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Abstract

Let (X, p) be a reduced complex surface germ and let LX be its link. If (X, p) is normal at p, David
Mumford [10] shows that (X, p) is smooth if and only if LX is simply connected. Moreover, if p is an
isolated singular point, LX is a three dimensional Waldhausen graph manifold. Then, the Plumbing
Calculus of Walter Neumann [11] shows that the homeomorphism class of LX determines a unique
plumbing in normal form.

Here, we do not assume that X is normal at p, and so, the singular locus (Σ, p) of (X, p) can be one
dimensional. We describe the topology of the singular link LX and we show that the homeomorphism
class of LX (Theorem 4.1) determines the homeomorphism class of the normalization and consequently
the plumbing of the minimal good resolution of (X, p) which provides the dual graph of the minimal
good resolution of (X, p).

In Proposition 5.1, we obtain the following generalization of the above quoted theorem of Mumford:
Let (X, 0) be an irreducible surface germ. If the link LX of (X, 0) is simply connected, then the

normalization, ν : (X ′, p′) → (X, 0), is a homeomorphism and (X ′, p′) is smooth at p′. In particular, LX

is a topological manifold and the normalization is the good minimal resolution of (X, 0).
In this article, the tools to study an algebraic data (the normalization morphism) are mainly topo-

logical. 1

1 Introduction

Let I be a reduced ideal in C{z1, . . . , zn} such that the quotient algebra AX = C{z1, . . . , zn}/I is two-
dimensional. The zero locus, at the origin 0 of Cn, of a set of generators of I is an analytic surface germ
embedded in (Cn, 0). Let (X, 0) be its intersection with the compact ball B2n

ϵ of radius a sufficiently small
ϵ, centered at the origin in Cn, and let LX be its intersection with the boundary S2n−1

ϵ of B2n
ϵ . Let Σ be the

set of the singular points of (X, 0).

As I is reduced, Σ is empty when (X, 0) is smooth, Σ is equal to the origin when 0 is an isolated singular
point and Σ is a curve when the germ has a non-isolated singular locus (in particular (X, 0) can be a reducible
germ).

If Σ is a curve, KΣ = Σ ∩ S2n−1
ϵ is the disjoint union of r one-dimensional circles (r being the number of

irreducible components of Σ) embedded in LX . We say that KΣ is the link of Σ. By the conical structure
theorem, for a sufficiently small ϵ, (X,Σ, 0) is homeomorphic to the cone on the pair (LX ,KΣ). This conical
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Dehn Filling.
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structure theorem, which dates back to K. Brauner [3] (1928), is proved by J. Milnor (Theorem 2.10 in [9])
for germs with isolated singular points, and a general proof is written in [2] (Theorem 9.3.6), by J. Bochnak,
M. Coste and M-F. Roy.

On the other hand, thanks to A.Durfee (Proposition 3.5 in [5]), the homeomorphism class of (X, 0) depends
only on the isomorphism class of the algebra AX (i.e. is independent of a sufficiently small ϵ and of the
choice of the embedding in (Cn, 0)). The analytic type of (X, 0) is given by the isomorphism class of AX ,
and its topological type is given by the homeomorphism class of (X, 0).

Definition I The link of (X, 0) is the homeomorphism class of LX . The link of (X,Σ, 0) is the homeomor-
phism class of the pair (LX ,KΣ). If LX is not a topological three dimensional manifold, we say that LX is
topologically singular .

Remark Let ν : (X ′, p′) → (X, 0) be the normalization morphism of (X, 0). If (X, 0) is reducible, let
(∪1≤i≤rXi, 0) be its decomposition as a union of irreducible surface germs. Let νi : (X

′
i, pi) → (Xi, 0) be the

normalization of the irreducible components of (X, 0). The morphisms νi induce the normalization morphism
on the disjoint union

∐
1≤i≤r(X

′
i, pi).

By standard arguments (see A. Durfee [5]), we can associate to (X ′, p′) and (X, 0) well defined links LX′

and LX such that ν(LX′) = LX . Proposition 2.3.12, in [8], proves that LX is a topological manifold if and
only if ν restricted to LX′ is a homeomorphism onto LX . This result has already been stated by I. Luengo
and A. Pichon (Proposition 2.1 in [7]). Here, we need a more detailed description of the topological singular
locus of LX . First of all, we will define the branches of Σ which provide the topological singular locus KΣ+

of LX .

Definition II

1) If (Σ, 0) is a one-dimensional germ, let σ be an irreducible component of Σ. Let σ′
j , 1 ≤ j ≤ n(σ), be the

n(σ) irreducible components of ν−1(σ) and let dj be the degree of ν restricted to σ′
j . The following number

k(σ) =: d1 + . . .+ dj + . . .+ dn(σ).

is the total degree of ν above the curve σ.

2) Let Σ+ be the union of the irreducible components σ of Σ such that k(σ) > 1. In LX , let KΣ+
be the

link of Σ+. We choose a compact regular neighbourhood N(KΣ+) of KΣ+ . Let E(KΣ+) be the closure of
LX \N(KΣ+). By definition E(KΣ+) is the (compact) exterior of KΣ+ .

For each irreducible component σ of Σ+, we prove, by Lemma 3.2, that the integers n(σ) and dj , 1 ≤ j ≤ n(σ),
only depend on the topology of LX . In [8], Sections 2.3.3 and 2.3.4, one can find a description of the topology
of N(KΣ+

) which implies the following lemma 3.1. In order to be be self-contained, we begin Section 3 with
a quick proof of it.

Lemma (3.1)
1. The restriction of ν to ν−1(E(KΣ+

)) is an homeomorphism and (LX \KΣ+
) is a topological manifold.

2. The link KΣ+ is the topological singular locus of LX .
3. The homeomorphism class of LX determines the homeomorphism class of N(KΣ+) and E(KΣ+).
4. The number of connected components of E(KΣ+

) is equal to the number of irreducible components of
(X, 0).

Let ν : (X ′, p′) → (X, 0) be the normalization morphism of (X, 0). Let Σ′
+ be the curve ν−1(Σ+).The

definition of Σ+ implies that ν restricted to LX′ is not bijective exactly on the link KΣ′
+
= LX′ ∩ Σ′

+.
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Theorem (4.1) Let (X, 0) be a reduced surface germ. The homeomorphism class of LX determines the
homeomorphism class of the pair of links (LX′ ,KΣ′

+
).

Then, the plumbing calculus of W. Neumann [11] implies the following corollary.

Corollary 1.1 The homeomorphism class of LX determines the dual graph of the minimal good resolution
of the germ (X, 0) and the dual graph of the minimal good resolution of the pair (X ′,Σ′

+).

Let Kσ be the link associated to an irreducible component σ of Σ+. Point 2 of Lemma 3.2 proves that
a compact regular neighbourhood N(Kσ) of Kσ in LX is a singular pinched solid torus as defined below
(Definition III). Such a description of N(Kσ) is stated in Section 2 of [7] and detailed in Section 2.3.4 of
[8]. Here, we need to refine the description of N(Kσ). In particular, we introduce, for the first time, the
definition of meridian curves (see 2.2 and 2.5) on each connected component of the boundary of N(Kσ). It
is the key point in the proof of Theorem 4.1 which can be summarized as follows.

If LX is not a topological manifold, let K be its topological singular locus. By Statement 2 of Lemma 3.1,
we know that K = KΣ+

is a disjoint union of circles. Let N(K) be a regular compact neighbourhood of K
and let E(K) be the closure of (LX \N(K)). Let τ be one of the n connected components of the boundary
of E(K). By 2.2, τ is given with a meridian curve mτ . We glue a solid torus Tτ on E(K) with the Dehn
filling construction associated to mτ , which is detailed in the proof of 4.1. Let L be the result of such Dehn
fillings performed on each connected component of the boundary of E(K). In the proof of 4.1, we obtain a
continuous map νtop : L → LX such that νtop restricted to E(K) is equal to the identity and ν−1

top(K) is the
disjoint union Ktop of the n cores of the n solid tori glued to E(K). The topology of the pair (L,Ktop) only
depends on the topology of LX .
On the other hand, τ ′ = ν−1(τ) is the boundary of a solid torus T ′ in LX′ . Lemma 3.2 and Lemma 2.1
imply that ν−1(mτ ) is a meridian curve of T ′. By unicity of the Dehn filling construction, there exists an
orientation preserving homeomorphism f : LX′ → L such that f(KΣ′

+
) = Ktop and ν = νtop ◦ f.

Definition III

1. A d-curling Cd is a topological space homeomorphic to the following quotient of a solid torus S ×D :

Cd = S ×D/(u, 0) ∼ (u′, 0) ⇔ ud = (u′)d.

The associated quotient morphism q : (S × D) → Cd is a d-curling morphism. By definition, l0 =
q(S × {0}) is the core of Cd. Moreover, Cd is given with the following orientations: the oriented circle
S and the oriented disc D induce an orientation on the circles lz = q(S × {z}), z ∈ D, and on the
topological discs q({u} ×D), u ∈ S.

2. Let qj : (S × D) → Cdj , 1 ≤ j ≤ n, be n disjoint dj-curling morphisms. Let l0j = qj(S × {0}) be
the core of Cdj . Let γj : S → l0j be n orientation preserving diffeomorphisms. A singular pinched
solid torus of sheets Cdj

, 1 ≤ j ≤ n, is a topological space orientation preserving homeomorphic to the
quotient of the disjoint union of the dj-curlings, (

∐
1≤j≤n Cdj

), by the identification of their cores. More
precisely, for all x ∈ S, the equivalence relation is defined by: γj(x) ∼ γl(x), 1 ≤ j ≤ n, 1 ≤ l ≤ n. The
induced quotient morphism, Γ : (

∐
1≤j≤n Cdj ) → ((

∐
1≤j≤n Cdj )/ ∼), is the identification morphism.

By definition, l̃0 = Γ(l0j ) does not depend on j, 1 ≤ j ≤ n, it is the core of the singular pinched solid
torus ((

∐
1≤j≤n Cdj )/ ∼).

Section 2 contains also the presentation of the following example which is a typical illustration of a d-curling.
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Example I (detailed in 2.4) Let X = {(x, y, z) ∈ C3 where zd − xyd = 0 and d > 1}. The normalization of
(X, 0) is smooth, i.e. the morphism ν : (C2, 0) → (X, 0) defined by (u, v) 7→ (ud, v, uv) is a normalization
morphism. The singular locus of (X, 0) is the line lx = {(x, 0, 0) ∈ C3, x ∈ C}. We choose the union of the
two solid tori T = {(u, v) ∈ C2, |u| = 1, |v| ≤ 1} and T ′ = {(u, v) ∈ C2, |u| ≤ 1, |v| = 1} to represent the
link of the normalization of (X, 0). We have n(lx) = 1 because ν−1(lx) is the line {(u, 0) ∈ C2, u ∈ C} and
d1 = d. Moreover N(Klx) = ν(T ) is a tubular neighbourhood of Klx and ν restricted to T is a d-curling
morphism. In this example LX is not simply connected. In fact: H1(LX ,Z) = Z/dZ.

In [10], D. Mumford proves that a normal surface germ which has a simply connected link is a smooth germ
of surface. However, there exist surface germs with one dimensional singular locus and simply connected
links. Obvious examples are obtained as follows.

Let f(x, y) be an irreducible element of C{x, y} of multiplicity m > 1 at 0.
Let Z = {(x, y, z) ∈ C3 such that f(x, y) = 0}. The singular locus of (Z, 0) is the line lz = {(0, 0, z), z ∈ C}.
A normalization morphism ν : (C2, 0) → (Z, 0) can be given by a Puiseux expansion of f(x, y). So, the link
LZ is the sphere S3. Lê ’s conjecture states that this family is the only family of singular irreducible surface
germs with one dimensional singular locus and links homeomorphic to the 3-dimensional sphere (see [6] for
detailed statements, see [7] and [1] for partial results).

In Section 5, we prove the following proposition which is a kind of generalization of Mumford’s theorem for
non-normal surface germs:

Proposition (5.1 ) Let (X, 0) be an irreducible surface germ. If the link LX of (X, 0) is simply connected,
then the normalization ν : (X ′, p′) → (X, 0) is a homeomorphism and (X ′, p′) is smooth at p′. In particular,
LX is a topological manifold and the normalization is the good minimal resolution of (X, 0).

Just below, we present an example of a reducible germ (Y, 0) with a simply connected and topologically
singular link. It implies that the hypothesis of Proposition 5.1 is necessary.

Example II There exist reducible surface germs with simply connected link for which the normalization is
not a homeomorphism. For example let Y = {(x, y, z) ∈ C3 where xy = 0}.
In C3, (Y, 0) is the union of two planes and Σ = Σ+ = lz = {(0, 0, z), z ∈ C}. Moreover, the normalization
is the obvious quotient ν : (C2, 0)

∐
(C2, 0) → (Y, 0) given by ν(x, z) = (x, o, z) and ν(y, z) = (0, y, z). Let

Ki ⊂ S3
i , i = 1, 2, be two copies of S3 given with a trivial knot Ki. The link LY of (Y, 0) is the quotient of

the disjoint union S3
1

∐
S3
2 , by the identification point by point of the trivial knots K1 and K2. So LY is

simply connected. On the other hand, a regular neighbourhood, N(Klz ), of the link of the singular locus lz,
is a singular pinched solid torus of sheets two solid tori as defined in Definition III.

Conventions and notations

The boundary of a pseudo-manifold W will be denoted by b(W ).

A disc (resp. an open disc) will always be an oriented topological manifold orientation preserving homeo-
morphic to D = {z ∈ C, |z| ≤ 1} (resp. to Ḋ = {z ∈ C, |z| < 1}). A circle will always be an oriented
topological manifold orientation preserving homeomorphic to S = {z ∈ C, |z| = 1}.

Acknowledgments: I thank the referee of the paper for his useful comments about the redaction of this
text. I thank Claude Weber for reading this manuscript.
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2 The topology of d-curlings

In this section, we study in details the topological properties of d-curlings (defined Section 1, definition III)
because they are the key to make the proofs of the two original statements of this paper self-contained. In
particular, we need well defined, up to isotopy, meridian curves on the boundary of d-curlings since the proof
of Theorem 4.1 is based on Dehn fillings associated to these meridian curves. In this section, we suppose
that d > 1 to avoid the trivial case d = 1.

Definition IV

1. A d-pinched disc, d(D), is orientation preserving homeomorphic to the quotient of the disjoint union
of d oriented and ordered discs Di, 1 ≤ i ≤ d, with origin 0i, by the relation 0i ∼ 0j for all i, 1 ≤ i ≤ d,
and j, 1 ≤ j ≤ d. So, all the origins 0i, 1 ≤ i ≤ d, are identified in a unique point 0̃. By definition 0̃ is
the origin of d(D). The class D̃i of each disc Di in d(D) is an irreducible component of d(D).

2. Let Cd be a d-curling given with a d-curling morphism q : (S × D) → Cd. An oriented simple closed
curve m, on the boundary of Cd, is a meridian curve of Cd if the class of m, in π1(b(Cd)), is equal to
the class of the oriented boundary mu of q({u} × D), u ∈ S. Let m be a meridian curve of Cd. An
oriented simple closed curve l on the boundary of Cd is a parallel curve of Cd if m ∩ l = +1. The core
of Cd is l0 = q(S × {0}).

We have to detail the following lemma because it is a key point in the proof of Theorem (4.1).

Lemma 2.1 Let Cd be a d-curling given with a d-curling morphism q : (S ×D) → Cd. Let mu be oriented
boundary of q({u} × D), u ∈ S. The kernel of the homomorphism i1 : π1(b(Cd)) → π1(Cd), induced by the
inclusion b(Cd) ⊂ Cd, is infinite cyclic generated by the class m1 of the oriented simple closed curve mu. Let
lv = q(S×{v}), v ∈ S and let l1 be its homotopy class. Then, (m1, l1) is a basis of π1(b(Cd)) and the class l10
of the core l0 is a generator of π1(Cd). Moreover i1(l

1) = d.l10 and the cokernel of i1 is isomorphic to Z/d.Z..

Proof
Let us choose u ∈ S. The kernel of the homomorphism j1 : π1(S × S) → π1(S ×D) induced by the inclusion
(S × S) ⊂ (S ×D) is infinite cyclic generated by the class of the closed simple curve

m = ({u} × S) = b({u} ×D).

Moreover, m is oriented as the boundary of the oriented disc ({u} × D). This defines a unique generator
m̃ of the kernel of j1. So, any closed simple curve on the boundary of (S ×D) which generates the kernel
of j1, can be oriented to be isotopic to m. By definition it is a meridian curve of (S × D). The d-curling
Cd is defined by the d-curling morphism q : (S ×D) → Cd. But, q restricted to (S × S) is the identity. So,
mu ∩ lv = +1 and (m1, l1) is a basis of π1(b(Cd)). Moreover q({u} ×D) is a topological disc in Cd.
So, the kernel of the homomorphism i1 : π1(b(Cd)) → π1(Cd), induced by the inclusion b(Cd) ⊂ Cd, is infinite
cyclic generated by the class m1 of the oriented simple closed curve mu = q(m). As for the solid torus, any
simple closed curve in b(Cd) which generates the kernel of i1 can be oriented to be isotopic to q(m).

But, l0 is a deformation retract of Cd and d is the degree of such a retraction restricted to lv. It implies that
i1(l

1) = d.l10.

End of proof
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Corollary 2.2 1. On the boundary of a d-curling, there exists a unique, up to isotopy, oriented simple
meridian curve which generates the kernel of i1 : π1(b(Cd)) → π1(Cd).

2. For any v ∈ S, lv = q(S × {v}) is a parallel curve of Cd. But, contrary to meridians, parallels are not
unique up to isotopy.

3. The integer d is a topological invariant of a d-curling.

We gather together the topological properties of a d-curling Cd in the following Lemma.

Lemma 2.3 1. Let q : (S × D) → Cd be a d-curling morphism. Let πd : (S × D) → (S × D) be the
ramified covering of degree d defined, for all (u, z) ∈ (S ×D), by πd(u, z) = (ud, z). But, πd induces a
unique topological morphism π̄d : Cd → (S ×D) such that πd = π̄d ◦ q. By construction, for all t ∈ S,
Dt = π̄−1

d ({t} ×D) is a d-pinched disc. If ud = t, the origin of Dt is q(u, 0).

2. The d-curling Cd is homeomorphic to the mapping torus of an orientation preserving homeomorphism
of the d-pinched disc Dt, which induces a cyclic permutation of the d irreducible components of Dt.

3. The mapping torus of an orientation preserving homeomorphism of a d-pinched disc, which induces a
cyclic permutation of its d irreducible components, is always orientation preserving homeomorphic to
a d-curling.

Proof

1. If ud = t, Dt is the union of q({σu} ×D) where σd = 1.

2. The circles (S × {z}), z ∈ D, equip the solid torus T = (S × D) with a trivial fibration in oriented
circles. If we choose t ∈ S, the first return map along these circles induces the identity on the disc
({t} ×D). Using π̄−1

d , we can lift these fibration by circles on Cd. Let h be the automorphism of Dt

defined by the first return map along these circles. So, h is an orientation preserving homeomorphism
of Dt which induces a cyclic permutation of the d irreducible components of Dt. Obviously h keeps
the origin of Dt fixed.

3. When d > 1, a homeomorphism of a d-pinched disc keeps always the origin fixed. There is, up to
isotopy, a unique orientation preserving homeomorphism of a d-pinched disc, which induces a cyclic
permutation of its d irreducible components. By point 2, a d-curling is such a mapping torus.

End of proof

Let us detail Example I (Section1). Let X = {(x, y, z) ∈ C3 where zd − xyd = 0}. The normalization of
(X, 0) is smooth i.e. ν : (C2, 0) → (X, 0) is given by (u, v) 7→ (ud, v, uv). Here B = ν(D × D) is a good
semi-analytic neighbourhood of (X, 0) in the sense of A. Durfee [5]. So, LX = X ∩ ν((S × D) ∪ (D × S))
can represent the link of (X, 0). As detailed in the following lemma, the link LX is a basic example of a link
which contains a d-curling.

Lemma 2.4 Let T = {(u, v) ∈ (S ×D) ⊂ C2}. Let πx : ν(T ) → S be the projection (x, y, z) 7→ x restricted
to ν(T ). Here the singular locus of (X, 0) is the line lx = {(x, 0, 0) ∈ C3, x ∈ C}.
Then, N(Klx) = LX ∩ (π−1

x (S)) = ν(T ) is a d-curling. The link LX is the union of N(Klx) with the solid
torus ν(D × S). Moreover, H1(LX ,Z) is isomorphic to Z/d.Z.
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Proof
Let q : T → Cd be the d-curling morphism (definition III, Section 1). There exists a well defined homeomor-
phism f : Cd → N(Klx) which satisfies f(q(u, v)) = (ud, v, uv). So, N(Klx) is a d-curling and Klx is its core.
Moreover, f restricted to the core l0 of Cd is a homeomorphism onto Klx .

Let us take s = e2iπ/d. The intersection D1 = N(Klx) ∩ {x = 1} = {(1, y, z) ∈ C3 where zd − yd = 0} is a
plane curve germ at (1, 0, 0) with d irreducible components given by ν(sk ×D), 1 ≤ k ≤ d.
On the torus τ = b(N(Klx)) = ν(S×S), m = ν({1}×S) is a meridian curve of N(Klx) and l1 = ν(S×{1})
is a parallel. Moreover, N(Klx) is saturated by the foliation in oriented circles lv = ν(S×{v}) which cuts D1

transversally at the d points {(1, v, skv), 1 ≤ k ≤ d}, when v ̸= 0, and at (1, 0, 0) when v = 0. So, N(Klx)
is the mapping torus of the homeomorphism defined on the d-pinched disc D1 by the first return map along
the circles lv.

To compute H1(LX ,Z), we use the Mayer-Vietoris sequence associated to the decomposition of LX as
the union N(Klx) ∪ ν(D × S). The homology classes m̄ and l̄1 of the curves m and l1 form a basis of
H1(b(N(Klx)),Z). But, m̄ is a generator of H1(ν(D × S),Z) and is equal to 0 in H1(N(Klx),Z). As the
class l̄0 of Klx is a generator of H1(N(Klx),Z) and as l̄1 = d.l̄0, the Mayer-Vietoris sequence has the following
shape:

...
δ2−→ H1(b(N(Klx)),Z)

∆1−→ Z.m̄⊕ Z.l̄0
i1−→ H1(LX ,Z) → 0

where ∆1(l̄1) = (0, d.l̄0) and ∆1(m̄) = (m̄, 0). So, H1(LX ,Z) is isomorphic to Z/d.Z.

End of proof

Notation : Let (
∐

1≤j≤n Cdj )/ ∼) be a singular pinched solid torus of sheets Cdj , 1 ≤ j ≤ n, where k =

d1 + . . . + dj + . . . + dn > 1, and core l̃0 = Γ(l0j ), as defined in Section 1 (see 2. in Definition III). As
the orientation preserving homeomorphism class of (

∐
1≤j≤n Cdj )/ ∼) only depends on the integers n and

dj , 1 ≤ j ≤ n, we take the following notation:

T (n; dj , 1 ≤ j ≤ n) = (
∐

1≤j≤n

Cdj
)/ ∼)

Lemma 2.5 Let T (n; dj , 1 ≤ j ≤ n) be a singular pinched solid torus of sheets Cdj , 1 ≤ j ≤ n, and core l̃0.

As k = d1 + . . . dj . . .+ dn > 1, the core l̃0 is the topological singular locus of T (n; dj , 1 ≤ j ≤ n). Moreover,

each sheet Cdj
of T (n; dj , 1 ≤ j ≤ n) is the closure of a connected component of (T (n; dj , 1 ≤ j ≤ n) \ l̃0).

On the boundary of each sheet Cdj we have a well defined meridian curve mj.

Proof
By definition (T (n; dj , 1 ≤ j ≤ n) \ l̃0) is a three dimensional manifold. A neighbourhood of x ∈ l̃0 is
homeomorphic to trivial product of a k-pinched disc by an interval. As k > 1, T (n; dj , 1 ≤ j ≤ n) is not a

three dimensional manifold around x ∈ l̃0. The definition of the identification morphism

Γ : (
∐

1≤j≤n

Cdj ) → ((
∐

1≤j≤n

Cdj )/ ∼),

implies that each sheet of T (n; dj , 1 ≤ j ≤ n) is the closure of a connected component of (T (n; dj , 1 ≤ j ≤
n) \ l̃0). By construction the boundary of T (n; dj , 1 ≤ j ≤ n) is the disjoint union of the n tori, each of them
being the boundary τj of a sheet Cdj . By the previous corollary 2.2, there exists a well defined meridian
curve mj on τj .

End of proof
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3 The topology of the normalization

Let (X, 0) be a reduced surface germ, let (Σ, 0) be its singular locus and let ν : (X ′, p′) → (X, p) be its
normalization. As in Definition II (Section 1), if σ is an irreducible component of Σ, let {σ′

j , 1 ≤ j ≤ n(σ)}
be the set of the the n(σ) irreducible components of ν−1(σ), and let dj be the degree of ν restricted to σ′

j .
Moreover, let k(σ) =: d1 + . . .+ dj + . . .+ dn(σ) be the total degree of ν above σ.
Let Σ+ be the union of the irreducible components σ of Σ such that k(σ) > 1. In LX , let KΣ+

be the
link of Σ+. We choose a compact regular neighbourhood N(KΣ+

) of KΣ+
. Let E(KΣ+

) be the closure of
LX \N(KΣ+

). By definition E(KΣ+
) is the (compact) exterior of KΣ+

.

Lemma 3.1 1. The restriction of ν to ν−1(E(KΣ+
)) is an homeomorphism and (LX \KΣ+

) is a topological
manifold.
2. The link KΣ+

is the topological singular locus of LX .
3. The homeomorphism class of LX determines the homeomorphism class of N(KΣ+) and E(KΣ+).
4. The number of connected components of E(KΣ+) is equal to the number of irreducible components of
(X, 0).

Proof
If (X, 0) has an isolated singular point at the origin, the normalization is bijective and as the links LX and
LX′ are compact, ν restricted to LX′ is a homeomorphism.

If Σ is one dimensional, let KΣ be the link of Σ. Let σ be an irreducible component of Σ and let N(Kσ) be
the connected component of N(KΣ) which contains the link Kσ.

When k(σ) = 1, ν restricted to ν−1(N(Kσ)) is a bijection. So, the restriction of ν to ν−1(E(KΣ+
)) is an

homeomorphism. Moreover ν restricted to ν−1(X \ Σ) is an analytic isomorphism. So, (LX \ KΣ+
) is a

topological manifold. This ends the proof of Statement 1.

If k(σ) > 1, ν restricted to ν−1(Kσ) is not injective. Let p be a point of Kσ. The number of the irreducible
components σ′

j of ν−1(σ) is denoted n(σ). So, ν−1(σ) = ∪1≤j≤n(σ)σ
′
j . Let dj be the degree of ν restricted

to σ′
j . The intersection ν−1(p) ∩ σ′

j has dj points {pi(j), 1 ≤ i ≤ dj}. As (X ′, p′) is normal, (X ′ \ p′)
is smooth and (σ′

j \ p′) is a smooth curve germ at any point zj ∈ (σ′
j \ p′). In (X ′ \ p′), we can choose

at the points pi(j), a smooth germ of curve (γi(j), pi(j)) which cuts σ′
j transversally at pi(j) and such that

D′
i(j) = ν−1(N(Kσ))∩γi(j) is a disc centered at pi(j). Let Di(j) be ν(D

′
i(j)). By construction p is the common

center of the topological discs Di(j). So, (∪1≤j≤n(σ)(∪1≤i≤dj
Di(j))) is a k(σ)-pinched disc centered at p. As

k(σ) > 1, LX is not a topological manifold at p. This ends the proof of Statement 2. Statements 1 and 2
imply that (KΣ+

) is the set of the topologically singular points of LX . It implies 3.

The number r of irreducible components of (X, 0) is equal to the number of connected components of LX′ .
But, LX′ and ν−1(E(KΣ+

)) have the same number of connected components since (LX′ \ ν−1(E(KΣ+
))) is

a regular neighbourhood of the differential link ν−1(KΣ+). Statement 1 implies that r is also the number of
connected components of E(KΣ+). This proves 4.

End of proof
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Lemma 3.2 Let σ be an irreducible component of Σ+, let Kσ be the link of σ in LX . We choose, in LX , a
compact regular neighbourhood N(Kσ) of Kσ. The link Kσ is a deformation retract of N(Kσ). If lσ is the
homotopy class of Kσ in π1(N(Kσ)), then π1(N(Kσ) = Z.lσ. We have:

1. The tubular neighbourhood ν−1(N(Kσ)) of ν
−1(Kσ) is the disjoint union of n(σ) solid tori

T ′
j , 1 ≤ j ≤ n(σ), and the boundary of N(Kσ) is the disjoint union of n(σ) tori.

2. Let T ′
j be one of the n(σ) connected components of ν−1(N(Kσ)). Then, N(Kσ) is homeomorphic to a

singular pinched torus T (n(σ); dj , 1 ≤ j ≤ n(σ)) wich has n(σ) sheets equal to ν(T ′
j) = Cj. In particular,

ν(T ′
j) = Cj is a dj-curling.

3. On each connected component τj of the boundary of N(Kσ), the homeomorphism class of N(Kσ) deter-
mines a unique (up to isotopy) meridian curves mj. If lj is a parallel curve on τj the homotopy class of lj
in π1(N(Kσ)) is equal to dj .K

1
σ where K1

σ is the homotopy class of Kσ.

Proof
The link LX′ of the normalization ν : (X ′, p′) → (X, p) of (X, 0) is a three dimensional Waldhausen graph
manifold. Let σ is an irreducible component of Σ+. Let σ′

j be one of the n(σ) irreducible components of

ν−1(σ), and let dj be the degree of ν restricted to σ′
j .

In LX′ , ν−1(Kσ) is a differentiable one dimensional link with n(σ) connected components Kσ′
j
, 1 ≤ j ≤ n(σ).

But, ν−1(N(Kσ)) is a regular compact neighbourhood of the link (
∐

1≤j≤n(σ) Kσ′
j
). So, ν−1(N(Kσ)) is the

disjoint union of n(σ) solid tori (
∐

1≤j≤n(σ) T
′
j). Moreover, let τ ′j be the boundary of T ′

j . As ν restricted to

the boundary of ν−1(N(Kσ)) is a homeomorphism, the boundary of N(Kσ) is the disjoint union of the n(σ)
tori τj = ν(τ ′j). Statement 1 is proved.

We consider Cj = ν(T ′
j). Let νj : T ′

j → Cj be ν restricted to T ′
j . Moreover, Kσ′

j
is the core of the solid

torus T ′
j . As νj restricted to T ′

j \ Kσ′
j
is an orientation preserving homeomorphism and as νj restricted

to Kσ′
j
has degree dj , νj is a dj-curling morphism as defined Section 1 (1. of Definition III). But, for all

(j, l), 1 ≤ j ≤ n, 1 ≤ l ≤ n, we have νj(Kσ′
j
) = νl(Kσ′

l
). This equality shows that ν restricted to ν−1(N(Kσ))

is an identification morphism as defined Section 1 (2. of Definition III). So, N(Kσ) is homeomorphic to
a singular pinched torus T (n(σ); dj , 1 ≤ j ≤ n(σ)) wich has n(σ) sheets homeomorphic to the dj-curlings
ν(T ′

j) = Cj , 1 ≤ j ≤ n(σ). Statement 2 is proved.

By Statement 2, for all j, 1 ≤ j ≤ n(σ), ν(T ′
j) = Cj is a dj-curling of core Kσ. By 2.2, the boundary τj of

Cj is given with a well defined oriented meridian curve mj and a chosen oriented parallel curve lj . Let us
denote by K1

σ, m
1
j and l1j the homotopy classes of Kσ, mj and lj in π1(Cj). Moreover, as Kσ is a deformation

retract of Cj , we have π1(Cj) = Z.K1
σ.

By Lemma 2.1, the kernel of the homomorphism i1 : π1(τj) → π1(Cj), induced by the inclusion, is infinite
cyclic generated by m1

j and, in π1(Cj), l
1
j = dj .K

1
σ. By Statement 2, N(Kσ) is a singular pinched torus of

sheets Cj , 1 ≤ j ≤ n(σ), and core Kσ. Then, we can retract N(Kσ) by deformation onto its core Kσ. By
Lemma 2.5, Cj is the closure in N(Kσ) of a connected component of (N(Kσ) \Kσ) and τj is a connected
component of the boundary of N(Kσ). So, the well defined meridian curve mj and the chosen parallel curve
lj are meridian and parallel curves on each connected component τj of the boundary of N(Kσ).

End of proof
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4 The proof of the main theorem

Theorem 4.1 Let (X, 0) be a reduced surface germ. Let ν : (X ′, p′) → (X, p) be the normalization mor-
phism of (X, 0). The homeomorphism class of LX determines the homeomorphism class of the pair of links
(LX′ ,KΣ′

+
).

Proof
If LX is a topological manifold, Statements 1 and 2 of Lemma 3.1 state thatKΣ+

is empty. So, E(KΣ+
) = LX

and ν is a homeomorphism. When LX is a topological manifold the theorem is trivial.

If LX is not a topological manifold, let K be the set of its singular points. By Statement 2 of Lemma 3.1,
we know that K = KΣ+ is a disjoint union of circles. Let N(K) be a regular compact neighbourhood of K.
By definition, the exterior E(K) of K is the closure of (LX \N(K)).

Let K be a connected component of K and let N(K) be the connected component of N(K) which contains K.
There exists an irreducible component σ of Σ+ such that K = Kσ. By Lemma 3.2, N(K) is homeomorphic
to a singular pinched torus and K is its core. The number n of sheets of N(K) depends only on the topology
of N(K). So, n is equal to n(σ). As, a sheet Cj is the closure, in N(K), of a connected component of
(N(K) \ K), the topology of the δj-curling Cj only depends on the topology of N(K). By 2.2 we have
δj = dj . So, N(K) is homeomorphic to the singular pinched torus T (n(σ); dj , 1 ≤ j ≤ n(σ)) wich has n(σ)
sheets. By Lemma 2.5, on each connected component τj of the boundary of N(K), we have a well defined
meridian curve mj . It is the key point of this proof.
As the boundary of E(K) is equal to the boundary of N(K), the well defined family of meridian curves, on
the boundary of N(K), gives an oriented essential simple closed curve on each connected component of the
boundary of E(K). This allows us to perform Dehn fillings. As justified below, to take E(K) and to perform,
on each connected component τj of its boundary, a Dehn filling associated to mj , produce a closed manifold
homeomorphic to LX′ . Let us be more precise.

The Dehn filling construction:
Let T be a solid torus given with a meridian disc D and let mT be the boundary of D. By definition mT is
a meridian curve on the boundary of T . Let U(D) be a compact regular neighbourhood of D in T and let
B be the closure of T \ U(D). By construction B is a 3-dimensional ball. In the boundary b(T ) of T , the
closure of the complement of the annulus U(mT ) = U(D) ∩ b(T ) is also an annulus E(mT ) ⊂ b(B).
On the other hand, we suppose that a torus τ is a boundary component of an oriented compact three-
dimensional manifold M. Let γ be an oriented essential simple closed curve on τ . So, τ is the union of two
annuli, U(γ), a compact regular neighbourhood of γ, and the closure E(γ) of τ \ U(γ). There is a unique
way to glue T to M by an orientation reversing homeomorphism between the boundary of T and τ which
send mT to γ. Indeed, the gluing of U(mT ) onto U(γ) determines a union M ′ between U(D) and M . This
gluing extends to the gluing of E(mT ) onto E(γ) which determines a union between B and M ′.
So, the result of such a gluing is unique up to orientation preserving homeomorphism and it is called the
Dehn filling of M associated to γ.
One can find a presentation of the Dehn filling construction in S. Boyer [4].

The topology of the link LX determines the exterior E(K) of the singular locus K of LX and also the well
defined meridian curves of N(K) on each connected component of the boundary of E(K). Let σi, 1 ≤ i ≤ r be
the r irreducible components of Σ+. So, the boundary of E(K) has n =

∑
1≤i≤r n(σi) connected components.

Let Tj = S ×D be a solid torus and let mTj be a meridian curve of Tj . Let τj be one connected component
of the boundary of E(K) given with its already chosen curve mj which is a meridian curve of N(K). By 2.2,
mj is an essential simple closed curve on τj . We glue Tj to E(K) with the help of an orientation reversing
homeomorphism

fmj
: b(Tj) → τj
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defined on the boundary b(Tj) of Tj such that fmj (mTj ) = mj .

We perform such a Dehn filling, associated to the given curve mj , on each of the n connected compo-
nents of the boundary of E(K). So, we obtain a closed 3-dimensional Waldhausen graph manifold L. Let
ν : (X ′, p′) → (X, p) be the normalization morphism of (X, 0). Let Σ′

+ be ν−1(Σ+).

As K = KΣ+
, ν restricted to ν−1(E(K)) = ν−1(E(KΣ+

)) = E(KΣ′
+
) is a homeomorphism.

But, ν−1(N(KΣ+)) is a tubular neighbourhood of the differential link ν−1(KΣ+) which has n =
∑

1≤i≤r n(σi)

connected components. So, ν−1(N(KΣ+)) is a disjoint union of n solid tori. As in the proof of Lemma 3.2,
let T ′

j be one of these solid tori. Then, Cj = ν(T ′
j) is a sheet of N(Kσ) where σ is an irreducible component

of Σ+. But Cj is a dj-curling and ν restricted to T ′
j is a quotient morphism associated to this dj-curling.

Let mj be the chosen meridian on Cj . Lemma 2.1 implies that ν−1(mj) is a meridian curve of T ′
j . By the

unicity of the Dehn filling construction, there exists an orientation preserving homeomorphism f : LX′ → L.

As τj is the boundary of the dj-curling Cj , the chosen gluing morphism fmj
: b(Tj) → τj extends to a

dj-curling morphism f̃mj : Tj → Cj . Only using the topology of LX , we can construct a continuous map
νtop : L → LX such that νtop restricted to E(K) is equal to the identity and νtop restricted to each solid

torus Tj is the dj-curling morphism f̃mj
. By construction ν−1

top(K) is the disjoint union of the cores of the

solid tori Tj . So, the topology of the pair (L, ν−1
top(K)) only depends on the topology of LX . By construction

we have f(KΣ′
+
) = ν−1

top(K). We have proved that f is a homeomorphism of pairs between (LX′ ,KΣ′
+
) and

(L, ν−1
top(K)). As the topology of LX determines the topology of the pair (L, ν−1

top(K)), the topology of LX

determines the homeomorphism class of the pair of links (LX′ ,KΣ′
+
).

End of proof

5 Surface germs with simply connected links

This section is devoted to the proof of the following proposition.

Proposition 5.1 Let (X, 0) be an irreducible surface germ. If the link LX of (X, 0) is simply connected,
then the normalization ν : (X ′, p′) → (X, 0) is a homeomorphism and (X ′, p′) is smooth at p′. In particular,
LX is a topological three manifold and the normalization is the good minimal resolution of (X, 0).

Proof
By Lemma 3.1 (or Proposition 3.12 in [8]), if LX is a topological manifold the normalization ν : (X ′, p′) →
(X, p) is a homeomorphism. Then, the link LX′ is also simply connected and by Mumford’s theorem [10]
(X ′, p′) is smooth at p′.
Now, we suppose that LX is not a topological manifold. Then, the following two statements I and II prove
that LX is not simply connected. As before, Σ+ is the union of the irreducible components σ of the singular
locus of (X, 0), which have a total degree, k(σ) = d1 + . . . + dj + . . . + dn(σ), stricly greater than one. By
Lemma 3.1, if LX is not a topological manifold, Σ+ has at least one irreducible component σ.

Statement I If there exists an irreducible component σ of Σ+ with n(σ) > 1, the rank of H1(LX ,Z) is
greater than or equal to (n(σ)− 1), in particular H1(LX ,Z) has infinite order.
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Proof of Statement I
Let Σ+ = (σ ∪1≤i≤r σi), be the decomposition of Σ+ as the union of its irreducible components. As (X, 0)
is irreducible, E(KΣ+

) is connected by Lemma 3.1.
Then, E(Kσ) = E(KΣ+

)∪1≤i≤rN(Kσi
) and LX are also connected. But N(Kσ) which is a singular pinched

torus (Lemma 3.2) is connected with n(σ) > 1 boundary components. We consider the Mayer-Vietoris exact
sequence associated to the decomposition of LX as the union E(Kσ) ∪N(Kσ).

... → H1(LX ,Z) δ1−→ H0(E(Kσ) ∩N(Kσ),Z)
∆0−→ H0(E(Kσ),Z)⊕H0(N(Kσ),Z)

i0−→ H0(LX ,Z) → 0

But E(Kσ) ∩ N(Kσ) is the disjoint union of n(σ) disjoint tori. So, the rank of H0(E(Kσ) ∩ N(Kσ),Z) is
equal to n(σ). Since σ is irreducible, H0(N(Kσ),Z) has rank one. Since (X, 0) is irreducible, H0(E(Kσ),Z)
and H0(LX ,Z) have rank one. So, the rank of Ker(∆0) = δ1(H1(LX ,Z)) is equal to (n(σ)− 1). This ends
the proof of Statement I.

Statement II If there exists an irreducible component σ of Σ+ with n(σ) = 1 and k(σ) = d > 1 the order of
H1(LX ,Z) is at least d.

Proof of Statement II
By Lemma 2.3, if n(σ) = 1 and d > 1, N(Kσ) is a d-curling and the boundary of N(Kσ) is a torus τ . By
Lemma 2.1, τ is given with a meridian curve m and a parallel curve l. Let m̄, l̄ and lσ be the classes of
m, l and Kσ, in H1(N(Kσ),Z). Moreover, we have H1(N(Kσ),Z) = Z.lσ and l̄ = d.lσ. We consider the
Mayer-Vietoris exact sequence associated to the decomposition of LX as the union E(Kσ) ∪N(Kσ).

... → H2(LX ,Z) δ2−→ H1(E(Kσ) ∩N(Kσ),Z)
∆1−→ H1(E(Kσ),Z)⊕H1(N(Kσ),Z))

i1−→ H1(LX ,Z) → ...

As E(Kσ) ∩N(Kσ) = τ , the image of ∆1 is generated by ∆1(m̄) = (x, 0) and ∆1(l̄) = (y, d.lσ) where x and
y are in H1(E(Kσ),Z). So, the image of ∆1 is included in H1(E(Kσ),Z)⊕ Z d.lσ. It implies that the order
of the cokernel of ∆1 is at least d. This ends the proof of Statement II.
The two above statements imply Proposition 5.1.

End of proof
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