
THE LIPSCHITZ CONTINUITY OF THE SOLUTION TO BRANCHED
ROUGH DIFFERENTIAL EQUATIONS

JING ZOU, DANYU YANG*

Abstract. Based on an isomorphism between Grossman Larson Hopf algebra and Ten-
sor Hopf algebra, we apply a sub-Riemannian geometry technique to branched rough
differential equations and obtain the explicit Lipschitz continuity of the solution with
respect to the initial value, the vector field and the driving rough path.

1. Introduction

In his seminal paper [1], Lyons built the theory of rough paths. The theory gives
a meaning to differential equations driven by highly oscillating signals and proves the
existence, uniqueness and stability of the solution to differential equations. The theory
has an embedded component in stochastic analysis, and has been successfully applied to
differential equations driven by general stochastic processes [2, 3, 4, 5], the existence and
smoothness of the density of solutions [6, 7], stochastic Taylor expansions [8], support
theorem [9], large deviations theory [10] etc.

In Lyons’ original framework [1], highly oscillating paths are lifted to geometric rough
paths in a nilpotent Lie group. Geometric rough paths take values in a truncated group of
characters of the shuffle Hopf algebra [11, Section 1.4] and satisfy an abstract integration
by parts formula. Limits of continuous bounded variation paths in a rough path metric
are geometric. For example, Brownian sample paths enhanced with Stratonovich iterated
integrals are geometric rough paths. However, the geometric assumption can sometimes
be restrictive. Itô iterated integrals do not satisfy the integration by parts formula and Itô
Brownian rough paths are not geometric. Moreover, non-geometric rough paths appear
naturally when solving stochastic partial differential equations [12].

To provide a natural framework for non-geometric rough paths, Gubinelli [12] intro-
duced branched rough paths and proved the existence, uniqueness and continuity of the
solution to branched rough differential equations. Branched rough paths take values in a
truncated group of characters of Connes Kreimer Hopf algebra [13]. The multiplication
of Connes Kreimer Hopf algebra is the free abelian multiplication of monomials of trees
which does not impose the integration by parts formula. Branched rough paths can ac-
comodate non-geometric stochastic integrals and Connes Kreimer Hopf algebra provides
a natural algebraic setting for stochastic partial differential equations [12, 14, 15].

The stability of the solution to rough differential equations is a central result in rough
path theory, commonly referred to as the Universal Limit Theorem [16, Theorem 5.3].
Based on the uniform decay of the differences between adjacent Picard iterations, Lyons
[1, Theorem 4.1.1] proved the uniform continuity of the solution with respect to the
driving geometric rough path. Through controlled paths [17], Gubinelli [12, Theorem 8.8]
proved the Lipschitz continuity of the solution to branched rough differential equations
with respect to the initial value and the driving rough path. Following the controlled
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paths approach, Friz and Zhang [18, Theorem 4.20] proved the Lipschitz continuity of the
solution to differential equations driven by branched rough paths with jumps. Based on
Davie’s discrete approximation method [19] and by employing a sub-Riemannian geometry
technique [8], Friz and Victoir [20, Theorem 10.26] proved the explicit Lipschitz continuity
of the solution to differential equations driven by weak geometric rough paths over Rd

with respect to the initial value, the vector field and the driving rough path.
In this paper, we will extend Friz and Victoir’s approach and result [20, Theorem 10.26]

to branched rough differential equations. Classically, the sub-Riemannian geometry tech-
nique only applies to geometric rough paths. Based on an isomorphism between Grossman
Larson Hopf algebra and Tensor Hopf algebra [21, 22], Boedihardjo and Chevyrev [23]
proved that branched rough paths are isomorphic to a class of Π-rough paths [24, 25].
A Π-rough path is an inhomogeneous geometric rough path, for which the regularities of
the components of the underlying path are not necessarily the same. By applying a sub-
Riemannian geometry technique to Π-rough paths, we prove in Theorem 2.3 the explicit
Lipschitz dependence of the solution to branched rough differential equations.

Comparing with the current existing results [12, Theorem 8.8][18, Theorem 4.20], our
result only requires that the vector field is Lip (γ) for γ > p (instead of Lip ([p] + 1)) and
explicitly specifies the uniform Lipschitz continuity of the solution with respect to the
initial value, the vector field and the driving branched rough path, with the constant only
depending on p, γ, d (the roughness of the driving branched rough path, the regularity of
the vector field and the dimension of the underlying driving path).

2. Notations

A rooted tree is a finite connected graph with no cycle and a special vertex called root.
We call a rooted tree a tree. We assume trees are non-planar for which the children trees
of each vertex are commutative. A forest is a commutative monomial of trees. The degree
|τ | of a forest τ is given by the number of vertices in τ .

For the label set L := {1, 2, . . . , d}, an L-labeled forest is a forest for which each vertex
is attached with a label from L. Let TL(FL) denote the set of L-labeled trees (forests).
Let T N

L (FN
L ) denote the subset of TL(FL) of degree 1, 2, . . . , N .

Let GN
L denote the group of degree-N characters of L-labeled Connes Kreimer Hopf

algebra [13, p.214]. a ∈ GN
L iff a : RFN

L → R is an R-linear map that satisfies

(a, τ 1τ 2) = (a, τ 1) (a, τ 2)

for every τ 1, τ 2 ∈ FN
L , |τ 1|+ |τ 2| ≤ N , where τ 1τ 2 denotes the commutative multiplication

of monomials of trees. The multiplication in GN
L is induced by the coproduct of Connes

Kreimer Hopf algebra based on admissible cuts [13, p.215]: for a, b ∈ GN
L and τ ∈ FN

L ,

(ab, τ) :=
∑
(τ)

(
a, τ (1)

) (
b, τ (2)

)
.

We equip a ∈ GN
L with the norm:

∥a∥ := max
τ∈FN

L

|(a, τ)|
1
|τ | .

Definition 2.1 (p-variation). For a topological group (G, ∥·∥), suppose X : [0, T ] →
(G, ∥·∥) is continuous. For 0 ≤ s ≤ t ≤ T , denote

Xs,t := X−1
s Xt.
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For p ≥ 1, define the p-variation of X on [0, T ] as

∥X∥p−var,[0,T ] := sup
D⊂[0,T ]

( ∑
k,tk∈D

∥∥Xtk,tk+1

∥∥p) 1
p

,

where the supremum is taken over D = {tk}nk=0, 0 = t0 < t1 < · · · < tn = T ,
n ≥ 1. Denote the set of continuous paths from [0, T ] to G with finite p-variation as
Cp−var ([0, T ] , G).

For p ≥ 1, let [p] denote the largest integer which is less or equal to p.

Definition 2.2 (branched p-rough path). For p ≥ 1, X : [0, T ]→ G
[p]
L is a branched p-rough

path if X is continuous and of finite p-variation.

For γ > 0, denote ⌊γ⌋ := max {n ∈ N ∪ {0} |n < γ} and denote {γ} := γ−⌊γ⌋. Suppose
U and W are two Banach spaces. A function f : U → W is Lip (γ) if

|f |Lip(γ) :=
(

max
k=0,1,...,⌊γ⌋

∣∣Dkf
∣∣
∞

)
∨
∣∣D⌊γ⌋f

∣∣
{γ}−Höl

<∞,

where Dkf denotes the kth Fréchet derivative of f and∣∣Dkf
∣∣
∞ := sup

x∈U

∣∣(Dkf
)
(x)
∣∣ ,

∣∣D⌊γ⌋f
∣∣
{γ}−Höl

:= sup
x,y∈U,x ̸=y

|D⌊γ⌋f(y)−D⌊γ⌋f(x)|
|y − x|{γ}

.

Let L
(
Rd,Re

)
denote the set of continuous linear mappings from Rd to Re. The fol-

lowing theorem is the main result of the current paper.

Theorem 2.3. For γ > p ≥ 1 and i = 1, 2, suppose f i : Re → L
(
Rd,Re

)
are Lip (γ)

vector fields and X i : [0, T ] → G
[p]
L are branched p-rough paths over Rd. For ξi ∈ Re,

i = 1, 2, let yi denote the unique solution of the branched rough differential equation:

dyit = f i
(
yit
)
dX i

t , yi0 = ξi.

Denote λ := maxi=1,2 |f i|Lip(γ), ω (s, t) :=
∑

i=1,2 ∥X i∥pp−var,[s,t] and

ρp−ω;[0,T ]

(
X1, X2

)
:= max

τ∈F [p]
L

sup
0≤s<t≤T

∣∣(X1
s,t, τ

)
−
(
X2

s,t, τ
)∣∣

ω (s, t)
|τ |
p

.

Then there exists a constant M > 0 that only depends on γ, p, d such that

sup
0≤s<t≤T

|(y1t − y1s)− (y2t − y2s)|
ω (s, t)

1
p

≤ Mλ
(∣∣ξ1 − ξ2

∣∣+ λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

+ ρp−ω;[0,T ]

(
X1, X2

))
exp (Mλpω (0, T )) .

The existence and uniqueness of the solution when the vector field is Lip (γ) for γ > p
follow from [26, Theorem 22]. The ρp−ω;[0,T ] distance is consistent with the dγ-Hölder
distance defined by Gubinelli [12, p.710] where ω (s, t) = |t− s|.

Based on an isomorphism between branched rough paths and a class of Π-rough paths
[23], our proof relies on an inhomogeneous geodesic technique which extends the sub-
Riemannian geometry for geometric rough paths [8, 20] to branched rough paths.
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Comparing with the current existing results [12, Theorem 8.8] and [18, Theorem 4.20],
our estimate only requires that the vector field is Lip (γ) for γ > p while not Lip ([p] + 1).
Moreover, our result specifies explicitly the Lipschitz dependence of the solution with
respect to the initial value, the vector field and the driving branched rough path with the
constant only depending on γ, p, d.

3. Proof

In [27], Grossman and Larson described several Hopf algebras associated with certain
family of trees. By deleting the additional root, we call the Hopf algebra of non-planar
forests with product [27, (3.1)] and coproduct [27, p.199] the Grossman Larson Hopf
algebra. Based on Foissy [21, Section 8] and Chapoton [22], Grossman Larson algebra is
freely generated by a collection of unlabeled trees. Denote this collection of trees as B.
Denote the L-labeled version of B as BL with L = {1, 2, . . . , d}.

Notation 3.1. Let B[p]
L = {ν1, ν2, . . . , νK} denote the set of elements in BL of degree

1, . . . , [p].

Then K only depends on p, d.

Notation 3.2. Let W denote the set of finite sequences k1 · · · km for kj ∈ {1, 2, . . . , K},
j = 1, 2, . . . ,m, including the empty sequence denoted as ϵ. For k1 · · · km ∈ W , define its
degree

∥k1 · · · km∥ := |νk1|+ · · ·+ |νkm|
where |νj| denotes the number of vertices in νj and ∥ϵ∥ := 0.

The set of infinite tensor series generated by B[p]
L with the operation of tensor product

forms an algebra. An element a of the algebra can be represented as a =
∑

w∈W (a, w)w
for (a, w) ∈ R. For n = 0, 1, 2, . . . , the set

∑
w∈W,∥w∥>n cww for cw ∈ R forms an ideal.

Denote the quotient algebra as An. Let G denote the group of algebraic exponentials of
Lie series generated by {1, 2, . . . , K} (G is a group based on Baker–Campbell–Hausdorff
formula). Denote the group

Gn := G ∩ An

and denote the projection
πn : G→ Gn.

We equip a ∈ Gn with the norm

∥a∥ :=
∑

w∈W,0<∥w∥≤n

|(a, w)|
1

∥w∥ .

Gn is an inhomogeneous counterpart of the step-n free nilpotent Lie group [1, p.235,
Theorem 2.1.1].

Notation 3.3. Suppose x =
(
x1, . . . , xK

)
: [0, T ]→ RK is a continuous bounded variation

path. For n = 0, 1, . . . and 0 ≤ s ≤ t ≤ T , define Sn (x)s,t ∈ Gn as, for k1 · · · km ∈ W ,

∥k1 · · · km∥ ≤ n, (
Sn (x)s,t , k1 · · · km

)
:=

∫
· · ·
∫

s<u1<···<um<t

dxk1
u1
· · · dxkm

um

with
(
Sn (x)s,t , ϵ

)
:= 1.
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Sn (x) is an inhomogeneous counterpart of the step-n signature [28, Definition 1.1]. The
following Lemma is an inhomogeneous generalization of Proposition 7.64 [20].

Lemma 3.4. For i = 1, 2, C > 0, δ > 0 and an integer n ≥ 1, suppose hi ∈ Gn, ∥hi∥ ≤ C
and

max
w∈W,∥w∥≤n

∣∣(h1 − h2, w
)∣∣ ≤ δ.

Then there exist xi ∈ C1−var
(
[0, 1] ,RK

)
, i = 1, 2 such that

Sn

(
xi
)
0,1

= hi, i = 1, 2

and a constant M = M (C, p, d, n) > 0 such that

max
i=1,2

∥∥xi
∥∥
1−var,[0,1]

≤M and
∥∥x1 − x2

∥∥
1−var,[0,1]

≤ δM.

Proof. In the following proof, the constant M may depend on C, p, d, n and its exact value
may change.

Firstly, assume (h1, w) = (h2, w) = 0 for w ∈ W , ∥w∥ = 1, . . . , n− 1. Then hi = 1 + li

for i = 1, 2 with li a homogeneous element of degree n and l2 = l1 + δm with ∥m∥ ≤
M . Based on similar proof as that of [20, Theorem 7.32] and [20, Theorem 7.44], there
exists z ∈ C1−var

(
[0, 1] ,RK

)
such that Sn (z)0,1 = 1 + l1 − m and ∥z∥1−var,[0,1] ≤ M .

Similarly, there exists y = (yi)
K
i=1 ∈ C1−var

(
[0, 1] ,RK

)
such that Sn (y)0,1 = 1 + m and

∥y∥1−var,[0,1] ≤M . Let x1 be the concatenation of z and y and let x2 be the concatenation

of z with ỹ :=
(
(1 + δ)|νi|/n yi

)K
i=1

. Since n ≥ |νj| (Gn does not involve j when |νj| > n),

we have (1 + δ)|νj |/n − 1 ≤ δ and∥∥x1 − x2
∥∥
1−var,[0,2]

≤ δ ∥y∥1−var,[0,1] .

The first case is proved.
General case: we provide an inductive proof. The case n = 1 follows from the first

case. Assuming the statement holds for elements in Gn, we now prove that it holds for
elements in Gn+1. By the inductive hypothesis, there exist continuous bounded variation
paths zi : [0, 1]→ RK , i = 1, 2 such that Sn (z

i)0,1 = πn (h
i), i = 1, 2,

max
i=1,2

∥∥zi∥∥
1−var,[0,1]

≤M and
∥∥z1 − z2

∥∥
1−var,[0,1]

≤ δM.

Denote

ki := bi ⊗ hi with bi := Sn+1

(←−
zi
)
, i = 1, 2,

where
←−
zi denotes the time reversal of zi. Then for i = 1, 2, ∥ki∥ ≤M and (ki, w) = 0 for

w ∈ W , ∥w∥ = 1, . . . , n. For w ∈ W , ∥w∥ = n+ 1,∣∣(k1 − k2, w
)∣∣ ≤ ∑

uv=w

(∣∣(b1, u)∣∣ ∣∣(h1, v
)
−
(
h2, v

)∣∣+ ∣∣(b1, u)− (b2, u)∣∣ ∣∣(h2, v
)∣∣) ,

where uv denotes the concatenation of u and v. Since iterated integrals are continu-
ous in 1-variation of the underlying path, combined with the conditions on hi, we have
|(k1 − k2, w)| ≤ δM for w ∈ W , ∥w∥ = n + 1. Based on the first case, there exist
continuous bounded variation paths yi : [0, 1]→ RK , i = 1, 2 such that

Sn+1

(
yi
)
0,1

= ki, i = 1, 2
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and
max
i=1,2

∥∥y1∥∥
1−var,[0,1]

≤M and
∥∥y1 − y2

∥∥
1−var,[0,1]

≤ δM.

For i = 1, 2, let xi be the concatenation of zi with yi. The proof is finished. □

Based on [21, 22], Grossman Larson Hopf algebra is isomorphic as a Hopf algebra to
the Tensor Hopf algebra generated by a collection of trees. By deleting the additional
root, we assume Grossman Larson Hopf algebra with product [27, (3.1)] and coproduct
[27, p.199] is a Hopf algebra of forests. Denote the degree-n truncated group of group-like
elements in Grossman Larson Hopf algebra as GnL.

Notation 3.5. Denote the group isomorphism Φ : G[p] → G [p]L .

Lemma 3.6. For i = 1, 2, C > 0 and δ > 0, suppose gi ∈ G[p]L , ∥gi∥ ≤ C and

max
τ∈F [p]

L

∣∣(g1 − g2, τ
)∣∣ ≤ δ.

Then there exist xi ∈ C1−var
(
[0, 1] ,RK

)
, i = 1, 2 such that

Φ
(
S[p]

(
xi
)
0,1

)
= gi, i = 1, 2

and a constant M = M (C, p, d) > 0 such that

max
i=1,2

∥∥xi
∥∥
1−var,[0,1]

≤M and
∥∥x1 − x2

∥∥
1−var,[0,1]

≤ δM.

Proof. Denote hi := Φ−1 (gi), i = 1, 2. By ∥gi∥ ≤ C, we have ∥hi∥ ≤M , i = 1, 2 and

sup
w∈W,∥w∥≤[p]

∣∣(h1 − h2, w
)∣∣ ≤M max

τ∈F [p]
L

∣∣(g1 − g2, τ
)∣∣ ≤Mδ.

Then the statement holds based on Lemma 3.4. □

For a ∈ L, denote by •a the tree that has one vertex and a label a ∈ L on the vertex.
For L-labeled trees {τ i}ki=1 and a label a ∈ L, denote by [τ 1 · · · τ k]a the labeled tree

obtained by grafting the roots of {τ i}ki=1 to a new root with a label a ∈ L on the new

root. Then |[τ 1 · · · τ k]a| =
∑k

i=1 |τ i|+ 1.

Notation 3.7. For sufficiently smooth f = (f1, . . . , fd) : Re → L
(
Rd,Re

)
, define f : TL →

(Re → Re) inductively as, for a ∈ L and τ i ∈ TL, i = 1, . . . , k,

f (•a) := fa and f ([τ 1 · · · τ k]a) :=
(
dkfa

)
(f (τ 1) · · · f (τ k))

where dkfa denotes the k-th Fréchet derivative of fa.

Suppose x ∈ C1−var
(
[0, T ] ,RK

)
, f : Re → L

(
RK ,Re

)
is Lip (1) and ξ ∈ Re. Denote

by
πf (0, ξ;x)

the unique solution to the ODE

dyt = f (yt) dxt, y0 = ξ.

For fj : Re → Re, denote
|fj|∞ := sup

y∈Re

|fj (y)| .

For y : [0, T ]→ Re and 0 ≤ s ≤ t ≤ T , denote

ys,t := yt − ys.
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Proposition 3.8. Assume that

(i) f = (f1, . . . , fK) : Re → L
(
RK ,Re

)
and f̃ =

(
f̃1, . . . , f̃K

)
: Re → L

(
RK ,Re

)
are

Lip (1). For j = 1, . . . , K, denote

Mj := max

{
|fj|Lip(1) ,

∣∣∣f̃j∣∣∣
Lip(1)

}
.

(ii) x =
(
x1, . . . , xK

)
and x̃ =

(
x̃1, . . . , x̃K

)
are in C1−var

(
[0, T ] ,RK

)
. For j =

1, . . . , K, denote

lj := max
{∥∥xj

∥∥
1−var,[0,T ]

,
∥∥x̃j
∥∥
1−var,[0,T ]

}
.

(iii) y0, ỹ0 ∈ Re are initial values.
Denote y = πf (0, y0;x) and ỹ = πf̃ (0, ỹ0; x̃). Then

sup
t∈[0,T ]

|y0,t − ỹ0,t|(3.1)

≤
K∑
j=1

(
Mjlj |y0 − ỹ0|+Mj

∥∥xj − x̃j
∥∥
1−var,[0,T ]

+ lj

∣∣∣fj − f̃j

∣∣∣
∞

)
exp

(
2

K∑
j=1

Mjlj

)
and

sup
t∈[0,T ]

|yt − ỹt|(3.2)

≤

(
|y0 − ỹ0|+

K∑
j=1

Mj

∥∥xj − x̃j
∥∥
1−var,[0,T ]

+
K∑
j=1

lj

∣∣∣fj − f̃j

∣∣∣
∞

)
exp

(
2

K∑
j=1

Mjlj

)
.

Proof. Without loss of generality, assume x0 = x̃0 = 0. Since∫ t

0

fj (ỹr) d
(
xj
r − x̃j

r

)
= fj (ỹt)

(
xj
t − x̃j

t

)
−
∫ t

0

(
xj
r − x̃j

r

)
dfj (ỹr) ,

we have

|y0,t − ỹ0,t|

≤ |y0 − ỹ0|
K∑
j=1

Mjlj +
K∑
j=1

Mj

∫ t

0

|y0,r − ỹ0,r|
∣∣dxj

r

∣∣+ K∑
j=1

lj

∣∣∣fj − f̃j

∣∣∣
∞

+

(
1 +

K∑
j=1

Mjlj

)
K∑
j=1

Mj sup
t∈[0,T ]

∣∣xj
t − x̃j

t

∣∣ .
Since x0 = x̃0 = 0, we have supt∈[0,T ]

∣∣xj
t − x̃j

t

∣∣ ≤ ∥xj − x̃j∥1−var,[0,T ]. Based on Gronwall’s
Lemma, the first inequality holds. The second inequality can be proved similarly. □

Denote I (x) := x for x ∈ Re. Recall that ϵ denotes the empty element in W . For

f i : Re → L
(
Rd,Re

)
, i = 1, 2 and ν ∈ B[p]

L in Notation 3.1, denote f i (ν) as in Notation
3.7.

Notation 3.9. Suppose f i : Re → L
(
Rd,Re

)
, i = 1, 2 are sufficiently smooth. For

k1 · · · km ∈ W , define inductively

F ϵ
i := I and F k1···km

i := dF k2···km
i

(
f i (νk1)

)
, i = 1, 2,

where dF k2···km
i denotes the Fréchet derivative of F k2···km

i .
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The following simple Lemma is helpful when estimating the increments of functions.

Lemma 3.10. For i = 1, 2, suppose qi : Re → R and ri : Re → R. For a, b ∈ Re,(
q1r1 − q2r2

)
(a)−

(
q1r1 − q2r2

)
(b)

=
(
q1
(
r1 − r2

))
(a)−

(
q1
(
r1 − r2

))
(b)

+
((
q1 − q2

)
r2
)
(a)−

((
q1 − q2

)
r2
)
(b)

=: Q (a)−Q (b) +R (a)−R (b)

where Q := q1 (r1 − r2) and R := (q1 − q2) r2.

Lemma 3.11 and Lemma 3.12 below are generalizations of Lemma 10.23 [20] and Lemma

10.25 [20] respectively and apply to ODEs with inhomogeneous drivers. Recall B[p]
L =

{ν1, ν2, . . . , νK} in Notation 3.1. Since K denotes the number of elements in B[p]
L , K only

depends on p, d.

Lemma 3.11. Fix γ > p ≥ 1.
(i) Suppose f i : Re → L

(
Rd,Re

)
, i = 1, 2 are Lip (γ). Denote λ := maxi=1,2 |f i|Lip(γ).

(ii) For i = 1, 2, suppose xi =
(
xi,1, . . . , xi,K

)
and x̃i =

(
x̃i,1, . . . , x̃i,K

)
are paths in

C1−var
(
[0, 1] ,RK

)
such that

S[p]

(
xi
)
0,1

= S[p]

(
x̃i
)
0,1

, i = 1, 2.

(iii) For C ≥ 0, l ≥ 0 and δ ≥ 0, suppose for j = 1, . . . , K,

max
i=1,2

{∥∥xi,j
∥∥
1−var,[0,1]

,
∥∥x̃i,j

∥∥
1−var,[0,1]

}
≤ Cl|νj |,

max
{∥∥x1,j − x2,j

∥∥
1−var,[0,1]

,
∥∥x̃1,j − x̃2,j

∥∥
1−var,[0,1]

}
≤ δCl|νj |.

Denote vector fields V i := (f i (ν1) , . . . , f
i (νK)), i = 1, 2. For yi0 ∈ Re, i = 1, 2,

denote yi := πV i (0, yi0;x
i) and ỹi := πV i (0, yi0; x̃

i), i = 1, 2. Then there exists a constant
M = M (C, γ, p, d) > 0 such that, when λl ≤ 1,∣∣(y10,1 − ỹ10,1

)
−
(
y20,1 − ỹ20,1

)∣∣
≤ M (λl)γ

(∣∣y10 − y20
∣∣+ δ + λ−1

∣∣f 1 − f 2
∣∣
Lip(γ−1)

)
.

Proof. Without loss of generality, assume γ ∈ (p, [p] + 1] and denote N := [p]. The
constant M in the following proof may depend on C, γ, p, d and its exact value may
change.

First case, assume x̃1 = x̃2 = 0 and we want to estimate
∣∣y10,1 − y20,1

∣∣. We assumed

SN (xi)0,1 = SN (x̃i)0,1, i = 1, 2. In this case, SN (x̃i)0,1 = 1, i = 1, 2, so for any

k1, · · · , km ∈ BN
L , ∥k1 · · · km∥ ≤ N , we have∫

· · ·
∫

0<u1<···<um<1

dxi,k1
u1
· · · dxi,km

um
= 0.

8



By iteratively applying the fundamental theorem of calculus, for i = 1, 2,

yi0,1 =
∑

∥k1···km∥=N

∫
· · ·
∫

0<u1<···<um<1

(
F k1···km
i

(
yiu1

)
− F k1···km

i

(
yi0
))

dxi,k1
u1
· · · dxi,km

um

+
∑

∥k1···km∥>N
∥k2···km∥<N

∫
· · ·
∫

0<u1<···<um<1

F k1···km
i

(
yiu1

)
dxi,k1

u1
· · · dxi,km

um
.

For i = 1, 2, denote FN
i := (Fw

i )w∈W,∥w∥=N with Fw
i in Notation 3.9 and denote xi,N

u,1 :=(
xi,w
u,1

)
w∈W,∥w∥=N

where

xi,k1···km
u,1 :=

∫
· · ·
∫

u<u1<···<um<1

dxi,k1
u1
· · · dxi,km

um
for k1 · · · km ∈ W .

Since λl ≤ 1, we have
∣∣yi0,·∣∣∞,[0,1]

≤ Mλl, i = 1, 2. Separate the Lip (γ −N + 1) term(
dN−1f i

)
(f i)

N−1
from FN

i , i = 1, 2 (the rest terms are Lip (2)). Based on Lemma 3.10,
by adapting the proof of Lemma 10.22 [20] and combining with assumption (iii), we have

∣∣∣∣∫ 1

0

(
FN
1

(
y1u
)
− FN

1

(
y10
))

dx1,N
u,1 −

∫ 1

0

(
FN
2

(
y2u
)
− FN

2

(
y20
))

dx2,N
u,1

∣∣∣∣(3.3)

≤ M (λl)N
∣∣y10,· − y20,·

∣∣
∞,[0,1]

+M (λl)γ
(∣∣y10 − y20

∣∣+ λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

)
+Mδ (λl)N+1 .

For j = 1, . . . , K,

∣∣f 1 (νj)− f 2 (νj)
∣∣
∞ ≤Mλ|νj |−1

∣∣f 1 − f 2
∣∣
Lip(γ−1)

.

Since λl ≤ 1, based on (3.1), we have

∣∣y10,· − y20,·
∣∣
∞,[0,1]

≤Mλl
(∣∣y10 − y20

∣∣+ δ + λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

)
.

Putting the estimate into (3.3), we get

∣∣∣∣∫ 1

0

(
FN
1

(
y1u
)
− FN

1

(
y10
))

dx1,N
u,1 −

∫ 1

0

(
FN
2

(
y2u
)
− FN

2

(
y20
))

dx2,N
u,1

∣∣∣∣(3.4)

≤ M (λl)γ
(∣∣y10 − y20

∣∣+ δ + λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

)
.
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On the other hand, for w ∈ W ,∫
· · ·
∫

0<u1<···<um<1

(
Fw
1

(
y1u1

)
dx1,w

u,1 − Fw
2

(
y2u1

)
dx2,w

u,1

)
=

∫
· · ·
∫

0<u1<···<um<1

(
Fw
1

(
y1u1

)
− Fw

1

(
y2u1

))
dx1,w

u,1

+

∫
· · ·
∫

0<u1<···<um<1

(Fw
1 − Fw

2 )
(
y2u1

)
dx1,w

u,1

+

∫
· · ·
∫

0<u1<···<um<1

Fw
2

(
y2u1

) (
dx1,w

u,1 − dx2,w
u,1

)
.

Suppose w = kw1, where k ∈ {1, . . . , K} and w,w1 ∈ W , ∥w∥ > N , ∥w1∥ < N . Then

maxi=1,2 |Fw
i |Lip(1) ≤ Mλ∥w∥ and |Fw

1 − Fw
2 |∞ ≤ Mλ∥w∥−1 |f 1 − f 2|Lip(γ−1). Since λl ≤ 1,

combined with (3.2) and assumption (iii), we have∣∣∣∣∣∣
∫
· · ·
∫

0<u1<···<um<1

(
Fw
1

(
y1u1

)
dx1,w

u,1 − Fw
2

(
y2u1

)
dx2,w

u,1

)∣∣∣∣∣∣(3.5)

≤ M (λl)N+1
(∣∣y10 − y20

∣∣+ δ + λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

)
.

Since we assumed that λl ≤ 1, combine (3.4) with (3.5), we have∣∣y10,1 − y20,1
∣∣ ≤M (λl)γ

(∣∣y10 − y20
∣∣+ δ + λ−1

∣∣f 1 − f 2
∣∣
Lip(γ−1)

)
.

General case. For i = 1, 2, let zi :=
←−
x̃i ⊔ xi be the concatenation of the time reversal of

x̃i with xi. Reparametrize zi to be from [0, 1] to RK . Based on the assumption (ii) and
(iii), S[p] (z

i)0,1 = 1, i = 1, 2 and maxi=1,2 ∥zi,j∥1−var,[0,1] ≤ 2Cl|νj |, ∥z1,j − z2,j∥1−var,[0,1] ≤
2δCl|νj |, j = 1, . . . , K. Since for i = 1, 2,

yi0,1 − ỹi0,1 = πV i

(
0, πV i

(
0, yi0; x̃

i
)
1
; zi
)
0,1

.

Then the desired result follows by applying the first case to zi, i = 1, 2 and combining
with (3.2). □

Lemma 3.12. Fix γ > p ≥ 1.
(i) Suppose f i : Re → L

(
Rd,Re

)
, i = 1, 2 are Lip (γ). Denote λ := maxi=1,2 |f i|Lip(γ).

(ii) For i = 1, 2, suppose xi =
(
xi,1, . . . , xi,K

)
∈ C1−var

(
[0, 1] ,RK

)
and there exist

constants C ≥ 0, δ ≥ 0 and l ≥ 0 such that for j = 1, . . . , K,

max
i=1,2

∥∥xi,j
∥∥
1−var,[0,1]

≤ Cl|νj |,∥∥x1,j − x2,j
∥∥
1−var,[0,1]

≤ δCl|νj |.

Denote vector fields V i := (f i (ν1) , . . . , f
i (νK)), i = 1, 2. For yi0, ỹ

i
0 ∈ Re, i = 1, 2,

denote yi := πV i (0, yi0;x
i) and ỹi := πV i (0, ỹi0;x

i), i = 1, 2. Then there exists a constant
10



M = M (C, γ, p, d) > 0 such that, when λl ≤ 1,∣∣(y10,1 − ỹ10,1
)
−
(
y20,1 − ỹ20,1

)∣∣
≤ Mλl

∣∣(y10 − ỹ10
)
−
(
y20 − ỹ20

)∣∣
+Mλl

(∣∣y10 − ỹ10
∣∣+ ∣∣y20 − ỹ20

∣∣) (∣∣ỹ10 − ỹ20
∣∣+ δ + λ−1

∣∣f 1 − f 2
∣∣
Lip(γ−1)

)
+M (λl)⌊γ⌋

(∣∣y10 − ỹ10
∣∣+ ∣∣y20 − ỹ20

∣∣){γ} (∣∣ỹ10 − ỹ20
∣∣+ δ + λ−1

∣∣f 1 − f 2
∣∣
Lip(γ−1)

)
+Mλlδ

∣∣y20 − ỹ20
∣∣ .

Proof. Assume γ ∈ (p, [p] + 1] and denote N := [p] = ⌊γ⌋. The constant M in the
following proof may depend on C, γ, p, d and its exact value may change.

Separate the Lip (γ −N + 1) term
(
dN−1f i

)
(f i)

N−1
from {f i (νj)}

K

j=1 (if it is one of

f i (νj), j = 1, . . . , K, otherwise do nothing). Since λl ≤ 1,
∑K

j=1 (λl)
|νj | ≤ Mλl. The

term associated with
(
dN−1f i

)
(f i)

N−1
contributes a factor that is comparable to (λl)N .

Hence, based on Lemma 3.10, by adapting Lemma 10.22 [20],∣∣(y10,t − ỹ10,t
)
−
(
y20,t − ỹ20,t

)∣∣
≤

K∑
j=1

Mλ|νj |
∫ t

0

∣∣(y10,r − ỹ10,r
)
−
(
y20,r − ỹ20,r

)∣∣ ∣∣dx1,j
r

∣∣
+Mλl

∣∣(y10 − ỹ10
)
−
(
y20 − ỹ20

)∣∣
+Mλl

(∑
i=1,2

∣∣yi − ỹi
∣∣
∞,[0,t]

)(∣∣ỹ1 − ỹ2
∣∣
∞,[0,t]

+ λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

)

+M (λl)N
(∑

i=1,2

∣∣yi − ỹi
∣∣
∞,[0,t]

){γ} (∣∣ỹ1 − ỹ2
∣∣
∞,[0,t]

+ λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

)
+Mλlδ

∣∣y2 − ỹ2
∣∣
∞,[0,t]

.

Since λl ≤ 1, based on (3.2), we have∣∣yi − ỹi
∣∣
∞,[0,t]

≤M
∣∣yi0 − ỹi0

∣∣ , i = 1, 2

and ∣∣ỹ1 − ỹ2
∣∣
∞,[0,t]

≤M
(∣∣ỹ10 − ỹ20

∣∣+ δ + λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

)
.

Based on Gronwall’s Lemma and that λl ≤ 1, the proof is finished. □

Define the symmetry factor σ : FL → N inductively as σ (•a) := 1 and

σ (τn1
1 · · · τ

nk
k ) = σ

(
[τn1

1 · · · τ
nk
k ]a
)
:= n1! · · ·nk!σ (τ 1)

n1 · · ·σ (τ k)
nk

where τ i ∈ TL, i = 1, . . . , k are different labeled trees (labels counted). Based on

Proposition 2.3 [29], for a branched rough path X ∈ Cp−var
(
[0, T ] , G

[p]
L

)
, if define

X̄ : [0, T ]→
(
F [p]

L → R
)
as, for t ∈ [0, T ] and τ ∈ F [p]

L ,

(3.6)
(
X̄t, τ

)
:=

(Xt, τ)

σ (τ)
,
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then X̄ takes values in the step-[p] truncated group of group-like elements in Grossman

Larson Hopf algebra (the truncated group is denoted as G [p]L ). Moreover, based on Propo-

sition 2.3 [29], for every 0 ≤ s ≤ t ≤ T and τ ∈ F [p]
L ,

(3.7)
(
X̄s,t, τ

)
=

(Xs,t, τ)

σ (τ)
.

We equip a ∈ G [p]L with the norm

∥a∥ := max
τ∈F [p]

L

|(a, τ)|
1
|τ | .

Proof of Theorem 2.3. For i = 1, 2, replace f i by λ−1f i and replace (X i
t , τ) by λ|τ | (X i

t , τ),

τ ∈ F [p]
L . Then the solution to differential equations stays unchanged and |f i|Lip(γ) ≤ 1,

i = 1, 2. Suppose γ ∈ (p, [p] + 1]. Denote

N := [p] and δ := ρp−ω;[0,T ]

(
X1, X2

)
.

The constant M in the following proof may depend on γ, p, d and its exact value may
change.

Firstly suppose ω (0, T ) ≤ 1. For 0 ≤ s ≤ t ≤ T , based on (3.7) and that σ (τ) ≥ 1, we

have
∥∥X̄ i

s,t

∥∥ ≤ ω (s, t)
1
p , i = 1, 2, and for τ ∈ F [p]

L ,∣∣(X̄1
s,t − X̄2

s,t, τ
)∣∣ ≤ ∣∣(X1

s,t −X2
s,t, τ

)∣∣ ≤ δω (s, t)
|τ |
p .

Recall Φ in Notation 3.5 which denotes the isomorphism from a class of Π-rough paths

to branched rough paths. Fix [s, t] ⊆ [0, T ]. For τ ∈ F [p]
L , rescale

(
X̄ i

s,t, τ
)
by ω (s, t)−|τ |/p

and apply Lemma 3.6. Then there exist xi,s,t =
(
xi,s,t,1, . . . , xi,s,t,K

)
∈ C1−var

(
[s, t] ,RK

)
,

i = 1, 2 such that Φ
(
S[p] (x

i,s,t)s,t

)
= X̄ i

s,t, i = 1, 2 and for j = 1, . . . , K,

max
i=1,2

∥∥xi,s,t,j
∥∥
1−var,[s,t]

≤ Mω (s, t)
|νj|
p , i = 1, 2(3.8)

∥∥x1,s,t,j − x2,s,t,j
∥∥
1−var,[s,t]

≤ δMω (s, t)
|νj|
p .(3.9)

Let yi,s,t : [s, t]→ Re denote the unique solution of the ODE

dyi,s,tr =
K∑
j=1

f i (νj)
(
yi,s,tr

)
dxi,s,t,j

r , yi,s,ts = yis.

Denote

Γi
s,t := yis,t − yi,s,ts,t , i = 1, 2

Γ̄s,t := Γ1
s,t − Γ2

s,t.

Since we assumed ω (0, T ) ≤ 1, by setting ω (0, T ) = 1 in Proposition 3.17 in [29], we have∣∣Γi
s,t

∣∣ ≤ Mω (s, t)
[p]+1

p , i = 1, 2(3.10) ∣∣Γ̄s,t

∣∣ ≤ Mω (s, t)
[p]+1

p .

In fact, based on the construction, xi,s,t ∈ C1−var
(
[s, t] ,RK

)
here may not be a geodesic

associated with X̄ i
s,t in the sense of Definition 3.2 [29]. The estimate of Proposition 3.17
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[29] applies, because Φ
(
S[p] (x

i,s,t)s,t

)
= X̄ i

s,t and for j = 1, . . . , K, ∥xi,s,t,j∥1−var,[s,t] ≤

Mω (s, t)|νj |/p based on Lemma 3.6.
For i = 1, 2 and 0 ≤ s ≤ t ≤ u ≤ T , let xi,s,t,u ∈ C1−var

(
[s, u] ,RK

)
denote the

concatenation of xi,s,t with xi,t,u. Denote by yi,s,t,u : [s, u]→ Re the solution of the ODE

dyi,s,t,ur =
K∑
j=1

f i (νj)
(
yi,s,t,ur

)
dxi,s,t,u,j

r , yi,s,t,us = yis.

For i = 1, 2, denote

Ai := yi,s,t,us,u − yi,s,us,u , Bi := yi,s,tt + yi,t,ut,u − yi,s,t,uu

and denote

Ā := A1 − A2, B̄ := B1 −B2

so that

Γ̄s,u − Γ̄s,t − Γ̄t,u = Ā+ B̄.

Denote

δ̄ := δ + λ−1
∣∣f 1 − f 2

∣∣
Lip(γ−1)

.

As S[p] (x
i,s,t,u)s,u = S[p] (x

i,s,u)s,u, i = 1, 2, based on (3.8) and (3.9), apply Lemma 3.11,

(3.11)
∣∣Ā∣∣ ≤Mω (s, u)

γ
p
(∣∣y1s − y2s

∣∣+ δ̄
)
.

Denote vector fields V i := (f i (ν1) , . . . , f
i (νK)), i = 1, 2. Based on Lemma 3.12,∣∣B̄∣∣ =

∣∣∣(πV 1

(
t, y1t ;x

1,t,u
)
t,u
− πV 1

(
t, y1t − Γ1

s,t;x
1,t,u
)
t,u

)
−
(
πV 2

(
t, y2t ;x

2,t,u
)
t,u
− πV 2

(
t, y2t − Γ2

s,t;x
2,t,u
)
t,u

)∣∣∣
≤ Mω (s, u)1/p

∣∣Γ̄s,t

∣∣
+M

(
ω (s, u)1/p

(∣∣Γ1
s,t

∣∣+ ∣∣Γ2
s,t

∣∣)+ ω (s, u)N/p (∣∣Γ1
s,t

∣∣+ ∣∣Γ2
s,t

∣∣){γ})
×
(∣∣y1t − y2t

∣∣+ δ̄
)

+Mω (s, u)1/p δ
∣∣Γ2

s,t

∣∣ .
Based on (3.10),

∣∣Γi
s,t

∣∣ ≤ Mω (s, t)
[p]+1

p , i = 1, 2. Observe that N + ([p] + 1) {γ} ≥ γ and
[p] + 2 ≥ γ, we have∣∣B̄∣∣ ≤Mω (s, u)1/p

∣∣Γ̄s,t

∣∣+Mω (s, u)
γ
p
(∣∣y1t − y2t

∣∣+ δ̄
)
.(3.12)

Since 1 + Mω (s, u)1/p ≤ exp
(
Mω (s, u)1/p

)
, combining (3.11) and (3.12), we obtain

that when ω (0, T ) ≤ 1,∣∣Γ̄s,u

∣∣ ≤ ∣∣Ā∣∣+ ∣∣B̄∣∣+ ∣∣Γ̄s,t

∣∣+ ∣∣Γ̄t,u

∣∣(3.13)

≤ exp
(
Mω (s, u)1/p

) (∣∣Γ̄s,t

∣∣+ ∣∣Γ̄t,u

∣∣)
+Mω (s, u)γ/p

(
sup
r∈[s,u]

∣∣y1r − y2r
∣∣+ δ̄

)
.
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Since |f 1 (νj)− f 2 (νj)|∞ ≤ Mλ|νj |−1 |f 1 − f 2|Lip(γ−1) for j = 1, . . . , K and ω (0, T ) ≤ 1,

based on (3.1),

(3.14)
∣∣y1,s,ts,t − y2,s,ts,t

∣∣ ≤M
(∣∣y1s − y2s

∣∣+ δ̄
)
ω (s, t)1/p .

Combine (3.13), (3.14) and that
∣∣Γ̄s,t

∣∣ ≤ Mω (s, t)
[p]+1

p , based on Proposition 10.63 [20]
(applying to the interval [s, t]), we have∣∣Γ̄s,t

∣∣ ≤M
(∣∣y1s − y2s

∣∣+ δ̄
)
ω (s, t)γ/p exp (Mω (s, t)) .

Hence, when ω (s, t) ≤ 1,∣∣y1s,t − y2s,t
∣∣ ≤ ∣∣y1,s,ts,t − y2,s,ts,t

∣∣+ ∣∣Γ̄s,t

∣∣(3.15)

≤ M
(∣∣y1s − y2s

∣∣+ δ̄
)
ω (s, t)1/p exp (Mω (s, t)) .

Suppose ω (0, T ) > 1. When ω (s, t) ≤ 1, the estimates above apply. When ω (s, t) > 1,
divide [s, t] = ∪n−1

i=0 [ti, ti+1] such that ω (ti, ti+1) = 1, i = 0, . . . , n− 2 and ω (tn−1, tn) ≤ 1.
By the super-additivity of ω (i.e. ω (s, t) + ω (t, u) ≤ ω (s, u) for s ≤ t ≤ u),

(3.16) n =
n−2∑
i=0

ω (ti, ti+1) + 1 ≤ ω (s, t) + 1 ≤ 2ω (s, t) .

Since ω (ti, ti+1) ≤ 1, i = 0, . . . , n− 1, based on (3.15), there exists M0 > 0 such that∣∣∣y1ti,ti+1
− y2ti,ti+1

∣∣∣ ≤M0

(∣∣y1ti − y2ti
∣∣+ δ̄

)
and ∣∣y1ti − y2ti

∣∣ ≤ ∣∣∣y1ti−1
− y2ti−1

∣∣∣+ ∣∣∣y1ti−1,ti
− y2ti−1,ti

∣∣∣
≤ (1 +M0)

∣∣∣y1ti−1
− y2ti−1

∣∣∣+M0δ̄

≤ (1 +M0)
i
∣∣y1s − y2s

∣∣+M0

(
i−1∑
j=0

(1 +M0)
j

)
δ̄.

Hence ∣∣∣y1ti,ti+1
− y2ti,ti+1

∣∣∣ ≤M0 (1 +M0)
i (∣∣y1s − y2s

∣∣+ δ̄
)

and ∣∣y1s,t − y2s,t
∣∣(3.17)

≤
n−1∑
i=0

∣∣∣y1ti,ti+1
− y2ti,ti+1

∣∣∣
≤

n−1∑
i=0

M0 (1 +M0)
i (∣∣y1s − y2s

∣∣+ δ̄
)

≤ (1 +M0)
n (∣∣y1s − y2s

∣∣+ δ̄
)

= exp (n ln (1 +M0))
(∣∣y1s − y2s

∣∣+ δ̄
)

≤
(∣∣y1s − y2s

∣∣+ δ̄
)
exp (Mω (s, t))
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where in the last step we used (3.16). In particular, when [s, t] = [0, s],∣∣y1s − y2s
∣∣ ≤ ∣∣y10 − y20

∣∣+ ∣∣y10,s − y20,s
∣∣(3.18)

≤ 2
(∣∣y10 − y20

∣∣+ δ̄
)
exp (Mω (0, s)) .

Combining (3.17), (3.18) and that ω (s, t) ≥ 1, we have∣∣y1s,t − y2s,t
∣∣ ≤M

(∣∣y10 − y20
∣∣+ δ̄

)
ω (s, t)1/p exp (Mω (0, t)) .

Combining (3.15), (3.18) and the super-additivity of ω, the same result holds when
ω (s, t) ≤ 1. Consequently, the proposed estimate holds as δ̄ := ρp−ω,[0,T ] (X

1, X2) +

λ−1 |f 1 − f 2|Lip(γ−1). □
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