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Abstract. Applying a generalized do Carmo-Wallach theory based
on a generalization of Theorem of Tsunero Takahashi, we classify
harmonic totally real maps of the 3-sphere into the complex pro-
jective spaces. This means that we employ differential geometry of
vector bundles with connections and construct the moduli spaces
of those maps explicitly.

1. Introduction

The purpose of the present paper is to classify harmonic totally real
maps with constant energy density of the 3-sphere S3 into the complex
projective spaces CP n. This work is motivated by Li’s result on iso-
metric minimal totally real submanifold S3 of CP n [5], in which, he
uses the Hopf fibration S2n+1 → CP n and a Theorem of Takahashi on
isometric minimal immersion from S3 into S2n+1. Instead of the orig-
inal one, we apply a generalization of Theorem of Takahashi based on
differential geometry of vector bundles and connections and a general-
ization of do Carmo-Wallach theory [6] which are reviewed in §2. In §3,
we describe the (complex-valued) function space C∞(S3) on S3 as an
SU(2) × SU(2)-module in a standard way ([2] or [8]). Then the spec-
tral decomposition of the Laplacian emerges and the set of Hermitian
endomorphisms on each eigenspace Hk is decomposed into irreducible
components in which the moduli space will be realized.

In §4, a generalization of Theorem of Takahashi relates maps under
consideration to an eigenspace Hk of the Laplacian. Then using Hk, we
introduce the standard map into P(Hk∗) which is an SU(2) × SU(2)-
equivariant desired map (Proposition 4.2). Then a generalization of do
Carmo-Wallach theory requires a representation theoretic argument
for an explicit construction of the moduli spaces (Theorem 4.4). At
this stage, our approach (Proposition 4.3) is similar to that in Toth-
D’ambra [8]. Indeed, we have the direct relation of results of [8] on mod-
uli spaces of harmonic maps of S3 into Sn with constant energy densi-
ties. Since those maps induce harmonic totally real maps with constant
energy density of S3 into CP n via the two-fold covering Sn → RP n

and a totally geodesic and totally real embedding RP n → CP n, our
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moduli spaces include those by Toth-D’ambra (Theorem 4.7). Follow-
ing Li, those are called absolutey real. Li gave examples of absolutely
real minimal submanifolds which are standard maps in our terminology.
Furthermore, he also obtains a totally real submanifold of CP 11 which
is not absolutely real. We will show that the standard maps are unique
SU(2) × SU(2)-equivariant harmonic totally real maps with constant
energy density of S3 to CP n up to image equivalence (Proposition 4.2).
Finally, we will obtain harmonic totally real maps ft with constant en-
ergy density parametrized by t ∈ [0, 1]. The map f0 is the standard
map and the others are non absolutely real. The map f1 corresponds
to a point in the boundary of our moduli space and is regarded as a
map into CP 11.

2. Preliminaries

2.1. Vector bundles. For a complex vector bundle V → M , Γ(V )
denotes the space of (smooth) sections of V → M . Then for each
x ∈ M , we have a linear map evx : Γ(V ) → Vx called the evaluation
map defined by t 7→ t(x) for all t ∈ Γ(V ), x ∈ M . (see, for example,
[1, p.298]). If a (finite-dimensional) subspace W ⊂ Γ(V ) is given, then
the restriction of evx to W is also called the evaluation map which is
denoted by the same symbol evx : W → Vx.

Generically, W →M will stand for a trivial (complex) vector bundle
with fibre W over a base manifold M : M × W → M . Thus the
evaluation map is considered as a bundle map ev : W → V .
We assume that a vector bundle V → M has a Hermitian metric h

and a connection ∇ compatible with the metric h, for which we write
(V → M,h,∇) or (V, h,∇). The curvature form of ∇ is denoted by
RV . In this article, a vector bundle V1 →M is called to be isomorphic
to V2 → M if there exists a bundle map ϕ : V1 → V2 such that ϕ
is an isomorphism of vector bundles preserving the metrics and the
connections. Then ϕ is called a bundle isomorphism.

2.2. Geometry of Projective spaces. LetCn+1 be a complex vector
space of dimension n+ 1 and Pn = Grn(C

n+1) the complex projective
space of hyperplanes in Cn+1. Then we have an exact sequence 0 →
T ∗(1) → Cn+1 → O(1) → 0 of holomorphic vector bundles over Pn

where T ∗ is the holomorphic cotangent bundle and O(1) is the line
bundle of degree 1. By using the natural projection Cn+1 → O(1), we
can regard Cn+1 as a subset of Γ(O(1)). By fixing a Hermitian inner
product on Cn+1 the holomorphic cotangent bundle and O(1) inherit
metrics, and can be given the Hermitian connections (see, for example,
[4, p.11,Proposition 4.9]). When the curvature 2-form of the Hermitian
connection on O(1) is denoted by RO(1), the Kähler form ω on Pn is
given as:

ω = −
√
−1 RO(1).
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Let f : M → Pn be a map. If f satisfies f ∗ω = 0, then f is
called a totally real map. The real projective space RP n is realized
as a totally geodesic and totally real submanifold of Pn, which is the
typical example. Following Li [5], when the image of a totally real
map f : M → Pn is included in a totally geodesic and totally real
submanifold RP n, f is said to be absolutely real.

2.3. Evaluation homomorphism and induced maps. Suppose that
L → M is a line bundle and consider a subspace W of Γ(L). The line
bundle L → M is said to be globally generated by W if the evaluation
is surjective. Under this hypothesis, there is a map f : M → P(W ∗),
defined by f(x) := Ker evx,= {t ∈ W : t(x) = 0}. The map f is called
the induced map by (L→M,W ), or simply by W if L→M is already
specified.

2.4. Maps satisfying the gauge condition. Let f : M → P(W ∗)
be a smooth map. The map f : M → P(W ∗) is said to be full if the
induced linear map W → Γ(f ∗O(1)) is a monomorphism. When the
line bundle O(1) → P(W ∗) is equipped with a Hermitian metric hO(1)

and a connection ∇O(1), these are pulled back to a metric f ∗hO(1) and
a connection ∇f∗O(1) on the pull-back bundle f ∗O(1) →M .
We fix a complex line bundle (L, h,∇) over a manifold M . We will

say that f : M → P(W ∗) satisfies the gauge condition for (L, h,∇) if
there exists a bundle isomorphism (L, h,∇) ∼= (f ∗O(1), f ∗hO(1),∇f∗O(1)).

2.5. A generalization of do Carmo-Wallach theory. First of all,
we introduce a generalization of Theorem of Takahashi [6] specialized
to the case where the target is the projective space.

Theorem 2.1. Let f : M → Grn(C
n+1) = Pn be a full map with

constant energy density from a Riemannian manifold M . Then f is
harmonic if and only if Cn+1 is a subspace of an eigenspace of the
Laplacian ∆ acting on sections of f ∗O(1) →M defined by the induced
connection ∇f∗O(1) with e(f)/2 as the eigenvalue, where e(f) is the
energy density of f .

Next, we develop a generalization of do Carmo-Wallach theory. Let
Grp(C

n) denote a Grassmannian of p-planes in Cn. Suppose that f1
and f2 : M → Grp(C

n) are smooth maps. Then f1 is called image
equivalent to f2, if there exists an isometry ψ ∈ SU(n) of Grp(C

n) such
that f2 = ψ ◦ f1.

Let G be a compact Lie group and W a unitary representation of G
with an invariant Hermitian inner product (, )W . The set of Hermitian
endomorphisms of W is denoted by H(W ). Then G naturally acts
on H(W ). If we equip H(W ) with an inner product (·, ·)H such that
(A,B) = traceAB, for A,B ∈ H(W ), then (·, ·)H is G-invariant. We

3



define a Hermitian endomorphism H(u, v) for u, v ∈ W as:

H(u, v) :=
1

2
{u⊗ (·, v)W + v ⊗ (·, u)W} .

If U and V are (complex) subspaces of W , we denote by H(U, V ) a real
subspace of H(W ) spanned by H(u, v) where u ∈ U and v ∈ V . In a
similar fashion, GH(U, V ) denotes the subspace of H(W ) spanned by
gH(u, v), where g ∈ G, and so GH(U, V ) is a G-submodule of H(W ).

Let G/K be a compact reductive Riemannian homogeneous space
with K-invariant decomposition g = k ⊕ m, where g and k are the
Lie algebras of G and K, respectively. On the principal fiber bundle
G → G/K with the fiber K, the canonical connection is defined as
taking the horizontal subspace as Lgm, where g ∈ G and Lg means the
left translation by g.

For an irreducible unitary K-module V0, the vector bundle V =
G×K V0 is called an irreducible homogeneous vector bundle. Then the
canonical connection induces the covariant derivative on V → G/K
which is also said the canonical connection denoted by ∇0.

LetW ⊂ Γ(V ) be a G-invariant subspace of Γ(V ) with the evaluation
map ev : W → V and a G-invariant Hermitian inner product (·, ·)W .
Then we can realize V0 as a subspace of W by Frobenius reciprocity
and the adjoint map ev∗ : V → W of ev.
Denote by U0 the orthogonal complement of V0 in W . Then, the

map f0 :M → Grp(W ) is defined as:

f0([g]) = gU0 ⊂ W, for all [g] ∈ G/K, g ∈ G,

which is called the standard map. It is obviously an G-equivariant map.
In the sequel, Q → Grp(C

n) denotes the universal quotient bundle
[1, p.292]. A Hermitian inner product on Cn induces the Hermitian
metric hQ on Q → Grp(C

n). Since Q → Grp(C
n) is a holomorphic

vector bundle, we have the connection ∇Q compatible with hQ and
holomorphic vector bundle structure as the Hermitian connection.

Combining Theorem 5.12 with Theorem 5.30 in [6], we obtain

Theorem 2.2. Let G/K be a compact reductive Riemannian homo-
geneous space with K-invariant decomposition g = k ⊕ m. Fix a rank
q irreducible homogeneous vector bundle (V = G×K V0, h,∇0) with an
invariant metric h and the canonical connection ∇0. Since ∇0 is G-
invariant, W can be regarded as g-representation ϱ : g → End (W ). We
can realize V0 as a subspace of W by Frobenius reciprocity and (·, ·)W .

If f : G/K → (Grp(C
n), (·, ·)) (n = p + q) is a full harmonic map

with the gauge condition for (V, h,∇0) and we fix a bundle isomor-
phism between (V, h,∇0) and (f ∗Q, f ∗hQ,∇f∗Q), then there exist an
eigenspace W ⊂ Γ(V ) of the Laplacian with the L2 Hermitian inner
product (·, ·)W , a unique linear injection ι : Cn → W and a positive
semi-definite Hermitian endomorphism T on W such that
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(a) T satisfies

(2.1)
(
T 2 − IdW , GH(V0, V0)

)
H
= 0,

(
T 2, GH(ϱ(m)V0, V0)

)
H
= 0,

(b) ι(Cn) = KerT⊥ and (ι∗Tι·, ι∗Tι·) = ι∗(·, ·)W .
(c) f : G/K → (Grp(C

n), (·, ·)) is written as :

(2.2) f ([g]) = (ι∗Tι)−1 (f0 ([g]) ∩KerT⊥) ,
which is called the map induced by a triple (V,Cn, ι (ι∗Tι)).

Conversely, if a positive semi-definite Hermitian endomorphism T
on W satisfies condition (a) and Cn := (KerT )⊥ globally generates
V → M , then the map defined by (2.2) is a full harmonic map into
(Grp(C

n), ι∗(·, ·)W ) with the gauge condition for (V, h,∇0), where ι :
Cn → W is the inclusion.

Let fi :M → (Grp(C
n), (·, ·)W ) be the maps induced by those triples

(V,Cn, ι (ι∗Tiι)) such that ι (Cn)⊥ = KerT1 = KerT2, where ι : C
n →

W is the inclusion. Then, f1 and f2 are gauge equivalent if and only
if T1 = T2.

Remark. In the above Theorem, we adopt gauge equivalence of maps
to classify harmonic maps. When the target is the projective space,
the gauge equivalence can be replaced by image equivalence [6] and we
do not need the definition of gauge equivalence in this article.

Remark. If evev∗ = IdV or equivalently, the standard map is a full
harmonic map with the gauge condition for (V, h,∇0), then we can
show that trace T 2 = trace IdW [6]. Hence C = T 2− IdW is orthogonal
to IdW from the definition of the inner product on H(W ).

3. 3-sphere

Let S3 be the 3-dimensional sphere with the standard metric. The
corresponding symmetric pair is denoted by (SU+(2)× SU−(2),∆),
which is abbreviated to (SU+ × SU−,∆), where ∆ is a diagonal sub-
group of SU+(2)×SU−(2). When we denote by SkC2 the k-th symmet-
ric power of the standard representation C2 of SU(2), SkC2 inherits
an invariant Hermitian inner product h and a real or quaternion struc-
ture denoted by τ = jk, where j is a quaternion structure on C2. The
irreducible representation of SU±(2) and ∆ are denoted by Sk

± and
Sk
∆, respectively and the induced invariant structures are indicated by

adding ± and ∆ to the symbols, for instance, τ± and h∆.
By Clebsch-Gordan, Sk1

+ ⊗Sk2
− irreducibly decomposes as ∆-module:

Sk1
+ ⊗ Sk2

− = Sk1+k2
∆ ⊕ Sk1+k2−2

∆ ⊕ · · · ⊕ S
|k1−k2|−2
∆ ⊕ S

|k1−k2|
∆ .

Hence Sk1
+ ⊗Sk2

− is a class one representation of (SU+ × SU−,∆) if and
only if k1 = k2. Thus Hk := Sk

+ ⊗ Sk
− is a class one representation of

(SU+ × SU−,∆):

Hk = Sk
+ ⊗ Sk

− = S2k
∆ ⊕ S2k−2

∆ ⊕ · · · ⊕ S2
∆ ⊕ S0

∆.
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Since every class one representation appears in C∞(S3) with multi-
plicity one, we can conclude that

C∞(S3) =
∞∑
k=0

Sk
+ ⊗ Sk

− =
∞∑
k=0

Hk.

When we denote by V → S3 a trivial bundle (SU+ × SU−) ×∆ S0
∆,

the evaluation map ev : Hk → V is written as ev[g](w) = ([g], π0(gw)),
where g ∈ SU+ × SU−, w ∈ Hk and π0 : Hk → S0

∆ is the orthogonal
projection. We can see that Hk is the eigenspace of the Laplacian with
eigenvalue k(k + 2) and the L2 Hermitian inner product (·, ·)k on Hk

is an SU+ × SU−-invariant inner product. Since Hk is irreducible as
an SU+ × SU−-module, we can suppose that (·, ·)k is induced by an
invariant inner product h± on Sk

± and the restriction of (·, ·)k to S0
∆ is

h∆. Thus ev : Hk → V satisfies evev∗ = IdV .
By the real or quaternion structure τ = jk on SkC2, w 7→ h(·, τ(w))

gives SkC2 ∼= SkC2∗. Thus we can induce the real structure σ on Hk

and regard EndHk with Hk ⊗Hk. From Clebsch-Gordan, EndHk has
an SU+ × SU−-irreducible decomposition:

EndHk = Sk
+ ⊗ Sk

− ⊗ Sk
+ ⊗ Sk

−
∼=

(
S2k
+ ⊕ S2k−2

+ ⊕ · · · ⊕ S2
+ ⊕ S0

+

)
⊗
(
S2k
− ⊕ S2k−2

− ⊕ · · · ⊕ S2
− ⊕ S0

−
)

=
k⊕

i,j=0

S2k−2i
+ ⊗ S2k−2j

− =
k⊕

i,j=0

S2i
+ ⊗ S2j

− .

When S2Hk (resp. ∧2Hk) denotes the space of symmetric (resp. skew-
symmetric) product of degree 2 on Hk, EndHk has another decompo-
sition: EndHk = S2Hk ⊕ ∧2Hk. Since

S2(SkC2) =

[ k
2
]⊕

i=0

S2k−4i, ∧2(SkC2) =

{⊕[ k
2
]−1

i=0 S2k−4i−2, k : even⊕[ k
2
]

i=0 S
2k−4i−2, k : odd

where [k
2
] is the greatest integer which does not exceed k

2
, we get

S2Hk =
k⊕

l,m=0,|l−m|≡0(mod2)

S2l
+ ⊗ S2m

− ,

(3.1) ∧2Hk =
k⊕

l,m=0,|l−m|≡1(mod2)

S2l
+ ⊗ S2m

− .

The corresponding Lie algebra homomorphisms into Hk (resp. S2Hk

and ∧2Hk) are denoted by ϱHk , (resp. ϱS2Hk and ϱ∧2Hk).
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4. Moduli spaces

We can specialize Theorem 2.2 to the case where the domain man-
ifold is the 3-sphere SU+ × SU−/∆ and f : S3 → Pn = P(Cn+1∗)
is a harmonic totally real map with a constant energy density. The
canonical complement of the pair (SU+ × SU−,∆) is denoted by m [7].
Since the Kähler form on Pn is the curvature form of O(1) → Pn and

the pull-back of the Kähler form vanishes from f being a totally real
map, the pull-back bundle of O(1) → Pn is a flat bundle on S3. It also
has a Hermitian metric compatible with the connection. Since S3 is
simply-connected, f ∗O(1) → S3 is a trivial bundle with a product con-
nection and the space of sections of f ∗O(1) is identified with C∞(S3).
Thus f satisfies the gauge condition for (V → S3, h∆,∇0), where h∆ is
now recognized as the fiber metric on V → S3 and f ∗O(1) → S3 has
a preferred trivialization. Notice that a trivial line bundle V → S3 is
regarded as an irreducible homogeneous vector bundle and the product
connection as the canonical one ∇0. Since the energy density is con-
stant, Theorem 2.1 yields that Cn+1 is the eigenspace of the Laplacian.

Definition 4.1. Let f : S3 → Pn = P(Cn+1∗) be a harmonic totally
real map with a constant energy density. If Cn+1 is a subspace of the
eigenspace with k(k + 2) as the eigenvalue of the Laplacian, then f is
said to be of degree k.

Let Hk be a class one representation of (SU+ × SU−,∆). We ab-
breviate S0

∆ ⊂ Hk to V0. From the identification SkC2 ∼= SkC2∗ by
w 7→ h(·, τ(w)), Hk can be regarded as Hom(Sk

−, S
k
+)

∼= Sk
+ ⊗ Sk

−
∗
.

Since Hom(Sk
−, S

k
+) is End(S

k
∆, S

k
∆) as ∆-module, V0 is identified with

the subspace of Hk generated by IdSk
∆
. When we denote by v0 ∈ Hk

the basis of V0 corresponding to IdSk
∆
and by w±

k , w
±
k−2, · · · , w

±
−k+2, w

±
−k

a unitary basis of Sk
± with weight k − 2i (i = 0, 1, · · · , k), it follows

from the definition of v0 ∈ Hk = Sk
+ ⊗ Sk

−
∗
that

v0 =
k∑

i=0

w+
k−2i ⊗ w−

k−2i
∗
,

where w−
k
∗
, w−

k−2
∗
, · · · , w−

−k+2
∗
, w−

−k
∗
is the dual basis of Sk

−
∗
. From the

identification, we can see that

wk−2i 7→ (−1)iw∗
−k+2i, or, w∗

k−2i 7→ (−1)k−iw−k+2i.

Thus, when Hk is considered as Sk
+ ⊗ Sk

−, v0 is written as:

v0 =
k∑

i=0

(−1)k−iw+
k−2i ⊗ w−

−k+2i.

We consider H(Hk) the set of Hermitian endomorphisms of Hk,
when applying Theorem 2.2. Then, we need to specify GH(V0, V0)
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and GH(mV0, V0) in H(Hk). To do this, we complexify GH(V0, V0) and
GH(mV0, V0) and specify them in EndHk. The complexified spaces are
denoted by the same symbols.

Since V0 is a trivial representation and mV0 = S2
∆, H(V0, V0) is also

trivial and H(mV0, V0) consists of vectors of weight ±2 as ∆-modules.
It follows from Frobenius reciprocity and Clebsch-Gordan that

GH(V0, V0), GH(mV0, V0)(4.1)

⊂
k⊕

l,m=0,|l−m|=0

S2l
+ ⊗ S2m

− ⊕
k⊕

l,m=0,|l−m|=2

S2l
+ ⊗ S2m

−

=
k⊕

l=0

S2l
+ ⊗ S2l

− ⊕
k⊕

l=1

S2l
+ ⊗ S2l−2

− ⊕ S2l−2
+ ⊗ S2l

− .

Proposition 4.2. The standard map f0 : S3 → P(Hk∗) induced by a
pair (S3 × V0,Hk) is a a harmonic totally real map of degree k with a
constant energy density.

Proof. Since the standard map is SU+ × SU−-invariant, f0 has a con-
stant energy density. In Theorem 2.2, the standard map f0 corresponds
to IdW . For W = Hk, (4.1) assures that IdW satisfies (2.1). Theorem
2.2 yields that it is a harmonic map and the curvature of the pull-
back connection is flat. Thus f0 is a totally real map. Since Hk is the
eigenspace with eigenvalue k(k + 2), f0 is of degree k. □

We now see the decomposition EndHk = S2Hk ⊕ ∧2Hk in detail.
Let Hk

R denote the real subspace of Hk invariant by σ = τ+ ⊗ τ− on
Hk. Then the real Grassmannian of hyperplanes in Hk

R is a totally
geodesic and totally real submanifold i : RP(Hk

R
∗
) → P(Hk∗).

If C ∈ S2Hk (resp. C ∈ ∧2Hk) is a Hermitian endomorphism of
Hk, then, by the real structure σ on Hk, we have that σCσ = C (resp.
σCσ = −C). For any w ∈ Hk

R, when C ∈ H(Hk) ∩ S2Hk,

(4.2) σ(Cw) = σ(σCσσ(w)) = Cw,

and when C ∈ H(Hk) ∩ ∧2Hk,

(4.3) σ(Cw) = σ(−σCσσ(w)) = −Cw.

Suppose that C ∈ H(Hk) ∩ S2Hk. For (4.2), C preserves Hk
R and

defines a symmetric endomorphism on Hk
R. Then Toth-D’ambra clas-

sification [8] yields that C corresponds to a full harmonic map with
constant energy density of S3 into the sphere. Since they adopt an
(image) equivalence relation by the orthogonal group, the target can
be replaced by the real projective space RP(Hk

R
∗
).
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Proposition 4.3. We have that

GH(V0, V0)⊕GH(mV0, V0)

=
k⊕

l=0

S2l
+ ⊗ S2l

− ⊕
k⊕

l=1

S2l
+ ⊗ S2l−2

− ⊕ S2l−2
+ ⊗ S2l

− .

Proof. It follows from do Carmo-Wallach [2] and Toth-D’ambra [8] that

GH(V0, V0) ∩ S2Hk =
k⊕

l=0

S2l
+ ⊗ S2l

− .

We use induction on k to show the result. Since H1 = S1
+ ⊗ S1

−,

∧2H1 = S2
+ ⊕ S2

−.

As mV0 = S2
∆, the definition of GH(mV0, V0) yields the result.

From (3.1), ∧2Hk is decomposed as SU+ × SU−-module:

∧2Hk =

[ k
2
]⊕

j=0

(
S2k
+ ⊗ S2k−4j−2

− ⊕ S2k−4j−2
+ ⊗ S2k

−

)
⊕ ∧2Hk−1.

We would like to claim that

GH(mV0, V0) ∩ ∧2Hk

=S2k
+ ⊗ S2k−2

− ⊕ S2k−2
+ ⊗ S2k

− ⊕
(
GH(mV0, V0) ∩ ∧2Hk−1

)
.

Since, for Z,W ∈ sl(2,C) and a non-negative integer p,

ϱHk(Z,W )pv0 =
k∑

i=0

(−1)k−i

p∑
r=0

(
p

r

)(
ϱ(Z)p−rw+

k−2i

)
⊗
(
ϱ(W )rw−

−k+2i

)
,

we get

ϱHk(Z,−Z)k−1v0

=
k−1∑
i=0

(−1)k−i

k−1∑
r=0

(
k − 1

r

)(
ϱ(Z)k−1−rw+

k−2i

)
⊗
(
ϱ(−Z)rw−

−k+2i

)
.

(4.4)

We pick up an element Z ∈ mC ⊂ sl(2,C), where mC denotes the
complexified space of m, in such a way that

(4.5) ϱ(Z)wk−2i =
√
(k − i)(i+ 1)wk−2i−2,

and put v1 = ϱHk(Z,−Z)v0. Since v0 is σ invariant by definition and
ϱHk commutes with σ, v1 is also σ invariant. This yields that v0 ∧ v1 ∈
GH(mV0, V0) ∩ ∧2Hk.

It follows from (4.5) that

(4.6) ϱ(Z)qwk−2i =

√
(k − i)!

(k − i− q)!

(i+ q)!

i!
wk−2(i+q),
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and

(4.7) ϱ(Z)qw−k+2i =

√
(k − i+ q)!

(k − i)!

i!

(i− q)!
w−k+2(i−q).

Since wk−2i and w−k+2i ∈ SkC2, we see from (4.6) and (4.7) that

ϱ(Z)qwk−2i = 0 ⇐⇒ k − 2i− 2q < −k ⇐⇒ q > k − i,

ϱ(Z)qw−k+2i = 0 ⇐⇒ −k + 2i− 2q < −k ⇐⇒ q > i.

Consequently,

ϱ(Z)k−1−rwk−2i = 0 ⇐⇒ k − 1− r > k − i ⇐⇒ r < i− 1.

Thus only the terms in the range i− 1 ≦ r ≦ i in (4.4) remains:

ϱHk(Z,−Z)k−1v0(4.8)

=
k∑

i=1

(−1)k−i

{(
k − 1

i− 1

)(
ϱ(Z)k−iw+

k−2i

)
⊗
(
ϱ(−Z)i−1w−

−k+2i

)}

+
k−1∑
i=0

(−1)k−i

{(
k − 1

i

)(
ϱ(Z)k−i−1w+

k−2i

)
⊗
(
ϱ(−Z)iw−

−k+2i

)}

=
k∑

i=1

(−1)k−1

{(
k − 1

i− 1

)(
ϱ(Z)k−iw+

k−2i

)
⊗
(
ϱ(Z)i−1w−

−k+2i

)}

+
k−1∑
i=0

(−1)k
{(

k − 1

i

)(
ϱ(Z)k−i−1w+

k−2i

)
⊗
(
ϱ(Z)iw−

−k+2i

)}
.

It follows from (4.6) and (4.7) that

ϱ(Z)k−i−1w+
k−2i =

√
(k − i)!(k − 1)!

i!
w+

−k+2,

ϱ(Z)k−iw+
k−2i =

√
(k − i)!k!

i!
w+

−k,

ϱ(Z)i−1w−
−k+2i =

√
(k − 1)!i!

(k − i)!
w−

−k+2,

ϱ(Z)iw−
−k+2i =

√
k!i!

(k − i)!
w−

−k.
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Hence (4.8) reduces to:

ϱHk(Z,−Z)k−1v0(4.9)

=(−1)k−1
√
k(k − 1)!

{
k∑

i=1

(
k − 1

i− 1

)}
w+

−k ⊗ w−
−k+2

+(−1)k
√
k(k − 1)!

{
k−1∑
i=0

(
k − 1

i

)}
w+

−k+2 ⊗ w−
−k

=(−1)k−1
√
k(k − 1)!2k−1

(
w+

−k ⊗ w−
−k+2 − w+

−k+2 ⊗ w−
−k

)
.

It follows from ϱ(Z)w−k+2 =
√
kw−k that

ϱHk(Z,−Z)kv0 =(−1)k−1k!2k−1
(
−w+

−k ⊗ w−
−k − w+

−k ⊗ w−
−k

)
(4.10)

=(−1)kk!2kw+
−k ⊗ w−

−k

and ϱHk(Z,−Z)pv0 = 0, when p > k. Then we have that

ϱ∧2Hk(Z,−Z)2k−2 (v0 ∧ v1)

=4(k − 1)

(
2k − 1

k

)
ϱHk(Z,−Z)k−1v0 ∧ ϱHk(Z,−Z)kv0.

From (4.9) and (4.10), considering the weights, we can conclude that

ϱ∧2Hk(Z,−Z)2k−2 (v0 ∧ v1) ∈ S2k
+ ⊗ S2k−2

− ⊕ S2k−2
+ ⊗ S2k

− ,

and S2k
+ ⊗ S2k−2

− ⊕ S2k−2
+ ⊗ S2k

− is a subset of GH(mV0, V0). Combining
this with (4.1), we obtain the result. □
Theorem 2.2 with Propositions 4.2 and 4.3 yields the main result.

To state the main theorem, we adopt the convention that S2k
+ ⊗ S2l

−
stands for the real vector space invariant by the real structure τ+⊗ τ−.
For T ∈ H(Hk), we write T > 0 to indicate that T is positive definite.

Theorem 4.4. If f : S3 → P(Cn∗) is a full harmonic totally real map
of degree k with a constant energy density, then n ≤ (k + 1)2 and Cn

is considered as a subspace of Hk.
Let Mk be the moduli space of full harmonic totally real maps of

degree k with a constant energy density of S3 into P(Hk∗) modulo
image equivalence of maps. Then Mk is identified with a subset of⊕k

l,m=0,|l−m|≧2 S
2l
+ ⊗ S2m

− :

Mk =

C ∈
k⊕

l,m=0,|l−m|≧2

S2l
+ ⊗ S2m

−

∣∣∣ IdHk + C > 0

 ,

where
⊕k

l,m=0,|l−m|≧2 S
2l
+ ⊗ S2m

− is regarded as a subspace of H(Hk).

Let Mk be the closure of the moduli Mk by topology induced from the
inner product. Every boundary point of Mk distinguishes a subspace
Cn of Hk and describes one of those maps into P(Cn∗) which can be

11



regarded as totally geodesic submanifold of P(Hk∗). The Hermitian
inner product on Hk determines the orthogonal decomposition of Hk :
Hk = Cn ⊕Cn⊥

. Then the totally geodesic submanifold P(Cn∗) can be
obtained as the common zero set of sections of O(1) → P(Hk∗) which

belongs to Cn⊥
.

Finally, C ∈ Mk corresponds to (IdHk +C)−
1
2f0, under the conven-

tion that the inverse of IdHk + C is taken on Ker (IdHk + C)⊥.

Corollary 4.5. Let f : S3 → P(Cn∗) be an SU+×SU−-equivariant full
harmonic totally real map. Then f is the standard map up to image
equivalence.

Proof. If f is of degree k, Theorem 4.4 implies that f corresponds to
C ∈ Mk. Since f is SU+ × SU−-equivariant, C is also an SU+ × SU−-
equivariant linear endomorphism on Hk. Schur’s lemma yields that C
is proportional to the identity. However, C is orthogonal to the identity
(see the remark after Theorem 2.2). We thus deduce that C = 0. Then
the result follows form Proposition 4.2. □

In a similar vein, we can characterize SU±-equivariant harmonic to-
tally real maps, a few examples of which are given in [3]:

Corollary 4.6. A full harmonic totally real map f : S3 → P(Cn∗) of
degree k is SU+ (resp. SU−)-equivariant if and only if the Hermitian

transform C corresponding to f is in
⊕k

m=2 S
0
+⊗S2m

− (resp.
⊕k

l=2 S
2l
+⊗

S0
−).

We define the subset AMk of the moduli space Mk by:

AMk = Mk ∩ S2Hk.

Theorem 4.7. The moduli space of absolutely real full harmonic totally
real maps of degree k with constant energy density of S3 into P(Hk∗)
is identified with AMk.

Proof. In [8], Toth-D’ambra constructs the moduli space Mk of full
harmonic maps from S3 into the sphere of degree k with constant energy
density:

Mk :=

C ∈
k⊕

l,m=0,|l−m|=2i,i≧1

S2l
+ ⊗ S2m

−

∣∣∣ IdHk
R
+ C > 0

 ,

where
⊕k

l,m=0,|l−m|=2i,i≧1 S
2l
+ ⊗ S2m

− is considered as a subset of sym-

metric endomorphisms on Hk
R. When Hk

R is complexified, C defines a
Hermitian endomorphism of Hk and belongs to AMk.

Suppose that C ∈ AMk. Since C preserves Hk
R by (4.2), it defines

a symmetric endomorphism on Hk
R. Thus we can identify Mk with

AMk.
12



To see the correspondence of maps according to Mk
∼= AMk, we

take a subspace UR
0 = U0 ∩ Hk

R to define the standard map fR
0 of S3

into RP(Hk
R
∗
) as fR

0 ([g]) = gUR
0 , where g ∈ SU+×SU−. Then, by [8],

C ∈ Mk corresponds to (IdHk
R
+ C)−

1
2fR

0 . Our identification between

Mk and AMk yields (IdHk + C)−
1
2f0 = i ◦ (IdHk

R
+ C)−

1
2fR

0 .
Suppose that f is an absolutely real full harmonic totally real map

with constant energy density. By image equivalence relation, f may
be supposed to be a map into RP(Hk

R
∗
). From Theorem 4.4 and

our identification, there exists C ∈ Mk such that f = i ◦ (IdHk
R
+

C)−
1
2fR

0 . □

Example. Let M2 be the moduli space of full harmonic totally real
maps of degree 2 with a constant energy density of S3 into P(H2∗)
modulo image equivalence:

M2 =
{
C ∈ S4

+ ⊗ S0
− ⊕ S0

+ ⊗ S4
−

∣∣∣ IdH2 + C > 0
}
.

From Theorem 4.7, all maps are absolutely real and from Corollary 4.6,
those are SU+ or SU−-equivariant ones.

Li obtains an isometric minimal totally real immersion of S3 into
P11 which is not absolutely real [5]. This immersion is of degree 3. We
also give such an example.

Example. Let M3 be the moduli space of those maps of degree 3 of S3

into P(H3∗) modulo image equivalence.

M3 = {C ∈ S6
+ ⊗ S2

− ⊕ S2
+ ⊗ S6

− ⊕ S4
+ ⊗ S0

− ⊕ S0
+ ⊗ S4

−

⊕ S6
+ ⊗ S0

− ⊕ S0
+ ⊗ S6

−

∣∣∣ IdH3 + C > 0 } .

The unitary basis of H3 is denoted by w+
3−2l⊗w

−
3−2m, (l,m = 0, · · · , 3).

If C = i(w+
6 − w+

−6) ∈ S6
+ ⊗ S0

−, then C satisfies σCσ = −C. From
(4.3), we see that C ∈ H(H3) and it is written as:

C = i


O O O Id4
O O O O
O O O O

−Id4 O O O

 .

Hence IdH3 + tC has 1 and 1± t as its eigenvalues and each eigenspace
is of dimension 4, which is equivalent to S3

− as SU−-module. If t ∈
(0, 1], then IdH3 + tC induces a full harmonic totally real map with
constant energy density, which is not absolutely real. When t = 1,
IdH3 + C has a kernel of dimension 4. By Theorem 4.4, it induces a
full map into P(C12∗), where C12 ⊂ H3 is the orthogonal complement
of Ker (IdH3 + C). Corollary 4.6 yields that those maps are SU−-
equivariant.
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In a similar way, using w+
4 +w

+
−4 ∈ S4

+⊗S0
−, we obtain one parameter

family ft (t ∈ [0, 1]) of harmonic totally real map with constant energy
density, which is absolutely real and f1 is a full map into P(R8∗),
where R8 is a subspace of SU+ × SU−- invariant real subspace R16 of
H3. From Corollary 4.6, we can see that ft are SU−-equivariant.

References

[1] R. Bott and L.W.Tu, Differential forms in algebraic topology, Springer, New
York (1995)

[2] M.P.do Carmo and N.R.Wallach, Minimal immersions of spheres into spheres,
Ann.Math. 93 (1971), 43–62

[3] J.Fei, C.Peng and X.Xu, Equivariant totally real 3-spheres in the complex pro-
jective space CPn, Diff. Geom. Appl. 30 (2012), 262–273

[4] S.Kobayashi, Differential Geometry of Complex Vector Bundles, Iwanami
Shoten and Princeton University Press, Tokyo (1987)

[5] Zhen-Qi Li, Minimal S3 with constant curvature in CPn, J. London Math.
Soc. (2) 68 (2003), 223–240

[6] Y. Nagatomo, Harmonic maps into Grassmannian manifolds, arXiv:
mathDG/1408.1504

[7] M.Takeuchi, Modern Spherical Functions, Translation of Mathematical Mono-
graphs, Vol.135. American Mathematical Society, Providence (1994)

[8] G.Toth and G.D’ambra, Parameter spaces for harmonic maps of constant en-
ergy density into spheres, Geometriae Dedicata. 17 (1984), 61–67

(IK) Faculty of Contemporary Business, Kyushu International Uni-
versity, Hirano, Yahatahigashi-ku, Kitakyushu-shi, Fukuoka 805-8512,
JAPAN

(YN) Department of Mathematics, Meiji University, Higashi-Mita,
Tama-ku, Kawasaki-shi, Kanagawa 214-8571, JAPAN

Email address : IK: i-koga@cb.kiu.ac.jp

Email address : YN: yasunaga@meiji.ac.jp

14


