
observe that W/ (s) < 0 if and only if s > s,. Since P(u) = ¥/ (0), then if s, < 0,
P(u) < 0. Therefore, if P(u) = ¥;(0) < 0, then s, < 0.

We apply the implicit function theorem: we let ®(s,u) = V| (s), and observe
that @ is of class C! in the two variables (s,u) € R x S,, ®(s,,u) = 0, and
05D (s, u) = ¥ (s,) < 0. Therefore, u € W'P(RM) - s, is of class C'.
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22
Lemma3.5Leta>O,b>0,c>0,p+%<q<p*andVEO,then

mo, = inf I(u) > 0.

ueP,

Proof.For Y u € P., we have P(u) = 0, then by Gagliardo-Nirenberg inequality
allVulll + blIVully” = ygllull}
< ¥y Chp JIVull et 70,

Since gy, > 2p, then inPf IVull, > C > 0. For ¥ u € P,
ueP,

1
inf I(u) = inf {I(u) — — P(u))
ueP, ueP, q')/q

= lnf{(— - —)IIVMIIP (— - —)IIVMII "}
P qYq q4Yq

ueP

> 0.

O
2 2
Lemma 3.6 Leta >0,b>0,c>0,p+ % < g < p"and V = 0. There exists
o > 0 sufficiently small such that
0 < supI(u) <my,. and u € Ap = I(u) >0, P(u) >0,
ueA,

where A, :={ueS.:|[Vull, <p}.
Proof. By the Gagliardo-Nirenberg inequalities,

a b 2 1
I(w) = =||\Vull) + —||Vull;7 = =|lull?
pPo2p P g

a b
> —||Vullh + —||Vu||2p ||Vu||qu c41-7q)
p p
4 2p

Npq

IIVMIIW 1177

b 2p
2 E”Vu”p Npq

and

P(u) 2 blIVully” IVl - 9079,

_)/q Npq
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Therefore, for any u € A, with p small enough, we have
I(u) >0, P(u) > 0.
If necessary replacing p with a smaller quantity, we also have
a b 2 -
I(w) < —||Vulll + —||Vull,} < my., Yu e A
p p 2p p P

since mg . > 0 by Lemma 3.5.

O
Proof of Theorem 1. Let p > 0 be defined by Lemma 3.6. For every r € R,
define I" = {u € S. : I(u) < r}. We consider the augmented functional I:
R x W'P(RY) — R defined by

ePs 2ps Ya'qs

~ a e
I(s,u) = I(s * u) = IVull, + IVull}” - TIIMII?,

2p
and the minimax class
(39 TI':= {y = (&) € C([0,11,R X S ) : ¥(0) € (0,A,), (1) € (0, 10)},

with associated minimax level

8o =inf max I(s,u).
yel (s,u)ey([0,11)

Fixing u € S, since [|[V(s x u)||, — 0" as s — —oo, and ¥, (s) — —oc0 as § — +o0o,

there exists so << —1 and s; > 1 such that
Ve :T€E€[0,1]1 - (0,((1 —7)sg +7851) *u) e RX S,

is a path in I'(the continuity follows from [6, Lemma 2.3]). Then dy. is a real
number.

For any v = (a, ) € I, let us consider the function
P, :7€[0,1] — P(a(r) = B(1)) € R.

We have P,(0) = P(a(0)*5(0)) > 0, then we prove that P, (1) = P(a(1)*8(1)) < O:
since \Pﬁ(l)(S) > 0 for every § € (—o0, Sﬁ(])] and \Pﬁ(l)(()) = I(ﬁ(l)) < 0, it is
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necessary that sg;) < 0. By Lemma 3.4, we have P,(1) < 0. Moreover, P, is
continuous by [6, Lemma 2.3], hence we deduce that there exists 7, € (0, 1) such

that P,(7,) = 0, namely a(t,) * B(t,) € P, this implies that

~

(3.10) max [ > 1 (y(7,)) = I(a(7,) * B(7,)) > inf I = my_.
y([0,1]) P,

Then, we have 6o, > myq.
In addition, if u € P,, then vy, is a path in I" with
I(u) = max I > 6y,
7.([0,1])
then we have the reverse inequality my . > do.. Then my,. = 6p.. By Lemma 3.6,

we infer that

(3.11) 6o =moc = 1nf I(u) > sup [= sup I
uebe (A,UINS . (0,A,)U(0,I)N(RXS )

In the following, we will apply Lemma 3.2 to achieve our result. For this purpose,
let

X=RxS. F={[0,1]):y€eT}), B=(0,4,)U(0,I°,

F={(s,u) eRX S =60}, A=y(0,1]), A, =7ya(0,1]) = y,([0, 1]) x {O}.

We need to check that ¥ is a homotopy stable family of compact subsets of X
with extended closed boundary B and F satisfies the assumptions (1) and (2) in
Lemma 3.2. In fact, for every y € T, since y(0) € (0,A;) and y(1) € (0, Iy), we
have y(0),y(1) € B. For any set A in ¥ and any n in C([0, 1] X X, X) satisfying
n(t, x) = x for all (¢, x) € ({0} x X) U{[0, 1] x B}, there holds that n(1, y(0)) = y(0),
n(1,y(1)) = y(1). Hence, we have that ({1} x A) € ¥. We have AN F # ( by
(3.10) and F N B = 0 by (3.11). Hence, we can deduce that the assumptions (1)
and (2) in Lemma 3.2 are valid.

Therefore, taking any minimizing sequence {y, = (@,,5,)} C I, for ¢, with the

property that @, = 0 and 8,(t) > 0 a.e. in R" for every 7 € [0, 1], there exists a
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Palais-Smale sequence {(s,, w,)} C R X S, for I|grxs, atlevel d¢, that is
(3.12) d,1(sy,, w,) — 0 and ||(9ul~(sn,wn)||(TwnSC)* — 0 asn — oo,
with the additional property that

|s,| + dist(w,, 5,[0,1]) > 0 as n — oo.

By the definition of I, the first condition in (3.12) reads P(s, * w,) — 0, while the
second condition gives

(3.13)

dI(s, * W) * @] = 0,(Dllell = 0nx(Dl|s, * ¢|| as n — oo, for every o €T, S..

Then let u, := s,*w,. By Lemma 3.6, equation (3.13) establishes that {u,} € S .is a
Palais-Smale sequence for /|, at level 6¢, = my with P(u,) — 0. By Proposition
3.1, we have that u € S . and u is a radial solution to (1.1) for some A > 0as V = 0.

In addition, u is a ground state solution by dg . = mg_.

4. THE PROOF OF POTENTIAL CASE

4.1. Preliminaries. Throughout this section we will make the following assump-

tions on V:
4.1) V>0 but V0,

and we define W(x) := V(x) - |x].

Then we define
Lo 2(u) = ﬁIIVMII§ + ﬁlquHf,” + EIIMIIZ — —|lull]
’ p 2p p q
and

a b A 1 1
Li(w) = —[|Vull, + —IIVullff’ + —lully — =lullf — = f V(x)lulPdx.
p 2p p q P Jrv

2p? .
Lemma 4.1 Let 1 <p<N<2p,p+%<q<p*,N22,V€LN/p(Bl)and

V e L'(RM\B)) for some 7 € [N/p,+oo]. If {u,} 1s a bounded PS sequence for I,
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in WHP(RY) and u,, — u in W'(RY). Then, Vi, — Vu a.e. in RV,
Proof. Since {u,} is bounded in whP(RY), without loss of generality, there exists

a subsequence of {u,}, still denoted by {u,}, and A € R such that
IVuyll, — AP.
Then we define

1 A 1 1
L) = —(a + bAN)IVully, + —lully = =llull§ — - f V(xX)lul"dx.
P p q P Jrv

Since u, — u in WHP(RY), we have u, — u a.e. in R"Y. Similar to the proof of

Proposition 3.1, we have

(4.2) lim f O\VulP>Vu - VT (u, — u)dx = 0.
n—oo RN
By Lemma 3.1, we just need to prove (3.2). Then, we need to prove
4.3) lim f |V, |P>Vu, - VT (4, — u)dx = 0.
n—oo RN

Since {u,} is a PS sequence for I,, then for every € wWhP(RY),

(I (), ) = (a + bAP) | [Vu, P>V, - Vipdx + 2 f P21, - pdx
RN RN

- f %1, - pdx — f VOl uy, - yrdx
RN RN
= (I (), ) + DA? = Vu|l5) | [Vul? >V, - Vipdx
RN

= (L (un), ) + 0, (DI llwrr.

We obtain (I ,(u,), ) — 0 as n — oo, then

(a+bAP) | |Vuu|">Vu, - Vydx = -2 f lunl? 2y, - dx + f
RN

|21, - Yrdx
RN RN

i fR VOlinl” - pdx + 0Dl
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Let Y = ¢T (u, — u), then
4.4)
lim sup |(a + bAP) ) O Vun|”>Vu, VT (u, — u)dx|
R

n—0oo

< lim sup ((a + bAp)f IV, P T (u, — u)Veoldx + |2 f |nl? 0T (1, — w)ldx
RN

n—oo RN

+ f Jual? 1T (= w)ldx + f |V<x)||un|f’—1|soT(un—u)|dx).
RN RN
We know

lim Supf VOl - loT (u, — w)ldx < Tim Supf VO)llutal”™" - lepldx.
RN c

Since 1 < p < N < 2p, by Holder inequality and take ¢ sufficiently small, for

every € > 0, we have

lim su f VOllunl”™" - ldx < limsup|VI| v lu ||p llll <e&
v FEO By " v e WL g nllpe WAL 5 e
and
i p-1 < 50 e p= <
lim sup fF e VMl < i sp IVl el <

Therefore, we obtain

lim sup f \VOOunl?™ - 19T (1, — w)ldx < Ce.
RN

n—oo

Similarly, we have

lim sup(a + bAp)f IVu, P! - |T(u, — u)Veldx < Ce,
]RN

n—oo

lim sup |4 lunP ™! - |@T (1, — w)ldx < Ce

n—oo RN

and
lim sup f |77 - 10T (4, — w)ldx < Ce.
RN

n—0o0

Hence, by (4.4), we obtain

lim sup |(a + bA”)f O|\Vu,|P>Vu, - VT (u, — u)dx| < Ce
RN

n—oo
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which implies

lim f Vi, |P>Vu, - VT (4, — u)dx = 0.
n—eo Jpn

Similarly, we define

1 1 |
In(u) := —(a + bAP)||Vull, - - f VolulPdx — = |lullg,
p P Jrv q

1 |
oo a(u) = ;(a + bAP)||Vull ~ 5|IM|IC’,

1 A 1
Lo 1.4() == —(a + bAD)||Vully + —[lully — = lullg,
p P q

N
Pa(u) := (a + BAP)|Vully = ygllully - = f V)luldx - f VOl 2uVu - xdx
P IRV RN
and
Pooa(u) := (a + DAP)||Vulll) — yyllull?.

Remark 4.1 ([4] Remark 2.1) If {u,} is a PS sequence for I, in wP(RY) and
u, — uin WHP(RY). Then, by Lemma 4.1 and weak convergence, u is a solution
of (1.1).

Lemma 4.2 let 1 < p < N < 2p, and V satisfies the assumptions of Lemma
4.1. Assume {u,} is a bounded PS sequence for /, in wWhP@RM), and u, — u in
WLP(RM). Let v, = u, — u. Then, {v,} is a PS sequence for I 4.4.

Proof. Since u, — u, we have v, — 0in W"?(R"), v, —» 0in L? (RV), L! (RY)

and a.e. in RY. Then we prove that as n — oo,

f V(x)|v,|Pdx — 0.
RN

Now, set

fV(x)Ivnlpdx:f V(x)lvnlpdx+f V(x)|v,l|Pdx.
RV B B
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N
Firstly, we assume 7 < +oco. Since be the conjugate exponent of —, by
p

N-p
Holder inequality, we have

f V)alPdx < IVIl x - [lval?ll
B

L7 (By) LNL*P(Bl)'
Since {[v,|F} is bounded in LY®=P(B;) and V € L'P(By), we have |v,[’ — 0

in LN'™=P)(By), hence V(x)lvu/’dx — 0 as n — oo. Similarly, let # be the
B

conjugate exponent of 7. Since V € L (B}), we have f V(x)|vulPdx — 0O as
BC
n— oo, 1
Next, we assume 7 = +co. By V e LV?(B)), it is not difficult to prove that

f V(@)valPdx — 0 as n — oo. Since v, — 0in LI (RY), then for every R > 1,
B,

lim sup | f L_ V(x)[val’dx| = lim sup | f V@)lvalPdx + fB . V() valdx|
1 R R 1

n—0o0 n—0o

= lim sup |f V(x)lvnlpdx| < Csup|V],
By By

n—00

which implies f V(x)|v,|Pdx — 0asn — oo. To sum up, we obtain f V(x)|vulPdx —
B RN
0. Then
4.5) f V()|u,|Pdx — f V(x)|u|Pdx.
RN RN

Since {u,} is a PS sequence for I,, there exists m € R such that
Li(u,) = m and [[I(u,)]| = 0 in W P@RY) as n — co.
By Brézis-Lieb lemma and Lemma 4.1, we have
Li(up) = Da(u) + Lo g a(Vn) = %Azl’ +0,(1),
which implies

b
(4.6) Loqa(vy) = m + 2—A2P — Iya(u) as n — oo,
p
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Finally, we prove that
1 4l = 0 in WHP(RY).
We just need to prove that for every ¢ € W'P(RY),

(Lo g a(Wn)s ¥) = 0p(DIllwrr,

that 1s
4.7)

(a+bA?) f IVVlP 2V, Vi + f Aval” v, pdx— f [l 2vdx = 0Dl
RN RN RN

By Holder inequality,

| f (Vs "2Vt — [VvulP 2V, — [VulP V) - Vipdx|
RN

N

< ( f Vit P2V, — [V, |72V, — |vu|P-2Vu)|ﬁdx) vl
RN

S
|

s( f ||Vun|P—2Vun—|an|P—2an—|Vu|P—ZVu>|P_1dx) Wl
RN

From [12, Lemma 3.2], we know
f IVulP 2V, = V0[PV, = [VulP2Vu| ™ dx = 0,(1)
RN
which implies

Vv, P2V, - Vigdx = f \Vu,|P>Vu, - Vipdx
(4.8) R RY

— f IVulP=2Vu - Vipdx + 0,(D)|lw1s.
RN
Similarly, we have
(4.9)
f |Vn|p_2Vn ’ de = f |un|p_2un ’ l//dx - f |M|p_2u ) l//dx + On(l)”l//”Wlf’
RV RV RV
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and
(4.10)

f [l 21, - Wi = f 1210, - Yl — f "2 - ydx + ou(DW -
RN RN RN

Now, we use (4.5), (4.8), (4.9), (4.10), Lemma 4.1 and the fact that {«,} is a PS

sequence for I, we obtain (4.7).

Lemma4.3Let1 < p < N < 2p, and assume that

({)V € LN'P(B)) and V € L'(RM\B,) for some 7 € [N/p, +0],

(i1)in case 7 = 400, V satisfies V(x) — 0 as |x| —» +oo,

(ii)A > 0.

If {u,} is a bounded PS sequence for I, in whP(RM), and u, — u but not strongly,
then there exist an integer k > 1, k nontrivial solutions W', o e whr (RN ) to

the equation
4.11) (a + bAP)(—-A,w) + AwP*w = |w|"*w,

and k sequence {yi} c RM, 1 < j <k, such that |y£| — 400 asn — oo, Iyi‘ —)’ﬂ —

+o0 for j; # jp asn — oo, and

k
(4.12) U, = U+ Z W/ =y + 0,(1) in WPRM).
j=1

Moreover, we have

k
(4.13) ]l = lluallyy + Z 1/l + 0a(1),
j=1
k .
(4.14) AP = ||Vullh + Z IV/|1D

J=1
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and

k
: b
(4.15) L) = La@) + ) Lo aa(@)) = 5=A + 0,(1).
=1 2p
Proof. Let u, = u, — u. Then u, — 0in W"?(R"), u, —» win L} (R"), LT (R")
and a.e. in R". Similar to the proof of Lemma 4.2, we can prove that

(4.16) f V()lulPdx — 0 as n — co.
RN

Since u, — u in W'*(R") but not strongly, then there is
ligllglfﬂuiﬂp > 0.
By Lemma 4.2, we know {u!} is a PS sequence for I, 1.4, hence
(@ + bAD)|Vuylly + Alluey Il = Nyl + 04 (1),
Since 4 > 0,
ligllglfllu,llllg > 0.
Let us decompose R" into N-dimensional unit hypercubes Q; and set

1
ln = sup |lu,llr,)-
ieN,

Since u} € LP(RY), for any & > 0, there exist R such that f lu}|Pdx < e. Then

C

there exist limited i, € N, such that /, can be attained. We claim that

liminf/, > 0.

n—oo

Since
1 1 - 1 - 1 -
il = > gl g0 < 177 Maall, g < CITP > IVuLIL, ) < CIAT
i=1 i=1 i=1

Then, since lim inf ||u,11||p > 0, we have liminf /, > 0.
n—oo

n—00

Let y! be the center of Q; and

1._ 1 1
v, =u,(-+y,),
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then {v,lq} is a PS sequence for /14 and there exists w' e whp (RM)\{0} such that

v}l — ! in WHP@RM). By weak convergence, we know w! satisfies (4.11). Since

ul = 0in W"P(RM) implies that {y,ll} is unbounded, we assume that |y,11| — +00 as

n

n — oo.Moreover, by (4.5), Brézis-Lieb Lemma and Lemma 4.1, we have
U, = u-+ u,ﬁ =u+ v,ll(- — y,11) =u+ a)l(- - y,i) + [v,lq(- — y,ll) — a)l(- - y,lq)],
allh = lleall? + "5 + vy — @'l + 0,(1),
AP = |Vullh + IV [I) + IV (v, = 0I5 + 0,(1),

and

b
L) = Lau) + Lo pa(@") + Lo pa(vy — 0') = 2—A2P + 0,(1).

14

Now, set

wr=v(-—y)—w'C -y,

and iterate the above procedure. To complete the proof, we just need to prove that

the iteration will be ended in finite steps. Suppose the iteration will not be ended,

then we have

o
Vil > > IVl
j=1

By Lemma 4.4, there exists a constant C such that IV’ ||§ > C, then we have

IVu,||, = +oc0, which is an absurd.

Lemma 4.4 Let € WHP(RY) be a non-trivial solution of
(a + bAP)(-A,w) + w0 = |0 w

for some A > 0. Then there exists a constant C depending on N, p, g, and A such
that

wllwr = C.
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Proof. By the Pohozaev identity, we have

( )
(a+bA")Vol) = ==L jw,
which together with
(a + DAYVl + Al = llwlig
implies
— N(g —
Aol = PP panywa,
N(g - p)
By Gagliardo-Nirenberg inequality, we have
N(g-p) _NG@-p)
m(a + APVl = llwllg < €y, VOl " N, 7 = ClIVallj,.

Hence, since g > p, ||wl|lw» = C(N, p, g, A).

Define

4.17)  Z.:={veS.: 31> 0,s.t.(a + b||VUll)(~A,v) + Al = [v]i*v)
and

(4.18) me := inf Lo(v).

Recalling Theorem 1, we have m,. > 0 and m, can be achieved by some v € Z..
Lemma 4.5 m, is decreasing on (0, +00).
Proof. Fix pp > p1 > 0, letu := u, € P;‘l’ and satisfy I,(u) = m,,. Set v(x) =

(&)¥u(&x) for x € R. Then |[v||, = p>. Let s * u = e%Su(esx),
P2 P2

Ng=p),

ePs e
— ——Jull}.

a
IVull), +
D P

Io(s *u) =

2
Since g > p + %, we have I.(s * v) = —oco as s — +oo0 and I(s * v) — 07 as

s — —oo. Then, there exists sy < 0 such that I(sy = v) > 0 for s < s9. Hence, there
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exists s, € R such that /,(s, * v) = max I(s * v) and s, * v € P;;’. Moreover,
seER

pq( -p)

IV(sy = )l = IV(sy * wllp, Iy * vl —( ) 5 * ullg.
Foranyg e (p + — 20" Np ————), denote
yqe(p N N-p
N@g-p) ¢ b pq( -p)
By, % u) = —e P I e 7174
P1
2p2 Np

Then, ¢,(s, * u) < 0 for g € (p + —, ——). Thus, we can deduce that

N’ N-p

My, < Ioo(Sy * V) = Loo(Sy * 1) + g5y * 1) < Loo(sy * u) < Io(u) = my,,,

which indicates m, is decreasing on (0, co).

O

4.2. Proof of Theorem 2. For some fixed 6 € (0, a), we give following assump-

tionson V and W.

(4.19) Vil < (@ 6)S,
SP_‘1

(4.20) Wl < = (aY N(q -2p)S~ ||V||N/p),

and

p—l

(4.21)  (Wllnjp-1) < (aXY [XN(g - 2p) + (N = p)Z1S 'IVIInyp)s

Xp? +
where
X=Np-(N-p)q, Y=N(g-p)—-p* and Z=N(q- p)*.

Firstly, we prove that the functional / has a mountain pass geometry.

Lemma 4.6 For every u € S,

N(g-p)

r IV,

(q p)

5 1
I(u) > ;IIVullp - =t

Npq
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Proof. By Gagliardo-Nirenberg inequality, we have

N(q P)

q q
lllf < €3 f

And by the Holder inequality and Sobolev inequality, we have
f VOl dx < [VIallullh. < STHIVIsIVull).
RN P P
Hence, by (4.19)

a b 1 1
I(u) = —||Vully + —IIVull,zf’ — —llull? - —f V(x)|u|Pdx
p 2p q P Jry

1 1 » 1 q N(fl P)
> ~(a= ST IVIIVuly - C,,
0 1 Mg=p) Ma-p)
> IVl = Cp e Il
p
Lemma 4.7 For every u € S,
(4.22) lim [[V(s*u)l|, =0, lim [[V(s*u)||, = +oo,
§——00 §——+00
(4.23) lim I(s*u) =0, lim I(s*u) = —oo.
§——00 §—>+00

Proof. Since
V(s * wll, = f V(7 u(e* x)Pdx = e”*||Vull.
RV
It is obvious to obtain (4.22), then we prove (4.23). By Holder inequality
f VOls * ul’dx < [Vilnyplls = ull). = e [IVIlyypllully. — 0
RN
as s — —oco. Moreover, since g > p, we have
Is * ullf = 7™ lullf - 0
as s — —oo. Then,

1
lim I(s*u) = lim I.(s*u)— — lim f V(x)|s = ulPdx =0

§——00 §——00 P s—— JrN
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Since V(x) > 0, we have

lim I(s*u) < hm LIoo(s * u).

s§—+00

2p°
Sinceg > p + —
=P+ "N
lim I.(s*u) = lim (ae”SIIVulli + beszIIVu”;z)p _Nsllullq) —0c0.
§—>+00 §—+00
as s — +oo.

For every r e Rand R > 0, define I" ={u € S, : I(u) < r}and
Mg = inf{I(u) :u € S.,||Vull, = R}.

From Lemma 4.6 and 4.7, it is easy to know that I’ # 0 and there exist R > Ry>0
such that for all 0 < R < Ry, 0 < My < Mp. Thus, we can construct a min-max

structure
(4.24) I:={yeC(0,11,RxS,) : y(0) € (0, Ag,), y(1) € (0, I°)}
with associated min-max level

(4.25) = inf max I(y(¢)) > 0,
vel te[0,1]

where
Ap={ueS.:||Vull, <R}, I(s,u) = I(s = u).

Then, we prove I has a bounded PS sequence.
Lemma 4.8 There exists a bounded PS sequence {u,} for I|s, at the level my,. that
18

(4.26) I(u,) = my, and |[I'(up)llir, s.)» = 0 as n — oo,

un



28 YUAN XU AND YONGYI LAN

such that

N(q - p)
allVun|lb + bl Vu,||7? — ——=

N
||I/tn||Z - — fN V(x)|u,|Pdx
4.27) P Jr

- f V() tnl” 1,V - xdx — 0.
RN
Moreover, the related Lagrange multipliers of {u,,}
1
(4.28) Ay = __I,(un)un’
cP

converges to A > 0 as n — oo.
Proof. The proof is divided into three steps.

(1) Existence of PS sequence. Let
X=RxS., F=TI and B=(0,Ag,) U (0,1°.

By [7, Definition 5.1], I" is a homotopy-stable family of compact subsets of R x S .
with extend closed boundary (0, Ag,) U (0, 1Y), Let

¢ =1I(s,u) and F = {(s,u) e RxS.:I(s,u) > my,}.

Similar to the proof of Theorem 1, we can deduce that the assumptions (1) and (2)

in Lemma 3.2 are valid. We consider the sequence

{An} = {')/n} = {(anaﬁn)} cr

such that lim sup¢ = my.. (We may assume that o, = 0, if not, replacing

n—oo
Al1

{(ay, By} with {(0,a, * B8,)}). By Lemma 3.2, there exist a sequence {(s,,V,)}

for I|s, at the level my,. such that
A,1(sy,vy) — 0 and ||01(s,, vll, s — 0 as n — oo,
Moreover, by Lemma 3.2 we have
|s,| + distyr.r(vy, B,([0,1])) = 0 as n — oo
which implies s, — 0 as n — oco. Therefore, we have

I(sp % vy) = i(sn,vn) — My a8 n— 0
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and
Il(sn * Vp)(8, %) = aiu(sna v = o,(DIYIl = 0,(1)l]s, * |
forevery y € T, S .. Let {u,} = {(s, * v,)}, then {u,} is a PS sequence for I|s, at the

level my,. Differentiating I with respect to s, we obtain (4.27).
(2) Boundedness of {u,} in W"?(R"). Set

an = [Vuullh, by, = |lulld,

Cn ::f V(x)|u,|’dx and d, ::f V() unlP >, Vi, - xdx.
RN RV

By (4.26), we have
a b 1 1

(4.29) —ay + ——a> — —b, — —c, = my, + 0,(1),
p 2p q
and by (4.27), we have
N(g — N
(4.30) @+bapa, - 24=P, N o o)
Pq p
which implies
N(g - p) — p? N(g — p) — 2p? -2
a G-p)-p “ap+b 9-p)=2p az— 1= =P Cnt P dy, = my,+0,(1).
Np(g—p) 2Np(g — p) p(g—p)  N(g-p)
Since
(4.31) lcal < S7IVIInypan, and |d,| < S ‘%IIWIIN/@_l)an,
we get

_ _poL N(q - p) - 2p?
(aY—N(q— 20)S Vi — p2S 5 ||W||N/<p_1>)an T &

< Np(q — p)my, + 0,(1).

2 2
Byg>p+ % and assumption (4.20), {a,} is bounded and

Np(q — p)my,
a¥ — N(g = 2p)S~Vllnsp = P2S ™ 7 IWlinsoy

(4.32) a, < + 0,(1).
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(3) A > 0. By (4.26), there exist 4, such that

I'(u)y + Ay fN Junl? 2 utpdx = 0u(DIWllyre,
R

and hence we can choose 4,, as (4.28). Since a,, is bounded, so b,, ¢,, d, and A4,, are

also bounded, we assume that they converge to ay, by, g, dy and A respectively. By
(4.29), (4.30), (4.31) and (4.32), we have

Ac? = = lim I'(u,)u, = —a-ay— b - a(z) + bo + Co
_pX b X, N-pl-p_ _ar-p,
y ety i~ Y 0 y °
pX (N-p)g—-p)._ qp — p* -
> 5 e T 7 SNVl pao - » IWllnyp-1)a0

. fx- Z(N = p)S IVl + ZpS"’T"uleuN/(p_])
ay — N(g = 2p)S UIVlingp — P2S ™7 Wl
_ paXY = [XN(g —2p) + Z(N = p)IS~IVllxyp = PLPX + Z1S ™7 [Wlljp- b
Y aY — N(g = 2p)S " Vllip - 1257 Wil e
Therefore, assumption (4.21) implies 4 > 0.

mv’c

Lemma 4.9 For every ¢ > 0, there holds my, < m,.
Proof. By Theorem 1, there exist v. € Z. such that I,(v.) = m.. By Lemma 4.7,
let

y(®) = (0,[(1 = Dho + thi] * ve),

where hy << —1 such that |[V(hg * v.)||, < Ro and h; >> 1 such that I(h; *v.) < 0.

Then, y € I" and H%Sl)f] I(y(t)) > my,. Since V(x) > 0,

max I(y(1) = max I([(1 = Dhg + thy] * v,)

< max Io([(1 = Hhg + thy] = v.)
1€[0,1]

< max I(s * v.) = me,
seER
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we have my, < m,.
O
Proof of Theorem 2. Now, let us prove the existence result. By Lemma 4.8, there
exist PS sequence {u,} for I|s, at level my,. and u € whr (R™) such that u,, — u in
WP@RMy and A, - 1> 0asn — co.

Then, we prove u, — u in WEP(RM). Tt is not difficult to prove that {u,} is a PS
sequence for 1, at level mv,c+;c1’ . Suppose that {u,} does not strongly convergence
to u in WHP(RY). By Lemma 4.3, there exists k € N, and y,ﬁ' e RV(1 < j < k) such
that

k
= u+ ) W=y +o,1) in WPRY),
j=1

where w’ satisfies
(a+ bAP)(-A,w) + Aol 2w = || %w.
We claim that
AP
(4.33) Tx(u) — —IIVuIIp

Since 1/ (u,) — 0 gives that Ii A(w) =0, then Ps(u) = 0, by assumption (4.20),

bAP p
1 — —||Vullfp = ———P
A(u) 2 IVull, NG - A(u)
N(g—-p)—p*> ,Nlg-p) -2p° -2
:(a (g—-p)—-p b (g—p) pAp)”Vu”p_ q—2p f Vol dx
Np(q p) 2Np(g - p) p(q—p) Jrv
V() ulP~ 2uVu - xdx
N(q— )f
> (a¥ = Ng=20)S Vlins, — 0285 1IW _)v p
Np(q—p)(a (¢ =2p)S~ IVllnp —p IWllvsp-1) IVl

> 0.
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Then by (4.14), we have
P*(w') = alVo|l} + bIIV |} = yglle’|l
< dlVa'|Il) + bAP|IVW |l =y llw’ll = PE(w’) = 0.
By Lemma 3.4, we derive s; := s,/ < 0 such that s, * w e P°, =luce

llw/]l,»
WEPRN) : Po(u) = 0} N S jwiy,- Then, we claim

. bAP -
(4.34) Lo a(w’) — 2—||wa||§ > M.
P

Since ||| < ¢”, by Lemma 4.5

. bAP p |
Lo a(@)) = 5= IV&/ll) = ————Peoa(@)
A 2p PT Nig-p) "
N(g — — p2 . N(qg — -2 2 j
— 4 (q p) p”VO)J”Z'Fb (CZ p) pApHVU)]“Z
Np(q - p) 2Np(q = p)
Ng=p) =1 g i N@=P) =20 &
> a— 2Ll + b= vy
Np(qg - p) 2Np(q = p)
N(a - p) — p2 . N(qg - p) - 2p* j
> ol (p) eIVl + b o 7 ) v
plg=p Pa=pr
= Ioo(5j * W) — ————Poo(s; * @)
/ Ng-p) =

= OO(S] * wJ) 2 m“wj”p 2 me.

Letn — oo, by (4.15), we have

k
A . b
mye + = = Da@) + ) Lo aa(@)) = 5—A%
p = 2p

b L 2 A<
= 140) = -4+ Y Lo a (@) + Sl + 2 3 I,
2p 2; pr p;; g
By (4.13), we know

k
P _ 1: P _ p J|1P
¢ = lim [luylly = llully + )l

J=1
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Hence, by (4.14), (4.33) and (4.34)

k
b .
my, = Ix(u) — %AZP + Z Lo ()

j=1
k
bA? , b
> —([Vullh + > IVa/|lp) = =——A>" + km,
2p p JZ:; p 2p
2 mC,

which is a contradiction with Lemma 4.9. By strong convergence, we know u € S .
satisfies Eq.(1.1).

Acknowledgments

The authors thank the referee for valuable suggestions.

This paper is supported by Natural Science Foundation of Fujian Province
(No0.2022J01339).

REFERENCES

[1] T.Bartsch, N. Soave: Multiple normalized solutions for a competing system of Schrédinger equations, Calc. Var.
Partial Differ. Equ. 58 (2019), 22.
[2] L. Cai, EB. Zhang: Normalized Solutions of Mass Supercritical Kirchhoff Equation with Potential, J. Geom.
Anal. 33 (2023), 107.
[3] S.B. Deng, Q.R. Wu: Normalized solutions for p-Laplacian equation with critical Sobolev exponent and mixed
nonlinearities, arXiv: 2306.06709.
[4] S.B. Deng, Q.R. Wu: Normalized solutions for p-Laplacian equations with potential, arXiv: 2310.10510.
[5] S. De Valeriola, M. Willem: On some quasilinear critical problems, Adv. Nonlinear Stud. 9 (2009), 825-836.
[6] X.J. Feng, Y.H. Li: Normalized solutions for some quasilinear elliptic equation with critical Sobolev exponent,
arXiv: 2306.10207.
[7]1 N. Ghoussoub: Duality and perturbation methods in critical point theory, Cambridge University Press, UK, 1993.
[8] L. Jeanjean: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28
(1997), 1633-1659.
[9] Kang, J.C., Tang, C.L.: Normalized solutions for the nonlinear Schrodinger equation with potential and com-
bined nonlinearities, Nonlinear Anal. 246(2024), 113581.
[10] G. Kirchhoff: Mechanik, Teubner, Leipzig, 1883.
[11] G.B.Li, X. Luo, T. Yang: Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent,
Ann. Fenn. Math. 47 (2022), 895-925.



34 YUAN XU AND YONGYI LAN

[12] C. Mercuri, M. Willem: A global compactness result for the p-Laplacian involving critical nonlinearities, Dis-
crete Cont. Dyn-A. 28 (2010), 469-493.

[13] I. Peral: Multiplicity of Solutions for the p-Laplacian, in: Lecture notes for the Second School of Nonlinear
Functional Analysis and Applications to Differential Equations, Internationl Centre of Theoretical Physics, Tri-
este (Italia) (1997)

[14] T. Rong, EY. Li: Normalized solutions to the mass supercritical Kirchhoft-type equation with non-trapping
potential, J. Math. Phys. 64 (2023), 081501.

[15] N. Soave: Normalized ground states for the NLS equation with combined nonlinearities, J. Differ. Equ. 269
(2020), 6941-6987.

[16] N. Soave: Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical
case, J. Funct. Anal. 279 (2020), 108610.

[17] Q. Wang, A.X. Qian: Normalized Solutions to the Kirchhoff equation with Potential Term: Mass Super-Critical
Case, B. Malays. Math. Sci. So. 46 (2023), 77.

[18] X.Y. Zhen, Y.M. Zhang: Existence and uniqueness of normalized solutions for the Kirchhoft equation, Appl.
Math. Lett. 74 (2017), 52-59.

Yuan Xu

E-mail address:xy1759383550@ 163.com
YongYi Lan

E-mail address:lanyongyi @jmu.edu.cn

Jimei University, School of Sciences, Jimei, Xiamen 361005, Fujian, China



	1. Introduction 
	2. Results
	3. The proof of non-potential case
	3.1. Preliminaries
	3.2. Proof of Theorem 1

	4. The proof of potential case
	4.1. Preliminaries
	4.2. Proof of Theorem 2

	References

