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Abstract

In this paper, we consider several representations of a complex solvmanifold,

and we also consider complex structures on a real solvmanifold. The two

considerations are sometimes related by one solvable Lie group. Namely,

there exists a solvable Lie group G with left-invariant complex structures

J1, J2 and lattices Γ1, Γ2 in G which have the following properties (i)(G, J1)

is a complex Lie group, but (G, J2) is not a complex Lie group (ii)(Γ1\G, J1)

and (Γ1\G, J2) are biholomorphic (iii)(Γ2\G, J1) and (Γ2\G, J2) are not bi-

holomorphic. We use these to investigate complex geometric properties of

complex solvmanifolds.

1. Introduction

By a solvmanifold we means a quotient space of a simply connected
solvable Lie group G by a lattice Γ in G, where a lattice is its discrete
co-compact subgroup. In the case that G is nilpotent, Γ\G is referred
to as a nilmanifold. A complex structure J on Γ\G is called left-
invariant if it is induced from a left-invariant complex structure on G.
Similarly, a form on Γ\G is called left-invariant if it is induced from a
left-invariant form on G.

In this paper, we consider solvmanifolds Γ\G with left-invariant com-
plex structures. It is well known that nilpotent Lie groups have the
following property: Let Γ1 and Γ2 be lattices in simply connected
nilpotent Lie groups N1 and N2, respectively. If π1(Γ1\N1) is iso-
morphic to π1(Γ2\N2), then N1 and N2 are isomorphic as real Lie
groups ([7, Theorem 2.11]). In the case of solvable Lie groups, the
theorem holds in a weakened form. Let Γ1 and Γ2 be lattices in sim-
ply connected solvable Lie groups G1 and G2, respectively, and suppose
that π1(Γ1\G1) ∼= π1(Γ2\G2). Then, G1 and G2 may not be isomorphic,
but Γ1\G1 and Γ2\G2 are diffeomorphic ([7, Theorem 3.6]). Hence, to
study a solvmanifold Γ\G, one can exploit this flexibility; if there exists
solvable Lie group G̃ such that Γ\G = Γ\G̃, then we can investigate
Γ\G using G̃ (e.g. [2],[12, pp.118]).

Although we take advantage of this flexibility for the study of com-
plex solvmanifolds, one of the main ideas of this paper is to represent
a solvmanifold with a left-invariant complex structure in several forms.
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More precisely, there exists a solvable Lie group G with left-invariant
complex structures J1, J2 and lattices Γ1, Γ2 in G which have the fol-
lowing properties (i)(G, J1) is a complex Lie group, but (G, J2) is not
a complex Lie group (ii)(Γ1\G, J1) and (Γ1\G, J2) are biholomorphic
(iii)(Γ2\G, J1) and (Γ2\G, J2) are not biholomorphic. Therefore in this
paper we consider the following questions:

(1) Let G be a solvable Lie group and J a left-invariant complex
structure on G. What complex geometric properties does a
complex solvmanifold (Γ\G, J) have depending on a lattice Γ
in G? What are relations between these complex solvmanifolds
(Γ1\G, J) and (Γ2\G, J)?

(2) Let G be a solvable Lie group and Γ a lattice in G. We con-
struct complex solvmanifolds by considering left-invariant com-
plex structures J on this solvable Lie group. What differences in
the complex geometric properties can these complex solvmani-
folds have depending on how a left-invariant complex structure
J is taken?

For example, in this paper, we prove the following results:

Theorem 1.1. There exist a complex solvable Lie group G1, and real
solvable Lie groups G2 and G3 with left-invariant complex structures
satisfying the following conditions:

(1) There exist common lattices Γi (i = 1, 2, 3) in G1 and G3 which
satisfy the following properties:
(a) Γ1\G1 = Γ1\G3 −→ Γ2\G3 −→ Γ3\G3 is a sequence of

finite coverings of complex solvmanifolds,
(b) Γ2\G3 and Γ3\G3 are not complex parallelizable, but each

of Γi\G1 (i = 1, 2, 3) is complex parallelizable,
(c) each of Γi\G3 (i = 1, 2, 3) admits a pseudo-Kähler struc-

ture, but Γ3\G1 has no pseudo-Kähler structures.
(2) There exist lattices Li (i = 1, 2) in G2 which satisfy the following

properties:
(a) π1(L1\G2) = L1

∼= L2 = π1(L2\G2),
(b) each of the complex solvmanifolds Li\G2 × T 1

C (i = 1, 2)
admits a holomorphic symplectic structure, where T 1

C is a
1-dimensional complex torus,

(c) L1\G1 = L1\G2 −→ L2\G2 is a double covering,
(d) L2\G2 is not complex parallelizable, but L1\G2 is complex

parallelizable.
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By a complex parallelizable manifold we mean a compact complex
manifold with the trivial holomorphic tangent bundle. A complex par-
allelizable manifold can be written in the form of Γ\G, where G is a
complex Lie group and Γ is a discrete subgroup of G ([10]).

2. Prelimaries

Hopf manifolds do not have a Kähler metric, but have properties
that are superior to those of general complex manifolds. Indeed, a Hopf
manifold has a locally conformal Kähler structure. Similarly, complex
solvmanifolds exhibit improved properties compared to other general
complex manifolds. Hasegawa [4] has proved that a compact complex
solvmanifold admits a Kähler metric if and only if it is a finite quotient
of a complex torus, which has a structure of a complex torus bundle
over a complex torus. In this paper, we consider the following non-
degenerate closed 2-forms, which can be regarded as good symplectic
structures.

Definition 2.1. Let (M,J) be a complex manifold.

(1) A holomorphic symplectic structure on (M,J) is a closed non-
degenerate holomorphic 2-form on M .

(2) A pseudo-Kähler structure on (M,J) is a closed non-degenerate
(1, 1)-form on M .

For example, the Kodaira-Thurston manifold, which is a nilmani-
fold, is the first example of a compact symplectic manifold which is
not Kählerian. It has several different structures: a locally conformal
Kähler structure, a holomorphic symplectic structure, a pseudo-Kähler
structure and more.

3. Solvable Lie groups and its homogeneous spaces

In this section, we present a representative example of solvable Lie
groups and their homogeneous spaces in this paper. The argument
from here is not limited to this representative example.

A real solvable Lie group G is said to be completely solvable, if
ad(X) : g −→ g has only real eigenvalues for each X ∈ g, where g
is the Lie algebra of G.

We begin with the following solvable Lie groups with a left-invariant
complex structure defined by
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(1)

G1 =



ez 0 0 w1

0 e−z 0 w2

0 0 1 z
0 0 0 1

 z, w1, w2 ∈ C

 ,

(2)

G2 =



e

1
2
(z+z̄) 0 0 w1

0 e−
1
2
(z+z̄) 0 w2

0 0 1 z
0 0 0 1

 z, w1, w2 ∈ C

 ,

(3)

G3 =



ez 0 0 w1

0 e−z̄ 0 w2

0 0 1 z
0 0 0 1

 z, w1, w2 ∈ C

 .

Then, G1 is a complex Lie group, and G2 is a completely solvable Lie
group as a real Lie group. Put

φ1(z) =

(
ez 0
0 e−z

)
, φ2(z) =

(
e

1
2
(z+z̄) 0

0 e−
1
2
(z+z̄)

)
, φ3(z) =

(
ez 0
0 e−z̄

)
.

Then we have Gi
∼= C⋉φi

C2 (i = 1, 2, 3).
These Lie groups G1, G2, G3 have a same subgroup as a lattice. Let

B ∈ SL(2,Z) be a unimodular matrix with distinct real eigenvalues,
e.g., λ, 1/λ. Take t0 = log λ, i.e., et0 = λ. Then there exists P ∈
GL(2,R) such that

PBP−1 =

(
λ 0
0 λ−1

)
.

Let

Lkπ = {t0m+
√
−1kπ · n | m,n ∈ Z} (k =

1

3
,
1

2
,
2

3
, 1, 2)

and

ZP [τ ] =

{
P

(
µ1

µ2

) ∣∣∣∣ µ1, µ2 ∈ Z+ Zτ
}

(τ =
√
−1,

−1±
√
−3

2
).

We write ω = −1+
√
−3

2
. Then, we have the following:

Lemma 3.1 (cf.[9]). For each i = 2, 3 and (k, τ) = (1/2,
√
−1), (1,

√
−1),

(2,
√
−1), (1/3, ω), (2/3, ω), (1, ω), (2, ω), Lkπ ⋉φi

ZP [τ ] is a lattice in
Gi. For (k, τ) = (1,

√
−1), (2,

√
−1), (1, ω), (2, ω), Lkπ ⋉φ1 ZP [τ ] is a

lattice in G1.
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Put
ΓP
kπ,τ = Lkπ ⋉φ3 ZP [τ ].

Note that φ1(γ) = φ2(γ) = φ3(γ) for γ ∈ L2π. Thus, we have L2π ⋉φ1

ZP [τ ] = L2π ⋉φ2 ZP [τ ] = L2π ⋉φ3 ZP [τ ] = ΓP
2π,

√
−1
.

Because G1
∼= G2

∼= G3
∼= C3 as complex manifolds, and each prod-

uct of G1, G2, G3 induces the same action of ΓP
2π,

√
−1

on C3, we have

the following:

Proposition 3.2 ([12]).

ΓP
2π,

√
−1\G1

∼= ΓP
2π,

√
−1\G2

∼= ΓP
2π,

√
−1\G3

as complex manifolds.

Although G2 and G3 are not complex Lie groups, ΓP
2π,

√
−1
\G2

∼=
ΓP
2π,

√
−1
\G3 is complex parallelizable. In honor of Nakamura’s research ([6]),

this manifold ΓP
2π,

√
−1
\G1 is sometimes called the Nakamura mani-

fold (e.g.,see [2]). Similarly, we have

Lemma 3.3.

ΓP
π,
√
−1\G1

∼= ΓP
π,
√
−1\G3,Γ

P
2π,ω\G1

∼= ΓP
2π,ω\G3,Γ

P
π,ω\G1

∼= ΓP
π,ω\G3

as complex manifolds.

We have used Proposition 3.2 to study this complex solvmanifold ΓP
2π,

√
−1
\G1.

The following theorem is well-known (cf. [7, Corollary 7.29]):

Theorem 3.4. Let G be a real completely solvable Lie group and g the
Lie algebra of G. Let Γ be a lattice in G. Then

Hq
dR(Γ\G,R) ∼= Hq(g,R)

for each q.

Because G1 is a complex Lie group, ΓP
2π,

√
−1
\G1 is a complex paral-

lelizable manifold. Because G2 is a completely solvable Lie group as
a real Lie group, we can compute the de Rham cohomology groups of
ΓP
2π,

√
−1
\G1 by computing the cohomology groups Hq(g2,R) of the Lie

algebra g2 of G2. Thus, the fact that a manifold M is complex paral-
lelizable does not necessarily imply that the form of M = Γ\G, where
G is a complex Lie group, is always the optimal choice.

In the previous paper [12], we have directly shown that ΓP
2π,

√
−1
\G1

has a pseudo-Kähler structure and have only remarked that ΓP
2π,

√
−1
\G3

has a left G3-invariant pseudo-Kähler structure. In other words, we
have not sufficiently studied this solvmanifold ΓP

2π,
√
−1
\G1 as a homo-

geneous manifold of G3.
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4. The relationship between G1 and G3

In this section, we examine the relationship between G1 and G3 from
the perspective of a complex coordinate transformation, which is not
holomorphic.

Let us consider complex Lie group G1 as a real Lie group. We denote
this real Lie group by R(G1). Consider the following two global complex
coordinates of R(G1):

ψ1 :


ez1 0 0 z2
0 e−z1 0 z3
0 0 1 z1
0 0 0 1

 7→ (z1, z2, z3) ∈ C3,

ψ2 :


ez1 0 0 z2
0 e−z1 0 z3
0 0 1 z1
0 0 0 1

 7→ (ζ1, ζ2, ζ3) = (z1, z2, z̄3) ∈ C3.

We introduce products ∗1, ∗2 on C3 so that ψ1, ψ2 become isomorphisms
as real Lie groups, respectively. Hence we have

(a1, a2, a3) ∗1 (z1, z2, z3) = (z1 + a1, e
a1z2 + a2, e

−a1z3 + a3),(1)

(b1, b2, b3) ∗2 (ζ1, ζ2, ζ3) = (ζ1 + b1, e
b1ζ2 + b2, e

−b̄1ζ3 + b3),(2)

respectively, because

ψ2



eζ1 0 0 ζ2
0 e−ζ1 0 ζ̄3
0 0 1 ζ1
0 0 0 1


 = (ζ1, ζ2, ζ3).

Thus

ψ1 : R(G1) −→ (C3, ∗1), ψ2 : R(G1) −→ (C3, ∗2)
are isomorphisms as real Lie groups, respectively. Hence we have an
isomorphism

ψ2 ◦ ψ−1
1 : (C3, ∗1) −→ (C3, ∗2).

We can easily have that G1 = (C3, ∗1) and G3 = (C3, ∗2) by noting
equations (1), (2). Let us consider holomorphic coordinate neighbor-
hood systems S1 = {(R(G1), ψ1)}, S2 = {(R(G1), ψ2)} of R(G1). By
the above argument we have G1 = (R(G1),S1) and G3 = (R(G1),S2) as
complex manifolds. Thus, we have the following:

Theorem 4.1. (1) G1 and G3 are isomorphic as real Lie groups.
(2) The difference between G1 and G3 is how holomorphic coordi-

nate neighborhood systems on R(G1) are taken.
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Corollary 4.2. For each lattice in G3, there exists only one lattice in
G1, and vice versa.

We can directly construct lattices in G3 in Section 5. It is important
to reiterate that a variety of notations is useful. Whereas the notation
in the theorem above clarifies the sharing of the lattices, the notation
of G3 in Section 3 easily shows that the complex structure of G3 =
(R(G1),S2) is left-invariant.

Remark 4.3. From this theorem, we see that previous studies [14], [15]
of nilmanifolds serve as a fundamental framework for the study of solv-
manifolds.

Let N be a real nilpotent Lie group defined by

N =


1 z1 z3
0 1 z2
0 0 1

 zi ∈ C

 .

Consider the following two global complex coordinate systems of N :

φ1 :

1 z1 z3
0 1 z2
0 0 1

 7→ (z1, z2, z3) ∈ C3,

φ2 :

1 z1 z3
0 1 z2
0 0 1

 7→ (z̄1, z2, z3) ∈ C3.

Put S1 = {(N,φ1)}, S2 = {(N,φ2)}, and consider N1 = (N,S1)
and N2 = (N,S2). Then Γ\N1 and Γ\N2 are diffeomorphic as C∞-
manifolds. In the previous papers [14], [15], we consider non-degenerate
closed 2-forms and Hodge numbers to investigate differences between
Γ\N1 and Γ\N2 as complex manifolds.

The following results should also be noted; Let S
(+)
M = H× C/G(+)

M ,

S
(−)
M = H × C/G(−)

M be the simplest Inoue surfaces. Iku Nakamura
pointed out that these complex manifolds are not biholomorphic. Then

a diffeomorphism from S
(+)
M to S

(−)
M is induced by the diffeomorphism

of H× C defined by

(w, z) −→ (w, z̄).

See [5] for details.

5. Lattices and finite coverings

In this section, we investigate finite coverings over solvmanifolds
Γ\G3 and Γ\G2 by considering lattices.
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Because (
ez 0
0 e−z̄

)
= e

√
−1y

(
ex 0
0 e−x

)
and ω2 + ω + 1 = 0 (note that e

√
−1 2

3
π = ω), we have the following by

the natural manner:

Theorem 5.1. There exist following sequences of finite coverings:

(i) ΓP
2π,

√
−1
\G3

2-covering−→ ΓP
π,
√
−1
\G3

2-covering−→ ΓP
1
2
π,
√
−1
\G3,

(ii) ΓP
2π,ω\G3

3-covering−→ ΓP
2
3
π,ω

\G3
2-covering−→ ΓP

1
3
π,ω

\G3,

(iii) ΓP
2π,ω\G3

2-covering−→ ΓP
π,ω\G3

3-covering−→ ΓP
1
3
π,ω

\G3.

Because G1 and G3 are isomorphic as real Lie groups, each lattice
ΓP
kπ,τ in G3 induces a lattice Γ̃P

kπ,τ in G1 for each k, τ . Hence, we have
the following:

Corollary 5.2. There exist following sequences of finite coverings:

(i) Γ̃P
2π,

√
−1
\G1

2-covering−→ Γ̃P
π,
√
−1
\G1

2-covering−→ Γ̃P
1
2
π,
√
−1
\G1,

(ii) Γ̃P
2π,ω\G1

3-covering−→ Γ̃P
2
3
π,ω

\G1
2-covering−→ Γ̃P

1
3
π,ω

\G1,

(iii) Γ̃P
2π,ω\G1

2-covering−→ Γ̃P
π,ω\G1

3-covering−→ Γ̃P
1
3
π,ω

\G1.

We also have the following:

Lemma 5.3. There exists a sequence of double coverings

ΓP
2π,

√
−1\G2

2-covering−→ Lπ⋉φ2ZP [
√
−1]\G2

2-covering−→ L 1
2
π⋉φ2ZP [

√
−1]\G2.

Because L2π ⋉φ2 ZP [
√
−1] ∼= Lπ ⋉φ2 ZP [

√
−1], we have

L2π ⋉φ2 ZP [
√
−1]\G2

∼= Lπ ⋉φ2 ZP [
√
−1]\G2

as C∞ manifolds. In next section, we show that L2π ⋉φ2 ZP [
√
−1]\G2

and Lπ ⋉φ2 ZP [
√
−1]\G2 are not biholomorphic, although they are

diffeomorphic and have similar complex geometric properties.
We can consider that ΓP

kπ,τ\G3 is a modification of a hyperelliptic
manifold, that is, a finite covering of a complex torus. Indeed, as
a simple generalization of hyperelliptic surfaces, let us consider the
solvable Lie group defined by

G̃ =



e
√
−1Imz 0 0 w1

0 e
√
−1Imz 0 w2

0 0 1 z
0 0 0 1

 z, wi ∈ C

 = C⋉φ0 C2,
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and subgroups
Γ̃P
kπ,τ = Lkπ ⋉φ0 ZP [τ ],

where

φ0(z) =

(
e
√
−1Imz 0

0 e
√
−1Imz

)
.

Then each Γ̃P
kπ,τ\G̃ is a compact complex manifold of which a finite

covering is a complex torus. On the Lie group G3
∼= C⋉φ3 C2,

φ3(z) =

(
ez 0
0 e−z̄

)
=

(
ex 0
0 e−x

)(
e
√
−1Imz 0

0 e
√
−1Imz

)
.

Therefore, we can consider ΓP
kπ,τ\G3 as a modification of this hyperel-

liptic manifolds Γ̃P
kπ,τ\G̃ twisted by φ(x) =

(
ex 0
0 e−x

)
.

6. Non-degenerate 2-forms on Γ\G3 and Γ\G2

In this section, we consider non-degenerate 2-forms on Γ\G3 and
Γ\G2. By considering these 2-forms, we can discern differences between
Γ\G3 and Γ\G1 as complex manifolds.

Proposition 6.1 (cf. [12]). G3 has a left G3-invariant pseudo-Kähler
structure. In particular, for any lattice Γ in G3, Γ\G3 also has a
pseudo-Kähler structure.

Proof. By a straightforward computation, we have that

τ0 = dz, τ1 = e−zdw1, τ2 = ez̄dw2

consists of a basis of the set of the left G3-invariant (1, 0)-forms. Then,

ω =
√
−1τ0∧ τ̄0+τ1∧ τ̄2+ τ̄1∧τ2 =

√
−1dz∧dz̄+dw1∧dw̄2+dw̄1∧dw2

is a left G3-invariant pseudo-Kähler structure on G3. □
Proposition 6.2 (cf.[12]). ΓP

kπ,
√
−1
\G3 × T 1

C has a holomorphic sym-

plectic structure for k = 1, 2.

Proof. By a straightforward computation, we have that

ω0 = dz, ω1 = e−zdw1, ω2 = ezdw2, ω3 = dw3

consists of a basis of the set of the left G1 × C-invariant (1, 0)-forms,
where w3 is the canonical coordinate on the complex Lie group C.
Then,

Ω = ω0 ∧ ω3 + ω1 ∧ ω2 = dz ∧ dw3 + dw1 ∧ dw2

is a left G1-invariant holomorphic structure on G1. Thus, Ω induces a
holomorphic symplectic structure on ΓP

kπ,
√
−1
\G3×T 1

C = ΓP
kπ,

√
−1
\G1×

T 1
C (k = 1, 2). □
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Lemma 6.3 (cf.[12]). (1) G2 has a left G2-invariant pseudo-Kähler
structure. In particular, for any lattice Γ in G2, Γ\G2 has a
pseudo-Kähler structure.

(2) Γ\G2 ×T 1
C has a holomorphic symplectic structure for each lat-

tice Γ in G2.

Proof. By a straightforward computation, we have that

µ0 = dz, µ1 = e−
1
2
(z+z̄)dw1, µ2 = e

1
2
(z+z̄)dw2

consists of a basis of the set of the left G2-invariant (1, 0)-forms. Put
µ3 = dw3, where w3 is the canonical coordinate on the complex Lie
group C. Then,
ω =

√
−1µ0∧µ̄0+µ1∧µ̄2+µ̄1∧µ2 =

√
−1dz∧dz̄+dw1∧dw̄2+dw̄1∧dw2

is a left G2-invariant pseudo-Kähler structure on G2, and

Ω = µ0 ∧ µ3 + µ1 ∧ µ2 = dz ∧ dw3 + dw1 ∧ dw2

is a left G2 × C-invariant holomorphic structure on G2 × C. □
Remark 6.4. The construction method of lattices in G3 is based on the
construction when a hyperelliptic surface is thought of as a solvable
manifold. This construction of a pseudo-Kähler structure on Γ\G3 is
analogous to a Kähler structure on a hyperelliptic surface. Indeed, let
us consider the following solvable Lie group:

G =


e√−1Imz 0 w

0 1 z
0 0 1

 z, w ∈ C

 = C(z)⋉C(w).

Put

(i) Γkπ,
√
−1 = Lkπ ⋉ Z[

√
−1] (k = 1, 1

2
),

(ii) Γkπ,ω = Lkπ ⋉ Z[ω] (k = 2
3
, 1
3
),

where Z[τ ] = Z + Zτ (τ =
√
−1, ω). Then Γkπ,

√
−1\G and Γkπ,ω\G

are hyperelliptic surfaces. Because ω0 = dz, ω1 = e−
√
−1Imzdw are

left-invariant, a left-invariant (1, 1)-form

ω =
√
−1(ω0 ∧ ω̄0 + ω1 ∧ ω̄1) =

√
−1(dz ∧ dz̄ + dw ∧ dw̄)

induces a Kähler metric on Γ\G, where Γ is a lattice in G.

7. Canonical bundle of Γ\G3

In this section, we consider properties of Γ\G3.
LetM be a compact complex manifold of dimension n. Let gq(M) =

h0(M,Ωq
M), Pm(M) = h0(M, (Ωn

M)⊗m), where Ωq
M is the sheaf of germs

of holomorphic q-forms.
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Proposition 7.1. For a complex manifold ΓP
kπ,τ\G3, g1, g2, g3, Pm are

given by the following table:
g1 g2 g3 Pm

k = 1, 2, τ =
√
−1, ω 3 3 1 1

k = 1
2
, τ =

√
−1 2 1 0 0(m = 2s− 1), 1(m = 2s)

k = 1
3
, 2
3
, τ = ω 2 1 0 0(m = 3s− 1, 3s− 2), 1(m = 3s)

Proof. (The case of k = 1, 2, τ =
√
−1, ω)

Because ΓP
kπ,

√
−1
\G3, Γ

P
kπ,ω\G3 are complex parallelizable manifolds by

Lemma 3.3, we have our claim.

(The case of k = 1
2
, τ =

√
−1)

Let us consider a basis of the set of the left-invariant (1, 0)-forms on
G3 consisting of τ0 = dz, τ1 = e−zdw1, τ2 = ez̄dw2. Let ϖ : G3 −→
ΓP

1
2
π,
√
−1
\G3 be the natural projection. Let Ω be a holomorphic section

on KΓP
1
2π,

√
−1

\G3
. Then,

ϖ∗Ω = f(z, w1, w2)dz ∧ dw1 ∧ dw2 = f(z, w1, w2)e
z−z̄τ0 ∧ τ1 ∧ τ2,

where f(z, w1, w2) is a holomorphic function on G3
∼= C3. Because

ϖ∗Ω is left ΓP
1
2
π,
√
−1
-invariant, we see

f

(
z +

π

2

√
−1, w1, w2

)
e(z+

π
2

√
−1)−(z̄−π

2

√
−1) = f(z, w1, w2)e

z−z̄,

which implies f(z+ π
2

√
−1, w1, w2) = −f(z, w1, w2). Similarly, we have

f(z + t0, w1, w2) = f(z, w1, w2).

Thus, f(z, w1, w2) is a bounded holomorphic function with the variable
z. Hence, f(z, w1, w2) is a constant function with z. It is obvious that
f(z, w1, w2) is a bounded holomorphic function with variables w1, w2.
Hence, f(z, w1, w2) is a constant function. However,

ϖ∗Ω = cdz ∧ dw1 ∧ dw2 = cez−z̄τ0 ∧ τ1 ∧ τ2,
where c is constant, is not left ΓP

1
2
π,
√
−1
-invariant except in the case of

c = 0. Therefore, we see that P1 = 0. In addition, because

(dz ∧ dw1 ∧ dw2)
⊗2 = e2(z−z̄)(τ0 ∧ τ1 ∧ τ2)⊗2,

we have that P2 = 1.
Let α be a holomorphic 1-form on ΓP

1
2
π,
√
−1
\G3. Then,

ϖ∗α = f0dz + f1dw1 + f2dw2 = f0τ0 + f1e
zτ1 + f2e

−z̄τ2,

where f(z, w1, w2) is a holomorphic function on G3. Because ϖ∗α is
left ΓP

1
2
π,
√
−1
-invariant, we see that f0 and f1e

z are constant functions.
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Thus, f2dw2 = f2e
−z̄τ2 induces a holomorphic 1-form on ΓP

1
2
π,
√
−1
\G3.

Assume that f2dw2 = f2e
−z̄τ2 6= 0. Then, τ0 ∧ τ1 ∧ f2dw2 induces a

non-zero holomorphic 3-form on ΓP
1
2
π,
√
−1
\G3. It is a contradiction to

P1 = 0. Thus, g1 = 2.
Similarly, we see that if f01dz ∧ dw1 + f02dz ∧ dw2 + f12dw1 ∧ dw2 is

a left ΓP
1
2
π,
√
−1
-invariant holomorphic 2-form on G3, then f02dz ∧ dw2 +

f12dw1 ∧ dw2 is also left ΓP
1
2
π,
√
−1
-invariant. Consider a left ΓP

1
2
π,
√
−1
-

invariant form on G3 as a form on ΓP
1
2
π,
√
−1
\G3. Assume that there

exists a non-zero left ΓP
1
2
π,
√
−1
-invariant holomorphic 2-form β = f02dz∧

dw2 + f12dw1 ∧ dw2. Then, τ0 ∧ β or τ1 ∧ β is a non-zero holomorphic
3-form on ΓP

1
2
π,
√
−1
\G3. It is a contradiction to P1 = 0. Thus, g2 = 1.

(The case of k = 1
3
, 2
3
, τ = ω)

By the same argument as above, we have the table. □
Corollary 7.2. (1) For (k, τ) = (1

2
,
√
−1), (1

3
, ω), (2

3
, ω), ΓP

kπ,τ\G3

is not complex parallelizable.
(2) For (k, τ) = (1

2
,
√
−1), (1

3
, ω), (2

3
, ω), ΓP

kπ,τ\G3×T 1
C has no holo-

morphic symplectic structures.

Proof. Because a compact complex parallelizable manifold has the
trivial canonical bundle, and a holomorphic symplectic structure in-
duces a non-vanishing section on the canonical bundle, we have our
corollary. □

Recall that G1 and G3 are isomorphic as real Lie groups. Thus, we
have that each lattice ΓP

kπ,τ in G3 induces a lattice Γ̃P
kπ,τ in G1 for each

k, τ . Then, because G1 is a complex Lie group, we have g1(Γ̃
P
kπ,τ\G1) =

g2(Γ̃
P
kπ,τ\G1) = 3, g3(Γ̃

P
kπ,τ\G1) = 1, and Pm(Γ̃

P
kπ,τ\G1) = 1 for each

k, τ,m.

Remark 7.3. Salamon [8, Theorem 1.3 and pp.326] proved that the
canonical line bundle KΓ\N on a compact nilmanifold Γ\N with a left-
invariant complex structure is trivial as a holomorphic line bundle.
Thus, Pm(Γ\N) = 1 for each m.

8. Properties of Γ\G2

In this section, we consider properties of Γ\G2. Because

µ0 ∧ µ1 ∧ µ2 = dz ∧ dw1 ∧ dw2,

where µ0 = dz, µ1 = e−
1
2
(z+z̄)dw1, µ2 = e

1
2
(z+z̄)dw2, for each lattice Γ

in G2, the canonical bundle of Γ\G2 is trivial as a holomorphic line
bundle.
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Lemma 8.1. Let f be a holomorphic function on C which satisfies

f(z + t0) = f(z)e−t0 , f(z + 2π
√
−1) = f(z).

for some t0 ∈ R. Then, f(z) = ce−z, where c is constant. Similarly,
if a holomorphic function f on C satisfies f(z + t0) = f(z)et0 and
f(z + 2π

√
−1) = f(z), then f(z) = cez.

Proof. Let g(z) = e−z. Let us consider a holomorphic function F (z) =
f(z)
g(z)

on C. Then F (z) satisfies

F (z + t0) = F (z), F (z + 2π
√
−1) = F (z).

Because F is a double periodic holomorphic function, we have F (z) = c,
which implies f(z) = ce−z. □
As in the case of k = 1

2
, τ =

√
−1 we can prove the following:

Proposition 8.2. Let Γπ = Lπ ⋉φ2 ZP [
√
−1]. Then Γπ\G2 is not

complex parallelizable .

Proof. Let ϖ : G2 × C −→ Γπ\G2 × T 1
C be the natural projection.

Let T 1
C = L\C. Assume that Γπ\G2 is complex parallelizable . Then

the vector bundle Ω1(Γπ\G2 × T 1
C) consisting of all holomorphic 1-

forms at each point is trivial as a holomorphic vector bundle, because
Γπ\G2×T 1

C has a holomorphic symplectic structure by Lemma 6.3. Let
α be a holomorphic 1-form on Γπ\G2 × T 1

C. Then,

ϖ∗α =f0dz + f1dw1 + f2dw2 + f3dw3

=f0µ0 + f1e
1
2
(z+z̄)µ1 + f2e

− 1
2
(z+z̄)µ2 + f3µ3

where fj (j = 0, 1, 2, 3) are holomorphic functions on G2×C ∼= C4. Be-
cause fj (j = 0, 1, 2, 3) are holomorphic andϖ∗α is left Γπ×L-invariant,
we have that f0 and f3 are constant functions and fj(z, w1, w2, w3) =
fj(w1, w2) for j = 1, 2 as in proof of Proposition 7.1. Moreover, if
f(z +

√
−1π) = f(z), then f(z + 2π

√
−1) = f(z). Because

f1(z + t0)e
1
2
(z+t0+z+t0) = f1(z)e

1
2
(z+z̄),

f2(z + t0)e
− 1

2
(z+t0+z+t0) = f2(z)e

− 1
2
(z+z̄),

we have f1(z + t0)e
t0 = f1(z) and f2(z + t0)e

−t0 = f2(z). Hence, by
Lemma 8.1, we have

f1(z) = c1e
−z, f2(z) = c2e

z,

where cj (j = 1, 2) are constant. Thus, we have

ϖ∗α = c0µ0 + c1e
1
2
(z̄−z)µ1 + c2e

− 1
2
(z̄−z)µ2 + c3µ3
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However, because e
1
2
(z̄−z) and e−

1
2
(z̄−z) are not invariant by the trans-

lation of the vector
√
−1π, we have that ϖ∗α is not Γπ × L except in

the case of c1 = c2 = 0. It is a contradiction to that Ω1(Γπ\G2 × T 1
C)

is trivial as a holomorphic vector bundle. □
Similarly, we see that L 1

2
π ⋉φ2 ZP [

√
−1]\G2 is not complex paral-

lelizable.

9. Non-degenerate 2-forms on Γ\G1

In this section, we consider non-degenerate 2-forms on Γ\G1.
Let G be a complex Lie group and g its complex Lie algebra. Con-

sider g as a real Lie algebra with a complex structure J . Then, we
denote by g+ ⊂ gC the vector space of the

√
−1 eigenvectors of this

complex structure J . In the previous paper [12] we prove the following:

Proposition 9.1. Let (Γ\G, J, ω) be a compact complex paralleliz-
able pseudo-Kähler manifold, and g+ = span{X+

1 , . . . , X
+
n }. Let τ̄i =

i(X+
i )ω. Then, τ̄i is ∂̄-closed for each i, and τ̄1, · · · τ̄n are linearly inde-

pendent on C. In particular, for each X+ ∈ g+, i(X+)ω is not ∂̄-exact.

Proof. See the proof of Theorem 3.3 in [12]. □
Put

Γπ
2
= Lπ

2
⋉φ3 ZP [

√
−1], Γπ = Lπ ⋉φ3 ZP [

√
−1].

Then, Γπ
2
and Γπ are lattices in G3. Because G1 and G3 are isomorphic

as real Lie groups, Γ π
2
and Γπ induce lattices Γ̃π

2
and Γ̃π in G1. Because

ψ1 ◦ ψ−1
2 : G3 =(C3, ∗2) −→ (C3, ∗1) = G1,

(ζ1, ζ2, ζ3) 7→ (z1, z2, z3) = (ζ1, ζ2, ζ̄3)

is an isomorphism, Γ̃π
2
and Γ̃π can be written in the following forms:

Γ̃π
2
= Lπ

2
⋉φ1 L2, Γ̃π = Lπ ⋉φ1 L2.

Let p : Γ̃π\G1 −→ Γ̃π
2
\G1 be the natural two-covering, and ϖ : G1 −→

Γ̃π\G1 the natural projection. We consider a holomorphic transforma-
tion

τπ
2
: Γ̃π\G1 −→ Γ̃π\G1, [(z, w1, w2)] 7→ [(z +

π

2

√
−1, w1, w2)],

where [(z, w1, w2)] = ϖ(z, w1, w2). This map is well-defined, because

(z +
π

2

√
−1) +

√
−1kπ = (z +

√
−1kπ) +

π

2

√
−1.

Then we have the following
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Proposition 9.2. Γ̃π\G1 has a pseudo-Kähler structure, but Γ̃π
2
\G1

has no pseudo-Kähler structures.

Proof. Let ω0 = dz, ω1 = e−zdw1, ω2 = ezdw2 as in proof of Proposi-
tion 6.2. Then,

ω =
√
−1dz∧dz̄+dw1∧dw̄2+dw̄1∧dw2 =

√
−1ω0∧ω̄0+e

z−z̄ω1∧ω̄2+e
z̄−zω̄1∧ω2

is a pseudo-Kähler structure on Γ̃π\G1, because e
z−z̄ and ez̄−z are Γ̃π-

invariant.
Suppose that Γ̃π

2
\G1 has a pseudo-Kähler structure ω. Then, ω̃ =

p∗ω is a pseudo-Kähler structure on Γ̃π\G1. Then, we have

τ ∗π
2
ω̃ = τ ∗π

2
p∗ω = (p ◦ τπ

2
)∗ω = ω̃.

Note that

ω̄0 = dz̄, ezdw̄1 = ez̄−zω̄1, e
−zdw̄2 = ez−z̄ω̄2

are the representatives of a basis of H0,1

∂̄
(Γ̃π\G1),i.e., for each [τ ] ∈

H0,1

∂̄
(Γ̃π\G1), there exist c0, c1, c2 ∈ C such that

[τ ] = c0[ω̄0] + c1[e
z̄−zω̄1] + c2[e

z−z̄ω̄2].

Because i(W+)ω̃ = p∗(i(W+)ω) is not ∂̄-exact for each 0 6= W+ ∈ g+1
by Proposition 9.1, there exists a W+ ∈ g+1 which satisfies for (c1, c2) 6=
(0, 0)

[i(W+)ω̃] = c0[ω̄0] + c1[e
z̄−zω̄1] + c2[e

z−z̄ω̄2]

on H0,1

∂̄
(Γ̃π\G1). Then, i(W

+)ω̃ can be written as

i(W+)ω̃ = c0ω̄0 + c1e
z̄−zω̄1 + c2e

z−z̄ω̄2 + ∂̄f,

where f ∈ C∞(Γ̃π\G1). Because τ ∗π
2
p∗(i(W+)ω) = p∗(i(W+)ω), we

have

c0ω̄0 + c1e
z̄−zω̄1 + c2e

z−z̄ω̄2 + ∂̄f = c0ω̄0 − c1e
z̄−zω̄1 − c2e

z−z̄ω̄2 + ∂̄τ ∗π
2
f.

Thus,

2c1e
z̄−zω̄1 + 2c2e

z−z̄ω̄2 = ∂̄(τ ∗π
2
f − f).

Because τ ∗π
2
f, f ∈ C∞(Γ̃π\G1), the left-hand side is ∂̄-exact on Γ̃π\G1.

It is a contradiction to that {[ω̄0], [e
z̄−zω̄1], [e

z−z̄ω̄2]} is a basis ofH0,1

∂̄
(Γ̃π\G1).

Hence, Γ̃π
2
\G1 has no pseudo-Kähler structures. □
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10. General case

The argument so far is not limited to the solvable Lie group associ-
ated with the Nakamura manifold. The results presented in the preced-
ing sections can be readily generalized. To illustrate, let us consider the
following solvable Lie group with a left-invariant complex structure:

G1(h(3)) =




ez 0 w0e

z 0 0 w1

0 e−z 0 w0e
−z 0 w2

0 0 ez 0 0 w3

0 0 0 e−z 0 w4

0 0 0 0 1 z
0 0 0 0 0 1

 z, w0, w1, w2, w3, w4 ∈ C


By a straightforward computation, we have that

τ = dz, µ0 = dw0

µ1 = e−zdw1 − w0e
−zdw3, µ2 = ezdw2 − w0e

zdw4

µ3 = e−zdw3, µ4 = ezdw4

consists of a basis of the set of the left G1(h(3))-invariant (1, 0)-forms.
Let Z,W0,W1,W2,W3,W4 be the dual fields of these 1-forms. Then,
span{W0,W1,W3} and span{W0,W2,W4} are complex 3-dimensional
Heisenberg algebras. This led to the use of the symbol h(3) in G1(h(3))
in this paper. Then, we have the following:

Lemma 10.1 (cf.[3]). G1(h(3)) has lattices and a left G1(h(3))-invariant
holomorphic symplectic structure.

Proof. The holomorphic 2-form Ω defined by

Ω = τ ∧ µ0 + τ1 ∧ τ4 + τ2 ∧ τ3 = dz ∧ dw0 + dw1 ∧ dw4 + dw2 ∧ dw3

is a left G1(h(3))-invariant holomorphic symplectic structure. Let us
consider G1(h(3)) as a semi-direct product G1(h(3)) = C2(z, w0) ⋉ϕ

C4(w1, w2, w3, w4), where z, w0, w1, w2, w3, w4 mean complex coordinates
and

ϕ(z, w0) =


ez 0 w0e

z 0
0 e−z 0 w0e

−z

0 0 ez 0
0 0 0 e−z

 .

Let t0 ∈ R and P ∈ GL(2,R) as in Section 3. Then,

Γk = Lk ⋉ϕ

{(
Pµ1

Pµ2

)
µ1,µ2 ∈ (Z[

√
−1])2

}
,
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where

Lk =
{
(t0m+

√
−1kπn, µ0) m,n ∈ Z, µ0 ∈ Z[

√
−1]

}
,

for k = 1, 2, are lattices in G1(h(3)). □
Let us consider the following solvable Lie group with a left-invariant

complex structure

G3(h(3)) =




ez 0 w̄0e

z 0 0 w1

0 e−z̄ 0 w0e
−z̄ 0 w2

0 0 ez 0 0 w3

0 0 0 e−z̄ 0 w4

0 0 0 0 1 z
0 0 0 0 0 1

 z, w0, w1, w2, w3, w4 ∈ C


.

It is obvious that this complex structure is left-invariant from the form
of G3(h(3)). Let us consider the following global complex coordinate
of a real Lie group R(G1(h(3))) defined by

ψ :


ez 0 w0e

z 0 0 w1

0 e−z 0 w0e
−z 0 w2

0 0 ez 0 0 w3

0 0 0 e−z 0 w4

0 0 0 0 1 z
0 0 0 0 0 1

 7→ (z, w̄0, w1, w̄2, w3, w̄4) ∈ C6.

Put S = {R(G1(h(3))), ψ}. Then, G3(h(3)) = (R(G1(h(3))),S). Hence,
a left-invariant holomorphic symplectic structure Ω defined in Lemma 10.1
onG1(h(3)) induces a left-invariant pseudo-Kähler structure on G3(h(3)).
Indeed, a left-invariant 2-form

Ω+Ω̄ = dz∧dw0+dw1∧dw4+dw2∧dw3+dz̄∧dw̄0+dw̄1∧dw̄4+dw̄2∧dw̄3

onG1(h(3)) become a left-invariant pseudo-Kähler structure on G3(h(3))
by changing the global complex coordinates (cf. [15]). Then, we have
the following:

Proposition 10.2. (1) G1(h(3)) and G3(h(3)) are isomorphic as
real Lie groups. In particular, for each lattice in G1(h(3)), there
exists only one lattice in G3(h(3)), and vice versa.

(2) G3(h(3)) has a left G3(h(3))-invariant pseudo-Kähler structure.

Corollary 10.3. For each a lattice Γ in G1(h(3)), Γ\G1(h(3)) and
Γ\G3(h(3)) are diffeomorphic, but not biholomorphic.

Proof. Because the maximal nilpotent Lie subgroup of G1(h(3))
is not abelian, Γ\G1(h(3)) has no pseudo-Kähler structures for each
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lattice Γ in G1(h(3)) by Corollary 1.8 in [13]. On the other hand,
Γ\G3(h(3)) has a pseudo-Kähler structure. □

There exist several ways to take the conjugate(s) of the first complex
coordinate (see the table in [16, pp. 228]). For example, we can consider
the following solvable Lie group which is isomorphic to G1(h(3)) as real
Lie groups

G3(h(3))3 =




ez 0 w0e

z 0 0 w1

0 e−z̄ 0 w̄0e
−z̄ 0 w2

0 0 ez 0 0 w3

0 0 0 e−z̄ 0 w4

0 0 0 0 1 z
0 0 0 0 0 1

 z, w0, w1, w2, w3, w4 ∈ C


,

where the subscript 3 comes from a Weyl chamber C3 in the table of
this paper [16].

We can also consider the following solvable Lie group

G4(h(3)) =




ez 0 w0e

z 0 0 w1

0 e−z̄ 0 w0e
−z̄ 0 w2

0 0 ez 0 0 w3

0 0 0 e−z̄ 0 w4

0 0 0 0 1 z
0 0 0 0 0 1

 z, w0, w1, w2, w3, w4 ∈ C


.

Then, there exists lattices Γ1 and Γ2 such that Γ1\G1(h(3)) and Γ1\G4(h(3))
are biholomorphic, but Γ2\G1(h(3)) and Γ2\G4(h(3)) are not biholo-
morphic as in the case of G1 and G3. We also see that G4(h(3)) has
lattices which induces a sequence of finite coverings

Γ̃1\G4(h(3)) −→ Γ̃2\G4(h(3)) −→ Γ̃3\G4(h(3)),

where Γ̃1, Γ̃2, Γ̃3 are lattice in G4(h(3)) as in the case of G3.
As further examples, we can consider solvable Lie groups obtained

by turning the real variables into complex variables in examples in [11].

Remark 10.4. If there exists a semi-simple matrix A ∈ SL(n,Z) which
has positive eigenvalues α1, . . . , αn such that logαi

logα1
∈ Q for each i, then

we can consider what we have done in the previous sections. For an
explanation, it suffices to consider the case A ∈ SL(3,Z).

By this assumption, we can write α1 = ea1t0 , α2 = ea2t0 , α3 = ea3t0 ,
where a1, a2, a3 ∈ Z, and t0 ∈ R. Let P ∈ GL(3,R) be a matrix such
that

PAP−1 =

ea1t0 0 0
0 ea2t0 0
0 0 ea3t0

 .
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Then, we can consider the following solvable Lie group which is a gen-
eralization of G1:

G =




ea1z 0 0 0 w1

0 ea2z 0 0 w2

0 0 ea3z 0 w3

0 0 0 1 z
0 0 0 0 1

 z, w1, w2, w3 ∈ C

 .

Indeed, G1 corresponds to the case of n = 2, a1 = 1, a2 = −1.

Acknowledgments. The author would like to express his deep ap-
preciation to Professor Yusuke Sakane for valuable advice and encour-
agement during his preparation of this paper. The author thanks the
reviewer for useful comments. This work was supported by JSPS KAK-
ENHI Grant number 20K03586 and 24K06713.

References

[1] S. Console and A. Fino: Dolbeault cohomology of compact nilmanifolds, Trans-
form. Groups 6 (2001), 111–124.

[2] S. Console, A. Fino and H. Kasuya: On de Rham and Dolbeault cohomology of
solvmanifolds, Transform. Groups 21 (2016), 653–680.

[3] M. Fernández, M. de León and M. Saralegui: A six-dimensional compact sym-
plectic solvmanifold without Kähler structures, Osaka J. Math. 33 (1996), 19-
35.

[4] K. Hasegwa: A note on compact solvmanifolds with Kähler structures, Osaka
J. Math. 43 (2006), 131–135.

[5] M. Inoue: An example of an analytic surface, Sūgaku 27 (1975), 358–364 (in
Japanese).

[6] I. Nakamura: Complex parallelisable manifolds and their small deformations,
J. Differential Geom. 10 (1975), 85–112.

[7] M.S. Raghunathan: Discrete subgroups of Lie groups, Springer-Verlag, Berlin-
Heidelberg-New York, 1972.

[8] S.M. Salamon: Complex structures on nilpotent Lie algebras, J. Pure Appl.
Algebra 157 (2001), 311–333.

[9] H. Sawai and T. Yamada: Lattices on Benson-Gordon type solvable Lie groups,
Topology. Appl. 149 (2005), 85–95.

[10] H. C. Wang: Complex parallisable manifolds, Proc. Amer. Math. Soc. 5 (1954),
771–776.

[11] T. Yamada: Examples of compact Lefschetz solvmanifolds, Tokyo J. Math.25
(2002), 261–283.

[12] T. Yamada: A pseudo-Kähler structure on a nontoral compact non-toral com-
plex parallelizable solvmanifold, Geom. Dedicata 112 (2005), 115–122.

[13] T. Yamada: A structure theorem of compact complex parallelizable pseudo-
Kähler solvmanifolds, Osaka J. Math. 43 (2006), 923–933.

[14] T. Yamada: Duality of Hodge numbers of compact complex nilmanifolds, Com-
plex Manifolds 2 (2015), 168–177.



20

[15] T. Yamada: Complex structures and non-degenerate closed 2-forms of compact
real parallelizable nillmanifolds, Osaka J. Math. 54 (2017), 125–132.

[16] T. Yamada: Some relations between complex structures on compact nilmani-
folds and flag manifolds, Hiroshima Math. J. 51 (2021), 227–246.

Department of Mathematics
Shimane University
Nishikawatsu-cho 1060
Matsue, 690-8504, Japan

e-mail : t yamada@riko.shimane-u.ac.jp


