BF PATH INTEGRALS FOR ELLIPTIC CURVES AND p-ADIC
L-FUNCTIONS

JEEHOON PARK AND JUNYEONG PARK

ABSTRACT. We prove an arithmetic path integral formula for the inverse p-adic
absolute values of the p-adic L-functions of elliptic curves over the rational num-
bers with good ordinary reduction at an odd prime p based on the Iwasawa main
conjecture and Mazur’s control theorem. This is an elliptic curve analogue of [2].
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1. INTRODUCTION

The arithmetic BF theory for number fields and abelian varieties was intro-
duced in [3] to show the philosophy of arithmetic gauge theory which indicates
that the path integral of the physical theory is closely related to the L-function of
the relevant number theory. The arithmetic BF theory for cyclotomic fields led to
[2], which proves an arithmetic path integral formula for the inverse p-adic abso-
lute values of Kubota-Leopoldt p-adic L-functions at roots of unity (a precise con-
nection between Kubota-Leopoldt p-adic L-function and the arithmetic BF path
integral of cyclotomic fields up to p-adic units); the formula in [2] adds a small
step toward such philosophy. Then a natural question is to prove a similar path
integral formula for the p-adic L-function of elliptic curves with ordinary good
reduction at p; the aim of this article is to resolve this question.

1.1. The statement of the main theorem. Let E/Q be an elliptic curve with semistable
reduction at all places. Let p be an odd prime where E has good ordinary reduc-
tion. For n > 0, denote

KTL = Q(Cpn+1 ), Xn = SpeCZ[CerH]
where Cpn+1 is a primitive pnt!

so that

-th root of unity. Also, we simply denote K := Kg

M= Gal(Koo /K) = Zp.
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Denote I, C T the subgroup of index p™. On the other hand, let
w: Gal(K/Q) —— Z; (= Gal(Ks /Q))

be the Teichmiiller character and let (-), be the w"-isotypic component of a I'-
module with Gal(K/Q) = ]Fg -action. Then Qn = Ky, o C Ky, is the subfield fixed
under w so that we have the following diagram of field extensions:

5T
Qn =Knpo /Tn
(1.1)
T/Tn K
|
Note that I'/T, = Z/p™Z. We also denote
Yn = SpecOq, .

Denote £ the Néron model of E over Z. For m > 1 we use the following notation:
F ™ (Spec O) := H}ppf(Spec O,Ep™]) x Hf]PPf(Spec O,Ep™])

where O is the ring of integers of a number field and we view £[p™] as sheaves
in the flat topology. Denote £° C £ the identity component and ®¢ the group of
connected components. Then, as in [3, p. 1305], we have an exact sequence of fppf
sheaves:

0 £o £ D¢ 0

Note that if Z — O is ramified only at p € Z, then £ ®z O is the Néron model of
E over O and the orde of Ogg, o is the same as the order of ®¢ (Lemma .

We briefly recall the definition of the Tate-Shafarevich group III(Ky, E) for
eachn € IN U{oo}:

I (Kn, E) :=ker [ H'(Kn, E(Kn)) —— [ [H" (Kn, E(Knv))

where v runs over all primes of K,;. The Selmer group for each n € IN U {oo} is
defined so that it fits into the following exact sequence:

0— E(Kn) ®z Q/Z — Sel(Kyn, E) — II(Ky,E) — 0.

We refer to [6, chapter 2] for detailed definition. Then we make the following
assumptions:

o the Selmer group Sel(Ky, E) is finite,

o the order of Q¢ is relatively prime to p, and

e Efp]isirreducible as a Gal(Q/Q)-representation.

1Given a Néron model A over O of an abelian variety A over Frac(O), we have
Ou= P 1Oy,
s€Spec O

where each @ 4 is a finite étale group of connected component of A over the residue field k(s) (see
[4) Proposition B.2] for example). Then the order of ® 4 is defined to be the sum of orders of @ 4, .



BF PATH INTEGRALS FOR ELLIPTIC CURVES AND p-ADIC L-FUNCTIONS 3

Note that by the first assumption, II1(Ky, E) becomes finite (Lemma and hence
II(Ky, B)[p™] = II(Ky, E) [pzm] for all sufficiently large m.
The second assumption is needed to prove a correspondence between the flat co-
homology and the Selmer group (Lemma[2.T). The third assumption is needed for
the integrality of the p-adic L-function of E (i.e. gg (t) € Zy [[t]]; see (T.2)).
With the first two assumptions, one can define a 3-dimensional arithmetic BF

theory [3]]. The input data of such theory consists of

e (spacetime) the scheme Y;, = Spec(QOq,, )

o (space of fields) the space F™(Yn)

e (action functional) an arithmetic BF-functional (see and (3.1)):

1
BF: 5™ (Yn) —— ——Z/Z
P

foreachn > 0and m > 1.
Then the output of the theory is the following arithmetic path integral:

Z exp(2miBF(a, b)).
(a,b)eF™(Yyn)

For the reason that the above sum is called an ‘arithmetic path integral’, we re-
fer to [2, Section 1.3]. By Lemma this sum becomes finite if we assume that
Sel(Qn, E[p*]) is finite. This follows from our finite assumption on Sel(Kn, E) by
Lemma Since we will define and use the BF-functional over X;,, we have as-
sumed that Sel(Kn, E) is finite. In section |3} we will explain how to get the path
integral over Yy, from the path integral over X,.

Now we briefly review the p-adic L-function of E. Since E has good ordinary
reduction at p, there exists a power series

(1.2) ge(t) € Zp (It ®z, Qp

which represents the p-adic L-function L, (E/Q, s) of an elliptic curve (see [11] and
[6) p. 459]). Under the assumption that E[p] is an irreducible Gal(Q/Q)-module,
ge(t) € Z,[[t]l holds. Let ap, Bp € Q be defined by op +Bp = ap and «pBp =P,
where ap, = 1+p —E(Fp). Then p does not divide ap, which means p splits in

Q(otp, Bp). Let T(x) € Q be the Gauss sum for a Dirichlet character x. By the
modularity of E/Q, the L-value L(E/Q,x, 1) is defined and L(E/Q,x,1)/Q¢f is
known to be algebraic by a theorem of Shimura, where Q¢ = fE(IR) %. Let us fix
a topological generator yo € Gal(Qo/Q). If  is viewed as a faithful character of
Gal(Q, /Q) with n > 1, then the conductor of x is p™ ' and ¢ = x(vo) is a p™-th
root of unity. Now the interpolation property of gg (t) is given by

(1—Bpp ")’L(E/Q,1)

Qe
(Bp)"TL(E/Q,x, 1)

T(x)QE
forn > 1. Sometimes gg (t) is called an analytic p-adic L-function of E, while there
is the notion of an algebraic p-adic L-function of E defined by the generator of
the characteristic ideal of the Pontrygin dual of the Selmer group Sel(Qoo, E[p>])
which is a torsion Zy,[[t]]-modulel| The Iwasawa main conjecture [6, Conjecture

ge(0) =

ge(C—1) =

2The Selmer groups for each n € IN U{oo} fit into the following exact sequences:
0 — E(Qn)Ip*] ®z Qp/Zp — Sel(Qn, E[p™]) — I(Qn, E)[p*] — 0.
We refer to [6} chapter 2] for detailed definition.
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4.16], which is now a theorem by Skinner-Urban [13], asserts that they are the
same.

Let | - |, be the p-adic absolute value on the algebraic closure @p normalized
by Ipl, = p~'. Now we can state our main theorem.

Theorem 1.1. Foreachv € Yy, let c\(,p) (E) be the highest power of p dividing the Tama-
gawa factor ¢, (E) for € at v. Then the following arithmetic path integral formula holds.

—1
IT getc—1

Pt =1 P
_ M _ H cPUE) - lim Z exp(2miBF(a, b))
EQuP>I 2y " (@ b)eTm (Ya)
vip,vINg

where E is the reduction of E at p, and N is the conductor of E.

We prove this theorem in section[d} For the proof, we first derive a path in-
tegral formula (Lemma in a more general context, using Mazur’s control the-
orem [6, Theorem 4.1] and the Iwasawa main conjecture. Then we analyze the
“error term” of Mazur’s control theorem following the method of [5].

1.2. Open question. An interesting open question is to enlarge the space of fields
F™(Yn) or modify the BF-functional so that we can obtain a path integral formula
for the L-value [ [ ;pn_; ge (C—1) itself, which amounts to remove the p-adic abso-
lute value from the formula in Theorem[I.T]incorporating p-adic unit information.

1.3. Acknowledgement. Jeehoon Park was supported by the National Research
Foundation of Korea (NRF-2021R1A2C1006696) and the National Research Foun-
dation of Korea grant (NRF-2020R1A5A1016126) funded by the Korea govern-
ment (MSIT). Junyeong Park was supported by Samsung Science and Technology
Foundation under Project Number SSTF-BA2001-02, the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2024-
00341372), and the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (RS-2024-00449679).

2. THE BF-FUNCTIONAL FOR ELLIPTIC CURVES

We now recall the definition of the BF-functional in [3] p.1303]. By [10] Corol-
lary 3.4], we have a perfect pair'mﬂ

U HL X, E™) X HE (X, Ep™) —— M2 (X, Gon ) ™).
together with an isomorphism as in [10, p. 252]:

inv:H3

fppf(XTLI Gm) —Q/Z

which restricts to

. ~ 1

inv : prpf(xn,cm)[pm] = p—mZ/Z )
Finally, let

8:Hp (X, EP™]) —— HE (Xn, EP™])

3By [10} p.220], we have Hor e (Xn, =) = Hp (X, —).
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be the Bockstein map coming from the exact sequence:

0 Ep™ —— EPP™] P Ep™] —50 .

Combining all these, we define the arithmetic BF-functional as follows:
(2.1) BF : F™(Xn) *>p]mZ/Z (a,b) ——inv(a U &b)

Lemma 2.1. Let O be the ring of integers of a number field such that Z — O is ramified
only at p € Z. Assume that the order of Q¢ is relatively prime to p.

(1) £ @z O is the Néron model of £ over O.
(2) The order of Og,, o is the same as the order of O¢.
(3) We have the following isomorphisms:

Hf]ppf(Spec O,Ep™]) = Sel(Frac(O), Elp™])

Hflppf(SPeC 0,&)p™] = I (Frac(O), E)[p™]
where Frac(Q) is the field of fractions of O.

Proof. (1) follows because the étale base change of a Néron model is still a Néron
model and our E has good ordinary reduction at p.

(2) Since Z — O is ramified only at p € Z, the number of connected com-
ponent may vary at the primes in O lying over p. Since E has good ordinary
reduction at p, our £ is always connected at these primes.

(3) By (1) and (2), the first isomorphism comes from [3, Lemma A.2] and the
second from [3, Lemma A.3]. O

Lemma 2.2. With the assumptions so far, the following holds.

(1) E(Ky) and III(Ky, E) are finite.
(2) Sel(Qn, E) is finite. Hence E(Qy ), I1I(Qn, E), and Sel(Qn, E[p*])
become finite.

Proof. For a number field F we have the following exact sequence ([6, chapter 2]):
(2.2) 0——EF)®zQ/Z — Sel(F,E) —— II(F,E) —— 0.

(1) Taking F = Ky in (2.2), we immediately conclude that III(Ky, E) is finite
and E(Kn) ®z Q/Z = 0, i.e., E(Ky) is a torsion abelian group. Since E(K;) is a
finitely generated abelian group by the Mordell-Weil theorem, we conclude that
E(Ky ) is finite.

(2) From the inflation-restriction sequence for group cohomology, we get

ker ( Sel(Qn, E) — Sel(Ky, E)Gal(Kn/Qn) ) C H'(Gal(Kn/Qn), E(Kpn)).

Note that E(Kn )tors = E(K) by (1). Therefore, Sel(Qn, E) is finite, which immedi-
ately says that Sel(Qn, E[p*°]) is finite. By the same argument as in the proof (1),
we conclude that E(Qy, ) and III(Qn,, E) are finite. O

Proposition 2.3. For every n and every sufficiently large m, we have

E(Kn)

> exp(2miBF(q, b)) = [Sel(Kn, E[p™])| ‘me(Kn)

(a,b)eF™(Xn)

Proof. The assertion follows from [3] Section 3] by noting that E is self-dual. O
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3. ISOTYPIC COMPONENTS OF THE BF-FUNCTIONAL

The Gal(Ks /Q)-action on X, induces by functoriality a Gal(K., /Q)-module
structure on Hf‘ppf(Xn, Ep™]). Since p — 1 is relatively prime to p, the Gal(K/Q)-

action on Hf'pr(Xn, Elp™]) is semisimple. Denote

(6.1) T (Xn) = Hio X, E™)5 X HEo (X, E™])

so that we have
p—2
gm(xn) = @ :}TL(XTL)-
r=0
We will show that FF*(Xn) = F™(Yn).
By functoriality, U and $ are w"-equivariant. Hence they restrict to

U: ngpf(xnzg{pm])r X Hfzppf(x‘n/ Ep™)s —— H?ppf(xn/ Gm)r+s

.1
5:H)

Since the Gal(K/Q)-action on

(an 5[Pm])r — Hfzppf(xnr Sh)m])r .

. -1
inv : prpf(xn,Gm) — p—mZ/Z

is trivial, Hf'f(Xn,Gm)Hs # 0 if and only if r+s = O mod p — 1 so the BF-
functional (2.1) splits into

pm

p—2 p—2 1
Y BF: P I (Xn) — —=Z/Z.
r=0 r=0

Therefore, we have

p—2
> exp(2miBF(q,b)) = [ | > exp(27iBF(a, b))

(a,b)eF™(Xyn) =0 (a,b)eFm(Xn)

Proposition 3.1. For every n and every sufficiently large m, we have
( E(Kn) )
PME(Ky) —r

Proof. 1f 6b # 0, then the sum over a € Hf]ppf(Xn, Elp™])—r becomes

Z exp(2miBF(a, b)) = Z exp(2mi - inv(a U &b)) = 0.

> exp(2miBF(q,b)) = [Sel(Kn, Elp™])+|
(a,b)egF™(Xn)

On the other hand, if 8b = 0, then exp(27iBF(a, b)) = 1. Since  is w-equivariant,
(ker 8)—y = Hppt(Xn, Elp™))—r Nkers.

Combining these, we get

D exp(2miBF(a,b)) = |Hipp(Xn, EP™): | l(ker 8) |
(a,b)eI ™ (Xn)
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For each n and sufficiently large m, we have a factorization coming from [3, p.1304]:
1
HY X, E™]) —s H2 (X, E[p™])

\/

where the surjection fits into the Kummer sequence:

E(Kn)
SRE] " gt O ™) 5 HE (X, )™ —— 0
Consequently,
E(Kn)
k 6 — = e
thersl-r = | (e )
The other factor is determined from (3) of Lemma 0

We conclude this section by realizing Proposition [3.1) as an arithmetic path
integral on Yy,. For the reader’s convenience, we begin with a lemma.

Lemma 3.2. Let m be a positive integer.
(1) For each scheme S, the canonical map is an isomorphism:
HE(S, Ep™]s) —— HE, (S, Elp™s) .
(2) For each m > 0, the canonical map is an isomorphism:
HE o (Yo Resx, /v, (ED™Ix, ) —— e (X, EP™x,,)
where Res denotes the Weil restriction.

Proof. (1) By [9 Theorem II1.3.9], the canonical map for &:

H$,(S,Es) —— H (S, Es)

fppf

is an isomorphism. Hence the assertion follows from applying the five lemma to
the long exact sequence associated to the following exact sequence of fppf sheaves:

m

0——Ep™s Es 2 & 0.

(2) By Lemma[2.T|and [} Proposition 7.6.6], the Weil restriction Resx,, /v, (€x,,)
is a Néron model of its generic fiber:

(Resxn/Yn (gxn ))Qn = ResKn/Qn (EKn )

Since Ky, /Qn is separable, the right hand side is an abelian variety over Q, (cf. [8]
p-178]). Hence we have the following commutative square of abelian groups:

Hgt (Yn’ Resxn/yn (EXTL)) 4> Hf.ppf (Yn’ Resxn /Yn (gxn ))

| |

Hgt(xn/ 5xn) Hf.ppf(XTl/ 5Xn)
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where the rows are isomorphisms by [10, Proposition I11.0.4d] again, and the left
column is an isomorphism by [14, Tag 03QP] because X, — Yy, is finite.
On the other hand, by [7, Proposition 3.19], we have

0] Exn

q)Rean/Yn (Exn)

which are relatively prime to p by assumption. Hence the following sequence of
fppf sheaves is exact (note that the Weil restriction is left exact):

0 — Resx. /v, (EIP™x, ) — Resx. /v, (Ex,) — Resx. /v, (Ex,) — 0.

Therefore the assertion follows from applying the five lemma to the associated
cohomology long exact sequence. O

Since (Ox,, )o = Oq,,, the w'-isotypic decomposition of O, becomes

p—2
Ok, = Oq, ® @ (O )r

r=1

where each factor is canonically an OQn -module. Hence, from Lemma we get
H;ppf(xnr Ep™]) = HFppf(Xn, Ep™ @z Oxk.,)
= Ho (Yn, Resx, /v, (Elp™ @z O,))

p—2
= Hp (Yo, E™) @& @ Hi (Y, EP™ @z (Ok, )r)
r=1

because taking the Gal(K/Q)-invariant of abelian p-groups is an exact functor.
Consequently, (3.1) can be rewritten as

FM(Xn) = Hipor(Yn, Ep™ @z (Ok, 1) X Hippe(Yn, EP™ @7 Ok, )—)-

Moreover, we have the corresponding Bockstein map:

o: H] (me[pm} Kz (OKn)—T) .

fppf(YTL/E[pm] 024 (OKn)—r) —— HZ

fppf
Therefore, Proposition [3.1| can be rewritten as an arithmetic path integral on Yy,
as desired. In particular, we have F3'(Xy,) = 3™ (Yy) and hence (for sufficiently
large m)

E(Qn)
PME(Qn)

(3.2) Z exp(2miBF(a, b)) = |Sel(Qn, Ep™])| ‘
(a,b)eF™(Yn)

4. THE PROOF OF THE MAIN THEOREM

In this section, we prove Theorem[I.1} We begin with a lemma. Define abelian
groups Ay, and By, via the following exact sequence:

0 —— An —— Sel(Qn, E[p>®]) —— Sel(Quo, E[p™]) ™ —— B —— 0,

where Sel(F, E[p*°]) is the Selmer group over F associated to E[p*°]. By Mazur’s
control theorem [6, Theorem 4.1], Ay, and By, are finite p-groups whose orders are
bounded as n — oo.

Lemma 4.1. For each n > 0, the BF functional satisfies the following formula:
1

) 1 Bal .
H ge(C—=1)| = lim Z exp(2miBF(a, b)).
e [E(Qn)[p]| [An] m—oco (ab)ed™ (Yo)

P
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Proof. The proof is based on the Iwasawa main conjecture [6, Conjecture 4.16] and
Mazur’s control theorem.

Since E(Qq) is finite by lemma the following composition is an isomor-
phism for every sufficiently large m:

E(Qn)P™] = E(Qn) ™ E(Qy) —— Q)

PME(Qn)

Consequently, for sufficiently large m,

E(Qn) ‘
a5 = [p1l.
SmEG| = QP
Hence can be rewritten as

> exp(27iBF(a, b)) = [Sel(Qn, Ep™]) - [E(Qn)[p™].
(a,b)eF™(Yn)

Denote (-)V the Pontryagin dual of abelian groups and let
Vi = Sel(Qn, Ep™])V.
Choose a topological generator y € I', which gives a topological ring isomorphism
A= Zpllt]] %Zp (7] t——vy—1

Along this isomorphism, we can write
Voo

SSINE v ~
(SellQu, Elp™)"™) * = (RSN

Note that V is a torsion A-module by [5, Theorem 1.5]. Moreover, gg (t) € A by
[6, p. 459], and V has no nonzero pseudo-null A-submodule by [5, Proposition
4.15]. Applying the structure theorem for A-modules [6, Theorem 3.1] to V. (cf.
[12, Lemma 4]) and using [6| Exercise 3.7], we get

Voo - /\ = . _ X
(t+1P" 1)V _‘(gE(t),(t—i—])P_])’_u CPU_]QE(C 1), weZ.

This in turn gives the following equalities:
Sel(Qn, E[p™])| = [Vnl
_IAY

B

Voo _|Ax
((t+nv“—nvoo‘ = B 'u'cpl:[] ge(C—1).

Since Sel(Qn, E[p™]), An, and By, are abelian p-groups, we conclude that
-1

B
isel(Qn B = | TT oelc=1|
n S ,
which finishes the proof. O

Let us return to the proof of Theorem It remains to determine |A,| and
|Bn| in Lemma We begin with the following commutative diagram with exact
rows:

0 —— Sel(Qn, E[p*]) ——— H'(Qn, Ep™]) —— Ge(Qn) —— 0

S

0 —— Sel(Qoo, E[p™]) ™ —— H' (Qoo, E[p™])™ —— G (Qeo)
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where G is essentially defined to be the cokernel of Sel(—, E[p*°]) — H'(—, Elp®]).
See [5] pp.451-452] for the precise description of this diagram. By our assumptions
and the proof of [5, Lemma 3.1], we have
|ker hn| = [E(Qn)[p™]l.

From the snake lemma together with [5, Lemma 3.2], we get

[Bnl _[cokersn| |kergn| — [kergn]

[An] | ker sn| | ker hn| |E(Qm)[]9°°ﬂ'
Since I'y = Zp, we may apply [5, Lemma 4.7] to the above diagram. Using [5}
Lemma 3.3], [5, Lemma 3.4], and [5] Proposition 4.8], we get

~ 2
[Kergn| = [EF)p<)["- ] ol (E).
vEYn
VhD,V‘NE

Note that Q, /Q is totally ramified at p so the unique prime in Yy, lying over p has
the residue field IFy,. This concludes the proof of Theorem
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