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Abstract

In this paper, we prove some new connectivity of the Julia sets J of the complex Hénon maps
H(x,y) = (z%+c+ay, ar) with sufficiently small |a|. We investigate the connectivity of J for the
parameters near the boundary of the Mandelbrot set. We first give some conditions related to
the connectivity of J for sufficiently small |a|, which are useful for considering the connectivity
of J for the parameters near the boundary of the Mandelbrot set. We consider a perturbation
{Ha,At}aeD50,0§t<5o of dissipative semi-parabolic Hénon maps H, ), such that det DH, ), = —a?
and H, ), has a fixed point q, ), for which (DHa,At)qa,At has an eigenvalue )\;. Assume that
At — Ao = exp(2mim/l) € D as t — 0 and Al can be represented by exp(L; + i6;) with L; # 0
for 0 < t < dp. We prove that if §, = O(L;), then the Julia sets J, ), for a € D5,,0 < t < §p are
connected by using the conditions above.

1 Introduction

In this paper, we deal with the connectivity of the Julia sets of complex Hénon maps.

In one-dimensional (1-D) complex dynamics, we consider a complex polynomial f.(z) = #%+c,c €
C and the Julia set Jy, of f.. The Julia set Jy, of f, is defined by the boundary of the filled Julia
set Ky, = {z € C: {f*(2)}nen is bounded}. Note that the notation f is the n-fold composition
of f.. The Mandelbrot set M is defined by {c € C : Jy, is connected}. It is known that the Julia
set Jy, of a polynomial f. is connected if and only if K, contains the critical point 0 of f. in C (see
[13]). By using the fact, it is easy to find the boundary of the connectedness locus for parameters
c € C. For example, the Julia set Jy, /5 1s connected, and the parameter 1 /4 belongs to the boundary
of the connectedness locus. Indeed, Jy, Jage 18 connected if ¢ < 0, and Jy, Jage 18 disconnected if £ > 0.
The parameter ¢ = 1/4 is called a parabolic parameter since fi/4 has a parabolic fixed point 1/2.
Let us consider how the parameters ¢ for which Jy, is connected can approach parabolic parameters.
Let us explain this by using perturbations of multipliers of parabolic fixed points. We say that a
point a € C is a parabolic fixed point of f. if f.(a) = « and fl(«) is a root of unity. Here we
consider the case where f,, has a parabolic fixed point oy with multipliers Ay := exp(2mwim/l), where
l € Z\ {0}, m € Z and (m,l) = 1. Consider a one-parameter continuous family {\}:c(o,s,), Where
6o > 0. Assume that \! = exp(L; +i6;) and R 3 6; — 0 as t — 0, where L; € R\ {0} and §; € R
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for 0 <t < do. Let {fe, }ef0,50) satisfy that f., has a fixed point oy with multiplier A,. We say that
AL converges to 1 radially if 6, = O(Ly). If 6, = O(Ly), then {f., }+e[0.s,) has nice properties (such as
continuity of Jy, , continuity of the Hausdorff dimension of .J;, ) (see [12]). In particular, we see that
J., is connected for each t € (0, dp), taking a smaller dy > 0 if necessary.

Let us explain radial convergence by observing the main cardioid My := {c = \/2—A?/4 : |\| < 1}
of the Mandelbrot set M (Figure 1). For this purpose, we set py(z) := 2% + A\/2 — A\?/4, which has
a fixed point A/2 with multiplier A\. The parameter ¢ = 1/4 is a parabolic parameter. That is, the
polynomial p;(z) = 2?4 1/4 has a parabolic fixed point 1/2. Consider a family {p,,} with \; — 1 as
t — 0. Weset ¢; = N\ /2—X?/4 and \; = exp(L;+16;). If 6, = 0, then the parameters ¢; approach 1/4
in Int MoNR (the first of Figure 1). If parameters ¢; in the sector in the second of Figure 1 approach
1/4, then )\ satisfies 0, = O(L;). We remark that there is a family {\;} such that the corresponding
parameters ¢; € Int M, approach 1/4 as t — 0. For example, if parameters ¢, approach 1/4 in the
curve near M, in the third of Figure 1, then ); satisfies 67 = o(L;) and 6; # O(L;). On the other
hand, if parameters ¢; approach 1/4 in Ry, /4, then Jy, is disconnected and ¢; # O(L;) (see fourth

of Figure 1).
SN
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Figure 1: 6, = 0 (first), limsup,_,q|0;/L:| < 1/v/3 (second), 6? = o(L;),0; # O(L,;) (third) and
disconnected (fourth)

In the case of two-dimensional (2-D) dynamics, for (c,a) € C?, we consider the quadratic Hénon
map of the form H(z,y) = (22 + ¢+ ay, ax). For a diffeomorphism F(x,y) = (Fi(x,y), F»(z,y)) from
an open set U C C? to C?, we set

| (F1)z(x0,90) (F1)y(70,%0) ¢
(DF)(xo,yo)(Cvn) = ( (FQ)a:<CUO,zO) (FQ)y($O7zO) ) ( n )

for (x0,v0) € U and ((, 1) € T(z,40)U. We have

2r a
(DH)(%y) = < a 0 )

for (x,y) € C®. The map H has constant Jacobian —a?, i.e., det (DH),,) = —a® for all (z,y) € C>.
Unlike 1-D dynamics, we can consider the inverse H~! of H if a # 0. Let K be the set of all points
(z,y) € C? such that {H*"(x,y)}en is bounded in C2. We consider the Julia sets J* := OK* of
H. Furthermore we denote J by the intersection of J© and J~. It is known that J* are connected
(see [2]). The Hénon connectedness locus is the set of parameters (¢,a) € C x C\ {0} for which the
Julia set J is connected. Let us consider the condition that J is connected. Unlike one-dimensional
dynamics, Hénon maps H do not have critical points for a # 0. Instead, it was suggested to consider
critical points of the Green functions along the unstable manifolds of the saddle points to compute
the connectivity of the Julia sets (see [4]). The Julia set J is connected if and only if the restriction
of the Green function G*(z,vy) := lim, ,,(1/2")log™ ||H"(x, )| on the unstable manifold of some
saddle point has no critical points in K (see [4] and [10, Theorem 3.3]). However, it is not easy to



find the boundary of the Hénon connectedness locus. Our result (Theorem 1.2) describes the local
geometry near semi-parabolic parameters (¢, a) if |a| is sufficiently small.

Let A € C\ {0}. To consider the connectivity of J for the parameters near the boundary of the
Mandelbrot set, we consider a Hénon family for which each element of the family has a fixed point
such that one of the eigenvalues of DH at the fixed point is A\. Then, the set P, of parameters
(¢,a) € C? for which the Hénon map H(z,y) = (z? + ¢ + ay, ax) has a fixed point q such that A is
an eigenvalue of (DH)q is the curve of equation

= (1-d?) (%—5—/\)—(%—%) : (1)

We denote the right hand side of equation (1) by c(a,\). Moreover, we set Ha Az,y) = (2® +
c(a,\) + ax,ay) and py(z) = 2% + c¢(0,\). We denote the Julia sets of H, by J= \ Ja,x instead of
J*, J respectively. Based on the above notations, we now present the first main result of this paper.

Theorem 1.1. Assume that a Hénon family { Hy x}aens, satisfies the vertical condition (VC)e,, with

respect to € > 0,1 > 0 (see Definition 3.1). Suppose that (D. x D,)NJF, =0 for each a € Ds,. Then

the Julia sets J, x of the Hénon maps H, » for a € Ds, \ {0} are connected if and only if the Julia set
Jp, of the polynomial py is connected.

We regard D, x D, as a neighborhood of the critical point z = 0 of p, in two dimensions. Note
that most families {H,, ,\}aemé0 satisfies the (VC).,. Indeed, if A # 1, then there is §y > 0 such that
{Ha}aen,, satisfies the (VC)., (see Lemma 3.2). The assumptions of Theorem 1.1 imply that the
stable manifold of a saddle fixed point of H, ) intersects transversely horizontal direction in D, x D).
From this, we can construct a holomorphic motion of J;, N (C x {y}) over a € Dy, for each y € D,
and can show that J, N (C x {y}) is homeomorphic to the Julia set .J,, of py.

It is known that for a hyperbolic polynomial 22 + ¢, there is a positive constant §(c) > 0 such that
a small perturbation {H(z,y) = (z?+c+ay,az) : 0 < |a| < §(c)} of H(z,y) = (z*+¢,0) is hyperbolic
(see [6] and [9]). In particular, the Julia sets J of the Hénon maps H(z,y) = (z* + ¢ + ay, ax) for
0 < |a| < d(c) are connected if and only if J,2,. is connected. However, the proofs in [6] and [9]
do not give any uniform estimate on the constant §(c¢) from below for ¢ near the boundary of the
Mandelbrot set. For example, it may be d(c,) — 0 as Int My 3 ¢, — A/2 — A\?/4 € OM,, where
|A| = 1. Therefore, we cannot apply methods of [6] and [9] to compute the connectivity of J for the
parameters near the boundary of the Mandelbrot set. In our result, we only need to check that the
(VC)e, and the condition (D, x D,) N J; ", = 0 hold for a € Ds, and 0 < t < §. We can deduce the
connectivity of J for the parameters near the boundary of the Mandelbrot set by using Theorem 1.1
(see the following Theorem 1.2 and Figure 2).

To present the second main result, we recall radial convergence. Let \g = exp(2mim/l), where
l € Z\ {0}, m € Z and (m,l) = 1. Consider a one-parameter continuous family {\}:c(o,s,), Where
6o > 0. Assume that \! = exp(L; +i6;) and R 3 6, — 0 as t — 0, where L; € R\ {0} and 6; € R
for 0 <t < §y. We say that RD), 5, := {Han, : @ € Dy, and 0 < ¢ < §p} is a radial perturbation if
0; = O(Ly). For each 0 < t < dy, we will show that the section {Ha,At}aeméo of RD,, s, satisfies the
(VC)., and that (D, x D,) N Jat\t = () for a € Ds,. By applying Theorem 1.1 to the family RD,, s,
we can show the second main result:

Theorem 1.2. There is 6y > 0 such that each H, )y, € RD,, s, with a # 0 has connected Julia set
Ja -



Note that H, ), does not belong to RD,,s,. A Hénon map H,,, has connected Julia set for
a € Ds, (see [17]). Radu and Tanase showed that there is §y > 0 such that H, ,, is hyperbolic for
a € Ds, and 0 <t < §p if 0, = 0 for each 0 < t < &y in [16]. In [16], by using hyperbolicity, the Julia
sets are connected for the parameters if 6, = 0 for 0 < t < g (see the left of Figure 2). In our case,
we consider a much wider range of eigenvalues than 6, = 0. In this case, we will show the Julia set
Ja of Hyx, € RD), 5, is connected without using hyperbolicity.

P1 a P1 Pl P.

Lt>0,Lt<0

Figure 2: 6, = 0 (left) and radial perturbations (right). The set P; (resp. P_;) is a semi-parabolic
parameter given by equation (1) with A =1 (resp. A = —1).

The rest of this paper is organized as follows. In Section 2, we present fundamental facts for
Hénon maps. In Section 3, we introduce the wvertical condition (VC)., with respect to ¢, r, and the
condition (D, x D,) N J : , = 0. By using these conditions, we construct a holomorphic motion of
Ji N (C x {y}) over a € Dy, for each y € D,. Using these, we show Theorem 1.1. In Section 4, we
show Theorem 1.2 by using Theorem 1.1. In particular, we check the condition (D, x D,.) N J;f/\ =
holds for H, ), by using local coordinates near semi-parabolic fixed points.
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2 Preliminary

In this section, we recall some basic results on the dynamics of Hénon maps. See [2], [8], [14] and
[16] for more details.

Definition 2.1. For (c,a) € C?, let H: C* — C? be the map of the form
H(z,y) = (p(x) + ay,ax), where p(x) = 2° + c.
We call H: C? — C? a Hénon map. If a # 0, the inverse is

1
H™(w,y) = —(y, = = ply/a)).
Remark 2.2. In [1}], a holomorphic automorphism of C? of the form
F:(z,y)~ (y,y°+c—6x), 6,c€C, §#0

s called a Hénon map. The form of the Hénon map H in Definition 2.1 differs from the form
(x,y) = (y,9* + ¢ — dx) given in [1}]; however, H is conjugate by a polynomial automorphism to
(2, 9) = (y,y* + c+a’x).



In [8], the dynamical space C? is divided into the following three sets.
Definition 2.3 ([8]). Let r > 0 be a large number. Consider the following three subsets of C?,
D, x D, := {(x,y) € C*: |2| < r,|y| <7},
VFi={(z,y) € C*: |z| > max{[y|,7}} and V™ :={(z,y) € C*: |y| > max{|z[,7}}.
Let H be a Hénon map with a # 0. We define the escaping sets U* of H by

Ut = JH*(V?Y) and U = JHV ).

k>0 k>0
We consider the Julia sets and the filled Julia sets of Hénon maps.

Definition 2.4. For a Hénon map H(z,y) = (p(z) + ay,ax) with a # 0, we define the filled Julia
sets K* of H as follows:

K* :={(z,y) € C*: {H*"(x,y)}nen is bounded in C?}.
We define the Julia sets J* and J of H as follows:
J¥ :=90K* and J:=J"nJ".

Remark 2.5. For a =0, we can also define K™ and J*. In this case, K (resp. J1) is the product
set of the filled Julia set (resp. the Julia set) of p and C.

Bedford and Smillie [2] showed that there is a positive constant » > 0 depending on H such that
HVYH) cVYH NV )cV , U =C*\K" and U =C*\ K. (2)

It is easy to see that for a polynomial 22 +cy, there is r > 0 and § such that H(z,y) = (2?2 +c+ay, az)
satisfies the condition (2) with respect to r for (¢,a) € Ds(co) x Ds \ {0}.
In this paper, we consider the following three types of fixed points.

Definition 2.6. Suppose that a Hénon map H has a fixed point q. Let A and v be the eigenvalues
of (DH)q. We say that the fixed point q is

(1) attracting if |A\] < 1 and |v| < 1,

(i) semi-parabolic if |v| < 1 and A = exp(2mip/l) for some p/l € Q,

(i) a saddleif [v| <1 and |A| > 1.

We write that A, = O(B,) if there are a positive constant K > 0 and a positive integer N €
N such that |A,| < K|B,| for n > N. We set Pr;: C* — C,Pri(z,y) := x and Pry: C* —
C,Pry(x,y) := y. We recall stable manifolds (see [14], [18]).

Definition 2.7 ([14, p.311]). Let H be a Hénon map and r > 0 satisfy the condition (2) with respect
to H. For a saddle fixed point q of H, the stable manifold W*(q) of q is defined as

Wi(a) = {z € € Jim [|H"(2) — a = 0)

where || - || is the Euclidean metric of C2.



Let A € C\ {0}. To consider the connectivity of .J for the parameters near the boundary of the
Mandelbrot set, we consider a Hénon family for which each element of the family has a fixed point
such that one of the eigenvalues of DH at the fixed point is \. A Hénon map H(z,y) = (2*+c+ay, ax)
has a fixed point q such that A # 0 is an eigenvalue of (DH), if and only if

~0-a(3-5) - (35) g

Let Py be the set of parameters (¢, a) € C? satisfying (3). We denote the right hand side of equation
(3) by c(a, A). Moreover, we set H, »(z,y) = (z2+c(a, \)+ay, ax) and py(z) = z*+c(0, \). We denote
the filled Julia sets and the Julia sets of H, ) by Kf:,\ Ji/\, Joax instead of K*, J*, J respectively. We

see that H, ) has a fixed point
(x @ A a? A
L TR T E I @

with eigenvalues A and v := —a*/X. We give the parametrization of W**(q, y).

Lemma 2.8 ([7], [15, the proofs of Propositions 3.16, 3.17], [17, Proposition 5.2]). Let v = (—a/\, 1)
be an eigenvector for v. Assume that X satisfies | —a?/\| < 1 and |\| > | — a®*/\|. Then there exists
the injective holomorphic map

Dur: C— C* D, 0(2) = hm H, (qu + VP z2v) (5)

such that ®,\(vz) = Hyx (P (2)) for z € C and a # 0.
Let @95 (2) := (Priqgy,2). Then, ®q is analytic with respect to a and sup,cy [ Par(2) —
DA (2)|| = O(a) for each compact subset K of C.

Remark 2.9. Fiz Ao # 0. Consider a family {Hqx}(a,neps, xDs, (ro)- Since the fized point q,  of
H,  depends holomorphically on a, X, we see that ®,(z) is holomorphic with respect to (a, A, z) €
Ds, \ {0} x Ds, (o) x C (see the proof of Theorem 6.43 in [14]). Since @, is holomorphic with
respect to each variable separately when the other variables are fized, ®,\(z) is holomorphic with
(a, A, z) € Dy, x Dy, (Ao) X C, taking a smaller 6y > 0 if necessary.

Definition 2.10. The curve W**(q) := ®(C) is called the strong stable manifold of a fixed point q
for a # 0, where ® is given by (5), and the definition of (5) is valid if at least one eigenvalue of the
fixed point has absolute value less than 1 (see the proof of Theorem 6.43 in [14]).

For a fixed point q of H, the local strong stable manifold W*5.(q) of q is defined by the component
of W**(q) N (D, x D) that contains q, with the topology induced by ®: C — W*%(q).

Remark 2.11. When a = 0, we set W*(q) = U500 ({Pr1a}) x C and Wii(q) = {Pr1 q} x D,.

Remark 2.12. If q is a saddle, then W*(q) = W?**(q). In this case, the local stable manifold
Wise(@) of q is defined by Wik (q).

By using Lemma 2.8, we have the following.

Lemma 2.13. If \y € C\ {0, 1}, then there is a positive constant 6y > 0 such that H, » has a saddle
fized point s, » depending holomorphically on (a, \) € Ds, x Ds,(No). Let ‘i)(),x(z) = (Pry 80, 2), and
(fa,A(z) = limy_, oo H;f(s%,\ + 0F20), where ¥ is the eigenvalue of (DHyp)s,, with [7| <1 and v is
the eigenvector of U of the form (-,1) for (a,\) € (Ds, \ {0}) x Dy, (Xo) (see (5)). Then, ®,5(z) is
holomorphic with respect to (a, A, z) € Dg, x D, (Ag) x C.
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Proof. If |Ao| > 1, then q, , is saddle for (a, A) € D5, x Ds,(Ao), taking a smaller &y if necessary. By
taking s, as q, , and applying Lemma 2.8, we obtain the statement of Lemma 2.13.

We may assume that \g # 1, Ao # 0 and |A\¢| < 1. Then ¢(0, ) # 1/4 and Hy ,,(z,y) has a
saddle fixed point. By the implicit function theorem, there are a positive constant dp and a saddle
fixed point s, \ of H,  depending holomorphically on (a, \) € Ds, x Ds, (o).

We show that ®, () is holomorphic with respect to (a, A, 2) € D, x D, (Ag) X C by using Lemma
2.8. Tt follows from sg .\, # g, that sqx # g, for (a,A) € Ds, x Ds,(\o), taking dy small enough.
By 4.1 # q,, and the fixed point equation (z* + c(a, A) + ay, ax) = (x,y), we have

San = (1 — a’ — Pry Ao a(l — a’ — Pry qa/\)).

Consider the characteristic equation det((DHg)s, — M) = 0, which is equivalent to —(2Pr; s, —

M —a? = 0. We set f(a,\,\) := —(2Pr;s,, — A)A — a®. We see that f(0,)19,() = 0, where
¢ =0,2— Xy (see (4)). By axf(O Aos2 — Xo) = 2 — Ao # 0 and the Implicit Function Theorem,
there exists a holomorphic map A(a, \) with IAa,\)| > 1 for (a,\) € Dy, x Dg,(No) such that
fla, A, Ma,\) = 0 and A0, \g) = 2 — ), taking a smaller d if necessary. We see that c(a, \) =
c(a, \(a, A)) for each (a,A) € Ds, x Ds,(No) since H, x has the fixed point s, with one eigenvalue
Aa, A) (see (3)). In particular, H,y = H, 5, for each (a,A) € Dy, x Ds,(Ag). By the identity
theorem, we have s, = q, 5, for (a,A) € Ds, x D5, (Ag). Thus D,y = D, 50 for (a,)) €
Ds, x Ds,(Xo), where @, 5., ) is the map in Lemma 2.8. By Remark 2.9 and the fact that Aa, \)
depends holomorphically on (a, \) € Ds, x D, (o), it follows that &D% A(2) is holomorphic with respect
to (a, A, z) € Ds, x Dy, (Ag) x C. O

3 Vertical Condition

For the rest of the section, we assume that the Jacobians of Hénon maps H, ) are less than 1 in
the absolute value, and A # 0. In this section, we show the first main result (Theorems 3.10 and
3.11). We construct a holomorphic motion of J;, N (C x {y}) over a € D, for each y € D, to obtain
the first main result. In order to construct it, we consider the wvertical condition and the condition
(D: xD,)N J*/\ = (). We consider the vertical cone field {C(zy }ew)en, xb, given by

Cley) = {Cn) € Tioy)C = Inf > [¢]} (6)

for (z,y) € D, x D,. We first introduce the vertical condition as follows.

Definition 3.1. Let {Ha,A}aelD)go be a Hénon family. Fix ¢ > 0, and fix > 0 such that H, ) satisfies
the condition (2) with respect to r for a € Dg, \ {0}. Moreover, we assume that dy < min{1/2,¢}.
We say that {Ha,A}aemﬁo satisfies the vertical condition (VC)., with respect to €, if the following
three conditions hold:

(1) H (D xD,)\ (D, xD,5)) C V™ and [Pry H \(2,y)| > 2Jy| for a € Ds, \ {0} and
(@,y) € V7 U ((Dr x Dy) \ (D x Dy 2)).

(i) (DH, ) (Cry) € Chmi(pyy 80 [Pra (DH, 3 ) @) (€ )| > 2In| for a € Dy, \ {0},
(x,y) € HM((]D)T x D)\ (]D>6 x Dy)) N (D, x D,) and (¢,n) € C{,

(i) There are a saddle fixed point s, » of H,  depending holomorphically on a € D,

and a holomorphic map f,: D, — C depending holomorphically on a € Ds, such that
VVIZC<SULJ\) = {(fa(y)7 y) ‘Y € DT} and T(m,y)VVlsoc<Sa7)\) - Czlx,y) fOI' (l’,y) € Vvlf)c(sa)\>'
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We see that most families {H,, A}aeﬂ)ao satisfy the condition (VC)., by the following lemma.

Lemma 3.2. Fiz X\ # 1. Then there is a positive constant 6o > 0 such that {Ha,A}aeDgo satisfies the
(VO

Proof. Fix e > 0. We can take r > 0 such that each H, ) satisfies the condition (2) with respect to
r for a € Dy, \ {0} by taking a smaller dy if necessary. Assume that 0y < min{1/2,e}.

We show that the condition (1) in Definition 3.1 holds. For (z,y) € V-U((D, xD,)\ (D, x D, 5)),
we set (z1,51) == Hy(z,y) = (y/a,(x — y*/a® — c(a,N))/a). We show |y] > 2|y|. Since |z| <
max{|y|,r}, we have

layi| = |z — y?/a® — c(a, N)| > |y/al* — |c(a, A)| — max{|y|, }.

To obtain |y;| > 2|y|, it suffices to show that |y/a|* — 2|a||y| — |c(a, \)| — max{|y|,r} > 0 which is
equivalent to |y|* — 2|al®|y| — |al*|c(a, X)| — |a|* max{|y|,7} > 0. Note that |y| > r/2 by (z,y) €
V-U (D, x D)\ (D, x D,s2)). If a = 0, we have |y|* > r?/4 > 0. Thus, we can take §, > 0 such
that |yi| > 2|y| for a € Ds, \ {0}. Similarly, we have (z1,y1) € V™ if (z,y) € (D, x ;) \ (D, x D, /2)
for a € D5, \ {0}, taking a smaller dy if necessary. Thus, { Hy,x}aeps,\{0} satisfies the condition (i) in
Definition 3.1.

We next show that the condition (ii) in Definition 3.1 holds. Fix (z,y) € H,\((D, x D,) \ (D, x
D,)) N (D, xDy) and (¢, n) € CF, ). Weset (z1,y1) = H X (x,y) and (C1,m) = (DH;}\)(x,y)(C,n). By

(w7y a,
(z1,51) = H 5 (z,y) = (y/a, (v —y*/a* — c(a, \)) /a), we have ¢, = n/a and n, = (¢ — 2yn/a®)/a. By
xr1 = y/a, we have n; = (¢ — 2x1n/a)/a. Thus we have

1 |2z1n] 1 2¢

1 2¢
> — — > —(——1 > —(——1 > 2|n|,

by 0o < min{1/2,e}. In particular, we have || > 1/]a|(2¢ — |a|)|C1] > (2¢/]00| — 1)|C1| > |Ci| by
n = a¢; and dy < min{1/2,e}. Thus the condition (ii) holds for a € Dy, \ {0}.

Finally, we show that the condition (iii) in Definition 3.1 holds. There exists a saddle fixed
point s, » of H,  depending holomorphically on a € D, by Lemma 2.13. By Lemmas 2.8 and 2.13,
Wi (San) = {(fa(¥), 9a(¥)) : vy € g7 *(D,)} for some holomorphic maps fa, g, depending holomorphi-
cally on a € Ds,. Here, we remark that by Rouché’s theorem and go(y) = y, there exists g;! in I,
for a € Dj,, taking a smaller §y if necessary. Thus we have W (s.\) = {(fa(9,(v)),y) : y € D,.}.
In the case of a = 0, we have Wy (sox) = {Prisor} x D, and Tz, W2 .(sox) = {((,n) : ¢ =
0} € CF, - Since Wig (sq,x) depends on a holomorphically, by taking do sufficiently small, we have

|(falga' ()| <1 for y €D, O

Remark 3.3. The proof of Lemma 3.2 is still valid for perturbations {Ha)\}(a,)\)e]]])aox]])éo()\o), where
Ao # 1. That is, there is 6 > 0 such that the family {Ha’,\}(&,\)epéoxmo(,\o) satisfies (1), (ii), and (ii)
in (VC),r.

Remark 3.4. By the proof of Lemma 3.2, (i) and (ii) in Definition 3.1 hold for {Ha,A}aeDgo\{O}
without the condition \ # 1 in Lemma 3.2. Moreover, for each € > 0, there is 6o > 0 such that (ii)
in Definition 3.1 holds for {Ha,)\}aEDgo'

Consider a Hénon family {Hq}een,, satisfying the (VC).,., and

(D x D) NI =0 (7)



for a € D5, (see Remark 2.5 for the case a = 0). Let s, x be a saddle fixed point of H, \ depending
holomorphically on a € Ds,. Let v = (Ujez, Hoa(Wiie(san))) N (D, x D;). We say that v is a
vertical component of v, if v is a connected component of H, \'(Wy.(sax))) N (D, x D;) for some

m € Zso. Under the assumption (7), we have
Var C (D, \D,) x D, (8)

for a € Ds, by W*(san) C J; and (2). To construct a holomorphic motion of J; ", N (C x {y}) over
a € Dy, for each y € D,., we prove the following two lemmas.

Lemma 3.5. Suppose that {Ha7,\}aeD50 satisfies the (VC)., and the condition (7) holds for a € Dy, .
Let v, be a vertical component of v, represented by {(fa(v),y) : y € D,} for some holomorphic
map f, depending holomorphically on a € Ds,. Then for each a € Ds,, H;l(va) N (D, x D,) is
the union of two distinct vertical components v,1 and ve2. Moreover, v, ; can be represented by
{(fa;j(¥),y) : y € D} for some holomorphic map f,;: D, — C depending holomorphically on a € D,

for 3 =1,2.

Proof. Let v, be a vertical component of v, » represented by {(f.(v),vy) : y € D, } for some holomor-
phic map f, depending holomorphically on a € Ds,.

We first show that the set H;/l\(va) N (C x {w}) consists of exactly two points for w € D, and
a € Ds,. For a =0, fo is constant and Ho(z,y) = (22 4 ¢(0,)),0). Clearly, Hy,(vo) N (C x {w})
consists of exactly two points for w € D, since the critical value ¢(0, \) of 22+ ¢(0, A) does not belong
to fo(D,) (see (7)). For a € D, \ {0}, recall that H;/l\(x, y) = (y/a, (x —y*/a®> —c(a, \))/a). Consider
the equation

faly) = y*/a* — c(a, A) = aw (9)
for a € ]D)(So \ {0} We set ga(y) = fa(y) - y2/a2 o C(aa )‘) — aw and ha(y) = _fa(y) + C(CL, >‘) +aw
for a € Dy, \ {0}. By vy C vor C D, x D, we have |f,(y)| < r for y € D,. If |a|] < 1, then for
y € 0D Graean e e have
9. > 1y*/a®| = |e(a, M| = law| = [ fa(y)| = (3 — lal)r + 3|c(a, A)| > 7+ |e(a, A)| + |alr
2 |fa@)] + le(a, M) + law] = [ha(y)]

By Rouché’s theorem, g, and g, + h, have the same number of zeros inside D CETEESIE Since

9a(y) +ha(y) = —y?/a?, the map g, has two zeros in D 7 Moreover, the map g, has two

(4r+4|c(a,N\)])|a
distinct zeros by using the condition (ii) and (iil) in Definition 3.1. Indeed, let g,(yo) = 0. Then we
have (yo/a,w) € H;/l\(va) N (C x {w}). By (8), we have |yy/a| > . Moreover, we have |f!(yo)| < 1
by the condition (ii), (iii) in Definition 3.1, and (6). Hence we have

190 (y0)| = [2y0/a®] = | fa(yo)| > 2¢/lal — 1 > 2¢/dg — 1 >0, (10)

by dy < min{e, 1/2} (see Definition 3.1). Thus, g, has two distinct zeros in D APl On
the other hand, by dy < min{e, 1/2}, if y € D, satisfies |y| > \/(4r + 4|c(a, N)|)|a|?, then

_ faly) —9?/a® = cla NI lv*/a®] = faly)] = le(a, M| 3r + 3[e(a, V)]
|al |al = |a]

[Prs Hoy (fa(y), y)]

>

Hence, there are exactly two distinct solutions of (9) with respect to y € D,, which belong to
D TSP This implies that the set H;i(va) N (C x {w}) consists of exactly two points for
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w € D,. Note that H, \(vs) N ((C\D,) x {w}) = @ by (2), otherwise W*(sqx) NV # (). Thus,
H o )l\(va) N (D, x D) is the union of two vertical components of v, .

Recall that fj is constant. Assume fy = A for some A € C. Let 224¢(0,\)— A = (z—A;)(2— Ay).
Then we have Hg,(vg) N (Dy x D,) = ({A1} U{As}) x D,. There are positive constants 01,1 > 0
such that & < &g, D, (A1) ND., (As) = 0, H, \(va) N (D, (A;) x D) # @ for j = 1,2 and a € Dy,
and H, \(vs) N (Dp x D,) C (D, (A1) UDx, (A;)) x D, for a € Ds,. For a € Ds, and j € {1,2}, we let
U,,; be the component of H;}\(va) N (D, x D,) which is contained in D, (A4;) x D).

We show that v, ; N (C x {w}) moves holomorphically over Ds, for each fixed w € D, by using
the implicit function theorem. We set F(a,y) := fo(y) —y*/a® — c(a, \) —aw for a € Dg, \ {0}. Since
Tiruw) v € Cf ).y for y € Dy, we have |0, fo(y)| < 1 for y € D,. Fix arbitrary points a € D, \ {0}
and Z; = Z;(a) with F(a, Z;j(a)) = 0 and Z;(a)/a € D, (A;). Then, we have (Z;/a, (fa(Z;) — 2} /a* —
c(a,N)/a) = (Zj/a,w) € v,; N (C x {w}). By (8), we have |Z;/a| > e. Since F(a, Z;) = ga(Z;), we
have |0, F(a, Z;)| > 0 (see (10)). By the implicit function theorem, {Z;/a, w} = v, ;N (Cx{w}) moves
holomorphically over Dy, \ {0}. Moreover, Z;(a)?/a? = f.(Z;(a)) — c(a, \) — aw since F(a, Z;(a)) = 0.
Note that Z;(a) € D,/» by 7 > |w| = |Pry H;i(fa(éj),éjﬂ and (1) in Definition 3.1. Since f,(z) is
holomorphic with respect to a € Dg, and z € D, f,(2) = fo(2) uniformly on D,; as a — 0. This
implies that Z;(a)/a — A; as a — O since f,(z) = fo(2) = Aasa — 0. Thus {2;/a} = v, ;N(Cx{w})
moves holomorphically over D, .

For each a € Dy, \ Dy, and each j € {1,2}, v,; N (C x {w}) can be analytically continued along
a path connecting a and a point in Ds,. By the monodromy theorem, for each a € D5, and each
j € {1,2}, there is a component v,; of H,(vs) N (D, x D,) such that v,; N (C x {w}) moves
holomorphically over Dy, for each fixed w € D,. We show that v,; # v,2 for each a € Dy, \ Ds,.
Assume that v, 1 = v,2 for some a € Dy, \ Ds,. There exists a sequence {a, }nen in {a € Dy, : v,1 =
Uaz2} such that a, — ap as n — oo and

lap| = inf{|a| € Dy, : V4,1 = Va2}- (11)

Clearly, we have |ag| > 01 by the argument above. Moreover, we have v,,1 = v42. Otherwise,
Va1 7 Vg2 for all a in a small neighborhood of ag, which implies that a,, ¢ {a € Ds, : V41 = Va2}
for sufficiently large n. Consider the vertical component vq, of Vaox. Let H, '\ (v4,) N (Dr x D) =
Vgo1 U Ugq 2 for some vertical components g, 1, Uqy2 0f V4 5. There are open neighborhoods Uy, U, of
Uap.1, Vag 2 Tespectively such that Uy N Uy = . We may assume that vg, 1(= vgy2) = 04.1. We take a
positive constant d, > 0 such that H(;)l\(va) N(D, xD,)NU; # 0 for j =1,2 and a € Dg,(ag), and
H \(va) N (Dp x D) € Uy UUs for a € Dy, (ag). Recall that F(a,y) = fo(y) —y?/a® —c(a, ) — aw for
w € D,. We see that |0, F'(ag, Z1)| > 0, where Z; satisfies that F'(ag, Z1) = 0 and (2 /ag, w) € Uy (see
(10)). By the implicit function theorem, v,; N (C x {w}) C U; moves holomorphically over Ds, (ag)
for each fixed w € D,. We can take a € Ds,(ag) with |a| < |ag| such that vz = vsz2. This contradicts
(11). Thus, H;}\(va) N (D) x D,) = v41 Uvge and v,; N (C x {w}) moves holomorphically over Dj,
for each fixed w € D, and j € {1, 2}.

Finally, we show that there are holomorphic maps f,1, fs,2 such that v, ; = {(fa;(y),y) : v € D, }
for j = 1,2. Since Pry: v, ; — D), is a bijective holomorphic map for a € Dy, and j € {1,2}, there
are holomorphic maps fq 1, fa2 such that v,; = {(f.;(v),y) 1y € D, } for a € Ds, and j =1,2. O

Let W, be the vertical component of v, such that H,x(W,) C WJ.(San) and Wy N
VVlf)c(Sa,A) = () for a € D%‘

Lemma 3.6. Suppose that {Hy}taen;, satisfies the (VC)e, and the condition (7) holds for a € Ds,.
Then the two sets H;Q(Way,\)ﬂ(]l])r xD,) and H;;"(Wa)\)ﬂ(l[))r xD,.) do not intersect forn #m € Zx
and a € Dy, .
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Proof. Fix a € Dg,. Assume that there are components v, and v, of H;Z(Wa,,\) N (D, x D,)
and H;;”(Wax) N (D, x D,) respectively such that v, N v, # 0. We may assume that n > m.
We see that HJ"(v,) is a subset of some component of H, 3™ (W, ) N (D, x D,). On the other
hand, H" (Um) C Wiy Thus, an intersection point of vn and v, is mapped under H;", into
War N H "+m(Wa7>\) N (D, x D,). Hence, we have HZ;’"(W,I,,\) N Wax # 0. This contradicts
Ha,,\(Wa,,\) C We(San)y Hax(We(san)) C WE (san) and WE (sqn) N Won = 0. Thus we have
proved Lemma 3.6. O

Let us consider the section S, ), := W?(s,) N (C x {y}) for y € D,. Recall that Hy(z,y) =
(pA(2),0). We denote the Julia set of py by J,,. We now construct holomorphic motions.

Lemma 3.7. Suppose that { Ho}aen,, satisfies the (VC)e,. and the condition (7) holds for each a €
Ds,. Then there exists a holomorphic motion hy,: Ds, X Sox, — C x {y} such that hy,(a, (z,y)) €
Say for y €D,, ae€Ds and (x,y) € Sory. In particular, hy, can be extended to a holomorphic

motion hy,: Ds, x (C x {y}) = C x {y} and hy,({a} x (Jp, x {y})) = Supry-

Proof. By Lemma 3.5, H;i\(Wa,,\) N (C x {y}) has exactly 2/ elements for each j € Z>g. By Lemma
3.6, we have

Sarw = Wise(8a2) N (Cx {y1)) U || (HA(Wan) N(C x {y})):

J€Z>o

By (iii) in Definition 3.1, we have W _(s.n) = {(fa(v),y) : y € D,} for some holomorphic map
fa: D, — C depending holomorphically on a € Ds,.

Let v, be a vertical component of v, such that v, N (C x {w}) moves holomorphically over
D, for each w € I,. By Lemma 3.5, there are two vertical components v,; and v, 2 of v, such
that H;}\(va) N (D, x D) = v,1 Uvge, and v,,; N (C x {w}) moves holomorphically over Dy, for
each fixed w € D, and j € {1,2}. Thus, we can construct hy,: Ds, x Sp, — C x {y} such that
hyy(a, (x,y)) € Sany for y € D,, a € Ds, and (x,y) € Sy, By Lemma 3.6, for each fixed a € Dy,
and y € D, hyy(a, (z,y)) is injective with respect to x with (z,y) € Spx,- The map hy, can be
extended to a holomorphic motion hy,,: Ds, x C x {y} — Cx {y} and hy,({a} x (Jp, X {y})) = Sary
(see [11] and [19]). O

Corollary 3.8. Suppose that {Ha,)\}aeﬂ)g satisfies the (VC)., and the condition (7) holds for a € Ds,.

Then J+/\ N (D, x D) = Uyep, Sary- In particular, J+/\ N (C x {y}) is path connected for y € D, if
Jp, 1S connected.

Proof. We first show that

WS(Sa,)\) N (DT X DT) N (DT X DT) = WS(SG,)\) N (DT’ X D?") (12)

as follows. Let (z1,w;) € W* (sa,\) (D, x D,). Since (z1,w;) € D, x D,, for each n € N, there
exists (215, W1,) € W(sax) N (D, x D,) such that (21, w1 ) = (21, w1) as n — oo. Thus (21, wy) €
Ws(sqn) N (D, x D,). Hence (z1,w;) € W3(s,n) N (D, x D,) N (D, x D,.). The opposite inclusion is
obvious. Thus we have shown (12).

We next show that

U Sarg) N (@ x D) = | oy (13)

yE]D)r yGJD)r

as follows. Let (2o, ws) € UyeDT(Sa)\,y) N (D, x D,). By (22,w2) € D, x D,., we can take (22, w2,) €
(UyE]DT Sary) N (D, x D) such that (z9,,ws,) — (22,w2) as n — oo. Let v, be the vertical
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component v, which contains (22, wa,). Let x,, € D, such that (z,,ws) € v,. To show (22, ws) €
Uyen, Sanys We show that (x,,wy) — (29, ws) as n — 0o. Since ||(2,, we) — (22, wa)|| < ||(w0, w2) —
(2o, W) ||+ 1| (22,0, Wan) — (22, w2) ||, it suffices to show that ||(z,,, w2) — (22,0, War)|| = 0 as n — .
Since Pry: v, — D, is a homeomorphism, we can take a curve v: [0,1] — wv,, represented by
v(s) = (f(s),g(s)), between (x,,ws) and (2a,, wa,) such that lengthy (Pryy) = |wy,, — ws|, where
length ;(Pry ) is the length of the curve Pry v with respect to the Euclidean metric. Note that Pry
is the segment between wy, and ws. By (f'(s),g'(s)) € CJ, (see (ii) in Definition 3.1), we have

(s 02) — (22 w2,0)]] < lengthy, v < V2 / max{|f/(s)],]¢'(s)|}ds = v/2 / 16/(s)ds.

Since fo |’ (s)|ds = |wa, —we| — 0 as n — oo, we have that ||(z,, ws) — (22,0, Wa,,)|| = 0 as n — oo.

Hence we have (zp,ws) € UyeDr Saxy- Therefore UyED7-( Sary) N (D x D,) C UyeD axy- The
opposite inclusion is obvious. Thus we have shown (13).
By J\ = W(saa) (see [3]), W3(sa2) N (D, X D) = U, ep, Sary, (12) and (13), we have

TN (D, x D) = We(sex) N (D x D) = | (Sang) Ny x D) = | Sany

yeD, y€Dy

By the above, we have J;,N(Cx{y}) = Saxy Saxy for y € D,. Note that the condition (D, xID DN =
0 for a € D5, implies that (D, x D,) N (Jp, x C) = @ since Jg, = Jp, x C. In particular, the critical
point 0 of py belongs to C\ J,,. Since J,, is connected, p, has an attracting or parabolic periodic
point. Hence J,, is the image of unit circle under a continuous map (see [5]). In particular, J,, is
path connected. Since S, is homeomorphic to .J,, (see Lemma 3.7), the section J, N (C x {y})
is path connected for each y € D,. O

The following lemma is useful for checking whether J, » is disconnected.

Lemma 3.9. Suppose that {H,}aen;, satisfies the condition (VC)e, and the condition (7) holds
for a € Ds,. Then each vertical component v of v, x contains a point of J, x for a € Ds, \ {0}.

Proof. Let vy := v be a vertical component of v, 5. Inductively, let v,, be a component of H (vn )N
(D, x D) for each n € N. Then we have the nested compact sequence { H} \ (75) }n>o with H '\(Tn) C
HZ;l(m) for n € N. For any a € D, we have J,, = K_, (see Lemma 5.5 in [2]). A point of
Mnen HZ;l(m) belongs to J,  since its backward orbit is bounded and v is a subset of J : -4

We now prove the first main result of this paper, divided into Theorem 3.10 and Theorem 3.11.
Theorem 3.10 relates to the connected case, and Theorem 3.11 to the disconnected case.

Theorem 3.10. Let {Hqz}oen,, be a Hénon family satisfying the (VC)e,. Assume that the condition
(7) holds for a € Dy,. If the Julia set J,, of the polynomial py is connected, then the Julia set J, x
of the Hénon map H,  is connected for a € Dy, \ {0}.

Proof. Assume that .J,, is connected and A # 1. We first show that J, N (D, x D) is connected.
We take any distinct points (z1,y1) and (23, 92) in J;, N (D, x D). We construct a path between
these points as follows. Let v be a vertical component of v, , and (z;,y;) be the intersection of
v N (C x {y;}) for j =1,2. Since J;, N (C x {y;}) is homeomorphic to J,, for j = 1,2, and Jj,, is a
path connected, there exists a path between (z;,y;) and (z;,y;) in J:/\ N(C x {y;}) for each j =1, 2.
We can take a path between (21, 1) and (z2,%») in v since v is path connected. Thus, J/, N (D, x D)
is path connected, which implies that it is connected.
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We now show that J, x is connected. We see that J,x = (5o (HY\(J;, N (D, x D,))). Moreover,
we have HY{'(J, N (D, x D)) € HE\(J7,N (D, xD,)). Hence J,, is a nested intersection of

a
connected compact subsets. Thus J, » is connected. ]

We next show the following theorem.

Theorem 3.11. Let {Hqy}aen,, be a Hénon family satisfying the condition (VC).,. Assume that
the condition (7) holds for a € Ds,. If the Julia set J,, of the polynomial py is disconnected, then
the Julia set J, \ of the Hénon map H, ) is disconnected for a € Dy, \ {0}.

Proof. Assume that J,, is disconnected. That is, it is a Cantor set. We show that J, , is disconnected.
We can take a Jordan curve v; C C for each j = 1,2 with 73 Ny, = 0 such that J,, C U; UU, and
Jpy NU; # 0 for j = 1,2, where U; is the bounded domain with the boundary ~; for j = 1,2. Let
hay: Ds, x (C x {y}) = C x {y} be the holomorphic motion given in Lemma 3.7.

Fix a € Ds, \ {0}. Let 744, == Pri hyy({a} x (7; x {y})) C Cand U, ; = Pry hy,({a} x (U; x
{y})) Cc Cfor j=1,2 and y € D,. Since (ay,; X {y}) NJ,, = 0 for j = 1,2 and y € D, there exists
e1(a,y) with 0 < e1(a,y) < r — |y| such that

(U Qs X Desiary ) N Iy = 0 (14)
yeD,
for each 7 = 1,2 and each y € D,. We now show that

2

T (€ X Deyiay)®)) € (| Uays) X Deyagy (v) (15)

j=1

for each y € D,. Fix yo € D,. Let (z,w) € (C\ U?:l Uaroi) X Dzyayo)(%0). In order to show
(15), it suffices to show that (z,w) ¢ J;, N (C x Dey(ay0) (W0))- If (z,w) € U?Zl Yagoj X Dei(ayo) (¥0)s
then (z,w) ¢ J, by (14). Thus we may assume that (z,w) € (C\ U?Zlm) X m.
By assuming that (z,w) € J, N (C x D¢, (ay0) (%)), we derive a contradiction as follows. Note
that w € D, by e1(a,y0) < r — |yo|- By Wsa,\) = JIA, there exists a vertical component v
of v, and a point Z € C such that {(2,w)} = vy N (C x {w}) C (C\ U§:1 Uayoj) X {w}. Let
zo € C be the point such that {(z0,50)} = vo N (C x {yo}). By J;, N (C x {w}) = Sango (see
Corollary 3.8), we have J, N (C x {y}) C (U?Z1 Uayoi) X {yo}. Hence, we have {(zo,y0)} =
voN(C x{y}) C <U§:1 Uayoj) X {yo}. Since Pry: vg — D, is a homeomorphism, we can take a path
Yo C vo N (C x m) between (xg,y0) and (2, w). Then we have (Pry~y) N (U?:1%,y07j) #

@ which implies that vy N ((Uj:1 Yawoi) X Dey(ayo)(¥0)) # 0. By vo C J;, and (14), we have a
contradiction. Thus we have (15) for each y € D,.

Uaor X De (Yy) U2 X De.am ()
LA
Lzl' )

_/ (z,w)

(r.v ) Cx{yo}

\
Vo

Figure 3: The case (20,%0) € Uayo1 X {%0}
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Let Ui = Uyep, (Uay1 X Deyay)/2(y)). Since D, /o is compact, we can take a positive integer

N € N and points y1,92, -+ ,yn € D, such that Uy y = Uj.vzl(Ua,ij X D¢y (a,y;)/2(y;)) satisfies

D,/2 C Pro Uy n. Let v, ; be the union of all vertical components of v, which intersect U, ; X {0}
for j = 1,2. We now show that

Va1 N (D xDyjp) C Uy y. (16)

Take a vertical component v; C v,z 1 of v, \ and a point w; € D, /5. To show (16), it suffices to show
that vy N (D, X {w:}) C Uy n. Let hopy: Cx{y} = Cx{y}, hary(z,y) = hayla, (z,y)) for y € D,
and z € C. By the construction of h, , (see the proof of Lemma 3.7), Pr1 U, p, hony (01N (Cx {y}))
consists of a single point of J,,, say b;. We have by € Uy by v1 N (Ugo1 % {0}) # 0. Since wy € D, o,
we can take a positive integer ky with 1 < k; < N such that w; € DEl(ayykl)/Q(ykl)‘ Let 1 € C be
the point such that {(x1,yx,)} = v1 N (C x {yx, }). By Pr; ﬁ;}\’ykl(Ua,ykl,l X {yr, }) = Uy 2 by, we
have (21, yk,) € Uay, 1 X Dey(ay,,)/2(Yr, ). This implies that vy N (Usy, 1 % {yx, }) # 0. By (14) and
(15), we have {(z1,w1)} :=v1 N (Dy x {w1}) C Uyy, 1 % {wi}. Otherwise, for any path in v; N (C x
De, (ayi,)/2(Yr, ) between (21, w1) and (21, Yk, ), the path necessarily intersects va,y, 1} De; (a,,)/2(Yky )-
This leads to a contradiction (see the proof of (15)). Thus we have v1 N (D, X {w1}) C Uay, 1% {wi},
which implies that vy N (D x {w:1}) C Uay, 1 X De;(a,)/2(Ur ) € Ui v. Thus we have (16).
By using (16), we show that

Va1 M (DT X ]D),«/Q) C Ul,N- (17)

We have Vo1 N (D, x D, j0) = Uyemr/2 Va1 N (D, x {y}) by the same argument as in the proof of
(13). Thus, to show that (17), it suffices to show that v, 1 N (D, x {y}) C Uy n for y € D, 5. Fix
w; € D, /5. By using the argument in the proof of (16), we can take ky € N with 1 < k; < N such
that ’UA)l S Dal(a,y,;l)/Q(yi%l) and Va1 N (]DT X {1@1}) C Ua’yfcl’l X {@1} By (14), Va1 N (DT X {@1}) C
Uagy, 1 % {un }. In particular, we have v, 1 N (D, x {1 }) C Uayy, 1 % }D)al(a,ykl)/g(y,;l) C Uy n. Thus

we have (17).
We next show that

Va2 N (Dr X ]Dr/2) N Ul,N - @ (18)

Note that m = U;\;l(Ua,yj,l X D¢, (a;)/2(y;)). Assume that there is (2o, w2) € Va2 N (D X Dy o) N
U, n. Let vy C v,52 be the vertical component of v, which contains (zy,w;). By (14), we may
assume that (zo,wy) € Ua, 1 X Dal(a,%)/g(y@) for some ko with 1 < ky < N. Let 2o € C be
the point such that {(z2,yr,)} = v2 N (C x {yx,}). By (14) and z5 € U,y 1, we have {(22,ys,)} =
V2N(CX{Yr, }) C Vs, 1 X {Yky }- Otherwise, for any path in vaN(C XDy, (4, )/2(Yk,)) between (zg, yx, )
and (22, ws), the path necessarily intersects Yang,t X Dey(apiy) /2(Yr,). This leads to a contradiction
(see the proof of (15)). Thus we have vy N (C X {yk,}) C Uay, 1 X {Y,}, which implies that

Pry ﬁ;ivyz@ (v N (C X {yr,})) C Up. On the other hand, vy N (U, 2 x {0}) # 0 since vy C vy

is a vertical component of v, . Thus Pry ﬁ;}\’o(vg N (C x {0})) € Uy. Since Uy NUs; = ) and

Pry UyeDT iL;&’y(Ug N(Cx {y})) consists of a single point, we have a contradiction. This contradiction
implies that (18) holds.
By using (18), we show that

Va2 N (Dr X Dr/2) N Ul,N - (D (19)

By the same argument as in the proof of (17), it suffices to show that v, 2N (D, X {y}) N Uy =10
for y € D, )5. Fix Wy € D,jp. By (18), we have vyy2 N (D, x {w2}) N Uy ny = 0. Note that
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Uy v N (D, x {is}) can be represented by a finite union of the sets Uy, 1 x {t2}. Thus, by (14), we
have vy 2N (D, X {2}) N Uy N (D, x {1y}) = 0. Hence we have (19) by var2 N (D, x {12}) N
ULN N (]D)T X {IDQ}) = Vg2 N (]Dr X {UAJQ}) N Ul,N~ o

Finally, we show that J, , is disconnected. We set Uy := (CxD,/2)\U; n. Then J, » C U; yUUs,.
Indeed, we have J, » C D, x D, /5 by (2) and (i) in Definition 3.1. Thus J, x C (Vox1UVar2) N (D, x
D, 2). Therefore, by (17) and (19), J,» C Uy ny U Us,. Clearly, we have J, » N Uy x # 0 by (16) and
Lemma 3.9. Similarly, we have J, y N Uz # () by (18) and Lemma 3.9. Thus J, , is disconnected. [

4 Application for radial perturbations of semi-parabolic
Hénon maps

In this section, we apply Theorem 3.10 to perturbations of semi-parabolic Hénon maps. To consider
the connectivity of J for the parameters near the boundary of the Mandelbrot set, we consider
perturbations of semi-parabolic Hénon maps by using a perturbation of one eigenvalue of semi-
parabolic fixed points. Let Ao = exp(2mim/l), where [ € Z \ {0}, m € Z and (m,l) = 1. Let
{At}ecpo,60) be a one-parameter continuous family of complex numbers, where dy > 0. Assume that
A = exp(L; +i6;) and R > 6; — 0 as t — 0, where L; € R\ {0} and 6; € R for 0 < ¢ < dy.

Definition 4.1 (Radial perturbations). We say that a family RD,,s, = {Ha,At}a€D50,0<t<50 is a
radial perturbation of the semi-parabolic Hénon family {H,, Ao}aeDso if 0, = O(Ly).

In order to apply Theorem 3.10 to RD,, s5,, we first check that the section {H,, ,\t}aeméo of RDj, s,
satisfies the condition (VC)., for each ¢ with 0 <t < do.

Lemma 4.2. There is g > 0 such that the section {Ha,x\t}aemo of RD,, s, satisfies the condition
(VC).,r for each t with 0 <t < dy.

Proof. If Ao # 1, then the section {Ha,At}aeméo of RD,, s, satisfies the (VC)., for 0 < t < &y by
Lemma 3.2, taking a smaller dy > 0 if necessary (see Remark 3.3).

Assume that Ay = 1. We may assume that each H, », € RD,, s, with a # 0 satisfies the condition
(2) with respect to r by taking a smaller §y and a larger r if necessary. Fix ¢ > 0. We can show
that {H,,», }eep,, satisfies (1), (ii) in Definition 3.1 for 0 <t < dy in the same way as in the proof
of Lemma 3.2, taking a smaller 6y > 0 if necessary (see Remark 3.4). Thus it suffices to show that
{H,, )\t}aEDéo satisfies (i) in Definition 3.1 for 0 < t < 4, taking a smaller dy > 0 if necessary.

To show that (iii) in Definition 3.1 holds, we first show that H, ), has a saddle fixed point for
0 <t < dp. In order to show this, we show that H, , has two distinct fixed points. Consider the
equation (22 + c(a, \t) + ay, ax) = (z,y). By y = ax, we have

2?4+ (a* — Dz + c(a, \r) = 0. (20)

Assume that (z — a)(z — B) = 22 + (a®* — 1)z + c¢(a, \y). If @ = B, then a = 1/2 — a*/2. In
this case, H, ), has only one fixed point (1/2 — a?/2,a/2 — a®/2). Since H, ), has a fixed point
Aoy, = (Me/2—a?/(2N), a(M\/2 —a?/(2)))) (see (4)), we have A\, = 1 or \; = —a®. Since A\ = 1, we
have \; = 1 for a € Dy,, by taking dp > 0 so that 0 < §y < 1/2 and |A;| > 1/2 for 0 < t < &y. This
contradicts Ay = exp(L;+i6;) with L; # 0 for 0 < ¢ < dp. This contradiction shows that H, , has two
distinct fixed points. The other fixed point of Hy is ugy := (1 —a* — Pry q, ,a(l —a® — Pri1q,,))
by (20). These fixed points q,, y, usx depend holomorphically for (a, \) in a small neighborhood of
(0,1). At least one of the fixed points q, ,,, Ua,, is a saddle by q,, , 7 U4, (see [14, Theorem 7.1.16,
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p.234]). Hence, there is a fixed point s, of H,, depending holomorphically for (a,\) in a small
neighborhood of (0, \), and s, », is a saddle fixed point of H, ), € RD,, s,, by taking a smaller d; if
necessary.

Finally, we show that (i) in Definition 3.1 holds. Let ®g(2) := (Pryso, 2) and @, be the
parametrization of W*¥(s, ) for (a,\) € Ds, \ {0} x Ds,(Ao) given by (5). In the same way as
in the proof of Lemma 2.13, ®,.(2) is holomorphic with (a,),z) € Ds, x Ds,(Ag) x C. We have
W (san) = {(Parr(® a“(y)) y) :y € D} for (a,\) € Ds, x Ds,(No), taking a smaller oy if
necessary, where CIDa’,\ = (CI>a,,\71, (IDa,,\Q) (see the proof of Lemma 3.2). We have s,, = q,, since
Uos Aoy, — Aoy, a8 £ — 0. Since Wiit(dg ,) = {Pr1qg s, } XDy, we see that T(, ) Wi (San,) C CF,
for (z,y) € W.(san), a € Dy, and 0 < t < Jp, taking a smaller §y > 0 if necessary. Thus,
H,, € RD,, s, satisfies (iil) in Definition 3.1 for 0 < ¢t < dy. O

We next prepare local coordinates near semi-parabolic fixed points to check that the condition

(7) holds for RD)\“;O.

Lemma 4.3 ([16, Theorem 3.5 and its proof]). Let r > 3 be a fized constant, A\ := exp(2mwim/I)
and A := (14 t)\g where t € R. Then, there exist 6 > 0,0" > 0 such that for |a] < 0 and |t| <
there exists a coordinate transformation ¢,.: B = D, (Pr; qo,)\t) X D, — D, X Dyyo(a) such that

Gat(dan,) = (0,0), Wit(a,,) C Dy (Pridgy,) X Dr, ¢ai(Wie(da,)) C {0} x C, the image of any
homzontal curve Dy (Pry qQ, ) X {yl} under ¢qy is a subset of C x {ys} for some yo € Dy 0(ja)), and

a)\t ¢atoHaAto¢ata a)\t(x y) (XhY'l) has the form
(X17 Yi) = ()‘t(x + ‘rH_l + Oa,tx2l+1 + ba,t,2l+2(y)x2l+2 + o )7 Vo tYy + mha,t(xv y))? (21)

where Cy 4 is a constant depending only on a and t, xhe(z,y) = O(a) and v, is the other eigenvalue
of (DH, ,) . Moreover, the transformation ¢, is analytic for a and t,

(llig(l) Gai(z,y) = (¢:(7),y)

qa,)\t

uniformly fort. The map ¢;: Dy(Priqqg,,) — D, is the transformation of the polynomial py, and
Gt © pa, © (bt—l(x) = M(x + AR IR wazzﬂ + 0(332”2)).

For r > 3, Ao = exp(2mim/l), if (c,a) € P, with sufficiently small |a|, then the sets U* given in
Definition 2.3 satisfy the equations (2). The condition \; = (1 + ¢)A¢ in Lemma 4.3 corresponds to
6; = 0 for 0 < t < 0y in Definition 4.1. To see that H, ,, € RD,, s, has the form (21) (Lemma 4.4),
we sketch the proof of Lemma 4.3.

Sketch of the proof of Lemma 4.3. The proof of Lemma 4.3 breaks into four steps.

Step 1. Let ®,,, = (Por.1, Pan2) be given in Lemma 2.8. Then @, ,,(y) = $o,(y) + O(a) by
Lemma 2.8. For sufficiently small |a| and |t|, we may assume that there exists @;1&,2 in D, by
Rouché’s theorem and @, 5, 2(z) = z. For (z,y) € C x D,, consider the transformation

(X,Y) = (2 = P a(Py), 2(9), Doy, 2(y) with inverse (z,y) = (X + @1 (Y), Pan2(Y)), (22)

which maps Wi (q, ,,) into {0} x C. By using the transformation (22), H,», and Hy, have the
forms

(bas1(Y)X +bain(Y)X?+ -+ v0,Y 4+ Xhoy(X,Y)) and (\X + X2, 0)

respectively. Note that b,;1(0) = A\ and b, .1(Y) = A + O(a) since @,:(y) = Po(y) + O(a).
Step 2. Suppose that H, ), (z,y) has the form

(ba,t,l(y)'x + ba,t,2 (’y).flf2 + Va,tYy + ':Cha,t (Q?, y)) (23)
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bata (V)
Let us reduce the function b,,1(y) to be.1(0) = A; (see Proposition 3.2 in [17]). Since M =

At
ba,t1 (Ve 1Y)
ua,t(y) - H ( tl)\t - )

n>0

1+ O(v},y), the product

converges for y € D,. By using (X,Y) = (uq+(y)x,y) with inverse (x,y) = (X/uq(Y),Y), (23) has
the form

Uat(VarY + Xhat(X/uet(Y),Y) /e i(Y)) X (bar1(Y)X /gt (Y) + ba,t,z(Y)(X/ua,t(Y))Q )

uat(ya tY)batl(Y) 2 2
= ! ’ - X + O X - )\ X + O X
() (X?) =N (X7)

in the first coordinate.
Step 3. We may assume that H, , has the form

(A + ba,t,z(y)xz + ba,t,3(3/)l’3 + o Vary + Thay(2,y)).
We next reduce the function b, +x(y) to constants by induction on 2 < k < 20 + 1. Consider
()\tx + ba,t,2$2 + ba,t,3m3 +---+ ba,t,k—lxk_l + ba,t,k(y)xk + - y Vatly + xha,t(xa y))7 (24)

where b, ; is constant for j =1,2,...,k — 1. We set

o0

Vot (y) = Z(ba,t,k(ngty) — ba’t7k(0))/\?(k—1)_1‘

n=0

This series converges since |v, At < |vaA2| < 1 for sufficiently small ¢ and |a|. By using local
coordinate (X,Y) = (z + va,(y)z", y) with inverse (z,y) = (X — v,(Y)X* +---,Y), (24) has the
form

MX A A bai e 1 XA (Baik (V) 4+ Movg 1 (VasY) — Mva (YY) XF 4+ O(XFH
= MX A+ F by 1 X 4 by 1 (0)XF + O(XFH

in the first coordinate.
Step 4. We may assume that H, ), has the form

Ae(x + ba,t,2$2 + -+ ba,t72l+1$21+1 + bg t 2142 (y)x2l+2 +--)

in the first coordinate. We reduce b, to 0 for each k with 2 < k < 2l +1 and k —1 ¢ [N by
induction. We first assume that H, ), has the form

(@ + Doy p™ 4+ bgg ) (25)
in the first coordinate. By the local coordinate
(X,Y) = (2 — Aebas o™ /(AF = \p), y) with inverse (z,y) = (X + Mbarx X/ (AF = X) +--- ), (26)
(25) has the form

MX A+ Nbair — OF = M) Abain/ OF = ANXF 4o = A X + O(XFH).

17



By induction and a linear transformation, we may assume that the first coordinate of H, ), has the
form

Az + 4 ba,t,l+2$l+2 +oeeet ba,t,2l+1$2l+1 + ba,t,2l+2<y>x2l+2 )

We next assume that H, ), has the form
M+ 2™+ bappr® + -+ bago ™ 4 ) (27)

in the first coordinate. By induction, we reduce b,y to 0 for each k with [ +2 < k < 2[. By (26),
(27) has the form

M(X + XD b Nbase — AF = X)) Abain/ AF = ANXF 4o = N(X + X + O(XF)
in the first coordinate. Therefore, we may assume that H, ), has the form
)\t(x —l—ZEH—l + Ca7t952l+1 + ba,t,2l+2(y)$2l+2 + O(l‘2l+3))

in the first coordinate. Hence we have Theorem 4.3. Note that, by repeating Step 3 and Step 4,
H, ), has the form

(/\t<x + xH_l + Ca,tx2l+1 + ba,t,3l+1(y)‘r3l+1 + e )7 Va ty + xha,t(‘r7 y)) (28)
We obtain the following lemma by the same computation as in the proof of Theorem 3.5 in [16].

Lemma 4.4. There is 09 > 0 such that by a coordinate transformation ¢q i, Por 0 Hax, © ¢;% has the
form (21) for each H, ), € RDy, s,

We now prove the second main result of this paper.

Theorem 4.5. There is dg > 0 such that each H, ), € RDj,s, with a # 0 has connected Julia set
Ja -

Proof. Tt suffices to show the statement of Theorem 4.5 for Ha,,\;l instead of H,,,. Moreover, by
Theorem 3.10 and Lemma 4.2, it suffices to show that there are ¢ > 0 and Jy > 0 such that
(D, xD,)NJ" () for H, -1 € RDy-1 5, and J, _, is connected for 0 <7 < dy.

a,)\;l -
We first consider the case A\g = 1. By a transformation ¢,; (see Lemma 4.4), ¢, 0 H, A1 O gb;%
is of the form

(z1,91) = O\ o + 22 + Copz® + Oy (2%), Vary + Thay(,y)) (29)

in D, X D, o(|a)), Where the notation O,(x*) represents a holomorphic map of (x,y) which is bounded
by K|z|* for some K. By the transformation ¢;(z,y) = (—1/(M\z),y), the map ¢ 0 ¢g s © H, 10

Gt 07 (X,Y) = (X1,Y1) is of the form

A X+ 1490 (X, Y), vasY + fau(X,Y)) = ()\tX + 1+ Doy/X + Oy (1/|X’2) VarY + Oy (1/’X|)) .
(30)
We take a constant M > 0 such that

M
and |fa,t(X7 Y)| S v (31)

X, V) < M
|ga,t( ) )l—_ |X|

X

for a € D5, and 0 < ¢t < dy. Recall that ¢, is a transformation from D, (Priqg,,) X D, to
D, X Dy yo(a)- Since Pry ¢qi(x,y) =y + O(a) (see the sketch of the proof of Lemma 4.3), we may
assume that the forms (30) are defined in {| X| > 1/p} x D, and the inequalities (31) hold for (X,Y") €
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{|IX| > 1/p} x D,. Note that 1 o ¢a,t(qa,,\;1> = (00,0). We set (Xo,Yy) := g0 ¢pp © Hé\’[AO_I(O,O)
for some large N € N. We have Re Xy > 1/p, by taking a larger N if necessary, since the forward
orbit of critical point 0 under py;t converges to its parabolic fixed point (see [1], p.120). Let v > 0
be a number such that D, (X,) x D, C {X € C: ReX > 1/p} xD,. We set £ :=D,(X,) x D,. We
consider the affine transformations

1
1— N\

—b
Qt(z7w) = (;0 . ;)taw) and Qt_l(z7w> = ((XO - bt)z + btuw)u where bt =

We set
Fa,t(zgw) - Qt o wt o (ba,t o Ha)‘t_l o ¢;% o %71 o Q;l(zﬂw)'

Then, we have

Gat((Xo — be)z + by, w)
Xo — b; ’

Pry Fy (2, w) = Pri Qo9 0 ¢y 0 Hy\-10 Gup Oty Lo QN (2, w) = Mz +

We set (« b= 4 by )

_ Yat Xo— b))z + by, w

Gz, w) = X b )

Further we set F'(= E}) := Q«(E) and U'(= U/) := Q(U), where U = {|z| < 1/p} x D,. Then we
have

by
by — Xo

z —

Y
E'={zeC:|lz—1]<—————pxD, and U =¢2€C:
{ | | |bt_X0|} {

1
< x D,.
P|bt - X0|}

Clearly, if p and 6y are sufficiently small, then for each a € Dy, and each t € (0, dy), we have
Pry F,,((C x D)\ U’) C D,. (32)

Indeed, [Prytpy0¢or0H, -1 0@yt o (X, Y)| < VauY |+ M/|X| < |[Vaulr + Mp for (X,Y) € {|X]| >
1/p} x D, (see (30) and (31)). Recall that v,; = —a?/\; ' and |\o| = 1. By taking p and &y with
sufficiently small, we have |v,|r + Mp < r for a € Ds, and 0 < t < dy. Since Pry Qi(z, w) = w, we
have (32).

By Xo = Pr; Q/}OO%’OOH(%EI(O’ 0), £ =D,(Xo) xD, and (32), we have Qtowtoqba,tng/\;l(ID)E X
D,) C E' for a € Dg, and 0 < t < dp, by taking dy > 0 and & > 0 sufficiently small if necessary. Thus,
to show that there are € > 0 and dy > 0 such that (D. x D,) N J* 0 for H, -1 € RDy-1 5, it

a,)ﬁl -
suffices to show that there is d; > 0 such that t

U FLE)nU' (=] Fr(E)nUp) =0 (33)

keN keN

for a € Ds, and 0 < t < Jp, taking smaller v > 0, p > 0 and a larger N € N if necessary.
Indeed, if (33) holds for Fy, then |, .o H", (D, x D,) is a bounded set of C?, which implies that

D, x D, C Int Ka,Agl- To obtain (33), we show the following Claims 1,2,3.

Claim 1. For sufficiently small gy, the following hold. If L; > 0 for 0 < ¢t < dg, then U’ C D x D,
for 0 <t <dg. If Ly <0 for 0 <t <y, then U'N(DxD,) =0 for 0 <t < .
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Figure 4: L; > 0 and 6, > 0 (left), L, < 0 and 6; > 0 (right)

b 1
We prove Claim 1. Assume that L; > 0 for each 0 < t < §;. We show that id + <
e — Xo| * plbe — Xo

1 for sufficiently small ¢ to obtain the conclusion. The inequality is equivalent to

11— Xo(1 =) — L= \J|/p—1>0. (34)

Let 71 := Re(\; — 1) and y; := Im()\; — 1). Then, z; = L; + O(L?) and y; = 0; + O(6,L;). First, we
have

11+ Xo(\ —1)] = /(1 +Re(Xo)zy — Im(Xo)y1)? + (Re(Xo)yr + Im(Xg)x)?2
= \/]_ + QRQ(XQ)ZL’l - ZIm(XO)y1 + O((C(]l + y1)2>
= /14 2Re(Xo)z: — 2m(Xo)y: + O(L?)
= 1+ Re(Xo)z1 — Im(Xo)ys + O(L3).

We now show the inequality (34). By the above computation, we have
1= Xo(1=A)| = 1= Nl/p =1 =Re(Xo)z1 — Im(Xo)y1 + O(L7) — [1 = Ml /p.

Recall that Xo = Pry ¢y o ¢gp 0 Hé,VAO‘1<O’O)' Since Re Xy > 0, 0 < a1 < Ly, y1 = O(6;) and

|1 — X\ = O(L;), we have the assertion, taking a large N € N so that |Im Xy|/Re Xy and 1/(pRe Xj)
are sufficiently small (see [1], p.120), where z; < L; means that there is K > 0 such that L,/K <
1 < KL, for sufficiently small .
b 1
Assume that L; < 0 for 0 < t < dg. We claim that i - > 1 for sufficiently small
|br — Xo|  plby — Xo
t. The inequality is equivalent to 1 — |1 — A\|/p — |1 — Xo(1 — A\¢)| > 0. We have

T—11—N|/p— 1= Xo(1 =) =—|1—N\J|/p—Re(Xo)x; + Im(Xo)ys + O(L?).

By Re Xy > 0 and z; < 0, we have the assertion, taking a larger N € N so that |Im X|/Re X, and
1/(pRe Xy) are sufficiently small if necessary (see [1], p.120). Thus, we have proved Claim 1.

Claim 2. For sufficiently small dy, the following hold. If L; > 0 for 0 < t < do, then |Pr; F, (2, w)| >
elt/2|z| > |z| for a € D5,,0 < t < & and (z,w) € ({|z| > 1/2} x D)\ U". If L; < 0 for 0 < t < &,
then |Pry F, (2, w)| < eX/2|z] < |2| for a € Ds,,0 <t < & and (z,w) € ({|z] > 1/2} xD,) \ U".

We prove Claim 2. Assume that (z,w) € ({|z| > 1/2} x D,) \ U’. By using the inequality (31), we
have

|Ga,t(27w)‘ 2|Ga,t<z7w)| 2Mp QMIOH _)\t’

< .
[ Arz| — ele2[z]| et — b2 = fele — elt2]|Xo — by eP/2|el/? — 1][Xo(1 = A) — 1
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Since |1 — A| = O(L;), there exists a positive constant dy such that the ratio is less than 1/2 if
0 <t < dp, taking p > 0 sufficiently small if necessary. We note that the constant dy does not depend
on z. By the inequality

IAez| — €52 |2] = |Gay(2)] < [Pry Fo(z,w)| — e/%|2] < [N\z| — e"2]2] + |Gaulz, )], (35)
the statement of Claim 2 holds.

Claim 3. For sufficiently small dy, the following hold. If L; > 0 for 0 < t < do, then F,(E") N (D x
D,) =0 for a € Ds, and 0 < t < dg. If L; < 0 for 0 < ¢ < &y, then F,(E') C D x D, for a € Ds, and
O0<t< 50.

We prove Claim 3. Let (z,w) € E’. Then, we have z = 1 + 2, where |zo| < 7v/|b; — Xo|. Since
[Py Foi(2z,w)] = [A(1+ 20) + Gap(1 + 20, w)| = | At + Aezo + Ga(1 + 20, )],
we have
el — \Nzo + Gay(1+ 20, w)| < |Pry Foy(z,w)| < e 4+ | A\zo + Gar(1 4 29, w)].

Since |zo| < v/|br — Xo| = O(Lt) and |G, (1 + 20)| < Mp/|Xo — b| = O(Lt), we have the assertion,
taking smaller v, p if necessary. Hence, we have proved Claim 3.

We now show that there is &g > 0 such that F(ﬁt(E’) NU = for a € Ds,,0 < t < § and
each k£ € N by using Claims 1, 2, and 3. First, assume that L, > 0 for 0 < t < Jy. By Claim 1,
U' C DxD,. By Claim 3, F,,(E")N(DxD,) =0, and so F,;(E')NU" = for a € Ds, and 0 < ¢ < .
By U’ € D x D, and Claim 2, we have |Pry Fi,(z,w)| > |2| > 1 for (z,w) € (C\ D) x D,, and so
F..((C\D) xD,) C (C\D) x D,. By using F,,(E") C (C\D) x D,, for k > 2, we have

Fyy(E') = Fyy ' (For(E') € F7 ' ((C\D) x D;) € (C\ D) x D

Hence, we have F} (E') NU' =0 for a € Ds,, 0 <t < dy each k € Nby U’ C D x D).
Assume that L; < 0 for 0 < t < &p. Similarly, we have F,,(E') NU’ = ) for a € D;, and
0 <t < dp. We note that U" C (C\ D) x D, by Claim 1. Therefore, Fj; is defined in D x D,.. It is

easy to see that
Fa,t(Dl/Q X DT) - ID)Q/?) X ID)T (36)

for a € Ds, and 0 < t < Jp, taking a smaller §y if necessary. Indeed, if (z,w) € W/g x I, then
|Pry Fot(z,w)| < |Aez| + |Gar(z,w)] < |Me|/24+ Mp/(|Xo — be]) < 2/3 for a € Dy, and 0 < t < dp,
taking a smaller ¢y if necessary. Thus we have (36). By Claim 2, U’ C (C\ D) x D, and (36), we have
|Pry Foi(z,w)| < |2| < 1or |Pry Fou(z,w)| <2/3 for (z,w) € D xD,, and so F,;(D xD,) C D x D,.
For k > 2, we have

F(ﬁt(E’) = F(ﬁ;l(Fmt(E’)) C F;;l(ID) xD,) CD xD,.

Hence, we have F},(E') NU" = 0 for a € Dy,,0 < t < § and each k € N by U'N (D x D,) = 0.
Hence we obtain (33). This implies that there are dy > 0 and € > 0 such that (D. x ;) NJ, -1 = 0
for a € Ds, and 0 < t < dy. For the constant ¢ > 0, {HC%)\t}G«ED(SO satisfies the condition (VC)., for
0 <t < &y by Lemma 4.2, taking a smaller ¢y if necessary (see Remark 3.4).

In order to apply Theorem 3.10 to {Ha)\t—l}ae]@&o for 0 < t < 4y, we show that JpA_1 c Cis
connected for 0 < t < dg. It suffices to show that Pa has an attracting fixed point. Since Pact has a
fixed point with multiplier A, * = exp(—L; —i6,), if Ly > 0 for 0 < t < &, then Pyt has an attracting
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fixed point. If Ly < 0 for 0 < ¢ < do, then Foy (D x D) C D x D, by Claim 2 and (36). Thus p,-
has an attracting fixed point.

In the case of [ > 2, by the transformation X = —1/(Iz!),Y = y and a linear transformation, the

form of (28) with ), replaced by ;! is conjugate to

(X0, Y1) = XX+ 1 Do /X + Oy (1/X3), 1Y + Oy (1/|X 1),

Similar to the case of [ = 1, we can show the statement in Theorem 4.5 in the case of [ > 2. O
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