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ABSTRACT. We prove an arithmetic path integral formula for the inverse p-adic
absolute values of the p-adic L-functions of elliptic curves over the rational num-
bers with good ordinary reduction at an odd prime p based on the Iwasawa main
conjecture and Mazur’s control theorem. This is an elliptic curve analogue of [2].
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1. INTRODUCTION

The arithmetic BF theory for number fields and abelian varieties was intro-
duced in [3] to show the philosophy of arithmetic gauge theory which indicates
that the path integral of the physical theory is closely related to the L-function of
the relevant number theory. The arithmetic BF theory for cyclotomic fields led to
[2], which proves an arithmetic path integral formula for the inverse p-adic abso-
lute values of Kubota-Leopoldt p-adic L-functions at roots of unity (a precise con-
nection between Kubota-Leopoldt p-adic L-function and the arithmetic BF path
integral of cyclotomic fields up to p-adic units); the formula in [2] adds a small
step toward such philosophy. Then a natural question is to prove a similar path
integral formula for the p-adic L-function of elliptic curves with ordinary good
reduction at p; the aim of this article is to resolve this question.

1.1. The statement of the main theorem. Let E/Q be an elliptic curve with semistable
reduction at all places. Let p be an odd prime where E has good ordinary reduc-
tion. For n ≥ 0, denote

Kn := Q(ζpn+1), Xn := Spec Z[ζpn+1 ]

where ζpn+1 is a primitive pn+1-th root of unity. Also, we simply denote K := K0

so that

Γ := Gal(K∞/K) ∼= Zp.
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Denote Γn ⊆ Γ the subgroup of index pn. On the other hand, let

ω : Gal(K/Q) // Z×
p (

∼= Gal(K∞/Q))

be the Teichmüller character and let (·)r be the ωr-isotypic component of a Γ -
module with Gal(K/Q) ∼= F×

p -action. Then Qn := Kn,0 ⊆ Kn is the subfield fixed
under ω so that we have the following diagram of field extensions:

Kn

Qn = Kn,0

F×
p

K

Γ/Γn

Q
F×
p

Γ/Γn

(1.1)

Note that Γ/Γn ∼= Z/pnZ. We also denote

Yn := SpecOQn
.

Denote E the Néron model of E over Z. For m ≥ 1 we use the following notation:

Fm(SpecO) := H1
fppf(SpecO, E [pm])×H1

fppf(SpecO, E [pm])

where O is the ring of integers of a number field and we view E [pm] as sheaves
in the flat topology. Denote E0 ⊆ E the identity component and ΦE the group of
connected components. Then, as in [3, p. 1305], we have an exact sequence of fppf
sheaves:

0 // E0 // E // ΦE // 0

Note that if Z ↪→ O is ramified only at p ∈ Z, then E ⊗Z O is the Néron model of
E over O and the order1 of ΦE⊗ZO is the same as the order of ΦE (Lemma 2.1).

We briefly recall the definition of the Tate-Shafarevich group X(Kn,E) for
each n ∈ N ∪ {∞}:

X(Kn,E) := ker

 H1(Kn,E(Kn)) //
∏
v

H1(Kn,v,E(Kn,v))


where v runs over all primes of Kn. The Selmer group for each n ∈ N ∪ {∞} is
defined so that it fits into the following exact sequence:

0 // E(Kn)⊗Z Q/Z // Sel(Kn,E) //X(Kn,E) // 0 .

We refer to [6, chapter 2] for detailed definition. Then we make the following
assumptions:

• the Selmer group Sel(Kn,E) is finite,
• the order of ΦE is relatively prime to p, and
• E[p] is irreducible as a Gal(Q/Q)-representation.

1Given a Néron model A over O of an abelian variety A over Frac(O), we have

ΦA =
⊕

s∈SpecO
is∗ΦAs

where each ΦAs
is a finite étale group of connected component of As over the residue field κ(s) (see

[4, Proposition B.2] for example). Then the order of ΦA is defined to be the sum of orders of ΦAs
.
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Note that by the first assumption, X(Kn,E) becomes finite (Lemma 2.2) and hence

X(Kn,E)[pm] = X(Kn,E)[p2m] for all sufficiently large m.

The second assumption is needed to prove a correspondence between the flat co-
homology and the Selmer group (Lemma 2.1). The third assumption is needed for
the integrality of the p-adic L-function of E (i.e. gE(t) ∈ Zp[[t]]; see (1.2)).

With the first two assumptions, one can define a 3-dimensional arithmetic BF
theory [3]. The input data of such theory consists of

• (spacetime) the scheme Yn = Spec(OQn
)

• (space of fields) the space Fm(Yn)
• (action functional) an arithmetic BF-functional (see (2.1) and (3.1)):

BF : Fm(Yn) //
1

pm
Z/Z

for each n ≥ 0 and m ≥ 1.
Then the output of the theory is the following arithmetic path integral:∑

(a,b)∈Fm(Yn)

exp(2πiBF(a,b)).

For the reason that the above sum is called an ‘arithmetic path integral’, we re-
fer to [2, Section 1.3]. By Lemma 2.1, this sum becomes finite if we assume that
Sel(Qn,E[p∞]) is finite. This follows from our finite assumption on Sel(Kn,E) by
Lemma 2.2. Since we will define and use the BF-functional over Xn, we have as-
sumed that Sel(Kn,E) is finite. In section 3, we will explain how to get the path
integral over Yn from the path integral over Xn.

Now we briefly review the p-adic L-function of E. Since E has good ordinary
reduction at p, there exists a power series

gE(t) ∈ Zp[[t]]⊗Zp
Qp(1.2)

which represents the p-adic L-function Lp(E/Q, s) of an elliptic curve (see [11] and
[6, p. 459]). Under the assumption that E[p] is an irreducible Gal(Q/Q)-module,
gE(t) ∈ Zp[[t]] holds. Let αp,βp ∈ Q be defined by αp +βp = ap and αpβp = p,
where ap = 1+ p− Ẽ(Fp). Then p does not divide ap, which means p splits in
Q(αp,βp). Let τ(χ) ∈ Q be the Gauss sum for a Dirichlet character χ. By the
modularity of E/Q, the L-value L(E/Q,χ, 1) is defined and L(E/Q,χ, 1)/ΩE is
known to be algebraic by a theorem of Shimura, where ΩE =

∫
E(R)

dx
y . Let us fix

a topological generator γ0 ∈ Gal(Q∞/Q). If χ is viewed as a faithful character of
Gal(Qn/Q) with n ≥ 1, then the conductor of χ is pn+1 and ζ = χ(γ0) is a pn-th
root of unity. Now the interpolation property of gE(t) is given by

gE(0) =
(1−βpp

−1)2L(E/Q, 1)
ΩE

gE(ζ− 1) =
(βp)

n+1L(E/Q,χ, 1)
τ(χ)ΩE

for n ≥ 1. Sometimes gE(t) is called an analytic p-adic L-function of E, while there
is the notion of an algebraic p-adic L-function of E defined by the generator of
the characteristic ideal of the Pontrygin dual of the Selmer group Sel(Q∞,E[p∞])

which is a torsion Zp[[t]]-module.2 The Iwasawa main conjecture [6, Conjecture

2The Selmer groups for each n ∈ N ∪ {∞} fit into the following exact sequences:

0 // E(Qn)[p
∞]⊗Z Qp/Zp

// Sel(Qn,E[p∞]) //X(Qn,E)[p∞] // 0 .

We refer to [6, chapter 2] for detailed definition.
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4.16], which is now a theorem by Skinner-Urban [13], asserts that they are the
same.

Let | · |p be the p-adic absolute value on the algebraic closure Qp normalized
by |p|p = p−1. Now we can state our main theorem.

Theorem 1.1. For each v ∈ Yn, let c(p)v (E) be the highest power of p dividing the Tama-
gawa factor cv(E) for E at v. Then the following arithmetic path integral formula holds.∣∣∣∣∣∣

∏
ζpn=1

gE(ζ− 1)

∣∣∣∣∣∣
−1

p

=

∣∣∣Ẽ(Fp)[p
∞]

∣∣∣2
|E(Qn)[p∞]|

·
∏
v∈Yn

v∤p,v|NE

c
(p)
v (E) · lim

m→∞
∑

(a,b)∈Fm(Yn)

exp(2πiBF(a,b))

where Ẽ is the reduction of E at p, and NE is the conductor of E.

We prove this theorem in section 4. For the proof, we first derive a path in-
tegral formula (Lemma 4.1) in a more general context, using Mazur’s control the-
orem [6, Theorem 4.1] and the Iwasawa main conjecture. Then we analyze the
“error term” of Mazur’s control theorem following the method of [5].

1.2. Open question. An interesting open question is to enlarge the space of fields
Fm(Yn) or modify the BF-functional so that we can obtain a path integral formula
for the L-value

∏
ζpn=1 gE(ζ− 1) itself, which amounts to remove the p-adic abso-

lute value from the formula in Theorem 1.1 incorporating p-adic unit information.

1.3. Acknowledgement. Jeehoon Park was supported by the National Research
Foundation of Korea (NRF-2021R1A2C1006696) and the National Research Foun-
dation of Korea grant (NRF-2020R1A5A1016126) funded by the Korea govern-
ment (MSIT). Junyeong Park was supported by Samsung Science and Technology
Foundation under Project Number SSTF-BA2001-02, the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2024-
00341372), and the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (RS-2024-00449679).

2. THE BF-FUNCTIONAL FOR ELLIPTIC CURVES

We now recall the definition of the BF-functional in [3, p.1303]. By [10, Corol-
lary 3.4], we have a perfect pairing3:

∪ : H1
fppf(Xn, E [pm])×H2

fppf(Xn, E [pm]) // H3
fppf(Xn, Gm)[pm] .

together with an isomorphism as in [10, p. 252]:

inv : H3
fppf(Xn, Gm)

∼ // Q/Z

which restricts to

inv : H3
fppf(Xn, Gm)[pm]

∼ //
1

pm
Z/Z .

Finally, let

δ : H1
fppf(Xn, E [pm]) // H2

fppf(Xn, E [pm])

3By [10, p.220], we have H•
fppf,c(Xn,−) ∼= H•

fppf(Xn,−).
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be the Bockstein map coming from the exact sequence:

0 // E [pm] // E [p2m]
pm
// E [pm] // 0 .

Combining all these, we define the arithmetic BF-functional as follows:

BF : Fm(Xn) //
1

pm
Z/Z (a,b) � // inv(a∪ δb)(2.1)

Lemma 2.1. Let O be the ring of integers of a number field such that Z ↪→ O is ramified
only at p ∈ Z. Assume that the order of ΦE is relatively prime to p.

(1) E ⊗Z O is the Néron model of E over O.
(2) The order of ΦE⊗ZO is the same as the order of ΦE .
(3) We have the following isomorphisms:

H1
fppf(SpecO, E [pm]) ∼= Sel(Frac(O),E[pm])

H1
fppf(SpecO, E)[pm] ∼= X(Frac(O),E)[pm]

where Frac(O) is the field of fractions of O.

Proof. (1) follows because the étale base change of a Néron model is still a Néron
model and our E has good ordinary reduction at p.

(2) Since Z ↪→ O is ramified only at p ∈ Z, the number of connected com-
ponent may vary at the primes in O lying over p. Since E has good ordinary
reduction at p, our E is always connected at these primes.

(3) By (1) and (2), the first isomorphism comes from [3, Lemma A.2] and the
second from [3, Lemma A.3]. □

Lemma 2.2. With the assumptions so far, the following holds.
(1) E(Kn) and X(Kn,E) are finite.
(2) Sel(Qn,E) is finite. Hence E(Qn), X(Qn,E), and Sel(Qn,E[p∞])
become finite.

Proof. For a number field F we have the following exact sequence ([6, chapter 2]):

0 // E(F)⊗Z Q/Z // Sel(F,E) //X(F,E) // 0 .(2.2)

(1) Taking F = Kn in (2.2), we immediately conclude that X(Kn,E) is finite
and E(Kn)⊗Z Q/Z = 0, i.e., E(Kn) is a torsion abelian group. Since E(Kn) is a
finitely generated abelian group by the Mordell-Weil theorem, we conclude that
E(Kn) is finite.

(2) From the inflation-restriction sequence for group cohomology, we get

ker
(

Sel(Qn,E) // Sel(Kn,E)Gal(Kn/Qn)
)
⊆ H1(Gal(Kn/Qn),E(Kn)).

Note that E(Kn)tors = E(Kn) by (1). Therefore, Sel(Qn,E) is finite, which immedi-
ately says that Sel(Qn,E[p∞]) is finite. By the same argument as in the proof (1),
we conclude that E(Qn) and X(Qn,E) are finite. □

Proposition 2.3. For every n and every sufficiently large m, we have∑
(a,b)∈Fm(Xn)

exp(2πiBF(a,b)) = |Sel(Kn,E[pm])|

∣∣∣∣ E(Kn)

pmE(Kn)

∣∣∣∣
Proof. The assertion follows from [3, Section 3] by noting that E is self-dual. □
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3. ISOTYPIC COMPONENTS OF THE BF-FUNCTIONAL

The Gal(K∞/Q)-action on Xn induces by functoriality a Gal(K∞/Q)-module
structure on H•

fppf(Xn, E [pm]). Since p− 1 is relatively prime to p, the Gal(K/Q)-
action on H•

fppf(Xn, E [pm]) is semisimple. Denote

Fm
r (Xn) := H1

fppf(Xn, E [pm])r ×H1
fppf(Xn, E [pm])−r(3.1)

so that we have

Fm(Xn) =
p−2⊕
r=0

Fm
r (Xn).

We will show that Fm
0 (Xn) = Fm(Yn).

By functoriality, ∪ and δ are ωr-equivariant. Hence they restrict to

∪ : H1
fppf(Xn, E [pm])r ×H2

fppf(Xn, E [pm])s // H3
fppf(Xn, Gm)r+s

δ : H1
fppf(Xn, E [pm])r // H2

fppf(Xn, E [pm])r .

Since the Gal(K/Q)-action on

inv : H3
fppf(Xn, Gm)

∼ //
1

pm
Z/Z

is trivial, H3
fppf(Xn, Gm)r+s ̸= 0 if and only if r + s ≡ 0 mod p − 1 so the BF-

functional (2.1) splits into

p−2∑
r=0

BFr :
p−2⊕
r=0

Fm
r (Xn) //

1

pm
Z/Z .

Therefore, we have

∑
(a,b)∈Fm(Xn)

exp(2πiBF(a,b)) =
p−2∏
r=0

∑
(a,b)∈Fm

r (Xn)

exp(2πiBF(a,b))

Proposition 3.1. For every n and every sufficiently large m, we have∑
(a,b)∈Fm

r (Xn)

exp(2πiBF(a,b)) = |Sel(Kn,E[pm])r|

∣∣∣∣( E(Kn)

pmE(Kn)

)
−r

∣∣∣∣
Proof. If δb ̸= 0, then the sum over a ∈ H1

fppf(Xn, E [pm])−r becomes∑
a

exp(2πiBF(a,b)) =
∑
a

exp(2πi · inv(a∪ δb)) = 0.

On the other hand, if δb = 0, then exp(2πiBF(a,b)) = 1. Since δ is ω-equivariant,

(ker δ)−r = H1
fppf(Xn, E [pm])−r ∩ ker δ.

Combining these, we get∑
(a,b)∈Fm

r (Xn)

exp(2πiBF(a,b)) =
∣∣∣H1

fppf(Xn, E [pm])r

∣∣∣ |(ker δ)−r|.
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For each n and sufficiently large m, we have a factorization coming from [3, p.1304]:

H1
fppf(Xn, E [pm])

$$ $$

δ // H2
fppf(Xn, E [pm])

H1
fppf(Xn, E)[pm]

, �

::

where the surjection fits into the Kummer sequence:

0 //
E(Kn)

pmE(Kn)
// H1

fppf(Xn, E [pm]) // H1
fppf(Xn, E)[pm] // 0

Consequently,

(ker δ)−r =

∣∣∣∣( E(Kn)

pmE(Kn)

)
−r

∣∣∣∣
The other factor is determined from (3) of Lemma 2.1. □

We conclude this section by realizing Proposition 3.1 as an arithmetic path
integral on Yn. For the reader’s convenience, we begin with a lemma.

Lemma 3.2. Let m be a positive integer.
(1) For each scheme S, the canonical map is an isomorphism:

H•
ét(S, E [pm]S)

∼ // H•
fppf(S, E [pm]S) .

(2) For each n ≥ 0, the canonical map is an isomorphism:

H•
fppf

(
Yn, ResXn/Yn

(E [pm]Xn
)
) ∼ // H•

fppf(Xn, E [pm]Xn
)

where Res denotes the Weil restriction.

Proof. (1) By [9, Theorem III.3.9], the canonical map for E :

H•
ét(S, ES)

∼ // H•
fppf(S, ES)

is an isomorphism. Hence the assertion follows from applying the five lemma to
the long exact sequence associated to the following exact sequence of fppf sheaves:

0 // E [pm]S // ES
pm
// ES // 0 .

(2) By Lemma 2.1 and [1, Proposition 7.6.6], the Weil restriction ResXn/Yn
(EXn

)
is a Néron model of its generic fiber:(

ResXn/Yn
(EXn

)
)

Qn

∼= ResKn/Qn
(EKn

).

Since Kn/Qn is separable, the right hand side is an abelian variety over Qn (cf. [8,
p.178]). Hence we have the following commutative square of abelian groups:

H•
ét
(
Yn, ResXn/Yn

(EXn
)
)

≀
��

∼ // H•
fppf

(
Yn, ResXn/Yn

(EXn
)
)

��

H•
ét(Xn, EXn

)
∼ // H•

fppf(Xn, EXn
)
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where the rows are isomorphisms by [10, Proposition III.0.4d] again, and the left
column is an isomorphism by [14, Tag 03QP] because Xn → Yn is finite.

On the other hand, by [7, Proposition 3.19], we have∣∣∣ΦResXn/Yn(EXn)

∣∣∣ = ∣∣∣ΦEXn

∣∣∣
which are relatively prime to p by assumption. Hence the following sequence of
fppf sheaves is exact (note that the Weil restriction is left exact):

0 // ResXn/Yn
(E [pm]Xn

) // ResXn/Yn
(EXn

)
pm
// ResXn/Yn

(EXn
) // 0 .

Therefore the assertion follows from applying the five lemma to the associated
cohomology long exact sequence. □

Since (OKn
)0 = OQn

, the ωr-isotypic decomposition of OKn
becomes

OKn
= OQn

⊕
p−2⊕
r=1

(OKn
)r

where each factor is canonically an OQn
-module. Hence, from Lemma 3.2, we get

H•
fppf(Xn, E [pm]) ∼= H•

fppf(Xn, E [pm]⊗Z OKn
)

∼= H•
fppf

(
Yn, ResXn/Yn

(E [pm]⊗Z OKn
)
)

∼= H•
fppf(Yn, E [pm])⊕

p−2⊕
r=1

H•
fppf(Yn, E [pm]⊗Z (OKn

)r)

because taking the Gal(K/Q)-invariant of abelian p-groups is an exact functor.
Consequently, (3.1) can be rewritten as

Fm
r (Xn) ∼= H1

fppf(Yn, E [pm]⊗Z (OKn
)r)×H1

fppf(Yn, E [pm]⊗Z (OKn
)−r).

Moreover, we have the corresponding Bockstein map:

δ : H1
fppf(Yn, E [pm]⊗Z (OKn

)−r) // H2
fppf(Yn, E [pm]⊗Z (OKn

)−r) .

Therefore, Proposition 3.1 can be rewritten as an arithmetic path integral on Yn
as desired. In particular, we have Fm

0 (Xn) = Fm(Yn) and hence (for sufficiently
large m) ∑

(a,b)∈Fm(Yn)

exp(2πiBF(a,b)) = |Sel(Qn,E[pm])|

∣∣∣∣ E(Qn)

pmE(Qn)

∣∣∣∣ .(3.2)

4. THE PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 1.1. We begin with a lemma. Define abelian
groups An and Bn via the following exact sequence:

0 // An
// Sel(Qn,E[p∞]) // Sel(Q∞,E[p∞])Γn // Bn

// 0 ,

where Sel(F,E[p∞]) is the Selmer group over F associated to E[p∞]. By Mazur’s
control theorem [6, Theorem 4.1], An and Bn are finite p-groups whose orders are
bounded as n → ∞.

Lemma 4.1. For each n ≥ 0, the BF functional satisfies the following formula:∣∣∣∣∣∣
∏

ζpn=1

gE(ζ− 1)

∣∣∣∣∣∣
−1

p

=
1

|E(Qn)[p∞]|

|Bn|

|An|
lim

m→∞
∑

(a,b)∈Fm(Yn)

exp(2πiBF(a,b)).

https://stacks.math.columbia.edu/tag/03QP
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Proof. The proof is based on the Iwasawa main conjecture [6, Conjecture 4.16] and
Mazur’s control theorem.

Since E(Qn) is finite by lemma 2.2, the following composition is an isomor-
phism for every sufficiently large m:

E(Qn)[p
∞] = E(Qn)[p

m]
� � // E(Qn) //

E(Qn)

pmE(Qn)
.

Consequently, for sufficiently large m,∣∣∣∣ E(Qn)

pmE(Qn)

∣∣∣∣ = |E(Qn)[p
∞]|.

Hence (3.2) can be rewritten as∑
(a,b)∈Fm(Yn)

exp(2πiBF(a,b)) = |Sel(Qn,E[pm])| · |E(Qn)[p
∞]|.

Denote (·)∨ the Pontryagin dual of abelian groups and let

Vn := Sel(Qn,E[p∞])∨.

Choose a topological generator γ ∈ Γ , which gives a topological ring isomorphism

Λ := Zp[[t]]
∼ // Zp[[Γ ]] t

� // γ− 1

Along this isomorphism, we can write(
Sel(Q∞,E[p∞])Γn

)∨
∼=

V∞
((t+ 1)p

n
− 1)V∞ .

Note that V∞ is a torsion Λ-module by [5, Theorem 1.5]. Moreover, gE(t) ∈ Λ by
[6, p. 459], and V∞ has no nonzero pseudo-null Λ-submodule by [5, Proposition
4.15]. Applying the structure theorem for Λ-modules [6, Theorem 3.1] to V∞ (cf.
[12, Lemma 4]) and using [6, Exercise 3.7], we get∣∣∣∣ V∞

((t+ 1)p
n
− 1)V∞

∣∣∣∣ = ∣∣∣∣ Λ

(gE(t), (t+ 1)p − 1)

∣∣∣∣ = u ·
∏

ζpn=1

gE(ζ− 1), u ∈ Z×
p .

This in turn gives the following equalities:

|Sel(Qn,E[p∞])| = |Vn|

=
|A∨

n |

|B∨
n |

∣∣∣∣ V∞
((t+ 1)p

n
− 1)V∞

∣∣∣∣ = |An|

|Bn|
· u ·

∏
ζpn=1

gE(ζ− 1).

Since Sel(Qn,E[p∞]), An, and Bn are abelian p-groups, we conclude that

|Bn|

|An|
|Sel(Qn,E[p∞])| =

∣∣∣∣∣∣
∏

ζpn=1

gE(ζ− 1)

∣∣∣∣∣∣
−1

p

,

which finishes the proof. □

Let us return to the proof of Theorem 1.1. It remains to determine |An| and
|Bn| in Lemma 4.1. We begin with the following commutative diagram with exact
rows:

0 // Sel(Qn,E[p∞])

sn

��

// H1(Qn,E[p∞])

hn

��

// GE(Qn)

gn

��

// 0

0 // Sel(Q∞,E[p∞])Γn // H1(Q∞,E[p∞])Γn // GE(Q∞)
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where GE is essentially defined to be the cokernel of Sel(−,E[p∞]) ↪→ H1(−,E[p∞]).
See [5, pp.451–452] for the precise description of this diagram. By our assumptions
and the proof of [5, Lemma 3.1], we have

|kerhn| = |E(Qn)[p
∞]|.

From the snake lemma together with [5, Lemma 3.2], we get

|Bn|

|An|
=

| coker sn|
|ker sn|

=
|kergn|
|kerhn|

=
|kergn|

|E(Qm)[p∞]|
.

Since Γn ∼= Zp, we may apply [5, Lemma 4.7] to the above diagram. Using [5,
Lemma 3.3], [5, Lemma 3.4], and [5, Proposition 4.8], we get

|kergn| =
∣∣∣Ẽ(Fp)[p

∞]
∣∣∣2 · ∏

v∈Yn
v∤p,v|NE

c
(p)
v (E).

Note that Qn/Q is totally ramified at p so the unique prime in Yn lying over p has
the residue field Fp. This concludes the proof of Theorem 1.1.
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