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Abstract

In this article, we deal with stochastic horizontal lifts and anti-developments of
semimartingales with jumps on complete and connected Riemannian manifolds. We
prove two one-to-one correspondences among some classes of discontinuous semi-
martingales on Riemannian manifolds, orthonormal frame bundles and Euclidean
spaces by using the stochastic differential geometry with jumps introduced by Cohen
(1996). Both of these two results are extension of the one shown in Pontier-Estrade
(1992). The first result is the correspondence in the case where jumps of semimartin-
gales are regarded as initial velocities of geodesics which are not necessarily minimal.
In the second result, we also established the correspondence in the situation where
jumps of semimartingales are given by connection rules, but we impose the condition
that the jumps of semimartingales are small. The latter result enables us to construct
martingales with small jumps for a given connection rule on any compact manifold
from local martingales on a Euclidean space through horizontal semimartingales on
orthonormal frame bundles.

1 Introduction and main theorems

A stochastic parallel displacement of a frame along a diffusion was defined in [10,18]. This
can be regarded as the horizontal lift of a diffusion on a manifold to a frame bundle. The
horizontal lift of a continuous semimartingale on a manifold to more general principal
bundles was considered in [24]. The horizontal lift of semimartingales is an extension of
that of smooth curves on manifolds. Moreover, by employing horizontal lifts, we can regard
continuous semimartingales on manifolds as developments of continuous semimartingales
on tangent spaces above initial values, which are called anti-developments. Then we can
describe those horizontal lifts as solutions of SDE’s on the frame bundle driven by the anti-
developments. This description was utilized in [3, 4] in the study of differential families of
continuous martingales on manifolds, which are naturally obtained from smooth harmonic
maps.
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Horizontal lifts and anti-developments of discontinuous semimartingales were also con-
sidered in [23], which dealt with discontinuous semimartingales on manifolds whose jumps
can be connected by unique minimal geodesics. The aim of this article is to extend the
result in [23] so that we can construct anti-developments of discontinuous semimartingales
in other situations.

To begin with, we recall an overview of the stochastic differential geometry for contin-
uous semimartingales on manifolds referring to [9, 14]. Throughout this paper, we always
assume that we are given a filtered probability space (Ω,F , {Ft}0≤t≤∞,P) and the usual
hypotheses for {Ft}0≤t≤∞ hold. A càdlàg process X valued in a manifold M is called an
M -valued semimartingale if f(X) is an R-valued semimartingale for all f ∈ C∞(M). To
begin with, let us recall basic facts about continuous semimartingales on manifolds. It is
known that for an M -valued continuous semimartingale X, we can define the Stratonovich
integral of 1-forms ϕ along X and the quadratic variation of 2-tensors ψ. They are denoted

by

∫
ϕ(X) ◦ dX and

∫
ψ(X) d[X,X ], respectively. Furthermore, given a torsion-free con-

nection on M , we can define the Itô integral of 1-form ϕ denoted by

∫
ϕ(X) dX and the

equation ∫
ϕ(X) ◦ dX =

∫
ϕ(X) dX +

1

2

∫
∇ϕ(X) d[X,X ]

holds. When we apply the stochastic analysis to semimartingales on manifolds, it is helpful
to consider lifts of semimartingales to fiber bundles on M . To see this, let (M, g) be a
Riemannian manifold and π : O(M) →M an orthonormal frame bundle, namely, we set

Ox(M) := {u : Rd → TxM | u is a linear isometric map},

O(M) :=
⊔
x∈M

Ox(M),

π : O(M) →M, π(u) = x, u ∈ Ox(M).

Let O(d) be an orthogonal group and o(d) its Lie algebra. Then O(d) acts on O(M) and
the action is defined by

ua := u ◦ a ∈ Ox(M), x ∈M, u ∈ Ox(M), a ∈ O(d).

We define a map Ra : O(M) → O(M) by

Rau := ua, u ∈ O(M)

for a ∈ O(d). An o(d)-valued 1-form θ ∈ Ω1(O(M); o(d)) is called a connection form on
O(M) if θ satisfies the following:

• For all X ∈ o(d), 〈θ,X ♯〉 = X ;

• for all a ∈ O(d), R∗
aθ = Ad(a−1) ◦ θ,
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where

X ♯(u) =

(
d

dt

)
t=0

u exp tX , u ∈ O(M), (1.1)

R∗
aθ is the pull-back of θ by Ra and Ad: O(d) → End(o(d)) is the adjoint representation.

For a connection form θ, set

Hu = {A ∈ TuO(M) | 〈θ,A〉 = 0}, u ∈ O(M). (1.2)

This is called the horizontal subspace of TuO(M). The restriction of π∗u to Hu denoted
by π∗|Hu : Hu → TπuM is a linear isomorphism for each u ∈ O(M) and for X ∈ TπuM , the
vector

X̃ := (π∗|Hu)
−1(X)

is called the horizontal lift of X. Connection forms on O(M) and connections on M admit
one-to-one correspondence through the relation

∇XY(πu) = u(X̃(π∗Y)(u)), X,Y ∈ X(M), u ∈ O(M),

where the map π∗Y : O(M) → Rd is defined by

π∗Y(u) := u−1Y(πu), u ∈ O(M).

A connection form on O(M) also determines the notion of horizontal semimartingales on
O(M), which enables us to describe every semimartingale on M through SDE’s. Indeed,
it is known that given an M -valued continuous semimartingale X, an O(M)-valued F0-
measurable random variable u0 such that πu0 = X0 and a connection ∇ on M , the O(M)-
valued continuous semimartingale U is uniquely determined which satisfies U0 = u0, πU =
X and ∫

θ ◦ dU = 0, (1.3)

where θ is the connection form θ corresponding to ∇. Furthermore, for an O(M)-valued
semimartingale U satisfying (1.3), the stochastic integral of the solder form s along U yields
a continuous semimartingale on a Euclidean space, which is called the anti-development of
U or of X := πU . Here the solder form s ∈ Ω1(O(M);Rd) is defined by

su(A) = u−1π∗A, u ∈ O(M), A ∈ TuO(M).

Conversely, we can construct an O(M)-valued semimartingale U satisfying (1.3) from a
continuous semimartingale W starting at 0 on Euclidean space. In fact, by the existence
and uniqueness of solutions of stochastic differential equations (SDE’s) on manifolds (e.g.
[14]), there exists an O(M)-valued continuous semimartingale U satisfying

F (Ut)− F (U0) =

∫ t

0

LkF (Us) ◦ dW k
s , F ∈ C∞(O(M))

where Lk (k = 1, . . . , d) are the canonical horizontal vector fields on O(M) defined by

Lk(u) = (π∗|Hu)
−1(uεk), (k = 1, . . . , d)

and we have used the Einstein summation convention. Furthermore, by projecting U onto
the base space M , we obtain a continuous semimartingale on M . In [14], we can find the
proof of the one-to-one correspondence using an embedding of the manifold.
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1.1 Discontinuous semimartingales on manifolds

The purpose of this article is to establish the discontinuous version of the one-to-one cor-
respondence mentioned above. However, stochastic analysis for discontinuous semimartin-
gales on manifolds is complicated since we need to deal with jumps of processes on non-flat
spaces. Thus in order to state our main results clearly, we recall some notions regarding
discontinuous semimartingales on manifolds and stochastic analysis for them beforehand.

First, we let M be a d-dimensional C∞ manifold. As mentioned above, càdlàg semi-
martingales on M can be defined without any other structures of M . However, in order
to consider the stochastic integral of 1-forms along X, we need the direction of jumps of
X which is supposed to be given by tangent vectors. In [22], maps from M ×M to TM
called connection rules are introduced and the Itô integral of 1-forms is defined through
connection rules. A connection rule can determine the direction of jumps on a manifold,
which is necessary for the definition of the stochastic integral.

Definition 1.1. A mapping γ : M ×M → TM is a connection rule if it is measurable,
C2 on a neighborhood of the diagonal set of M ×M , and if it satisfies, for all x, y ∈M ,

(i) γ(x, y) ∈ TxM ;

(ii) γ(x, x) = 0;

(iii) dγ(x, ·)x = idTxM .

Remark 1.2. Conditions (ii) and (iii) in Definition 1.1 are only relevant near the diagonal
set. Thus we can choose the values of connection rules γ arbitrarily outside the diagonal
set as long as γ is Borel measurable and satisfies condition (i).

Remark 1.3. As mentioned in [22], for each connection rule γ, there exists a unique
torsion-free connection ∇ such that

f(y)− f(x) = 〈df(x), γ(x, y)〉+ 1

2
∇df(x)(γ(x, y), γ(x, y)) + O(d(x, y)3) (y → x)

for all f ∈ C∞(M), where d is a distance compatible with the topology of M . Note that
the correspondence is not one-to-one. For two connection rules γ1 and γ2, they induce the
same connection ∇ if and only if

|γ1(x, y)− γ2(x, y)| = O(d(x, y)3) (y → x) (1.4)

for all x ∈M .

Given a connection rule γ, we can determine the direction of jumps of a semimartingale
X by γ(Xs−, Xs) as one option. Moreover, for a given M -valued semimartingale X and a
connection rule γ, we can define the stochastic integral of each TM -valued càdlàg process
ϕt with ϕt ∈ T ∗

Xt
M by the limit in probability of the sum

kn∑
i=1

〈ϕτni−1∧t, γ(Xτni−1∧t, Xτni ∧t)〉
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as n→ ∞, where τn0 < τn1 < · · · < τnkn be a certain random partition satisfying

lim
n→∞

max{|τni − τni−1| ; i = 1, . . . , kn} = 0

and
lim
n→∞

τnkn = ∞.

We denote the limit by ∫
ϕs− γdX.

More generally, TM ×M -valued processes called ∆-semimartingales have been introduced
in [22], which is a pair of a càdlàg semimartingale and “directions of jumps”.

Definition 1.4. Let Y = (∆X,X) be an adapted TM ×M-valued process. The process Y
is called a ∆-semimartingale if it satisfies the following:

(i) X is an M-valued semimartingale;

(ii) ∆Xs ∈ TXs−M for all s > 0;

(iii) ∆X0 ∈ TX0M, ∆X0 = 0;

(iv) for all connection rules γ and T ∗M-valued càdlàg processes ϕ,∑
0<s≤t

〈ϕs−,∆Xs − γ(Xs−, Xs)〉 <∞, for all t > 0. (1.5)

Remark 1.5. Although we denote the TM -valued part of a ∆-semimartingale by ∆X in
Definition 1.4, it is not uniquely determined solely by the M -valued part X. Indeed, for
a given M -valued semimartingale X and for any choice of a connection rule γ, the pair
(γ(X−, X), X) forms a ∆-semimartingale. Therefore, if we consider the case where we
are given a ∆-semimartingale (∆X,X), it implies that we consider a specific TM -valued
process ∆X which satisfies the conditions in Definition 1.4.

Remark 1.6. It is sufficient that condition (iv) in Definition 1.4 is satisfied for some
connection rule since all the connection rules have the same order near the diagonal set
by condition (iii) of Definition 1.1. Condition (1.5) means that the difference between the
TM -valued part ∆Xs and γ(Xs−, Xs) becomes small for s ∈ [0, t] with ∆Xs small, and
there are only a few s ∈ [0, t] where ∆Xs is large.

Let (∆X,X) be a ∆-semimartingale and ∇ a torsion-free connection. Then by Propo-
sition 3.5 of [22], we can define the Itô integral along (∆X,X) by∫ t

0

ϕs− dXs :=

∫ t

0

ϕs− γdXs +
∑
0<s≤t

〈ϕs−,∆Xs − γ(Xs−, Xs)〉,

where ϕ is a T ∗M -valued càdlàg process above X, i.e. ϕt ∈ TXtM , and γ is a connection
rule which induces ∇. In a similar way, for a ∆-semimartingale (∆X,X), the quadratic
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variation of a T ∗M ⊗ T ∗M -valued càdlàg process ψ above X is also defined and denoted

by

∫
ψs− d[X,X ]s. Discontinuous martingales on manifolds can be introduced based on

the Itô integral on manifolds.

Definition 1.7. Let M be a d-dimensional manifold with a torsion-free connection ∇,
and (∆X,X) an M-valued ∆-semimartingale. We call (∆X,X) a ∇-martingale if for all

T ∗M-valued càdlàg processes ϕ above X, the Itô integral

∫
ϕ− dX is a local martingale.

Note that the definition of martingales with jumps depends on the direction of jumps
∆X. If (γ(X−, X), X) is a ∇-martingale, we call X a γ-martingale.

Next we introduce the Stratonovich integral of 1-forms along ∆-semimartingales. The
definition below is an extension of that of [23].

Definition 1.8. Let∇ be a torsion-free connection and (∆X,X) anM-valued ∆-semimartingale.
For α ∈ Ω1(M), we define∫ t

0

α ◦ dX :=

∫ t

0

α(Xs−) dXs +
1

2

∫ t

0

(∇α)(Xs−) d[X,X ]cs.

This is called the Stratonovich integral of 1-form α along (∆X,X). We also denote the

integral by

∫ t

0

α(Xs) ◦ dXs.

Remark 1.9. As we will see in Proposition 2.4 in Subsection 2.1 below, the notion of the
Stratonovich integral introduced above does not depend on the choice of the torsion-free
connection ∇.

1.2 Main theorems

Again we let (M, g) be a Riemannian manifold. Throughout this article, for a smooth
vector field A on M , we denote by

ExptA : M →M, x 7→ ExpxtA

the one-parameter transformation generated by A. On the other hand, the exponential
map defined through geodesics on M is denoted by exp: TM →M . Let {εi} and {Xα} be
orthonormal bases on Rd and o(d) with respect to the standard inner product, respectively.
Then the connection form θ and the solder form s can be written as

θ = θαXα, s = skεk.

Note that the set of vector fields {Lk,X ♯
α}

k=1,...,d

α=1,...,
d(d−1)

2

is a basis of each tangent space on

O(M) and {sk, θα} is its dual basis. We define the Riemannian metric g̃ on O(M) by

g̃ :=

d(d−1)
2∑

α=1

θα ⊗ θα +
d∑

k=1

sk ⊗ sk (1.6)
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and denote the corresponding Levi-Civita connection by ∇̃. Fundamental properties of g̃
are given in Appendix. By employing the connection on the orthonormal frame bundle,
we can define the Itô integral of 1-forms and the quadratic variation of 2-tensors on O(M)
with respect to ∇̃. To state our results precisely, we introduce two more definitions.

Definition 1.10. (1) Let (∆U,U) be an O(M)-valued ∆-semimartingale. Then (∆U,U)
is said to be horizontal if ∫ t

0

θ(Us) ◦ dUs = 0

for all t ≥ 0.

(2) Let (∆U,U) be a horizontal ∆-semimartingale on O(M). The anti-development of
(∆U,U) is defined by

W =

∫
s(U) ◦ dU.

(3) Let (∆U,U) be an O(M)-valued horizontal ∆-semimartingale and (∆X,X) an M-
valued ∆-semimartingale. Then (∆U,U) will be called a horizontal lift of (∆X,X)
if

πU = X, π∗∆U = ∆X.

(4) Let W be an Rd-valued semimartingale W with W0 = 0 and U0 an F0-measurable
O(M)-valued random variable. Then by the existence and uniqueness of solutions of
SDE’s on manifold (see [6] or Example 2.9 of this article), there exists an O(M)-
valued semimartingale U such that for F ∈ C∞(O(M)),

F (Ut)− F (U0) =

∫ t

0

LkF (Us−) ◦ dW k
s

+
∑
0<s≤t

{F (ExpUs−∆W
k
s Lk(Us−))− F (Us−)− LkF (Us−)∆W

k
s }.

(1.7)

This process U is called a development of W .

In our first theorem below, we consider ∆-semimartingales satisfying

expXs− ∆Xs = Xs (1.8)

on (M, g). We also consider condition (1.8) for processes on (O(M), g̃).

Theorem 1.11. (1) Let W be an Rd-valued semimartingale with W0 = 0 and U a
development of W . Suppose that U does not explode in finite time. If we set
∆Us = ∆W k

s Lk(Us−), then (∆U,U) is a ∆-semimartingale satisfying (1.8) on O(M)
and it holds that ∫

θ(U−) ◦ dU =

∫
θ(U−) dU = 0,∫

s(U−) ◦ dU =

∫
s(U−) dU = W.

In particular, the anti-development of (∆U,U) is W .
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(2) Let (∆U,U) be a horizontal ∆-semimartingale satisfying (1.8) on O(M) and W the
anti-development of (∆U,U). Then the development of W equals to (∆U,U).

(3) Let (∆U,U) be a horizontal ∆-semimartingale satisfying (1.8) on O(M). Set X :=
πU , ∆X := π∗∆U . Then (∆X,X) is a ∆-semimartingale satisfying (1.8) on M .

(4) Let (∆X,X) be anM-valued ∆-semimartingale and u0 an OX0(M)-valued F0-measurable
random variable satisfying (1.8). Then there exists a unique horizontal lift (∆U,U)
of (∆X,X) with U0 = u0 satisfying (1.8). Furthermore, if we let (ε1, . . . , εd) be a
standard basis of Rd and (ε1, . . . , εd) its dual basis, then it holds that

W i
t =

∫ t

0

Us−ε
i dXs,

where Ut− : (Rd)∗ → T ∗
Xt−

M is defined by

〈Ut−a, v〉 = 〈a, U−1
t− v〉, a ∈ (Rd)∗, v ∈ T ∗

Xt−M,

and W is the anti-development of (∆U,U).

This result is a generalization of the result of [23]. In [23], this kind of result was shown
only in the case where jumps of semimartingales can be uniquely connected by minimal
geodesics, but our result includes some cases where this assumption is not satisfied. As
we will see later in Lemma 3.1, we can take a connection rule on any complete connected
Riemannian manifold which provides the initial velocities of geodesics between two points
even if minimal geodesics between two points are not uniquely determined. Thus we can
construct a horizontal lift of every càdlàg semimartingale and establish the one-to-one
correspondence for each chosen connection rule, which will be shown in Lemma 3.6.

Moreover, by replacing jumps with other geodesics, we can construct horizontal lifts
of semimartingales of which jumps are described by geodesics that are not necessarily
minimal. For example, let N be a Poisson process with intensity λ and X a semimartingale
on the unit circle S1 given by Xt = e

π
2
i(Nt−3λt). Then each jump of X can be connected

by the unique minimal geodesic ct(s) = Xt−e
π
2
is (s ∈ [0, 1]) and we can set the jump to

∆Xt = c′t(0) ∈ TXt−S1. On the other hand, we can also take a geodesic ĉt(s) = Xt−e
− 3

2
πis

(s ∈ [0, 1]) connecting Xt− and Xt and set ∆̂Xt := ĉ′t(0) ∈ TXt−S1. The anti-developments

of (∆X,X) and (∆̂X,X) are π
2
(Nt − 3λt) and 3

2
π(Nt − λt), respectively and in particular,

the latter one is a martingale. This kind of situation naturally happens if we consider
SDE’s on orthonormal frame bundles on general complete Riemannian manifolds which
are in the form of (1.7). Let W be a semimartingale on Rd with W0, U the solution of
the SDE (1.7) and X = π(U). In this case, it is natural that we set the jumps pf X
to ∆Xt := π∗(Lk(Ut−))∆W

k
t rather than velocities of minimal geodesics, especially when

W is a semimartingale with special properties such as a local martingale, a Lévy process,
etc. Moreover the horizontal lift and the anti-development are essentially unique for the
determined jumps and equal to U and W , respectively due to Theorem 1.11.

Our next result includes cases of ∆-semimartingales whose jumps are described by
connection rules which are not necessarily given by geodesics. For a connection rule γ on
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M , we consider a ∆-semimartingale given in the form of (γ(X−, X), X). The aim here is
to find an Rd-valued semimartingale Z satisfying the following two requisites:

(a) Itô integral of 1-forms on M along the semimartingale X with respect to the connec-
tion rule γ can be described by the stochastic integral on Rd along Z;

(b) the semimartingale Z can reconstruct X through the SDE.

The motivation of this aim is derived from the fact that the notion of discontinuous mar-
tingales depends on connection rules. For instance, in the recent studies [19, 20], it has
been shown that harmonic maps valued in Riemannian submanifolds of Euclidean spaces
with respect to non-local Dirichlet forms can be characterized through martingales with
respect to the connection rule which is not defined through the exponential map but the
embedding. Typical examples of these kinds of harmonic maps are fractional harmonic
maps introduced in [11,12], which are critical points of the fractional Dirichlet energy. Our
next result guarantees the one-to-one correspondence between ∆-semimartingales in the
form of (γ(X−X), X) on M with small jumps and Rd-valued semimartingales satisfying
conditions (a) and (b) above for any compact Riemannian manifold M and connection
rule M which induces the Levi-Civita connection. Thus our result might be instrumental
in the study of the probabilistic description of fractional harmonic maps and associated
martingales on manifolds. In Theorem 1.12 below, we denote geodesic balls on Rd, M and
TxM with radius r > 0 by Br(z), B

M
r (x) and BTxM

r (v), respectively, where z ∈ Rd, x ∈M
and v ∈ TxM .

Theorem 1.12. Let (M, g) be a compact Riemannian manifold and γ ∈ C∞(M×M ;TM)
a connection rule which induces the Levi-Civita connection. Then there exist δ0 = δ0(M, g, γ),
δ = δ(M, g, γ) > 0 and h ∈ C∞(O(M) × Bδ(0);Bδ0(0)) such that if we extend the map h
to a map on O(M)× Rd by setting 0 on O(M)× Bδ(0)

c, the following hold:

(1) Let Z be a semimartingale on Rd with

sup
0≤t<∞

|∆Zt| < δ, P-a.s. (1.9)

and u0 an F0-measurable O(M)-valued random variable. Then there exists a unique
U satisfying U0 = u0 and

F (Ut)− F (U0) =

∫ t

0

LkF (Us−) ◦ dZk
s

+
∑
0<s≤t

{F (ExpUs−(h
k(Us−,∆Zs)Lk))− F (Us−)− LkF (Us−)∆Z

k}

(1.10)

for all F ∈ C∞(O(M)) and the process X = π(U) satisfies∫
ϕ− γdX =

∫
〈U−1

− ϕ−,Lk(U−)〉 dZk (1.11)

for any T ∗M-valued càdlàg process ϕ above X.
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(2) Let X be an M-valued semimartingale satisfying

Xt ∈
(
γXt− |BM

δ0
(Xt−)

)−1 (
B

TXt−M

δ (0)
)

for all t ≥ 0, P-a.s.,

where γx := γ(x, ·) for x ∈ M . Then there exists a semimartingale Z on Rd

such that if U is an O(M)-valued semimartingale satisfying (1.10), then the pair
(hk(U−,∆Z)Lk(U−), U) is a horizontal lift of (U−h(U−,∆Z), X) and X satisfies
(1.11).

SDE (1.10) is different from (1.7) in that the map h constructed from the connection rule
γ appears in the jump part. The map h plays the role of replacing the jump ∆ZkLk(U−)
with hk(U−,∆Z)Lk(U−), which yields the desired relation (1.11). The precise construction
of δ0, δ and h appearing in Theorem 1.12 will be given in the proof. In the case where M
is a sphere, we can write them explicitly. See Example 3.12. In particular, by taking Z in
such a way that Z is a local martingale satisfying (1.9) in Theorem 1.12, we can construct
martingales on compact Riemannian manifolds with respect to an arbitrary connection
rule which induces the Levi-Civita connection from local martingales on Euclidean spaces.

Outline

We give an outline of the paper. First, we recall stochastic differential geometry with
jumps developed in [6, 7]. We give proofs of our main results in Section 3. We summarize
some facts and simple calculation regarding orthonormal frame bundles and Riemannian
metrics on them in Appendix.

2 Preliminaries

2.1 Stochastic integrals along discontinuous semimartingales on
manifolds

We have recalled some notions regarding stochastic analysis for discontinuous semimartin-
gales on manifolds in Subsection 1.1. In this subsection, we will recall some basic properties
of Stratonovich integral defined in Subsection 1.1. Throughout this subsection, we let M
be a C∞ manifold and fix a torsion-free connection ∇ on M .

Proposition 2.1. For any ∆-semimartingale (∆X,X), α ∈ Ω1(M) and f ∈ C∞(M),∫
fα ◦ dX =

∫
f(X) ◦ d

(∫
α ◦ dX

)
. (2.1)

In (2.1), the right-hand side is the Stratonovich integral of R-valued semimartingale

f(X) along R-valued semimartingale

∫
α ◦ dX; namely, for R-valued semimartingales Y

and Z, ∫
Y ◦ dZ :=

∫
Y− dZ +

1

2
[Y, Z]c.
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Proof. We begin with the left-hand side of (2.1):

∫ t

0

(fα)(Xs) ◦ dXs =

∫ t

0

fα(Xs−) dXs +
1

2

∫ t

0

∇(fα)(Xs−) d[X,X ]cs

=

∫ t

0

f(Xs−) d

(∫ s

0

α dX

)
+

1

2

∫ t

0

f(Xs−) d

(∫ s

0

(∇α)(X−) d[X,X ]c
)

+
1

2

∫ t

0

α⊗ df(Xs−) d[X,X ]cs,

where we have used stochastic calculus rules for the Ito integral from Proposition 3.5 (b)
and Proposition 3.6 (b) in [22]. On the other hand, by the straightforward calculation, the
right-hand side of (2.1) can be written down as

∫ t

0

f(Xs) ◦ d
(∫ s

0

α ◦ dX
)

=

∫ t

0

f(Xs−) d

(∫ s

0

α ◦ dX
)
+

1

2

[
f(X),

∫ ·

0

α ◦ dX
]c
t

=

∫ t

0

f(Xs−) d

(∫ s

0

α dX

)
+

1

2

∫ t

0

f(Xs−) d

(∫ s

0

∇α(X−) d[X,X ]c
)

+
1

2

[
f(X),

∫ ·

0

α dX

]c
t

.

Furthermore, by the claim below Proposition 3.6 in [22], we have

[
f(X),

∫ ·

0

α dX

]c
t

=

[∫ ·

0

df(X−) dX,

∫ ·

0

α dX

]c
t

=

∫ t

0

df ⊗ α(X−) d[X,X ]c.

Therefore we obtain ∫
fα ◦ dX =

∫
f(X) ◦ d

(∫
α ◦ dX

)
,

and this is precisely the assertion of the proposition.

Proposition 2.2. Let (∆X,X) be a ∆-semimaritngale. Then for α, β ∈ Ω1(M),

[∫
α(X) ◦ dX,

∫
β(X) ◦ dX

]
=

∫
α⊗ β(X−) d[X,X ].

11



Proof. By Definition 1.8 and the claim below Proposition 3.6 in [22], we have[∫
α(X) ◦ dX,

∫
β(X) ◦ dX

]
=

[∫
α(X−) dX +

1

2
∇α(X−) d[X,X ]c,∫

β(X−) dX +
1

2

∫
∇β(X−) d[X,X ]c

]
=

[∫
α(X−) dX,

∫
β(X−) dX

]
=

∫
α⊗ β(X−) d[X,X ].

This is our claim.

Since the stochastic integral along a ∆-semimartingale has a càdlàg modification, we
can consider the stochastic integral on a random interval.

Definition 2.3. Let S,T be stopping times with S < T and (∆X,X) a ∆-semimartingale.
For a T ∗M-valued càdlàg process ϕ above X, we define∫

(S,T ]

ϕs− dXs :=

∫ T

0

ϕs− dXs −
∫ S

0

ϕs− dXs,∫
{T}

ϕs− dXs := 〈ϕT−,∆XT 〉,∫
(S,T )

ϕs− dXs :=

∫
(S,T ]

ϕs− dXs −
∫
{T}

ϕs− dXs.

We define the quadratic variation and the Stratonovich integral on (S, T ], {T}, (S, T ) in
the same way.

Proposition 2.4. Let (∆X,X) be a ∆-semimartingale and (U ; x1, . . . , xd) a local coordi-
nate neighborhood. Let α ∈ Ω1(M) and b a 2-tensor field with

α = αidx
i, b = bijdx

i ⊗ dxj on U.

Let S, T be stopping times such that S < T and Xs ∈ U for s ∈ (S, T ). Then∫
(S,T )

α(Xs) ◦ dXs =

∫
(S,T )

αi(Xs) ◦ dX i
s +

∑
S<s<T

αi(Xs−)
(
ξis −∆X i

s

)
, (2.2)∫

(S,T )

b(Xs−) d[X,X ]s =

∫
(S,T )

bij(Xs−) d[X
i, Xj]s

+
∑

S<s<T

bij(Xs−)
(
ξisξ

j
s −∆X i

s,∆X
i
s

)
, (2.3)

where X i = xi(X), ∆X i
s = X i

s −X i
s− and ξis = 〈dxi(Xs−),∆Xs〉 on U . (Note that ∆X is

not equal to ∆X i ∂

∂xi
) In particular, the Stratonovich integral and the quadratic variation

of ∆-semimartingales are independent of the connection ∇.

12



Proof. We begin with the left-hand side of (2.2):∫
(S,T )

α(X) ◦ dX =

∫
(S,T )

αi(X−) d

(∫
dxidX

)
+

1

2

∫
(S,T )

(
∂αi

∂xj
− Γk

ijαk

)
(X−)d

(∫
dxi ⊗ dxj d[X,X ]c

)
,

where Γk
ij is the Christoffel symbol for the connection ∇. On the other hand,∫

(S,T )

αi(X) ◦ d
(∫

dxi ◦ dX
)

=

∫
(S,T )

αi(X) ◦ d
(∫

dxidX

)
+

1

2

∫
(S,T )

αi(X) ◦ d
(∫

∇dxid[X,X ]c
)

=

∫
(S,T )

αi(X−) d

(∫
dxi dX

)
+

1

2

∫
(S,T )

(
∂αk

∂xj
− Γi

jkαi

)
(X−) dx

j ⊗ dxk d[X,X ]c.

Therefore ∫
(S,T )

α(X) ◦ dX =

∫
(S,T )

αi(X) ◦ d
(∫

dxi ◦ dX
)
.

Thus we have∫
(S,T )

α(X) ◦ dX =

∫
(S,T )

αi(X) ◦ d

(
X i −X i

0 −
∑
0<s≤·

(X i
s −X i

s− − ξis)

)

=

∫
(S,T )

αi(X) ◦ dX i +
∑

S<s<T

αi(Xs−)
(
ξis −∆X i

s

)
.

(2.3) follows in the same way.

2.2 Second-order stochastic differential geometry with jumps

Next, we recall the theory of second-order stochastic differential geometry with jumps. In
[6,7], S. Cohen formulated the stochastic integral of order 2 along càdlàg semimartingales
valued in manifolds and the stochastic defferential equation. In this section we summarize
results on them. We refer to [1, 6, 7, 13]. Several works done in [6, 7] have also been
summarized in [17]. A linear map L : C2(M) → R is called a second-order differential
operator without constant at x ∈ M if for a local coordinate (xi) including x, there exist
aij ∈ R, bk ∈ R (i, j, k = 1, . . . , d) such that L is denoted by

Lf(x) =
d∑

i,j=1

aij
∂2f

∂xi∂xj
(x) +

d∑
k=1

bk
∂f

∂xk
(x), f ∈ C2(M).

This definition does not depend on local coordinates. Denote the vector space of all second-
order differential operators without constants at x ∈M by TxM . The space

TM =
⊔
x∈M

TxM
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is called the second-order tangent bundle on M . Let T∗
xM be the dual space of TxM for

each x ∈M . The space

T∗M =
⊔
x∈M

T∗
xM

is called the second-order cotangent bundle on M .

Definition 2.5. A Borel measurable function f : M → R is called a form of order 2
specified in x if f is twice differentiable at x and f(x) = 0. Define

△
T∗

xM := {f :M → R | f is a form of order 2 specified in x},
△
T∗M :=

⊔
x∈M

△
T∗

xM,

and Gx :
△
T∗

xM → T∗
xM by

Gxf(L) := Lf(x), f ∈
△
T∗

xM, L ∈ TM.

By Theorem 1 of [6], for an M -valued semimartingale X and a
△
T∗M -valued predictable

locally bounded process Θ above X, we can define the stochastic integral

∫
Θ

△
dX. Note

that the stochastic integral defined in Theorem 1 of [6] can recover the Itô integral with re-
spect to connection rules. Let γ be a connection rule onM , X anM -valued semimartingale
and ϕ a T ∗M -valued càdlàg process. We set(△

γXs−ϕs−

)
(y) = 〈ϕs−, γ(Xs−, y)〉, y ∈M. (2.4)

Then
△
γXs−ϕs− ∈

△
T∗

Xs−M and∫
△
γXs−ϕs−

△
dXs =

∫
ϕs− γdXs.

Next we recall the theory of SDE’s on manifolds with jumps formulated in [6, 7].

Definition 2.6. Let M and N be manifolds. Suppose that C is a closed submanifold of
M ×N such that the projection p1 from C to M is onto and a submersion. A measurable
map φ : C ×M → N is called a constraint coefficient from C ×M to N if

(i) for each (x, y) ∈ C, φ(x, y, x) = y,

(ii) φ is C3 in a neighborhood of {(z, p1(z))|z ∈ C},

(iii) for all x ∈M and z ∈ C, (x, φ(z, x)) ∈ C.

In the case C =M ×N , we refer to ϕ as just a coefficient of SDE’s.
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Definition 2.7. Let M and N be manifolds, C a closed submanifold of M × N , and
ϕ : C×M → N a constraint coefficient from C×M to N . Fix anM-valued semimartingale
X and an N-valued F0-measurable random variable y0 with (X0, y0) ∈ C. A pair of a
positive predictable stopping time η and an N-valued semimartingale Y on [0, η) is called
a solution of the SDE {

△
dY = ϕ(Y,

△
dX),

Y0 = y0,
(2.5)

if Y0 = y0, (X,Y ) ∈ C and for all
△
T∗N-valued locally bounded predictable processes Θ with

Θt ∈
△
T∗

YtN on [0, η), ∫
Θ

△
dY =

∫
ϕ∗Θ

△
dX,

where
ϕ∗Θt(z) := Θt(ϕ(Xt−, Yt−, z)).

Theorem 2 of [6] and Theorem 1 of [8] guarantee that equation (2.5) admits a unique
solution.

Remark 2.8. Let ι : M → Rd be an embedding. Then by Remark 7 and Proposition 4 of
[6], (Y, η) is a solution of the SDE (2.5) if and only if for any f ∈ C∞(N) and t < η,

f(Yt)− f(Y0) =

∫ t

0

∂f ◦ Φs

∂zi
(Xs−) dX

i
s +

1

2

∫ t

0

∂2f ◦ Φs

∂zi∂zj
(Xs−) d[X

i, Xj]cs

+
∑
0<s≤t

{
f(Φs(Xs))− f(Ys−)−

∂f ◦ Φs

∂zi
(Xs−)∆X

i
s

}
,

where Φt : Rd → N is an extension of ϕ(Xt−, Yt−, ·) to a function on Rd which is C2 at
z = Xt−, (z

1, . . . , zd) is the canonical coordinate on Rd and

ι(Xt) = (X1
t , . . . , X

d
t ).

Example 2.9. Let Ai (i = 1, . . . , r) be complete vector fields on M . We suppose that any
R-linear combination of {Ai}i=1,...,r is also complete. Let h : M × Rr → Rr be a function
which is C∞ on the neighborhood of M × {0} and

h(x, 0) = 0

for all x ∈M . Define ϕ : Rr ×M × Rr →M by

ϕ(z, x, w) := Expx

(
r∑

k=1

hk(x,w − z)Ak

)
,

where h(x, z) = (h1(x, z), . . . , hr(x, z)). Then ϕ is a coefficient of SDE’s. Let W be a
d-dimensional semimartingale with W0 = 0. Then the SDE

△
dX = ϕ(X,

△
dW ) (2.6)
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admits a unique solution (X, η). By Remark 2.8, this means that for all f ∈ C∞(M), X
satisfies that

f(Xt)− f(X0) =

∫ t

0

Akf(Xs−)
∂hks
∂wi

(Ws−) dW
i
s

+
1

2

∫ t

0

{
AkAlf(Xs−)

∂hks
∂wi

(Ws−)
∂hls
∂wj

(Ws−)

+Akf(Xs−)
∂2hks

∂wi∂wj
(Ws−)

}
d[W i,W j]cs

+
∑
0<s≤t

{
f(ExpXs−(h

k
s(Ws)Ak))− f(Xs−)−Akf(Xs−)

∂hks
∂wi

(Ws−)∆W
i
s

}
,

where
hkt (w) = hk(Xt−, w −Wt−).

Lemma 2.10 below states that we can describe the Stratonovich integral and the
quadratic variation along the solution of (2.6) by the integral along the driving semi-
martingale on a Euclidean space.

Lemma 2.10. Set ∆Xt := Ak(Xt−)h
k(Xt−,∆Wt) under the conditions stated in Exam-

ple 2.9. Suppose that (∆X,X) is a ∆-semimartingale and h satisfies

d0h(x, ·) = id: Rr → Rr

for all x ∈M , where the left-hand side is the derivative of the map h(x, ·) : Rr → Rr at the
origin. Then for α ∈ Ω1(M) and b ∈ Γ(T ∗M ⊗ T ∗M),∫

α(X) ◦ dX =

∫
〈α,Ak〉(X) ◦ dW k

+
1

2

∫
∂2hks

∂wi∂wj
(Ws−)〈α,Al〉 d[W k,W l]c

+
∑
0<s≤t

〈α(Xs−), R
k
sAk(Xs−)〉,∫

b(X) d[X,X ] =

∫
b(X−)(Ak(X−),Al(X−)) d[W

k,W l]

+
∑
0<s≤·

∆W k
s R

l
sb(Xs−)(Ak,Al)

+
∑
0<s≤·

Rk
s∆W

l
sb(Xs−)(Ak,Al)

+
∑
0<s≤·

Rk
sR

l
sb(Xs−)(Ak,Al),

where we set
Rk

t := hk(Xt−,∆Wt)−∆W i
t .
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Proof. To begin with, we take f ∈ C∞(M) and α = df . Then by Itô’s formula,

f(Xt)− f(X0) =

∫ t

0

df(X) ◦ dX +
∑
0<s≤t

{f(Xs)− f(Xs−)− 〈df(Xs−),∆Xs〉}

Note that

Ak(Xs−)
∂hks
∂wi

(Ws−) = Ai(Xs−).

by the assumption for h. Then in view of Example 2.9, we have∫ t

0

df(X) ◦ dX = f(Xt)− f(X0)−
∑
0<s≤t

{f(Xs)− f(Xs−)− 〈df(Xs−),∆Xs〉}

=

∫ t

0

Akf(Xs−)
∂hks
∂wi

(Ws−) dW
i
s

+
1

2

∫ t

0

{
AkAlf(Xs−)

∂hks
∂wi

(Ws−)
∂hls
∂wj

(Ws−)

+Akf(Xs−)
∂2hks

∂wi∂wj
(Ws−)

}
d[W i,W j]cs

+
∑
0<s≤t

〈df(Xs−),∆Xs −Ak(Xs−)
∂hkt
∂wk

(Ws−)∆W
i
s〉

=

∫ t

0

〈df,Ai〉(Xs−) dW
i
s +

1

2

∫ t

0

AiAjf(Xs−) d[W
i,W j]cs

+
1

2

∫ t

0

∂2hks
∂wi∂wj

(Ws−)〈df,Ak〉(Xs−) d[W
i,W j]cs

+
∑
0<s≤t

〈
df(Xs−), R

k
sAk(Xs−)

〉
.

Moreover, by substituting f to Aif in the equality in Example 2.9, we have∫ t

0

〈df,Ai〉(X) ◦ dW i
s =

∫ t

0

〈df,Ai〉(Xs−) dW
i
s +

1

2
[Aif(X),W j]cs

=

∫ t

0

〈df,Ai〉(Xs−) dW
i
s +

1

2

∫ t

0

AiAjf(Xs−) d[W
i,W j]cs.

Thus we have∫ t

0

df(X) ◦ dX =

∫ t

0

〈df,Ak〉(X) ◦ dW k
s

+
1

2

∫ t

0

∂2hks
∂wi∂wj

(Ws−)〈df,Ak〉(Xs−) d[W
i,W j]cs

+
∑
0<s≤t

〈
df(Xs−), R

k
sAk(Xs−)

〉
. (2.7)
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Next, we take another g ∈ C∞(M). Then by (2.7),∫
df ⊗ dg(X) d[X,X ] =

[∫
df(X) ◦ dX,

∫
dg(X) ◦ dX

]
=

∫
df ⊗ dg(Ak,Al)(X−) d[W

k,W l]

+
∑
0<s≤·

∆W k
s R

l
sdf ⊗ dg(Ak,Al)(Xs−)

+
∑
0<s≤·

Rk
s∆W

l
sdf ⊗ dg(Ak,Al)(Xs−)

+
∑
0<s≤·

Rk
sR

l
sdf ⊗ dg(Ak,Al)(Xs−). (2.8)

Thus we obtain the desired equality for α = df and b = df⊗dg. Without loss of generality,
we can suppose that M is isometrically embedded in a higher dimensional Euclidean space
by ι : M → Rd. Note that any α ∈ Ω1(M) and b ∈ Γ(T ∗M ⊗ T ∗M) can be expressed as

α = αidι
i, (2.9)

b = bijdι
i ⊗ dιj, (2.10)

where αi = 〈α,∇ιi〉, bij = b(∇ιi,∇ιj). These expressions yield the desired equality for
general α and b.

3 Proofs of Theorems 1.11 and 1.12

Let (M, g) be a complete and connected Riemannian manifold and O(M) an orthonormal
frame bundle on M . We use the notation defined in the previous sections. In this section,
we prove Theorems 1.11 and 1.12.

3.1 Proofs of Theorem 1.11 (1)–(3)

Proof of Theorem 1.11 (2). By Itô’s formula, the horizontal ∆-semimartingale (∆U,U)
satisfies

F (Ut)− F (U0) =

∫ t

0

dF (Us) ◦ dUs

+
∑
0<s≤t

{F (Us)− F (Us−)− 〈dF (Us−),∆Us〉}. (3.1)

Since dF can be written as dF = LkF s
k + X ♯

αFθ
α, by Proposition 2.1, equation (3.1)

becomes

F (Ut)− F (U0) =

∫ t

0

LkF (Us) ◦ dW k
s

+
∑
0<s≤t

{F (Us)− F (Us−)− LkF (Us−)∆W
k
s },
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where we usedW =

∫
s(U)◦dU , ∆W = 〈s(U−),∆U〉. This implies that U is the stochastic

development of W .

We denote by Cg the set of connection rules γ which satisfy the following: for all
x, y ∈ M , expx tγ(x, y), t ∈ [0, 1] is a minimal geodesic connecting x and y. If M is a
strongly convex Riemannian manifold, γ ∈ Cg can be written as

γ(x, y) = exp−1
x y. (3.2)

In general, as we will show in the Proposition 3.1 below, as long as we assume that (M, g)
is a complete connected Riemannian manifold, we can take a connection rule γ such that
γ(x, y) is an initial velocity of a minimal geodesic connecting x and y for all x, y ∈M even
though the cut locus is not empty. We use the notion ‖ · ‖ as the norm with respect to the
Riemannian metric.

Proposition 3.1. Let (M, g) be a complete and connected Riemannian manifold. Then
Cg 6= ∅.

Proof. Let πTM : TM → M be a canonical projection associated with the tangent bundle
and let

UM := {A ∈ TM | |A| = 1}.
Define t : UM → [0,∞] by

t(A) := sup{t ≥ 0 | d(πTMA, exp(tA)) = t},

where d is the Riemannian distance. Set

Dx := {tA ∈ TM | A ∈ UxM, t ∈ [0, t(u)]},

D :=
⊔
x∈M

Dx.

Then D is a closed subset of TM . Define F : TM →M ×M by

F (A) := (πTMA, exp(A)).

Then F is a continuous map because the solution of the geodesic equations depends con-
tinuously on the initial value. We further set

Φ(x, y) := {A ∈ TxM | expx A = y, ‖A‖ = d(x, y)}.

and
Φ−1(B) := {(x, y) | Φ(x, y) ∩ B 6= ∅}

for B ⊂ TM . Then for any compact set C ⊂ TM , we have

Φ−1(C) = F (C ∩D).

Since F is continuous, this is a compact subset in M ×M . In particular, Φ−1(C) is a Borel
subset. Therefore by measurable section theorem ([21], Theorem 5.2), there exists a map
γ : M ×M → TM such that γ(x, y) ∈ Φ(x, y) and γ−1(C) is a Borel set for any compact
subset C ⊂ TM . Then γ is Borel measurable. Moreover, since γ can be written in the
form of (3.2) whenever possible, it satisfies conditions (i)–(iii) in Definition 1.1.
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Lemma 3.2. Let (∆X,X) be a TM ×M-valued process satisfying (i), (ii), (iii) in Defi-
nition 1.4 and (1.8). We further assume that for every t > 0, ∆X satisfies∑

0<s≤t

|∆Xs|2 <∞ a.s.

Then for all γ ∈ Cg and t > 0, the number of s ∈ [0, t] with

∆Xs 6= γ(Xs−, Xs)

is finite almost surely. Furthermore, (∆X,X) is a ∆-semimartingale, namely, the process
∆X also satisfies (iv) in Definition 1.4.

Proof. Fix t ≥ 0, ω ∈ Ω, and a connection rule γ ∈ Cg. Let r : M → [0,∞] be the

injectivity radius. Then r is positive and continuous on M . Since the path X(ω, [0, t])

is compact, r admits the minimum value r0 on the set. Since
∑
0<s≤t

|∆Xs(ω)|2 < ∞, the

number of s ∈ [0, t] with |∆Xs(ω)| ≥ r0 is finite. For s with |∆Xs| < r0, we have
∆Xs(ω) = γ(Xs−(ω), Xs(ω)) since both of them are the initial velocity of the minimal
geodesic connecting Xs−(ω) and Xs(ω). Therefore the number of s ∈ [0, t] with ∆Xs(ω) 6=
γ(Xs−(ω), Xs(ω)) is finite. Furthermore, for all T ∗M -valued càdlàg processes ϕ above X,
condition (1.5) is satisfied and hence (∆X,X) is a ∆-semimartingale.

Proofs of Theorem 1.11 (1) and (3). By virtue of Theorem 1.11 (2), any horizontal ∆-
semimartingale (∆U,U) can be described as the development of the anti-development
W of (∆U,U). Thus we deal with (1) and (3) in Theorem 1.11 simultaneously. Since
ExpUs−∆W

k
s Lk = Us, ∆U is the initial velocity of the geodesic from Us− to Us with regard

to g̃ and ∆Xs is the initial velocity of the geodesic from Xs− to Xs. Since [W,W ]t(ω) <∞,∑
0<s≤t

|∆Ws(ω)|2 < ∞ for any fixed t ≥ 0. Hence it holds that
∑
0<s≤t

|∆Xs(ω)|2 < ∞ and∑
0<s≤t

|∆Us(ω)|2 <∞ because

|∆W | = |∆U | = |∆X|.

Therefore by Lemma 3.2, (∆X,X) is a ∆-semimartingale. This completes the proof of
Theorem 1.11 (3). By Lemma 2.10 and Proposition A.1 in Appendix,∫

θ(U) ◦ dU =

∫
〈θ,Lk〉 ◦ dW k = 0,∫

∇̃θ(U−) d[U,U ]
c =

∫
∇̃θ(Lk(U−),Ll(U−)) d[W

k,W l]c = 0.

Thus we obtain ∫
θ(U−) dU = 0.
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Similarly, it holds that∫
sk(U) ◦ dU =

∫
〈sk,Ll〉 ◦ dW l =

∫
δkl ◦ dW l = W k,∫

∇̃s(U−) d[U,U ]
c =

∫
∇̃s(Lk(U−),Ll(U−)) d[W

k,W l]c = 0.

Hence we obtain ∫
s(U−) dU = W.

This completes the proof of Theorem 1.11 (1).

3.2 Proof of Theorem 1.11 (4)

In this subsection, we divide the proof of Theorem 1.11 (4) into Theorems 3.7, 3.10, and
3.11. Let γ ∈ Cg. We set

C := {(x, u) ∈M ×O(M) | πu = x}

and define a map φ : C ×M → O(M) by

φ(x, u, y) := η̃x,y,u(1), x, y ∈M, u ∈ Ox(M), (3.3)

where ηx,y(t) is the geodesic on M with ηx,y(0) = x, η′x,y(0) = γ(x, y), and η̃x,y,u is a
horizontal lift of ηx,y whose initial value is u. Since γ is measurable on M × M and
differentiable on the diagonal set of M ×M , the map φ is a constraint coefficient of SDE’s.
We define DO(M), CO(M) ⊂ O(M)×O(M) by

DO(M) = {(u, v) ∈ O(M)×O(M) | u and v can be connected

by a unique minimal geodesic with respect to g̃},
CO(M) = O(M)×O(M)\DO(M).

Then every pair (u, v) of elements in O(M) can be classified into DO(M) and CO(M) in
terms of the proximity between u and v. We define the connection rule γ̃ on O(M) by

γ̃(u, v)

=

{
The initial velocity of minimal geodesic from u to v, (u, v) ∈ DO(M),

(π∗|Hu)
−1 γ(πu, πv), (u, v) ∈ CO(M),

where Hu is the horizontal subspace of TuO(M) defined by (1.2). We can easily check that
the map γ̃ is actually a connection rule on O(M). Indeed, the conditions (i), (ii), (iii) can
be easily checked since γ̃ is defined through the exponential map near the diagonal set of
O(M) × O(M) and the Borel-measurability of γ̃ on the whole O(M) × O(M) is derived
from the measurability of γ.

Remark 3.3. Even if u and v in O(M) can be connected by a horizontal geodesic, the
tangent vector γ̃(u, v) is not necessarily horizontal. However, if one of the minimal geodesics
between u and v is horizontal, then γ̃(u, v) is horizontal and it coincides the horizontal lift
of the initial velocity of a minimal geodesic connecting πu and πv.
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For later use, we start with three lemmas.

Lemma 3.4. For u, v ∈ O(M) and a ∈ O(d), it holds that

Ra∗γ̃(u, v) = γ̃(ua, va).

Proof. It holds that (u, v) ∈ DO(M) ⇔ (ua, va) ∈ DO(M) for u, v ∈ O(M) and a ∈ O(d) by
Proposition A.6 in Appendix. First let (u, v) ∈ DO(M) and set τ(t) = expu tγ̃(u, v). Then
Raτ(t) is a unique minimal geodesic from ua to va by Proposition A.6 in Appendix again.
Therefore

Ra∗γ̃(u, v) = Ra∗
dτ

dt
(0) =

d

dt
Raτ(0) = γ̃(ua, va).

Next we suppose (u, v) ∈ CO(M). Then γ̃(u, v) is the horizontal lift of γ(πu, πv) at u. Thus
Ra∗γ̃(u, v) is the horizontal lift of γ(πu, πv) at ua and equals γ̃(ua, va).

Lemma 3.5. Let (∆U,U) be an O(M)-valued ∆-semimartingale satisfying (1.8). Then
(∆U,U) is horizontal if and only if it holds that∫

θ(U−) dU = 0. (3.4)

Proof. By (1) and (3) of Theorem 1.11, if (∆U,U) is horizontal, then (3.4) holds. Con-
versely, suppose that (3.4) holds. For any stopping times S, T with S ≤ T , it holds that

∇̃θ(US)(γ̃(US, UT ), γ̃(US, UT )) = 0 (3.5)

by Proposition A.1 in Appendix. Similarly, it holds that for s ≥ 0,

∇̃θ(Us−)(γ̃(Us−, Us), γ̃(Us−, Us)) = 0,

∇̃θ(Us−)(∆Us,∆Us) = 0.
(3.6)

Equations (3.5) and (3.6) imply ∫
∇̃θ(U−) d[U,U ] = 0.

In particular, we have∫
θ(U) ◦ dU =

∫
θ(U−) dU +

1

2

∫
∇θ(U−) d[U,U ]

c = 0.

Therefore, (∆U,U) is horizontal.

Lemma 3.6. Let X be an M-valued semimartingale. Fix an F0-measurable O(M)-valued
random variable u0 such that u0 ∈ OX0(M). Let φ : C ×M → O(M) be a map defined in
(3.3). Let U be a semimartingale valued in O(M) solving the following SDE{

△
dU = φ(U,

△
dX),

U0 = u0.
(3.7)
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Then U does not explode in finite time with probability one and∫
θ ◦ γ̃dU =

∫
θ γ̃dU = 0. (3.8)

In particular, the ∆-semimrtingale (γ̃(U−, U), U) is a horizontal lift of (γ(X−, X), X).
Furthermore, it holds that ∫

s ◦ γ̃dU =

∫
s γ̃dU, (3.9)∫

sk(U−) γ̃dU =

∫
U−ε

k γdX, k = 1, . . . , d. (3.10)

Proof. Since the map φ satisfies

π(φ(x, u, y)) = y for x, y ∈M, u ∈ O(M)

and U is the solution of (3.7), it holds that

π(Ut) = Xt

by Remark 2.8. Moreover, it holds that

φ(Xt−, Ut− , Xt) = Ut.

This implies that Ut− is connected to Ut by the horizontal lift of expXt− tγ(Xt−, Xt), which
is one of the minimal geodesics on (O(M), g̃) between Ut− and Ut by Proposition A.3.
Therefore γ̃(Ut−, Ut) is horizontal by the definition of γ̃. Let ζ be an explosion time of U
and assume

P(ζ <∞) > 0.

Then for ω ∈ {ζ < ∞}, {Ut(ω)}0≤t<ζ(ω) is not relatively compact. On the other hand,
since X does not explode in finite time,

A(ω) := {Xt(ω) | 0 ≤ t ≤ ζ(ω)}

is relatively compact in M . Now it holds that {Ut(ω)}0≤t<ζ(ω) ⊂ π−1(A(ω)) and the right-
hand side is compact because O(d) is compact. This is a contradiction. Therefore ζ = ∞,

P-a.s. Next we will show the second claim. By taking a
△
TO(M)-valued càdlàg process

θUt−(γ̃(Ut−, ·)), we have∫
θ(U−) γ̃dU =

∫
θU−(γ̃(U−, ·))

△
dU

=

∫
θU−(γ̃(U−, ϕ(X−, U−, ·)))

△
dX

= 0.
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Therefore by Lemma 3.5, equation (3.8) holds and consequently, (γ̃(U−, U), U) is a hori-
zontal lift of (γ(X−, X), X). Therefore (3.9) can be obtained by Theorem 1.11 (1). Finally
we will show (3.10). We begin with the left-hand side of the claimed equation:∫

sk(U−) γ̃dU =

∫
π∗(U−ε

k) γ̃dU

=

∫
π∗(U−ε

k)(γ̃(U−, ·))
△
dU

=

∫
π∗(U−ε

k)(γ̃(U−, ϕ(X−, U−, ·)))
△
dX

=

∫
U−ε

k(γ(X−, ·))
△
dX

=

∫
(U−ε

k) γdX.

Therefore we obtain (3.10) and this completes the proof.

Now Lemma 3.6 guarantees the existence of horizontal lift of ∆-semimartingales of the
form (γ(X−, X), X) with γ ∈ Cg. Next we show the existence of the horizontal lift of
any ∆-semimartingale with (1.8) in Theorem 3.7 below. In the proof of Theorem 3.7, we
first take the horizontal lift (γ̃(Uγ

−, U
γ), Uγ) of (γ(X−, X), X) for some γ ∈ Cg and then

we construct a suitable O(d)-valued process at and set U = Uγa in order that the jumps
γ̃(Uγ

−, U
γ) are replaced into the horizontal lifts of ∆X.

Theorem 3.7. Let (∆X,X) be an M-valued ∆-semimartingale satisfying (1.8) and u0 an
OX0(M)-valued F0-measurable random variable. Then there exists a horizontal lift (∆U,U)
of (∆X,X) with U0 = u0 satisfying (1.8).

Proof. Fix a connection rule γ ∈ Cg. Let U
γ be the horizontal lift of (γ(X−, X), X). If an

O(M)-valued semimartingale U satisfies πU = X, there exists an O(d)-valued process as
such that U = Uγa. We will specify the process as. For each s ≥ 0, Set

c1s(t) := exp tγ(Xs−, Xs), t ∈ [0, 1],

c2s(t) := exp t∆Xs, t ∈ [0, 1],

(c1s)
−1(t) := c1s(1− t), t ∈ [0, 1],

and

c2s ·
(
c1s
)−1

=

{
(c1s)

−1(2t), t ∈ [0, 1
2
],

c2s(2t− 1), t ∈ [1
2
, 1].

Denote by ˜c2s · (c1s)
−1 the horizontal lift of c2s · (c1s)

−1
starting at Uγ

s . Then there exists a
unique element bs ∈ O(d) satisfying

˜c2s · (c1s)
−1(1) = Uγ

s bs. (3.11)
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Since bs equals the unit element e in O(d) for s ≥ 0 with γ(Xs−, Xs) = ∆Xs, bs equals
the unit element except for finite number of s ∈ [0, t] for fixed t ≥ 0 by Lemma 3.2.
Let 0 < T1 < T2 < · · · be a sequence of stopping times which exhausts the time s with
γ(Xs−, Xs) 6= ∆Xs. We define O(d)-valued processes δs, as as follows:

as = δs = e, s ∈ [0, T1),

δs =
(
aTi−1

)−1
bTi
aTi−1

, s ∈ [Ti, Ti+1),

as = aTi−1
δTi
, s ∈ [Ti, Ti+1).

(3.12)

Then at satisfies

at =
∏

0<s≤t

bt−s (3.13)

for each t. We set
Us := Uγ

s as,

and
∆Us := (the horizontal lift of ∆Xs at Us−).

Obviously we have πU = X and π∗∆U = ∆X. Let us prove that (∆U,U) is a ∆-
semimartingale satisfying (1.8). Denote the horizontal lift of ∆Xs at U

γ
s− by ∆U ′

s. Then

∆Us = Ras−∗∆U
′
s.

By the definition of bs, it holds that

expUγ
s−

∆U ′
s = Uγ

s−bs.

Therefore we obtain

expUs− ∆Us = expUs−as−

(
Ras−∗∆U

′
s

)
=
(
expUγ

s−
∆U ′

s

)
as−

= Uγ
s bsas−

= Uγ
s as

= Us.

At the second equality, we used Proposition A.3 (2) in Appendix and at the third equality,
we used (3.13). Thus (∆U,U) satisfies (1.8) and consequently it is a ∆-semimartingale by
Lemma 3.2. Next we prove that (∆U,U) is horizontal. It suffices to show that∫

θ(U−) dU = 0, (3.14)

by Lemma 3.5. For each i, it is obvious that

〈θ(UTi−),∆UTi
〉 = 0 (3.15)
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by the definition of ∆U . For r, s ∈ (Ti, Ti+1) with r < s, by Lemma 3.4,

〈θ(Ur), γ̃(Ur, Us)〉 = 〈θ(Uγ
r aTi

), γ̃(Uγ
r aTi

, Uγ
s aTi

)〉
= 〈θ(RaTi

Uγ
r ), RaTi∗γ̃(U

γ
r , U

γ
s )〉

= Ad(aTi
)〈θ(Uγ

r ), γ̃(U
γ
r , U

γ
s )〉.

Therefore it holds that∫
(Ti,Ti+1)

θ(Us−) dUs = Ad(aTi
)

∫
(Ti,Ti+1)

θ(Us) γ̃dUs = 0 (3.16)

for each i. Combining (3.15) and (3.16), we obtain (3.14). Therefore we can deduce that
(∆U,U) is a horizontal lift of (∆X,X).

Next we show the uniqueness of the horizontal lift. Let (∆U,U) be a horizontal lift of
(∆X,X) satisfying U0 = u0 and expUs− ∆Us = Us. Let γ ∈ Cg and denote the horizontal
lift of (γ(X−, X), X) with an initial value u0 by U

γ again. Then there exists an O(d)-valued
adapted process at satisfying U = Uγa and such at is unique since the action of O(d) to
each fiber of O(M) is free. Note that it holds that

∆Us = (the horizontal lift of ∆Xs at Us−)

by the definition of horizontal lifts. We will show that the process at equals the process
which has been constructed in the proof of Theorem 3.7. We denote Uγ by V to simplify
the notation.

Lemma 3.8. It holds that

as−(ω) 6= as(ω) ⇒ γ(Xs−(ω), Xs(ω)) 6= ∆Xs(ω)

for s ≥ 0, ω ∈ Ω.

Proof. If s and ω satisfy
γ(Xs−(ω), Xs(ω)) = ∆Xs(ω),

then each of ∆Us(ω) and ∆Vs(ω) is the horizontal lift of γ(Xs−(ω), Xs(ω)) at Us− and Vs−,
respectively. Therefore we have

exp t∆Us(ω) = (exp t∆Vs(ω)) as−(ω), t ∈ [0, 1]

by Proposition A.2 in Appendix. In particular, Us(ω) = Vs(ω)as−(ω). On the other hand,
the process as satisfies Us(ω) = Vs(ω)as(ω). Thus we can deduce as(ω) = as−(ω).

Combining Lemma 3.2 and Lemma 3.8, for any fixed t ≥ 0 and ω ∈ Ω, the number of
s ∈ [0, t] with as(ω) 6= as−(ω) is finite. Let T1 < T2 < · · · be a sequence of stopping times
which exhausts the jumps of at. Then we have ∆Us = γ̃(Us−, Us), s ∈ (Ti, Ti+1). Next we
will show that as is constant on each [Ti, Ti+1). This can be shown in the same way as
Theorem 3.2 in [23].
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Lemma 3.9. Suppose that j is the canonical 1-form, which is a 1-form on O(d) valued in
o(d) defined by

j(fA) = A, f ∈ O(d), A ∈ o(d).

Then it holds that ∫
(Ti,Ti+1)

j ◦ da = 0 (3.17)

and consequently, at is constant on (Ti, Ti+1) for each i.

Proof. Define Φ : O(M)×O(d) → O(M) and Φu : O(d) → O(M) by

Φ(u, g) = u · g,
Φu(g) = u · g.

for u ∈ O(M). Then
Ut = Φ(Vt, at).

Let (U ; uα) be a local coordinate of O(M). Suppose that V lives in the coordinate neigh-
borhood U on the random interval [σ, τ) ⊂ [Ti, Ti+1), where σ and τ are stopping times.
We denote V α = uα(V ), and Uα = uα(U) on [σ, τ). Let (ak) be a coordinate of O(d).
Then the connection form θ can be expressed as θ = θαdu

α with θα ∈ C∞(U ; o(d)). By
Itô’s formula, it holds that

Uα
t − Uα

σ =

∫
(σ,t]

{
∂Φα

∂uβ
(Vs−, as) ◦ dV β

s +
∂Φα

∂ak
(Vs−, as) ◦ daks

}
+
∑

σ<s≤t

{
Φα(Vs, as)− Φα(Vs−, as)−

∂Φα

∂uβ
(Vs−, as)∆V

β
s

}
for t ∈ (σ, τ). Therefore by Proposition 2.4,∫

(σ,t]

θ ◦ dU =

∫
(σ,t]

θα ◦ dUα +
∑

σ<s≤t

〈
θ,∆U −∆Uα ∂

∂uα

〉
=

∫
(σ,t]

θα

{
∂Φα

∂uβ
(Vs−, as) ◦ dV β

s +
∂Φα

∂ak
(Vs−, as) ◦ daks

}
+
∑

σ<s≤t

θα

{
Φα(Vs, as)− Φα(Vs−, as)−

∂Φα

∂uβ
(Vs−, as)∆V

β
s

}
+
∑

σ<s≤t

(〈θ,∆U〉 − θα∆U
α), (3.18)

Note that it holds that

θα
∂Φα

∂uβ
(u, a) = Ad(a−1)θβ(u),

θα
∂Φα

∂ak
(u, a) =

〈
d (Φ∗

uθ) ,
∂

∂ak

〉
=

〈
j,

∂

∂ak

〉
.
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In addition, it holds that

〈θ(Us−),∆Us〉 =〈θ(Vs−as), Ras∗∆Vs〉
=〈R∗

asθ(Vs−),∆Vs〉
=〈Ad(a−1

s )θ(Vs−),∆Vs〉.

Therefore (3.18) can be rewritten as∫
(σ,t]

θ ◦ dU

=

∫
(σ,t]

{
Ad(a−1)θβ(V ) ◦ dV β +

〈
j,

∂

∂ak

〉
(a) ◦ dak

}
+
∑

σ<s≤t

(
〈θ(Us−),∆Us〉 − Ad(a−1

s )θβ∆V
β
s

)
=

∫
(σ,t]

Ad(a−1) d

(∫
θβ(V ) ◦ dV β +

∑
0<s≤·

(
θβ(Vs−)〈duβ,∆Vs〉 − θβ(Vs−)∆V

β
s

))

+

∫
(σ,t]

j ◦ da

=

∫
(σ,t]

Ad(a−1) d

(∫
θ ◦ dV

)
+

∫
(σ,t]

j ◦ da,

where we applied Proposition 2.4 at the third equality. Therefore, we have∫
(σ,t]

j ◦ da = 0.

Thus (3.17) follows and this implies that as is constant on (Ti, Ti+1) for each i.

By Lemma 3.9, we obtain the following uniqueness result.

Theorem 3.10. Let (∆X,X) be a ∆-semimartingale satisfying (1.8). Then the horizontal
lift of (∆X,X) is uniquely determined.

Proof. Let (∆Ũ , Ũ) be an arbitrary horizontal lift of (∆X,X). We denote the horizontal
lift of (∆X,X) constructed in Theorem 3.7 by (∆U,U). Then it suffices to show that

Ũ = U . We fix γ ∈ Cg and let (γ̃(Uγ
−, U

γ), Uγ) be the horizontal lift of (γ(X−, X), X).

Then there exists a unique O(d)-valued process ã satisfying Ũ = Uγ ã. We show that ãt
equals the process at defined in (3.12). Let bt be an O(d)-valued process defined through

(3.11). Denote the horizontal lift of ∆Xs at U
γ
s by ∆̃Xs. Then for s ≥ 0,

Uγ
s ãs = Ũs

= expŨs−
∆Ũs

= expUγ
s−ãs−

(
Rãs−∗∆̃Xs

)
=
(
expUγ

s−
∆̃Xs

)
ãs−

= Uγ
s bsãs−,
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where we have applied (1.8) in the second equality and the fact that Rãs−∗∆̃Xs is the

horizontal lift of ∆X at Ũs− in the third equality. Let T1 < Ts < · · · be a sequence of
stopping times which exhausts the jumps of ã. Then by Lemma 3.9, ãt is constant on
(Ti, Ti+1) for each i. Therefore, it holds that

ãt =
∏

0≤s<t

bt−s, t ≥ 0,

which equals the one constructed in (3.12). Thus we have Ũ = U .

We end the proof of Theorem 1.11 (4) with the following theorem.

Theorem 3.11. Let (∆X,X) be a ∆-semimartingale satisfying (1.8) and (∆U,U) its
horizontal lift. Then it holds that

W i
t =

∫ t

0

Us−ε
i dXs,

where W is the anti-development of (∆U,U).

Proof. Fix γ ∈ Cg. Then U can be written as U = Uγa, where a is the O(d)-valued process
constructed in (3.12). Let 0 = T0 < T1 < · · · be a sequence of stopping times which
exhausts jumps of at. Then Since∫

(0,t]

Us−ε
i dX =

∞∑
m=1

∫
(Tm∧t,Tm+1∧t]

Us−ε
i dX,

it suffices to show ∫
(Tm∧t,Tm+1∧t)

Us−ε
i dX =

∫
(Tm∧t,Tm+1∧t)

si(Us−) dUs, (3.19)

〈UTm∧t−ε
i,∆XTm∧t〉 = 〈si(UTm∧t−),∆UTm∧t〉 (3.20)

for each m. Equation (3.20) can be easily obtained by the definition of the solder form.
Thus we will show (3.19). Set cij(s) = aji (s). Since at is constant and ∆X = γ(X−, X) on
(Tm, Tm+1) for each m, we have∫

(Tm∧t,Tm+1∧t)
Us−ε

i dXs =

∫
(Tm∧t,Tm+1∧t)

Us−ε
i γdXs

=

∫
(Tm∧t,Tm+1∧t)

(Uγ
s−a) ε

i γdXs

= cij

∫
(Tm∧t,Tm+1∧t)

Uγ
s−ε

j γdXs

= cij

∫
(Tm∧t,Tm+1∧t)

sj(Uγ
s−) γ̃dU

γ
s , (3.21)
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by (3.10), where we write cij = cij(Tm ∧ t), a = a(Tm ∧ t) to simplify the notation. Further-
more, for stopping times S, T with Ti < S ≤ T < Ti+1, it holds that

cij〈sj(U
γ
S ), γ̃(U

γ
S , U

γ
T )〉 =c

i
j〈sj(U

γ
S ), Ra−1∗Ra∗γ̃(U

γ
S , U

γ
T )〉

=〈si(US), γ̃(US, UT )〉

by Lemma 3.4. Therefore it holds that

cij

∫
(Tm∧t,Tm+1∧t)

sj(Uγ
s−) γ̃dU

γ
s =

∫
(Tm∧t,Tm+1∧t)

si(Us−) dUs. (3.22)

Combining (3.21) and (3.22), we obtain (3.19) and the assertion follows.

Combining Theorems 3.7, 3.10 and 3.11, we complete the proof of Theorem 1.11 (4).

3.3 Proof of Theorem 1.12

We end this section with the proof of Theorem 1.12 and its example. The idea of the proof
of Theorem 1.12 is to construct a coefficient of SDE from a given connection rule γ, which
was also considered in section 10.2 of [16]. In the proof of Theorem 1.12 below, we give a
concrete construction of the coefficient of SDE through the orthonormal frame bundle.

Proof of Theorem 1.12. Let γ be an arbitrary connection rule which induces Levi-Civita
connection. We divide the proof into several steps as follows.

• Step 1. We construct δ0 > 0 in such a way that for all x ∈ M , the map γ is a
diffeomorphism on BM

δ0
(x)× BM

δ0
(x) into its image.

• Step 2. We construct δ > 0 in such a way that for all x ∈M , it holds that(
γx|Bδ0

(x)

)−1 (
BTxM

δ (0)
)
⊂ BM

δ0
(x). (3.23)

• Step 3. We define h using δ0 and δ constructed in the previous steps.

• Step 4. We prove (1) of Theorem 1.12.

• Step 5. We prove (2) of Theorem 1.12.

Step 1. We fix γg ∈ Cg. By the assumption for γ and the compactness of M , there exists
a neighborhood U of the diagonal set diag(M) of M such that

|γ(x, y)− γg(x, y)| = O(d(x, y)3) (3.24)

on U . Moreover, it is well known that the derivative of the map TM 3 u 7→ (πTMu, expu) ∈
M ×M at the point 0 ∈ TxM equals[

idTxM idTxM

idTxM 0

]
.
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Thus by (3.24), for any x ∈M ,

γ∗(x,x) =

[
idTxM idTxM

0 −idTxM

]
.

Thus there exists r > 0 such that γ is a diffeomorphism on BM
r (x)×BM

r (x) into its image,
where BM

r (x) is the geodesic ball on M centered at x with radius r. Let

Rx := sup{r > 0 | γ is a diffeomorphism on BM
r (x)× BM

r (x) into its image}

We will show that the function x 7→ Rx is lower semi-continuous. Let {xn}n∈N be a
sequence converging to a point x ∈ M . Take ε ∈ (0, Rx). Then for any sufficiently large
n, BM

Rx−ε(xn) ⊂ BM
Rx
(x). Thus γ is a diffeomorphism on BM

Rx−ε(xn) × BM
Rx−ε(xn). This

means that Rx − ε ≤ Rxn . Since ε > 0 is taken arbitrarily, we have Rx ≤ lim inf
n→∞

Rxn and

this means that x 7→ Rx is lower semi-continuous. In particular, Rx attains its minimum
R0 > 0 on M . Let r0 be the injectivity radius of M . We set δ0 := R0 ∧ r0.

Step 2. Next, we set

δx := sup{δ > 0 | BTxM
δ (0) ⊂ γx(B

M
δ0
(x))},

Then the map x 7→ δx can also be shown to be lower semi-continuous as follows. Assume
that there exist a point x ∈M and a sequence {xn} such that

lim
n→∞

xn = x, lim inf
n→∞

δxn < δx.

By taking a proper subsequence, we suppose that lim
n→∞

δxn exists and satisfies lim
n→∞

δxn < δx.

Let ε ∈ (0, δx− lim
n→∞

δxn). Then there exists Nε ∈ N such that δxn ≤ δx− ε for any n ≥ Nε.

Then for each n, we take vn ∈ B
TxnM
δx− ε

2
(0) ∩ γxn(B

M
δ0
(xn))

c. We set

U qM := {v ∈ TM | |v| ≤ q}

for q > 0. Since U δx− ε
2M is compact, there exists a subsequence {nk}k∈N such that vnk

converges to v ∈ U δx−ε
x M with respect to a proper metric which is compatible to the

topology on TM . Since γx is a diffeomorphism on BM
δ0
(x), we can take ε′ > 0 such that

BTxM
δx− ε

2
(0) ⊂ γx(B

M
δ0−ε′(x)). This implies that γ(BM

δ0−ε′(x), B
M
δ0−ε′(x)) is an open neighbor-

hood of v in TM . Therefore, there exists K1 ∈ N such that vnk
∈ γ(BM

δ0−ε′(x), B
M
δ0−ε′(x))

for all k ≥ K1. On the other hand, there exists K2 ∈ N such that BM
δ0−ε′(x) ⊂ BM

δ0
(xnk

)
for all k ≥ K2. Thus for k ≥ K1 ∨ K2, vnk

∈ γxnk
(BM

δ0
(xnk

)). This contradicts to the
choice of vn. Therefore, we obtain the lower semi-continuity of δx and consequently, δx
also attains its minimum on M . Let δ := min

x∈M
δx > 0. Then γ satisfies (3.23) and γx is a

diffeomorphism on
(
γx|Bδ0

(x)

)−1 (
BTxM

δ (0)
)
.
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Step 3. The map expx is a diffeomorphism on exp−1
x

((
γx|Bδ0

(x)

)−1 (
BTxM

δ (0)
))

since this

set is included in BTxM
δ0

(0) and δ0 ≤ r0. Thus we can define

bx := γ(x, expx(·)) : exp−1
x

((
γx|Bδ0

(x)

)−1 (
BTxM

δ (0)
))

→ BTxM
δ (0)

and bx is a diffeomorphism. Define

a(u, z) := b−1
πu(uz)

for u ∈ O(M) and z ∈ Bδ(0). Then a satisfies

γ(πu, expπua(u, z)) = uz

for all u ∈ O(M) and z ∈ Bδ(0) and a(u, 0) = 0. Moreover, if we let h(u, z) = u−1a(u, z) ∈
Bδ0(0) for (u, z) ∈ O(M)× Bδ(0), then h is differentiable on O(M)× Bδ(0) and satisfies

d0h(u, ·) = idRd .

Next, we show that

∂2h(u, ·)
∂zi∂zj

(0) = 0 (3.25)

for any u ∈ O(M). Fix x ∈M and we write G1(y) := γ(x, y) and G2(y) := γg(x, y). Then
a = G2 ◦ G−1

1 on BTxM
δ (0). Let (ξ1, . . . , ξd) be a coordinate on TxM associated with an

orthonormal basis and (y1, . . . , yd) be a normal coordinate with yi(x) = 0 for i = 1, . . . , d.
Then we regard G1 and G2 as functions of (y1, . . . , yd). By Taylor’s theorem, we have

G1(y)−G2(y) =
1

2

(
∂2G1

∂yi∂yj
(0)− ∂2G1

∂yi∂yj
(0)

)
yiyj + o(|y|3)

for any y near x. Since both γ and γg induce Levi-Civita connection, this implies HessGi
1(0) =

HessGi
2(0) for each i = 1, . . . , d. Therefore, we have

∂2G2 ◦G−1
1

∂ξi∂ξj
(0) = 0.

This immediately yields (3.25).

Step 4. Proof of (1) of Theorem 1.12.
We set φ : Rd ×O(M)× Rd → O(M) by

φ(w, u, z) := Expu(h
k(u, z − w)Lk).

Then obviously, the map φ is a constraint coefficient from Rd × O(M) × Rd to O(M).
Therefore, for a given F0-measurable random variable U0 and a semimartingale Z, we
obtain the unique solution U of the SDE (1.10). We set

∆Ut := hk(Ut−,∆Zt)Lk(Ut−).
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Then (∆U,U) is a horizontal ∆-semimartingale on O(M). In fact, by Lemma 2.10 and
(3.25), we have ∫

θ(U) ◦ dU =

∫
〈θ,Lk〉(U−) ◦ dZk +

∑
0<s≤·

Rk
s〈θ,Lk〉(Us−)

= 0,

where
Rk

t := hk(Ut−,∆Zt)−∆Zk
t .

Let X = πU and ∆X = π∗∆U . Then the pair (∆X,X) is a ∆-semimartingale satisfying
(1.8) and

γ(Xt−, Xt) = γ(πUt−, expπUt−h
k(Ut−,∆Zt)Ut−εk)

= γ(πUt−, expπUt−a(Ut−,∆Zt))

= Ut−∆Zt.

We set
Wt := Zt +

∑
0<s≤t

U−1
s− (γg(Xs−, Xs)− γ(Xs−, Xs)).

Then ∆Wt = U−1
t γg(Xt−, Xt) and it satisfies

expXt− Ut−∆Wt = Xt = expXt− a(Ut−,∆Zt).

Thus we have
Ut−∆Wt = a(Ut−,∆Zt).

Therefore, for all F ∈ C∞(O(M)), it holds that

F (Ut)− F (U0) =

∫ t

0

LkF (Us−) ◦ dZk
s

+
∑
0<s≤t

{F (ExpUs−(h
k(Us−,∆Zs)Lk))− F (Us−)− LkF (Us−)∆Z

k}

=

∫ t

0

LkF (Us−) ◦ dW k
s

+
∑
0<s≤t

{F (ExpUs−(∆W
k
t Lk))− F (Us−)− LkF (Us−)∆W

k}.

This implies that W is an anti-development of (∆X,X) with respect to the horizontal lift
(∆U,U). Therefore, we have∫

ϕ− γdX =

∫
ϕ− γ

gdX +
∑
0<s≤·

〈ϕs−, γ(Xs−, Xs)− γg(Xs−, Xs)〉

=

∫
〈U−1

− ϕ−, dW 〉+
∑
0<s≤·

〈U−1
s−ϕs−,∆Zs −∆Ws〉

=

∫
〈U−1

− ϕ−, dZ〉

33



for any T ∗M -valued càdlàg process ϕ above X.

Step 5. Proof of (2) of Theorem 1.12.
Let X be an M -valued semimartingale satisfying

Xt ∈
(
γXt− |BM

δ0
(Xt−)

)−1 (
B

TXt−M

δ (0)
)

for all t ≥ 0, P-a.s.

LetW be an anti-development of (γg(X−, X), X) and V a horizontal lift of (γg(X−, X), X)
with an initial value U0. We set

Zt := Wt +
∑
0<s≤·

V −1
s− (γ(Xs−, Xs)− γg(Xs−, Xs)).

Then by the assumption for X,

|∆Wt| = |γg(Xt−, Xt) < δ0,

|∆Zt| = |γ(Xt−, Xt)| < δ.

Thus we have

γ(Xs−, expXs− a(Vs−,∆Zs)) = Vs−∆Zs

= γ(Xs−, Xs)

= γ(Xs−, expXs− Vs−∆Ws)

and consequently,
a(Vs−,∆Zs) = Vs−∆Ws.

Therefore, V satisfies

F (Vt)− F (V0) =

∫ t

0

LkF (Vs−) ◦ dW k
s

+
∑
0<s≤t

{F (ExpVs−(∆W
k
s Lk))− F (Vs−)− LkF (Vs−)∆W

k
s }

=

∫ t

0

LkF (Vs−) ◦ dZk
s

+
∑
0<s≤t

{F (ExpVs−(h
k(Vs−,∆Zs)Lk))− F (Vs−)− LkF (Vs−)∆Z

k
s }

for all F ∈ C∞(O(M)). This implies that V solves (1.10) and we have V = U by the
uniqueness of the solution of the SDE. Therefore, (hk(U−,∆Z)L(U−), U) is the horizontal
lift of X with the initial value U0. In particular, the semimartingale (U−h(U−,∆Z), X
satisfies (1.11) by the claim of (1).

Example 3.12. We consider the case

M = Sd := {(x1, . . . , xd+1) ∈ Rd+1 | (x1)2 + · · ·+ (xd+1)2 = 1}.
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Let γ be a connection rule on Sd given by

γ(x, y) := Πx(y − x),

where Πx : Rd+1 → TxSd is the orthonormal projection. Let g be the Riemannian metric
on Sd associated with the embedding into Rd+1 and fix γg ∈ Cg. Then it holds that

γ(x, y) =
sin d(x, y)

d(x, y)
γg(x, y).

Therefore, we can easily check that δ0 =
π
2
, δ = 1 and

a(u, z) =
arcsin |z|

|z|
uz.

We define f : [0, 1] → R by

f(t) =

{
arcsin t−t

t
, t 6= 0,

0, t = 0.

Then for a local martingale Z on Rd with Z0 and sup
0≤t<∞

|∆Zt| < 1, if we set

W = Z +
∑
0<s≤·

f(|∆Zs|)∆Zs,

the development of W is an Sd-valued γ-martingale.

A Appendix: Riemannian metric on O(M)

We summarize some notions regarding the Riemannian metric on orthonormal frame bun-
dles defined by (1.6). Fundamental properties of orthonormal frame bundles mentioned in
this appendix are based on [15]. Let (M, g) be a Riemannian manifold and π : O(M) →M
the orthonormal frame bundle on M .

Let g̃ be a Riemannian metric g̃ on O(M) defined by (1.6). We denote the Levi-Civita
connection on TO(M) corresponding to g̃ by ∇̃. The Riemannian metric g̃, the Levi-Civita
connection ∇̃ and geodesics on O(M) have been considered in [23]. Covariant derivatives
with respect to connections on soldered principal fiber bundles have been calculated in
[5] under a more general situation. We can write covariant derivatives of vector fields
{Lk,X ♯

α}
k=1,...,d

α=1,...,
d(d−1)

2

as

∇̃Lj =
∑
β

ωβ
j X ♯

β +
∑
i

ωi
j Li,

∇̃X ♯
α =

∑
β

ωβ
α X ♯

β +
∑
i

ωi
α Li,
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where ωα
β , ω

α
j , ω

i
j are 1-forms on O(M) defined by

ωα
β = 〈θα, ∇̃X ♯

β〉,
ωα
i = 〈θα, ∇̃Li〉,
ωi
α = 〈si, ∇̃X ♯

α〉,
ωi
j = 〈si, ∇̃Lj〉.

Here, note that we divide the global frame on the tangent bundle TO(M) into two groups;
{Li}i=1,...,d and {X ♯

α}α=1,...,
d(d−1)

2

. That is why we distinguish the Greek index α, β, γ, . . .

and the Latin index i, j, k, . . . accordingly. Since ∇̃ is torsion-free, it holds that

ωα
j = −ωj

α.

By setting

ωα
βγ = 〈θα, ∇̃X ♯

γ
X ♯

β〉, ω
α
βk = 〈θα, ∇̃Lk

X ♯
β〉,

ωα
jγ = 〈θα, ∇̃X ♯

γ
Lj〉, ωα

jk = 〈θα, ∇̃Lk
Lj〉,

ωi
jγ = 〈si, ∇̃X ♯

γ
Lj〉, ωi

jk = 〈si, ∇̃Lk
Lj〉,

we can write

ωα
β =

∑
γ

ωα
βγ θ

γ +
∑
k

ωα
βk sk,

ωα
j =

∑
γ

ωα
jγ θ

γ +
∑
k

ωα
jk sk,

ωi
j =

∑
γ

ωi
jγ θ

γ +
∑
k

ωi
jk sk.

In view of calculations in [5, p. 897], it holds that

ωα
β =

1

2

∑
γ

cαβγ θ
γ,

ωα
j = −1

2

∑
k

Ωα
jk sk,

ωi
j =

∑
γ

{
(X ♯

γ)
ij − 1

2
Ωγ

ij

}
θγ, (A.1)

where the coefficients

cγαβ, α, β, γ = 1, . . . ,
d(d− 1)

2

are the structure constants with respect to an orthonormal basis {Xα}α=1,...,
d(d−1)

2

of o(d)

defined through
[Xα,Xβ]o(d) = cγαβ Xγ,
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and

Ωα
ij, i, j = 1, . . . , d, α = 1, . . . ,

d(d− 1)

2

are the components of the curvature form Ωθ defined through

Ωθ =dθ +
1

2
[θ, θ]

=
1

2

∑
i,j,α

Ωα
ij X ♯

α si ∧ sj (Ωα
ij = −Ωα

ji).

Since the standard inner product of o(d) is O(d)-invariant, {cγαβ} is totally anti-symmetric
in α, β, γ. The following Propositions A.1 and A.2 can be easily obtained by (A.1) above.

Proposition A.1. For any u ∈ O(M) and A ∈ TuO(M), it holds that

∇̃θ(A,A) = 0.

Furthermore, if A is horizontal, then

∇̃s(A,A) = 0.

Proof. Any tangent vector A can be denoted by

A = aiLi(u) + bαX♯
α, a

i, bα ∈ R, i = 1, . . . , d, α = 1, . . . ,
d(d− 1)

2
.

Therefore we can write

∇̃θα(A,A) =akal(∇̃θα)(Lk,Ll) + akbγ∇̃θα(Lk,X ♯
γ)

+ bβal∇̃θα(X ♯
β,Ll) + bβbγ(∇̃θα)(X ♯

β,X
♯
γ).

By using (A.1), it holds that

akal(∇̃θα)(Lk,Ll) = akal〈ωα
l ,Lk〉 =

akal

2
Ωα

lk,

∇̃θα(Lk,X ♯
γ) = −〈ωα

γ ,Lk〉 = 0,

∇̃θα(X ♯
β,Ll) = −〈ωα

l ,X
♯
β〉 = 0,

bβbγ(∇̃θα)(X ♯
β,X

♯
γ) = bβbγ〈ωα

γ ,X
♯
β〉 = −bβbγcαβγ .

Since Ωα
lk = −Ωα

kl, we obtain
akal(∇̃θα)(Lk,Ll) = 0.

Similarly, we obtain
bβbγ(∇̃θα)(X ♯

β,X
♯
γ) = 0.

Therefore we deduce ∇̃θ(A,A) = 0. Next suppose A is horizontal. Then we obtain

∇̃sj(A,A) =akal∇̃sj(Lk,Ll) = −akal〈ωj
l Lk〉 = 0.

This proves the proposition.
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Proposition A.2. (1) Integral curves of the horizontal vector field akLk for ak ∈ Rk, k =
1, . . . , d, are geodesics with respect to ∇̃.

(2) Integral curves of the vertical vector field bαX ♯
α for bα ∈ Rd, α = 1, . . . , d(d−1)

2
, are

geodesics with respect to ∇̃.

Proof. Let u(t) be a curve on O(M) satisfying

du

dt
(t) = akLk(u(t)).

Then it holds that

∇̃ d
dt

du

dt
= akal(∇̃Ll

Lk)(u(t))

= akal(ωα
klX ♯

α)

= −1

2
(akalΩα

kl)X ♯
α

= 0

by the relation Ωα
kl = −Ωα

lk. Next let us denote the integral curve of bαX ♯
α by v(t). Then

∇̃ d
dt

dv

dt
= bβbγ(∇̃X ♯

β
X ♯

γ)(v(t))

=
bβbγ

2
cλβγ X ♯

λ(v(t))

= 0.

This completes the proof.

The next proposition proved in [23] provides the relation between geodesics on O(M)
and those on M .

Proposition A.3 ([23], Proposition 1.9). (1) Let x and y be two points in M and c
a minimal geodesic from x to y. Let us denote the parallel transport along c by
Pc : TxM → TyM . Let u ∈ Ox(M), v ∈ Oy(M) with v = Pc ◦ u. Then minimal
geodesics from u to v with respect to g̃ are horizontal and the horizontal lift of c
starting at u is one of minimal geodesics from u to v. Furthermore, if minimal
geodesics from x to y on M are unique, then minimal geodesics from u to v are also
unique.

(2) Let τ be a geodesic on O(M) with respect to g̃. Suppose that τ ′(0) is horizontal. Then
τ is a horizontal curve and π ◦ τ is a geodesic on M .

We prepare a simple lemma and propositions for the use in Section 3.

Lemma A.4. Let u ∈ O(M), A,B ∈ TuO(M) and a ∈ O(d). Then

g̃(Ra∗A, Ra∗B) = g̃(A,B).
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Proof. By definition, it holds that

g̃(Ra∗A, Ra∗B) = 〈〈θ(ua), Ra∗A〉, 〈θ(ua), Ra∗B〉〉o(d)
+ 〈〈s(ua), Ra∗A〉, 〈s(ua), Ra∗B〉〉Rd .

Since 〈θ(ua), Ra∗A〉 = Ad(a−1)〈θ(u),A〉 and the metric on o(d) is Ad-invariant,

〈〈θ(ua), Ra∗A〉, 〈θ(ua), Ra∗B〉〉o(d) = 〈〈θ(u),A〉, 〈θ(u),B〉〉o(d).

On the other hand,

〈s(ua), Ra∗A〉 = (ua)−1π∗Ra∗A
= a−1 ◦ u−1(π ◦Ra)∗A
= a−1 ◦ u−1(π∗A)

= a−1〈s(u),A〉.

Since a is isometric,

〈〈s(ua), Ra∗A〉, 〈s(ua), Ra∗B〉〉Rd = 〈〈s(u),A〉, 〈s(u),B〉〉Rd .

Therefore g̃(Ra∗A, Ra∗B) = g̃(A,B).

Proposition A.5. Let u, v ∈ O(M). Then for all a ∈ O(d),

dO(M)(ua, va) = dO(M)(u, v),

where dO(M) is the Riemannian distance with respect to g̃.

Proof. For any ε > 0, there exists a curve τε : [0, 1] → O(M) with τϵ(0) = u, τϵ(1) = v

satisfying

∫ t

0

∣∣∣∣dτεdt
∣∣∣∣ dt ≤ dO(M)(u, v) + ε. Then by Lemma A.4,

∫ 1

0

∣∣∣∣ ddtRaτε

∣∣∣∣ dt = ∫ 1

0

∣∣∣∣Ra∗
dτε
dt

∣∣∣∣ dt
=

∫ 1

0

∣∣∣∣dτεdt
∣∣∣∣ dt

≤ dO(M)(u, v) + ε.

Thus
dO(M)(ua, va) ≤ dO(M)(u, v) + ε.

Since ε is arbitrary,
dO(M)(ua, va) ≤ dO(M)(u, v).

This inequality holds for all u, v ∈ O and a ∈ O(d). Therefore, we have

dO(M)(ua, va) = dO(M)(u, v).
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Proposition A.6. Let u, v ∈ O(M) and τ(t) (t ∈ [0, 1]) a minimal geodesic from u to v.
Then for all a ∈ O(d), Raτ is a minimal geodesic from ua to va.

Proof. By Lemma A.4 and Proposition A.5, we obtain∫ 1

0

∣∣∣∣ ddtRaτ

∣∣∣∣ dt = ∫ ∣∣∣∣Ra∗
dτ

dt

∣∣∣∣ dt
=

∫ 1

0

∣∣∣∣dτdt
∣∣∣∣ dt

= dO(M)(u, v)

= dO(M)(ua, va).

Therefore Raτ is a minimal geodesic.
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[2] D. Applebaum, A horizontal Lévy process on the bundle of orthonormal frames over a complete
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[6] S. Cohen, Géométrie différentielle stochastique avec sauts 1, Stochastics: An International Journal of
Probability and Stochastic Processes 56 (1996), 179–203.
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