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Abstract

In this paper, we prove some new connectivity of the Julia sets J of the complex Hénon maps
H(x, y) = (x2+c+ay, ax) with sufficiently small |a|. We investigate the connectivity of J for the
parameters near the boundary of the Mandelbrot set. We first give some conditions related to
the connectivity of J for sufficiently small |a|, which are useful for considering the connectivity
of J for the parameters near the boundary of the Mandelbrot set. We consider a perturbation
{Ha,λt}a∈Dδ0

,0≤t<δ0 of dissipative semi-parabolic Hénon maps Ha,λ0 such that detDHa,λt = −a2

and Ha,λt has a fixed point qa,λt
for which (DHa,λt)qa,λt

has an eigenvalue λt. Assume that

λt → λ0 = exp(2πim/l) ∈ ∂D as t → 0 and λl
t can be represented by exp(Lt + iθt) with Lt ̸= 0

for 0 < t < δ0. We prove that if θt = O(Lt), then the Julia sets Ja,λt for a ∈ Dδ0 , 0 < t < δ0 are
connected by using the conditions above.

1 Introduction

In this paper, we deal with the connectivity of the Julia sets of complex Hénon maps.
In one-dimensional (1-D) complex dynamics, we consider a complex polynomial fc(x) = x2+c, c ∈

C and the Julia set Jfc of fc. The Julia set Jfc of fc is defined by the boundary of the filled Julia
set Kfc := {z ∈ C : {fn

c (z)}n∈N is bounded}. Note that the notation fn
c is the n-fold composition

of fc. The Mandelbrot set M is defined by {c ∈ C : Jfc is connected}. It is known that the Julia
set Jfc of a polynomial fc is connected if and only if Kfc contains the critical point 0 of fc in C (see
[13]). By using the fact, it is easy to find the boundary of the connectedness locus for parameters
c ∈ C. For example, the Julia set Jf1/4 is connected, and the parameter 1/4 belongs to the boundary
of the connectedness locus. Indeed, Jf1/4+ε

is connected if ε < 0, and Jf1/4+ε
is disconnected if ε > 0.

The parameter c = 1/4 is called a parabolic parameter since f1/4 has a parabolic fixed point 1/2.
Let us consider how the parameters c for which Jfc is connected can approach parabolic parameters.
Let us explain this by using perturbations of multipliers of parabolic fixed points. We say that a
point α ∈ C is a parabolic fixed point of fc if fc(α) = α and f ′

c(α) is a root of unity. Here we
consider the case where fc0 has a parabolic fixed point α0 with multipliers λ0 := exp(2πim/l), where
l ∈ Z \ {0}, m ∈ Z and (m, l) = 1. Consider a one-parameter continuous family {λt}t∈[0,δ0), where
δ0 > 0. Assume that λlt = exp(Lt + iθt) and R ∋ θt → 0 as t → 0, where Lt ∈ R \ {0} and θt ∈ R
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for 0 < t < δ0. Let {fct}t∈[0,δ0) satisfy that fct has a fixed point αt with multiplier λt. We say that
λlt converges to 1 radially if θt = O(Lt). If θt = O(Lt), then {fct}t∈[0,δ0) has nice properties (such as
continuity of Jfct , continuity of the Hausdorff dimension of Jfct ) (see [12]). In particular, we see that
Jct is connected for each t ∈ (0, δ0), taking a smaller δ0 > 0 if necessary.

Let us explain radial convergence by observing the main cardioidM0 := {c = λ/2−λ2/4 : |λ| ≤ 1}
of the Mandelbrot set M (Figure 1). For this purpose, we set pλ(x) := x2 + λ/2− λ2/4, which has
a fixed point λ/2 with multiplier λ. The parameter c = 1/4 is a parabolic parameter. That is, the
polynomial p1(x) = x2+1/4 has a parabolic fixed point 1/2. Consider a family {pλt} with λt → 1 as
t→ 0. We set ct = λt/2−λ2t/4 and λt = exp(Lt+iθt). If θt = 0, then the parameters ct approach 1/4
in IntM0∩R (the first of Figure 1). If parameters ct in the sector in the second of Figure 1 approach
1/4, then λt satisfies θt = O(Lt). We remark that there is a family {λt} such that the corresponding
parameters ct ∈ IntM0 approach 1/4 as t → 0. For example, if parameters ct approach 1/4 in the
curve near ∂M0 in the third of Figure 1, then λt satisfies θ

2
t = o(Lt) and θt ̸= O(Lt). On the other

hand, if parameters ct approach 1/4 in R>1/4, then Jfct is disconnected and θt ̸= O(Lt) (see fourth
of Figure 1).

Figure 1: θt = 0 (first), lim supt→0 |θt/Lt| ≤ 1/
√
3 (second), θ2t = o(Lt), θt ̸= O(Lt) (third) and

disconnected (fourth)

In the case of two-dimensional (2-D) dynamics, for (c, a) ∈ C2, we consider the quadratic Hénon
map of the form H(x, y) = (x2+c+ay, ax). For a diffeomorphism F (x, y) = (F1(x, y), F2(x, y)) from
an open set U ⊂ C2 to C2, we set

(DF )(x0,y0)(ζ, η) :=

(
(F1)x(x0, y0) (F1)y(x0, y0)
(F2)x(x0, y0) (F2)y(x0, y0)

)(
ζ
η

)
for (x0, y0) ∈ U and (ζ, η) ∈ T(x0,y0)U . We have

(DH)(x,y) =

(
2x a
a 0

)
for (x, y) ∈ C2. The map H has constant Jacobian −a2, i.e., det (DH)(x,y) = −a2 for all (x, y) ∈ C2.
Unlike 1-D dynamics, we can consider the inverse H−1 of H if a ̸= 0. Let K± be the set of all points
(x, y) ∈ C2 such that {H±n(x, y)}n∈N is bounded in C2. We consider the Julia sets J± := ∂K± of
H. Furthermore we denote J by the intersection of J+ and J−. It is known that J± are connected
(see [2]). The Hénon connectedness locus is the set of parameters (c, a) ∈ C× C \ {0} for which the
Julia set J is connected. Let us consider the condition that J is connected. Unlike one-dimensional
dynamics, Hénon maps H do not have critical points for a ̸= 0. Instead, it was suggested to consider
critical points of the Green functions along the unstable manifolds of the saddle points to compute
the connectivity of the Julia sets (see [4]). The Julia set J is connected if and only if the restriction
of the Green function G+(x, y) := limn→∞(1/2n) log+ ∥Hn(x, y)∥ on the unstable manifold of some
saddle point has no critical points in K+ (see [4] and [10, Theorem 3.3]). However, it is not easy to
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find the boundary of the Hénon connectedness locus. Our result (Theorem 1.2) describes the local
geometry near semi-parabolic parameters (c, a) if |a| is sufficiently small.

Let λ ∈ C \ {0}. To consider the connectivity of J for the parameters near the boundary of the
Mandelbrot set, we consider a Hénon family for which each element of the family has a fixed point
such that one of the eigenvalues of DH at the fixed point is λ. Then, the set Pλ of parameters
(c, a) ∈ C2 for which the Hénon map H(x, y) = (x2 + c + ay, ax) has a fixed point q such that λ is
an eigenvalue of (DH)q is the curve of equation

c = (1− a2)

(
λ

2
−
a2

2λ

)
−

(
λ

2
−
a2

2λ

)2

. (1)

We denote the right hand side of equation (1) by c(a, λ). Moreover, we set Ha,λ(x, y) = (x2 +
c(a, λ) + ax, ay) and pλ(x) = x2 + c(0, λ). We denote the Julia sets of Ha,λ by J±

a,λ, Ja,λ instead of
J±, J respectively. Based on the above notations, we now present the first main result of this paper.

Theorem 1.1. Assume that a Hénon family {Ha,λ}a∈Dδ0
satisfies the vertical condition (VC)ε,r with

respect to ε > 0, r > 0 (see Definition 3.1). Suppose that (Dε×Dr)∩J+
a,λ = ∅ for each a ∈ Dδ0. Then

the Julia sets Ja,λ of the Hénon maps Ha,λ for a ∈ Dδ0 \ {0} are connected if and only if the Julia set
Jpλ of the polynomial pλ is connected.

We regard Dε × Dr as a neighborhood of the critical point z = 0 of pλ in two dimensions. Note
that most families {Ha,λ}a∈Dδ0

satisfies the (VC)ε,r. Indeed, if λ ̸= 1, then there is δ0 > 0 such that
{Ha,λ}a∈Dδ0

satisfies the (VC)ε,r (see Lemma 3.2). The assumptions of Theorem 1.1 imply that the
stable manifold of a saddle fixed point of Ha,λ intersects transversely horizontal direction in Dr ×Dr.
From this, we can construct a holomorphic motion of J+

a,λ ∩ (C× {y}) over a ∈ Dδ0 for each y ∈ Dr

and can show that J+
a,λ ∩ (C× {y}) is homeomorphic to the Julia set Jpλ of pλ.

It is known that for a hyperbolic polynomial x2+c, there is a positive constant δ(c) > 0 such that
a small perturbation {H(x, y) = (x2+c+ay, ax) : 0 < |a| < δ(c)} ofH(x, y) = (x2+c, 0) is hyperbolic
(see [6] and [9]). In particular, the Julia sets J of the Hénon maps H(x, y) = (x2 + c + ay, ax) for
0 < |a| < δ(c) are connected if and only if Jx2+c is connected. However, the proofs in [6] and [9]
do not give any uniform estimate on the constant δ(c) from below for c near the boundary of the
Mandelbrot set. For example, it may be δ(cn) → 0 as IntM0 ∋ cn → λ/2 − λ2/4 ∈ ∂M0, where
|λ| = 1. Therefore, we cannot apply methods of [6] and [9] to compute the connectivity of J for the
parameters near the boundary of the Mandelbrot set. In our result, we only need to check that the
(VC)ε,r and the condition (Dε × Dr) ∩ J+

a,λ = ∅ hold for a ∈ Dδ0 and 0 < t < δ0. We can deduce the
connectivity of J for the parameters near the boundary of the Mandelbrot set by using Theorem 1.1
(see the following Theorem 1.2 and Figure 2).

To present the second main result, we recall radial convergence. Let λ0 = exp(2πim/l), where
l ∈ Z \ {0}, m ∈ Z and (m, l) = 1. Consider a one-parameter continuous family {λt}t∈[0,δ0), where
δ0 > 0. Assume that λlt = exp(Lt + iθt) and R ∋ θt → 0 as t → 0, where Lt ∈ R \ {0} and θt ∈ R
for 0 < t < δ0. We say that RDλt,δ0 := {Ha,λt : a ∈ Dδ0 and 0 < t < δ0} is a radial perturbation if
θt = O(Lt). For each 0 < t < δ0, we will show that the section {Ha,λt}a∈Dδ0

of RDλt,δ0 satisfies the

(VC)ε,r and that (Dε × Dr) ∩ J+
a,λt

= ∅ for a ∈ Dδ0 . By applying Theorem 1.1 to the family RDλt,δ0 ,
we can show the second main result:

Theorem 1.2. There is δ0 > 0 such that each Ha,λt ∈ RDλt,δ0 with a ̸= 0 has connected Julia set
Ja,λt.
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Note that Ha,λ0 does not belong to RDλt,δ0 . A Hénon map Ha,λ0 has connected Julia set for
a ∈ Dδ0 (see [17]). Radu and Tanase showed that there is δ0 > 0 such that Ha,λt is hyperbolic for
a ∈ Dδ0 and 0 < t < δ0 if θt = 0 for each 0 < t < δ0 in [16]. In [16], by using hyperbolicity, the Julia
sets are connected for the parameters if θt = 0 for 0 < t < δ0 (see the left of Figure 2). In our case,
we consider a much wider range of eigenvalues than θt = 0. In this case, we will show the Julia set
Ja,λ of Ha,λt ∈ RDλt,δ0 is connected without using hyperbolicity.

Figure 2: θt = 0 (left) and radial perturbations (right). The set P1 (resp. P−1) is a semi-parabolic
parameter given by equation (1) with λ = 1 (resp. λ = −1).

The rest of this paper is organized as follows. In Section 2, we present fundamental facts for
Hénon maps. In Section 3, we introduce the vertical condition (VC)ε,r with respect to ε, r, and the
condition (Dε × Dr) ∩ J+

a,λ = ∅. By using these conditions, we construct a holomorphic motion of

J+
a,λ ∩ (C× {y}) over a ∈ Dδ0 for each y ∈ Dr. Using these, we show Theorem 1.1. In Section 4, we

show Theorem 1.2 by using Theorem 1.1. In particular, we check the condition (Dε ×Dr)∩ J+
a,λ = ∅

holds for Ha,λt by using local coordinates near semi-parabolic fixed points.

Acknowledgement. The author is grateful to Prof. Tomoki Kawahira, who offered continuing
support and constant encouragement. Further, the author thanks Prof. Shunsuke Morosawa and
Prof. Hiroki Sumi for helping the author. The author is partially supported by JSPS Grant-in-Aid
for JSPS Fellows Grant Number 23KJ1179.

2 Preliminary

In this section, we recall some basic results on the dynamics of Hénon maps. See [2], [8], [14] and
[16] for more details.

Definition 2.1. For (c, a) ∈ C2, let H : C2 → C2 be the map of the form

H(x, y) = (p(x) + ay, ax), where p(x) = x2 + c.

We call H : C2 → C2 a Hénon map. If a ̸= 0, the inverse is

H−1(x, y) =
1

a
(y, x− p(y/a)).

Remark 2.2. In [14], a holomorphic automorphism of C2 of the form

F : (x, y) 7→ (y, y2 + c− δx), δ, c ∈ C, δ ̸= 0

is called a Hénon map. The form of the Hénon map H in Definition 2.1 differs from the form
(x, y) 7→ (y, y2 + c − δx) given in [14]; however, H is conjugate by a polynomial automorphism to
(x, y) 7→ (y, y2 + c+ a2x).
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In [8], the dynamical space C2 is divided into the following three sets.

Definition 2.3 ([8]). Let r > 0 be a large number. Consider the following three subsets of C2,

Dr × Dr := {(x, y) ∈ C2 : |x| < r, |y| < r},

V + := {(x, y) ∈ C2 : |x| ≥ max{|y|, r}} and V − := {(x, y) ∈ C2 : |y| ≥ max{|x|, r}}.

Let H be a Hénon map with a ̸= 0. We define the escaping sets U± of H by

U+ :=
⋃
k≥0

H−k(V +) and U− :=
⋃
k≥0

Hk(V −).

We consider the Julia sets and the filled Julia sets of Hénon maps.

Definition 2.4. For a Hénon map H(x, y) = (p(x) + ay, ax) with a ̸= 0, we define the filled Julia
sets K± of H as follows:

K± := {(x, y) ∈ C2 : {H±n(x, y)}n∈N is bounded in C2}.

We define the Julia sets J± and J of H as follows:

J± := ∂K± and J := J+ ∩ J−.

Remark 2.5. For a = 0, we can also define K+ and J+. In this case, K+ (resp. J+) is the product
set of the filled Julia set (resp. the Julia set) of p and C.

Bedford and Smillie [2] showed that there is a positive constant r > 0 depending on H such that

H(V +) ⊂ V +, H−1(V −) ⊂ V −, U+ = C2 \K+ and U− = C2 \K−. (2)

It is easy to see that for a polynomial x2+c0, there is r > 0 and δ such that H(x, y) = (x2+c+ay, ax)
satisfies the condition (2) with respect to r for (c, a) ∈ Dδ(c0)× Dδ \ {0}.

In this paper, we consider the following three types of fixed points.

Definition 2.6. Suppose that a Hénon map H has a fixed point q. Let λ and ν be the eigenvalues
of (DH)q. We say that the fixed point q is

( i ) attracting if |λ| < 1 and |ν| < 1,

(ii) semi-parabolic if |ν| < 1 and λ = exp(2πip/l) for some p/l ∈ Q,
(iii) a saddle if |ν| < 1 and |λ| > 1.

We write that An = O(Bn) if there are a positive constant K > 0 and a positive integer N ∈
N such that |An| ≤ K|Bn| for n ≥ N . We set Pr1 : C2 → C,Pr1(x, y) := x and Pr2 : C2 →
C,Pr2(x, y) := y. We recall stable manifolds (see [14], [18]).

Definition 2.7 ([14, p.311]). Let H be a Hénon map and r > 0 satisfy the condition (2) with respect
to H. For a saddle fixed point q of H, the stable manifold W s(q) of q is defined as

W s(q) := {z ∈ C2 : lim
n→∞

∥Hn(z)− q∥ = 0}

where ∥ · ∥ is the Euclidean metric of C2.
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Let λ ∈ C \ {0}. To consider the connectivity of J for the parameters near the boundary of the
Mandelbrot set, we consider a Hénon family for which each element of the family has a fixed point
such that one of the eigenvalues ofDH at the fixed point is λ. A Hénon mapH(x, y) = (x2+c+ay, ax)
has a fixed point q such that λ ̸= 0 is an eigenvalue of (DH)q if and only if

c = (1− a2)

(
λ

2
−
a2

2λ

)
−

(
λ

2
−
a2

2λ

)2

. (3)

Let Pλ be the set of parameters (c, a) ∈ C2 satisfying (3). We denote the right hand side of equation
(3) by c(a, λ). Moreover, we setHa,λ(x, y) = (x2+c(a, λ)+ay, ax) and pλ(x) = x2+c(0, λ). We denote
the filled Julia sets and the Julia sets of Ha,λ by K±

a,λ J
±
a,λ, Ja,λ instead of K±, J±, J respectively. We

see that Ha,λ has a fixed point

qa,λ :=

(
λ

2
−
a2

2λ
, a

(
λ

2
−
a2

2λ

))
(4)

with eigenvalues λ and ν := −a2/λ. We give the parametrization of W ss(qa,λ).

Lemma 2.8 ([7], [15, the proofs of Propositions 3.16, 3.17], [17, Proposition 5.2]). Let v = (−a/λ, 1)
be an eigenvector for ν. Assume that λ satisfies | − a2/λ| < 1 and |λ| > | − a2/λ|. Then there exists
the injective holomorphic map

Φa,λ : C → C2,Φa,λ(z) = lim
k→∞

H−k
a,λ(qa,λ + νkzv) (5)

such that Φa,λ(νz) = Ha,λ(Φa,λ(z)) for z ∈ C and a ̸= 0.
Let Φ0,λ(z) := (Pr1 q0,λ, z). Then, Φa,λ is analytic with respect to a and supz∈K ∥Φa,λ(z) −

Φ0,λ(z)∥ = O(a) for each compact subset K of C.

Remark 2.9. Fix λ0 ̸= 0. Consider a family {Ha,λ}(a,λ)∈Dδ0
×Dδ0

(λ0). Since the fixed point qa,λ of
Ha,λ depends holomorphically on a, λ, we see that Φa,λ(z) is holomorphic with respect to (a, λ, z) ∈
Dδ0 \ {0} × Dδ0(λ0) × C (see the proof of Theorem 6.43 in [14]). Since Φa,λ is holomorphic with
respect to each variable separately when the other variables are fixed, Φa,λ(z) is holomorphic with
(a, λ, z) ∈ Dδ0 × Dδ0(λ0)× C, taking a smaller δ0 > 0 if necessary.

Definition 2.10. The curve W ss(q) := Φ(C) is called the strong stable manifold of a fixed point q
for a ̸= 0, where Φ is given by (5), and the definition of (5) is valid if at least one eigenvalue of the
fixed point has absolute value less than 1 (see the proof of Theorem 6.43 in [14]).

For a fixed point q of H, the local strong stable manifoldW ss
loc(q) of q is defined by the component

of W ss(q) ∩ (Dr × Dr) that contains q, with the topology induced by Φ: C → W ss(q).

Remark 2.11. When a = 0, we set W ss(q) =
⋃

j≥0 p
−j({Pr1 q})× C and W ss

loc(q) = {Pr1 q} × Dr.

Remark 2.12. If q is a saddle, then W s(q) = W ss(q). In this case, the local stable manifold
W s

loc(q) of q is defined by W ss
loc(q).

By using Lemma 2.8, we have the following.

Lemma 2.13. If λ0 ∈ C \ {0, 1}, then there is a positive constant δ0 > 0 such that Ha,λ has a saddle
fixed point sa,λ depending holomorphically on (a, λ) ∈ Dδ0 ×Dδ0(λ0). Let Φ̃0,λ(z) := (Pr1 s0,λ, z), and
Φ̃a,λ(z) := limk→∞H−k

a,λ(sa,λ + ν̃kzṽ), where ν̃ is the eigenvalue of (DHa,λ)sa,λ with |ν̃| < 1 and ṽ is

the eigenvector of ν̃ of the form (·, 1) for (a, λ) ∈ (Dδ0 \ {0}) × Dδ0(λ0) (see (5)). Then, Φ̃a,λ(z) is
holomorphic with respect to (a, λ, z) ∈ Dδ0 × Dδ0(λ0)× C.
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Proof. If |λ0| > 1, then qa,λ is saddle for (a, λ) ∈ Dδ0 × Dδ0(λ0), taking a smaller δ0 if necessary. By
taking sa,λ as qa,λ and applying Lemma 2.8, we obtain the statement of Lemma 2.13.

We may assume that λ0 ̸= 1, λ0 ̸= 0 and |λ0| ≤ 1. Then c(0, λ0) ̸= 1/4 and H0,λ0(x, y) has a
saddle fixed point. By the implicit function theorem, there are a positive constant δ0 and a saddle
fixed point sa,λ of Ha,λ depending holomorphically on (a, λ) ∈ Dδ0 × Dδ0(λ0).

We show that Φ̃a,λ(z) is holomorphic with respect to (a, λ, z) ∈ Dδ0×Dδ0(λ0)×C by using Lemma
2.8. It follows from s0,λ0 ̸= q0,λ0

that sa,λ ̸= qa,λ for (a, λ) ∈ Dδ0 × Dδ0(λ0), taking δ0 small enough.
By sa,λ ̸= qa,λ and the fixed point equation (x2 + c(a, λ) + ay, ax) = (x, y), we have

sa,λ = (1− a2 − Pr1 qa,λ, a(1− a2 − Pr1 qa,λ)).

Consider the characteristic equation det((DHa,λ)sa,λ − λ̃I) = 0, which is equivalent to −(2Pr1 sa,λ −
λ̃)λ̃ − a2 = 0. We set f(a, λ, λ̃) := −(2Pr1 sa,λ − λ̃)λ̃ − a2. We see that f(0, λ0, ζ̃) = 0, where
ζ̃ = 0, 2 − λ0 (see (4)). By ∂λ̃f(0, λ0, 2 − λ0) = 2 − λ0 ̸= 0 and the Implicit Function Theorem,
there exists a holomorphic map λ̃(a, λ) with |λ̃(a, λ)| > 1 for (a, λ) ∈ Dδ0 × Dδ0(λ0) such that
f(a, λ, λ̃(a, λ)) = 0 and λ̃(0, λ0) = 2 − λ0, taking a smaller δ0 if necessary. We see that c(a, λ) =
c(a, λ̃(a, λ)) for each (a, λ) ∈ Dδ0 × Dδ0(λ0) since Ha,λ has the fixed point sa,λ with one eigenvalue
λ̃(a, λ) (see (3)). In particular, Ha,λ = Ha,λ̃(a,λ) for each (a, λ) ∈ Dδ0 × Dδ0(λ0). By the identity

theorem, we have sa,λ = qa,λ̃(a,λ) for (a, λ) ∈ Dδ0 × Dδ0(λ0). Thus Φ̃a,λ = Φa,λ̃(a,λ) for (a, λ) ∈
Dδ0 × Dδ0(λ0), where Φa,λ̃(a,λ) is the map in Lemma 2.8. By Remark 2.9 and the fact that λ̃(a, λ)

depends holomorphically on (a, λ) ∈ Dδ0×Dδ0(λ0), it follows that Φ̃a,λ(z) is holomorphic with respect
to (a, λ, z) ∈ Dδ0 × Dδ0(λ0)× C.

3 Vertical Condition

For the rest of the section, we assume that the Jacobians of Hénon maps Ha,λ are less than 1 in
the absolute value, and λ ̸= 0. In this section, we show the first main result (Theorems 3.10 and
3.11). We construct a holomorphic motion of J+

a,λ ∩ (C×{y}) over a ∈ Dδ0 for each y ∈ Dr to obtain
the first main result. In order to construct it, we consider the vertical condition and the condition
(Dε × Dr) ∩ J+

a,λ = ∅. We consider the vertical cone field {Cv
(x,y)}(x,y)∈Dr×Dr given by

Cv
(x,y) := {(ζ, η) ∈ T(x,y)C2 : |η| > |ζ|} (6)

for (x, y) ∈ Dr × Dr. We first introduce the vertical condition as follows.

Definition 3.1. Let {Ha,λ}a∈Dδ0
be a Hénon family. Fix ε > 0, and fix r > 0 such that Ha,λ satisfies

the condition (2) with respect to r for a ∈ Dδ0 \ {0}. Moreover, we assume that δ0 < min{1/2, ε}.
We say that {Ha,λ}a∈Dδ0

satisfies the vertical condition (VC)ε,r with respect to ε, r if the following
three conditions hold:

( i ) H−1
a,λ((Dr × Dr) \ (Dr × Dr/2)) ⊂ V − and |Pr2H−1

a,λ(x, y)| > 2|y| for a ∈ Dδ0 \ {0} and

(x, y) ∈ V − ∪ ((Dr × Dr) \ (Dr × Dr/2)).

(ii) (DH−1
a,λ)(x,y)(C

v
(x,y)) ⊂ Cv

H−1
a,λ(x,y)

and |Pr2 (DH−1
a,λ)(x,y)(ζ, η)| > 2|η| for a ∈ Dδ0 \ {0},

(x, y) ∈ Ha,λ((Dr × Dr) \ (Dε × Dr)) ∩ (Dr × Dr) and (ζ, η) ∈ Cv
(x,y).

(iii) There are a saddle fixed point sa,λ of Ha,λ depending holomorphically on a ∈ Dδ0

and a holomorphic map fa : Dr → C depending holomorphically on a ∈ Dδ0 such that

W s
loc(sa,λ) = {(fa(y), y) : y ∈ Dr} and T(x,y)W

s
loc(sa,λ) ⊂ Cv

(x,y) for (x, y) ∈ W s
loc(sa,λ).
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We see that most families {Ha,λ}a∈Dδ0
satisfy the condition (VC)ε,r by the following lemma.

Lemma 3.2. Fix λ ̸= 1. Then there is a positive constant δ0 > 0 such that {Ha,λ}a∈Dδ0
satisfies the

(VC)ε,r.

Proof. Fix ε > 0. We can take r > 0 such that each Ha,λ satisfies the condition (2) with respect to
r for a ∈ Dδ0 \ {0} by taking a smaller δ0 if necessary. Assume that δ0 < min{1/2, ε}.

We show that the condition ( i ) in Definition 3.1 holds. For (x, y) ∈ V −∪((Dr×Dr)\(Dr×Dr/2)),
we set (x1, y1) := H−1

a,λ(x, y) = (y/a, (x − y2/a2 − c(a, λ))/a). We show |y1| > 2|y|. Since |x| ≤
max{|y|, r}, we have

|ay1| = |x− y2/a2 − c(a, λ)| ≥ |y/a|2 − |c(a, λ)| −max{|y|, r}.

To obtain |y1| > 2|y|, it suffices to show that |y/a|2 − 2|a||y| − |c(a, λ)| − max{|y|, r} > 0 which is
equivalent to |y|2 − 2|a|3|y| − |a|2|c(a, λ)| − |a|2max{|y|, r} > 0. Note that |y| ≥ r/2 by (x, y) ∈
V − ∪ ((Dr × Dr) \ (Dr × Dr/2)). If a = 0, we have |y|2 ≥ r2/4 > 0. Thus, we can take δ0 > 0 such
that |y1| > 2|y| for a ∈ Dδ0 \ {0}. Similarly, we have (x1, y1) ∈ V − if (x, y) ∈ (Dr ×Dr) \ (Dr ×Dr/2)
for a ∈ Dδ0 \ {0}, taking a smaller δ0 if necessary. Thus, {Ha,λ}a∈Dδ0

\{0} satisfies the condition ( i ) in
Definition 3.1.

We next show that the condition (ii) in Definition 3.1 holds. Fix (x, y) ∈ Ha,λ((Dr ×Dr) \ (Dε ×
Dr))∩ (Dr ×Dr) and (ζ, η) ∈ Cv

(x,y). We set (x1, y1) = H−1
a,λ(x, y) and (ζ1, η1) = (DH−1

a,λ)(x,y)(ζ, η). By

(x1, y1) = H−1
a,λ(x, y) = (y/a, (x− y2/a2 − c(a, λ))/a), we have ζ1 = η/a and η1 = (ζ − 2yη/a2)/a. By

x1 = y/a, we have η1 = (ζ − 2x1η/a)/a. Thus we have

|η1| >
1

|a|
(
|2x1η|
|a|

− |ζ|) ≥
1

|a|
(
2ε

|a|
− 1)|η| >

1

δ0
(
2ε

δ0
− 1)|η| > 2|η|,

by δ0 < min{1/2, ε}. In particular, we have |η1| > 1/|a|(2ε − |a|)|ζ1| > (2ε/|δ0| − 1)|ζ1| > |ζ1| by
η = aζ1 and δ0 < min{1/2, ε}. Thus the condition (ii) holds for a ∈ Dδ0 \ {0}.

Finally, we show that the condition (iii) in Definition 3.1 holds. There exists a saddle fixed
point sa,λ of Ha,λ depending holomorphically on a ∈ Dδ0 by Lemma 2.13. By Lemmas 2.8 and 2.13,
W s

loc(sa,λ) = {(fa(y), ga(y)) : y ∈ g−1
a (Dr)} for some holomorphic maps fa, ga depending holomorphi-

cally on a ∈ Dδ0 . Here, we remark that by Rouché’s theorem and g0(y) = y, there exists g−1
a in Dr

for a ∈ Dδ0 , taking a smaller δ0 if necessary. Thus we have W s
loc(sa,λ) = {(fa(g−1

a (y)), y) : y ∈ Dr}.
In the case of a = 0, we have W s

loc(s0,λ) = {Pr1 s0,λ} × Dr and T(x,y)W
s
loc(s0,λ) = {(ζ, η) : ζ =

0} ⊂ Cv
(x,y). Since W s

loc(sa,λ) depends on a holomorphically, by taking δ0 sufficiently small, we have

|(fa(g−1
a (y)))′| < 1 for y ∈ Dr.

Remark 3.3. The proof of Lemma 3.2 is still valid for perturbations {Ha,λ}(a,λ)∈Dδ0
×Dδ0

(λ0), where
λ0 ̸= 1. That is, there is δ0 > 0 such that the family {Ha,λ}(a,λ)∈Dδ0

×Dδ0
(λ0) satisfies ( i ), (ii), and (iii)

in (VC)ε,r.

Remark 3.4. By the proof of Lemma 3.2, ( i ) and (ii) in Definition 3.1 hold for {Ha,λ}a∈Dδ0
\{0}

without the condition λ ̸= 1 in Lemma 3.2. Moreover, for each ε > 0, there is δ0 > 0 such that (ii)
in Definition 3.1 holds for {Ha,λ}a∈Dδ0

.

Consider a Hénon family {Ha,λ}a∈Dδ0
satisfying the (VC)ε,r, and

(Dε × Dr) ∩ J+
a,λ = ∅ (7)
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for a ∈ Dδ0 (see Remark 2.5 for the case a = 0). Let sa,λ be a saddle fixed point of Ha,λ depending
holomorphically on a ∈ Dδ0 . Let va,λ := (

⋃
j∈Z≥0

H−j
a,λ(W

s
loc(sa,λ))) ∩ (Dr × Dr). We say that v is a

vertical component of va,λ if v is a connected component of H−m
a,λ (W s

loc(sa,λ))) ∩ (Dr × Dr) for some
m ∈ Z≥0. Under the assumption (7), we have

va,λ ⊂ (Dr \ Dε)× Dr (8)

for a ∈ Dδ0 by W s(sa,λ) ⊂ J+
a,λ and (2). To construct a holomorphic motion of J+

a,λ ∩ (C× {y}) over
a ∈ Dδ0 for each y ∈ Dr, we prove the following two lemmas.

Lemma 3.5. Suppose that {Ha,λ}a∈Dδ0
satisfies the (VC)ε,r and the condition (7) holds for a ∈ Dδ0.

Let va be a vertical component of va,λ represented by {(fa(y), y) : y ∈ Dr} for some holomorphic
map fa depending holomorphically on a ∈ Dδ0. Then for each a ∈ Dδ0, H

−1
a,λ(va) ∩ (Dr × Dr) is

the union of two distinct vertical components va,1 and va,2. Moreover, va,j can be represented by
{(fa,j(y), y) : y ∈ Dr} for some holomorphic map fa,j : Dr → C depending holomorphically on a ∈ Dδ0

for j = 1, 2.

Proof. Let va be a vertical component of va,λ represented by {(fa(y), y) : y ∈ Dr} for some holomor-
phic map fa depending holomorphically on a ∈ Dδ0 .

We first show that the set H−1
a,λ(va) ∩ (C × {w}) consists of exactly two points for w ∈ Dr and

a ∈ Dδ0 . For a = 0, f0 is constant and H0,λ(x, y) = (x2 + c(0, λ), 0). Clearly, H−1
0,λ(v0) ∩ (C × {w})

consists of exactly two points for w ∈ Dr since the critical value c(0, λ) of x
2+c(0, λ) does not belong

to f0(Dr) (see (7)). For a ∈ Dδ0 \{0}, recall that H−1
a,λ(x, y) = (y/a, (x−y2/a2−c(a, λ))/a). Consider

the equation
fa(y)− y2/a2 − c(a, λ) = aw (9)

for a ∈ Dδ0 \ {0}. We set ga(y) := fa(y)− y2/a2 − c(a, λ)− aw and ha(y) := −fa(y) + c(a, λ) + aw
for a ∈ Dδ0 \ {0}. By va ⊂ va,λ ⊂ Dr × Dr, we have |fa(y)| ≤ r for y ∈ Dr. If |a| < 1, then for
y ∈ ∂D√

(4r+4|c(a,λ)|)|a|2 , we have

|ga(y)| ≥ |y2/a2| − |c(a, λ)| − |aw| − |fa(y)| ≥ (3− |a|)r + 3|c(a, λ)| > r + |c(a, λ)|+ |a|r
≥ |fa(y)|+ |c(a, λ)|+ |aw| ≥ |ha(y)|.

By Rouché’s theorem, ga and ga + ha have the same number of zeros inside D√
(4r+4|c(a,λ)|)|a|2 . Since

ga(y)+ha(y) = −y2/a2, the map ga has two zeros in D√
(4r+4|c(a,λ)|)|a|2 . Moreover, the map ga has two

distinct zeros by using the condition (ii) and (iii) in Definition 3.1. Indeed, let ga(y0) = 0. Then we
have (y0/a, w) ∈ H−1

a,λ(va) ∩ (C × {w}). By (8), we have |y0/a| > ε. Moreover, we have |f ′
a(y0)| < 1

by the condition (ii), (iii) in Definition 3.1, and (6). Hence we have

|g′a(y0)| ≥ |2y0/a2| − |f ′
a(y0)| > 2ε/|a| − 1 > 2ε/δ0 − 1 > 0, (10)

by δ0 < min{ε, 1/2} (see Definition 3.1). Thus, ga has two distinct zeros in D√
(4r+4|c(a,λ)|)|a|2 . On

the other hand, by δ0 < min{ε, 1/2}, if y ∈ Dr satisfies |y| ≥
√
(4r + 4|c(a, λ)|)|a|2, then

|Pr2H−1
a,λ(fa(y), y)| =

|fa(y)− y2/a2 − c(a, λ)|
|a|

≥
|y2/a2| − |fa(y)| − |c(a, λ)|

|a|
≥

3r + 3|c(a, λ)|
|a|

> r.

Hence, there are exactly two distinct solutions of (9) with respect to y ∈ Dr, which belong to
D√

(4r+4|c(a,λ)|)|a|2 . This implies that the set H−1
a,λ(va) ∩ (C × {w}) consists of exactly two points for
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w ∈ Dr. Note that H−1
a,λ(va) ∩ ((C \ Dr) × {w}) = ∅ by (2), otherwise W s(sa,λ) ∩ V + ̸= ∅. Thus,

H−1
a,λ(va) ∩ (Dr × Dr) is the union of two vertical components of va,λ.
Recall that f0 is constant. Assume f0 ≡ A for some A ∈ C. Let z2+c(0, λ)−A = (z−A1)(z−A2).

Then we have H−1
0,λ(v0) ∩ (Dr × Dr) = ({A1} ∪ {A2}) × Dr. There are positive constants δ1, ε1 > 0

such that δ1 < δ0, Dε1(A1) ∩ Dε1(A2) = ∅, H−1
a,λ(va) ∩ (Dε1(Aj) × Dr) ̸= ∅ for j = 1, 2 and a ∈ Dδ1 ,

and H−1
a,λ(va)∩ (Dr ×Dr) ⊂ (Dε1(A1)∪Dε1(A2))×Dr for a ∈ Dδ1 . For a ∈ Dδ1 and j ∈ {1, 2}, we let

va,j be the component of H−1
a,λ(va) ∩ (Dr × Dr) which is contained in Dε1(Aj)× Dr.

We show that va,j ∩ (C × {w}) moves holomorphically over Dδ1 for each fixed w ∈ Dr by using
the implicit function theorem. We set F (a, y) := fa(y)− y2/a2− c(a, λ)−aw for a ∈ Dδ1 \{0}. Since
T(fa(y),y)v ⊂ Cv

(fa(y),y)
for y ∈ Dr, we have |∂yfa(y)| < 1 for y ∈ Dr. Fix arbitrary points a ∈ Dδ1 \ {0}

and z̃j = z̃j(a) with F (a, z̃j(a)) = 0 and z̃j(a)/a ∈ Dε1(Aj). Then, we have (z̃j/a, (fa(z̃j) − z̃2j /a
2 −

c(a, λ))/a) = (z̃j/a, w) ∈ va,j ∩ (C × {w}). By (8), we have |z̃j/a| > ε. Since F (a, z̃j) = ga(z̃j), we
have |∂y F (a, z̃j)| > 0 (see (10)). By the implicit function theorem, {z̃j/a, w} = va,j∩(C×{w}) moves
holomorphically over Dδ1 \ {0}. Moreover, z̃j(a)

2/a2 = fa(z̃j(a))− c(a, λ)− aw since F (a, z̃j(a)) = 0.
Note that z̃j(a) ∈ Dr/2 by r > |w| = |Pr2H−1

a,λ(fa(z̃j), z̃j)| and ( i ) in Definition 3.1. Since fa(z) is

holomorphic with respect to a ∈ Dδ0 and z ∈ Dr, fa(z) → f0(z) uniformly on Dr/2 as a → 0. This
implies that z̃j(a)/a→ Aj as a→ 0 since fa(z) → f0(z) ≡ A as a→ 0. Thus {z̃j/a} = va,j∩(C×{w})
moves holomorphically over Dδ1 .

For each a ∈ Dδ0 \ Dδ1 and each j ∈ {1, 2}, va,j ∩ (C× {w}) can be analytically continued along
a path connecting a and a point in Dδ1 . By the monodromy theorem, for each a ∈ Dδ0 and each
j ∈ {1, 2}, there is a component va,j of H−1

a,λ(va) ∩ (Dr × Dr) such that va,j ∩ (C × {w}) moves
holomorphically over Dδ0 for each fixed w ∈ Dr. We show that va,1 ̸= va,2 for each a ∈ Dδ0 \ Dδ1 .
Assume that va,1 = va,2 for some a ∈ Dδ0 \Dδ1 . There exists a sequence {an}n∈N in {a ∈ Dδ0 : va,1 =
va,2} such that an → a0 as n→ ∞ and

|a0| = inf{|a| ∈ Dδ0 : va,1 = va,2}. (11)

Clearly, we have |a0| ≥ δ1 by the argument above. Moreover, we have va0,1 = va0,2. Otherwise,
va,1 ̸= va,2 for all a in a small neighborhood of a0, which implies that an /∈ {a ∈ Dδ0 : va,1 = va,2}
for sufficiently large n. Consider the vertical component va0 of va0,λ. Let H−1

a0,λ
(va0) ∩ (Dr × Dr) =

ṽa0,1 ∪ ṽa0,2 for some vertical components ṽa0,1, ṽa0,2 of va,λ. There are open neighborhoods U1, U2 of
ṽa0,1, ṽa0,2 respectively such that U1 ∩ U2 = ∅. We may assume that va0,1(= va0,2) = ṽa0,1. We take a
positive constant δ2 > 0 such that H−1

a,λ(va) ∩ (Dr × Dr) ∩ Uj ̸= ∅ for j = 1, 2 and a ∈ Dδ2(a0), and

H−1
a,λ(va)∩ (Dr ×Dr) ⊂ U1∪U2 for a ∈ Dδ2(a0). Recall that F (a, y) = fa(y)− y2/a2− c(a, λ)−aw for

w ∈ Dr. We see that |∂y F (a0, z̃1)| > 0, where z̃1 satisfies that F (a0, z̃1) = 0 and (z̃1/a0, w) ∈ U1 (see
(10)). By the implicit function theorem, va,1 ∩ (C× {w}) ⊂ U1 moves holomorphically over Dδ2(a0)
for each fixed w ∈ Dr. We can take ã ∈ Dδ2(a0) with |ã| < |a0| such that vã,1 = vã,2. This contradicts
(11). Thus, H−1

a,λ(va) ∩ (Dr × Dr) = va,1 ∪ va,2 and va,j ∩ (C× {w}) moves holomorphically over Dδ0

for each fixed w ∈ Dr and j ∈ {1, 2}.
Finally, we show that there are holomorphic maps fa,1, fa,2 such that va,j = {(fa,j(y), y) : y ∈ Dr}

for j = 1, 2. Since Pr2 : va,j → Dr is a bijective holomorphic map for a ∈ Dδ0 and j ∈ {1, 2}, there
are holomorphic maps fa,1, fa,2 such that va,j = {(fa,j(y), y) : y ∈ Dr} for a ∈ Dδ0 and j = 1, 2.

Let Wa,λ be the vertical component of va,λ such that Ha,λ(Wa,λ) ⊂ W s
loc(sa,λ) and Wa,λ ∩

W s
loc(sa,λ) = ∅ for a ∈ Dδ0 .

Lemma 3.6. Suppose that {Ha,λ}a∈Dδ0
satisfies the (VC)ε,r and the condition (7) holds for a ∈ Dδ0.

Then the two sets H−n
a,λ(Wa,λ)∩(Dr×Dr) and H

−m
a,λ (Wa,λ)∩(Dr×Dr) do not intersect for n ̸= m ∈ Z≥0

and a ∈ Dδ0.
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Proof. Fix a ∈ Dδ0 . Assume that there are components vn and vm of H−n
a,λ(Wa,λ) ∩ (Dr × Dr)

and H−m
a,λ (Wa,λ) ∩ (Dr × Dr) respectively such that vn ∩ vm ̸= ∅. We may assume that n > m.

We see that Hm
a,λ(vn) is a subset of some component of H−n+m

a,λ (Wa,λ) ∩ (Dr × Dr). On the other
hand, Hm

a,λ(vm) ⊂ Wa,λ. Thus, an intersection point of vn and vm is mapped under Hm
a,λ into

Wa,λ ∩ H−n+m
a,λ (Wa,λ) ∩ (Dr × Dr). Hence, we have Hn−m

a,λ (Wa,λ) ∩ Wa,λ ̸= ∅. This contradicts
Ha,λ(Wa,λ) ⊂ W s

loc(sa,λ), Ha,λ(W
s
loc(sa,λ)) ⊂ W s

loc(sa,λ) and W s
loc(sa,λ) ∩ Wa,λ = ∅. Thus we have

proved Lemma 3.6.

Let us consider the section Sa,λ,y := W s(sa,λ) ∩ (C × {y}) for y ∈ Dr. Recall that H0,λ(x, y) =
(pλ(x), 0). We denote the Julia set of pλ by Jpλ . We now construct holomorphic motions.

Lemma 3.7. Suppose that {Ha,λ}a∈Dδ0
satisfies the (VC)ε,r and the condition (7) holds for each a ∈

Dδ0. Then there exists a holomorphic motion hλ,y : Dδ0 × S0,λ,y → C× {y} such that hλ,y(a, (x, y)) ∈
Sa,λ,y for y ∈ Dr, a ∈ Dδ0 and (x, y) ∈ S0,λ,y. In particular, hλ,y can be extended to a holomorphic
motion h̃λ,y : Dδ0 × (C× {y}) → C× {y} and h̃λ,y({a} × (Jpλ × {y})) = Sa,λ,y.

Proof. By Lemma 3.5, H−j
a,λ(Wa,λ)∩ (C× {y}) has exactly 2j elements for each j ∈ Z≥0. By Lemma

3.6, we have

Sa,λ,y = (W s
loc(sa,λ) ∩ (C× {y})) ⊔

⊔
j∈Z≥0

(H−j
a,λ(Wa,λ) ∩ (C× {y})).

By (iii) in Definition 3.1, we have W s
loc(sa,λ) = {(fa(y), y) : y ∈ Dr} for some holomorphic map

fa : Dr → C depending holomorphically on a ∈ Dδ0 .
Let va be a vertical component of va,λ such that va ∩ (C × {w}) moves holomorphically over

Dδ0 for each w ∈ Dr. By Lemma 3.5, there are two vertical components va,1 and va,2 of va,λ such
that H−1

a,λ(va) ∩ (Dr × Dr) = va,1 ∪ va,2, and va,j ∩ (C × {w}) moves holomorphically over Dδ0 for
each fixed w ∈ Dr and j ∈ {1, 2}. Thus, we can construct hλ,y : Dδ0 × S0,λ,y → C × {y} such that
hλ,y(a, (x, y)) ∈ Sa,λ,y for y ∈ Dr, a ∈ Dδ0 and (x, y) ∈ S0,λ,y. By Lemma 3.6, for each fixed a ∈ Dδ0

and y ∈ Dr, hλ,y(a, (x, y)) is injective with respect to x with (x, y) ∈ S0,λ,y. The map hλ,y can be
extended to a holomorphic motion h̃λ,y : Dδ0 ×C×{y} → C×{y} and h̃λ,y({a}×(Jpλ ×{y})) = Sa,λ,y

(see [11] and [19]).

Corollary 3.8. Suppose that {Ha,λ}a∈Dδ0
satisfies the (VC)ε,r and the condition (7) holds for a ∈ Dδ0.

Then J+
a,λ ∩ (Dr × Dr) =

⋃
y∈Dr

Sa,λ,y. In particular, J+
a,λ ∩ (C× {y}) is path connected for y ∈ Dr if

Jpλ is connected.

Proof. We first show that

W s(sa,λ) ∩ (Dr × Dr) ∩ (Dr × Dr) = W s(sa,λ) ∩ (Dr × Dr) (12)

as follows. Let (z1, w1) ∈ W s(sa,λ) ∩ (Dr × Dr). Since (z1, w1) ∈ Dr × Dr, for each n ∈ N, there
exists (z1,n, w1,n) ∈ W s(sa,λ)∩ (Dr ×Dr) such that (z1,n, w1,n) → (z1, w1) as n→ ∞. Thus (z1, w1) ∈
W s(sa,λ) ∩ (Dr × Dr). Hence (z1, w1) ∈ W s(sa,λ) ∩ (Dr × Dr) ∩ (Dr × Dr). The opposite inclusion is
obvious. Thus we have shown (12).

We next show that ⋃
y∈Dr

(Sa,λ,y) ∩ (Dr × Dr) =
⋃
y∈Dr

Sa,λ,y (13)

as follows. Let (z2, w2) ∈
⋃

y∈Dr
(Sa,λ,y)∩ (Dr ×Dr). By (z2, w2) ∈ Dr ×Dr, we can take (z2,n, w2,n) ∈

(
⋃

y∈Dr
Sa,λ,y) ∩ (Dr × Dr) such that (z2,n, w2,n) → (z2, w2) as n → ∞. Let vn be the vertical
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component va,λ which contains (z2,n, w2,n). Let xn ∈ Dr such that (xn, w2) ∈ vn. To show (z2, w2) ∈⋃
y∈Dr

Sa,λ,y, we show that (xn, w2) → (z2, w2) as n → ∞. Since ∥(xn, w2)− (z2, w2)∥ ≤ ∥(xn, w2)−
(z2,n, w2,n)∥+∥(z2,n, w2,n)− (z2, w2)∥, it suffices to show that ∥(xn, w2)− (z2,n, w2,n)∥ → 0 as n→ ∞.
Since Pr2 : vn → Dr is a homeomorphism, we can take a curve γ : [0, 1] → vn, represented by
γ(s) = (f(s), g(s)), between (xn, w2) and (z2,n, w2,n) such that lengthE (Pr2 γ) = |w2,n − w2|, where
lengthE(Pr2 γ) is the length of the curve Pr2 γ with respect to the Euclidean metric. Note that Pr2 γ
is the segment between w2,n and w2. By (f ′(s), g′(s)) ∈ Cv

γ(s) (see (ii) in Definition 3.1), we have

∥(xn, w2)− (z2,n, w2,n)∥ ≤ lengthE γ ≤
√
2

∫ 1

0

max{|f ′(s)|, |g′(s)|}ds =
√
2

∫ 1

0

|g′(s)|ds.

Since
∫ 1

0
|g′(s)|ds = |w2,n−w2| → 0 as n→ ∞, we have that ∥(xn, w2)− (z2,n, w2,n)∥ → 0 as n→ ∞.

Hence we have (z2, w2) ∈
⋃

y∈Dr
Sa,λ,y. Therefore

⋃
y∈Dr

(Sa,λ,y) ∩ (Dr × Dr) ⊂
⋃

y∈Dr
Sa,λ,y. The

opposite inclusion is obvious. Thus we have shown (13).
By J+

a,λ = W s(sa,λ) (see [3]), W s(sa,λ) ∩ (Dr × Dr) =
⋃

y∈Dr
Sa,λ,y, (12) and (13), we have

J+
a,λ ∩ (Dr × Dr) = W s(sa,λ) ∩ (Dr × Dr) =

⋃
y∈Dr

(Sa,λ,y) ∩ (Dr × Dr) =
⋃
y∈Dr

Sa,λ,y.

By the above, we have J+
a,λ∩(C×{y}) = Sa,λ,y for y ∈ Dr. Note that the condition (Dε×Dr)∩J+

a,λ =

∅ for a ∈ Dδ0 implies that (Dε × Dr) ∩ (Jpλ × C) = ∅ since J+
0,λ = Jpλ × C. In particular, the critical

point 0 of pλ belongs to C \ Jpλ . Since Jpλ is connected, pλ has an attracting or parabolic periodic
point. Hence Jpλ is the image of unit circle under a continuous map (see [5]). In particular, Jpλ is
path connected. Since Sa,λ,y is homeomorphic to Jpλ (see Lemma 3.7), the section J+

a,λ ∩ (C × {y})
is path connected for each y ∈ Dr.

The following lemma is useful for checking whether Ja,λ is disconnected.

Lemma 3.9. Suppose that {Ha,λ}a∈Dδ0
satisfies the condition (VC)ε,r and the condition (7) holds

for a ∈ Dδ0. Then each vertical component v of va,λ contains a point of Ja,λ for a ∈ Dδ0 \ {0}.

Proof. Let v0 := v be a vertical component of va,λ. Inductively, let vn be a component of H−1
a,λ(vn−1)∩

(Dr×Dr) for each n ∈ N. Then we have the nested compact sequence {Hn
a,λ(vn)}n≥0 with H

n
a,λ(vn) ⊂

Hn−1
a,λ (vn−1) for n ∈ N. For any a ∈ D1, we have J−

a,λ = K−
a,λ (see Lemma 5.5 in [2]). A point of⋂

n∈NH
n−1
a,λ (vn−1) belongs to Ja,λ since its backward orbit is bounded and v is a subset of J+

a,λ.

We now prove the first main result of this paper, divided into Theorem 3.10 and Theorem 3.11.
Theorem 3.10 relates to the connected case, and Theorem 3.11 to the disconnected case.

Theorem 3.10. Let {Ha,λ}a∈Dδ0
be a Hénon family satisfying the (VC)ε,r. Assume that the condition

(7) holds for a ∈ Dδ0. If the Julia set Jpλ of the polynomial pλ is connected, then the Julia set Ja,λ
of the Hénon map Ha,λ is connected for a ∈ Dδ0 \ {0}.

Proof. Assume that Jpλ is connected and λ ̸= 1. We first show that J+
a,λ ∩ (Dr × Dr) is connected.

We take any distinct points (x1, y1) and (x2, y2) in J
+
a,λ ∩ (Dr × Dr). We construct a path between

these points as follows. Let v be a vertical component of va,λ, and (zj, yj) be the intersection of
v ∩ (C× {yj}) for j = 1, 2. Since J+

a,λ ∩ (C× {yj}) is homeomorphic to Jpλ for j = 1, 2, and Jpλ is a

path connected, there exists a path between (zj, yj) and (xj, yj) in J
+
a,λ∩ (C×{yj}) for each j = 1, 2.

We can take a path between (z1, y1) and (z2, y2) in v since v is path connected. Thus, J+
a,λ∩(Dr×Dr)

is path connected, which implies that it is connected.
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We now show that Ja,λ is connected. We see that Ja,λ =
⋂

k≥0 (H
k
a,λ(J

+
a,λ ∩ (Dr × Dr))).Moreover,

we have Hk+1
a,λ (J+

a,λ ∩ (Dr × Dr)) ⊂ Hk
a,λ(J

+
a,λ ∩ (Dr × Dr)). Hence Ja,λ is a nested intersection of

connected compact subsets. Thus Ja,λ is connected.

We next show the following theorem.

Theorem 3.11. Let {Ha,λ}a∈Dδ0
be a Hénon family satisfying the condition (VC)ε,r. Assume that

the condition (7) holds for a ∈ Dδ0. If the Julia set Jpλ of the polynomial pλ is disconnected, then
the Julia set Ja,λ of the Hénon map Ha,λ is disconnected for a ∈ Dδ0 \ {0}.

Proof. Assume that Jpλ is disconnected. That is, it is a Cantor set. We show that Ja,λ is disconnected.
We can take a Jordan curve γj ⊂ C for each j = 1, 2 with γ1 ∩ γ2 = ∅ such that Jpλ ⊂ U1 ∪ U2 and
Jpλ ∩ Uj ̸= ∅ for j = 1, 2, where Uj is the bounded domain with the boundary γj for j = 1, 2. Let
h̃λ,y : Dδ0 × (C× {y}) → C× {y} be the holomorphic motion given in Lemma 3.7.

Fix a ∈ Dδ0 \ {0}. Let γa,y,j := Pr1 h̃λ,y({a} × (γj × {y})) ⊂ C and Ua,y,j = Pr1 h̃λ,y({a} × (Uj ×
{y})) ⊂ C for j = 1, 2 and y ∈ Dr. Since (γa,y,j ×{y})∩J+

a,λ = ∅ for j = 1, 2 and y ∈ Dr, there exists
ε1(a, y) with 0 < ε1(a, y) < r − |y| such that

(
⋃
y∈Dr

(γa,y,j × Dε1(a,y)(y))) ∩ J+
a,λ = ∅ (14)

for each j = 1, 2 and each y ∈ Dr. We now show that

J+
a,λ ∩ (C× Dε1(a,y)(y)) ⊂ (

2⋃
j=1

Ua,y,j)× Dε1(a,y)(y) (15)

for each y ∈ Dr. Fix y0 ∈ Dr. Let (z, w) ∈ (C \
⋃2

j=1 Ua,y0,j) × Dε1(a,y0)(y0). In order to show

(15), it suffices to show that (z, w) /∈ J+
a,λ ∩ (C× Dε1(a,y0)(y0)). If (z, w) ∈

⋃2
j=1 γa,y0,j × Dε1(a,y0)(y0),

then (z, w) /∈ J+
a,λ by (14). Thus we may assume that (z, w) ∈ (C \

⋃2
j=1 Ua,y0,j) × Dε1(a,y0)(y0).

By assuming that (z, w) ∈ J+
a,λ ∩ (C × Dε1(a,y0)(y0)), we derive a contradiction as follows. Note

that w ∈ Dr by ε1(a, y0) < r − |y0|. By W s(sa,λ) = J+
a,λ, there exists a vertical component v0

of va,λ and a point ẑ ∈ C such that {(ẑ, w)} = v0 ∩ (C × {w}) ⊂ (C \
⋃2

j=1 Ua,y0,j) × {w}. Let

x0 ∈ C be the point such that {(x0, y0)} = v0 ∩ (C × {y0}). By J+
a,λ ∩ (C × {y0}) = Sa,λ,y0 (see

Corollary 3.8), we have J+
a,λ ∩ (C × {y0}) ⊂ (

⋃2
j=1 Ua,y0,j) × {y0}. Hence, we have {(x0, y0)} =

v0∩ (C×{y0}) ⊂ (
⋃2

j=1 Ua,y0,j)×{y0}. Since Pr2 : v0 → Dr is a homeomorphism, we can take a path

γ0 ⊂ v0 ∩ (C × Dε1(a,y0)(y0)) between (x0, y0) and (ẑ, w). Then we have (Pr1 γ0) ∩ (
⋃2

j=1 γa,y0,j) ̸=
∅ which implies that v0 ∩ ((

⋃2
j=1 γa,y0,j) × Dε1(a,y0)(y0)) ̸= ∅. By v0 ⊂ J+

a,λ and (14), we have a
contradiction. Thus we have (15) for each y ∈ Dr.

Figure 3: The case (x0, y0) ∈ Ua,y0,1 × {y0}
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Let U1 =
⋃

y∈Dr
(Ua,y,1 × Dε1(a,y)/2(y)). Since Dr/2 is compact, we can take a positive integer

N ∈ N and points y1, y2, · · · , yN ∈ Dr such that U1,N :=
⋃N

j=1(Ua,yj ,1 × Dε1(a,yj)/2(yj)) satisfies

Dr/2 ⊂ Pr2U1,N . Let va,λ,j be the union of all vertical components of va,λ which intersect Ua,0,j×{0}
for j = 1, 2. We now show that

va,λ,1 ∩ (Dr × Dr/2) ⊂ U1,N . (16)

Take a vertical component v1 ⊂ va,λ,1 of va,λ and a point w1 ∈ Dr/2. To show (16), it suffices to show

that v1 ∩ (Dr ×{w1}) ⊂ U1,N . Let h̃a,λ,y : C×{y} → C×{y}, h̃a,λ,y(x, y) := h̃λ,y(a, (x, y)) for y ∈ Dr

and x ∈ C. By the construction of h̃λ,y (see the proof of Lemma 3.7), Pr1
⋃

y∈Dr
h̃−1
a,λ,y(v1∩ (C×{y}))

consists of a single point of Jpλ , say b1. We have b1 ∈ U1 by v1 ∩ (Ua,0,1 × {0}) ̸= ∅. Since w1 ∈ Dr/2,
we can take a positive integer k1 with 1 ≤ k1 ≤ N such that w1 ∈ Dε1(a,yk1 )/2

(yk1). Let x1 ∈ C be

the point such that {(x1, yk1)} = v1 ∩ (C × {yk1}). By Pr1 h̃
−1
a,λ,yk1

(Ua,yk1 ,1
× {yk1}) = U1 ∋ b1, we

have (x1, yk1) ∈ Ua,yk1 ,1
× Dε1(a,yk1 )/2

(yk1). This implies that v1 ∩ (Ua,yk1 ,1
× {yk1}) ̸= ∅. By (14) and

(15), we have {(z1, w1)} := v1 ∩ (Dr × {w1}) ⊂ Ua,yk1 ,1
× {w1}. Otherwise, for any path in v1 ∩ (C×

Dε1(a,yk1 )/2
(yk1)) between (z1, w1) and (x1, yk1), the path necessarily intersects γa,yk1 ,1×Dε1(a,yk1 )/2

(yk1).
This leads to a contradiction (see the proof of (15)). Thus we have v1∩(Dr×{w1}) ⊂ Ua,yk1 ,1

×{w1},
which implies that v1 ∩ (Dr × {w1}) ⊂ Ua,yk1 ,1

× Dε1(a,yk1 )/2
(yk1) ⊂ U1,N . Thus we have (16).

By using (16), we show that

va,λ,1 ∩ (Dr × Dr/2) ⊂ U1,N . (17)

We have va,λ,1 ∩ (Dr × Dr/2) =
⋃

y∈Dr/2
va,λ,1 ∩ (Dr × {y}) by the same argument as in the proof of

(13). Thus, to show that (17), it suffices to show that va,λ,1 ∩ (Dr × {y}) ⊂ U1,N for y ∈ Dr/2. Fix

ŵ1 ∈ Dr/2. By using the argument in the proof of (16), we can take k̂1 ∈ N with 1 ≤ k̂1 ≤ N such

that ŵ1 ∈ Dε1(a,yk̂1
)/2(yk̂1) and va,λ,1 ∩ (Dr ×{ŵ1}) ⊂ Ua,yk̂1

,1×{ŵ1}. By (14), va,λ,1 ∩ (Dr × {ŵ1}) ⊂
Ua,yk̂1

,1×{ŵ1}. In particular, we have va,λ,1 ∩ (Dr × {ŵ1}) ⊂ Ua,yk̂1
,1×Dε1(a,yk̂1

)/2(yk̂1) ⊂ U1,N . Thus

we have (17).
We next show that

va,λ,2 ∩ (Dr × Dr/2) ∩U1,N = ∅. (18)

Note that U1,N =
⋃N

j=1(Ua,yj ,1×Dε1(a,yj)/2(yj)). Assume that there is (z2, w2) ∈ va,λ,2∩ (Dr×Dr/2)∩
U1,N . Let v2 ⊂ va,λ,2 be the vertical component of va,λ which contains (z2, w2). By (14), we may

assume that (z2, w2) ∈ Ua,yk2 ,1
× Dε1(a,yk2 )/2

(yk2) for some k2 with 1 ≤ k2 ≤ N . Let x2 ∈ C be
the point such that {(x2, yk2)} = v2 ∩ (C × {yk2}). By (14) and z2 ∈ Ua,yk2 ,1

, we have {(x2, yk2)} =
v2∩(C×{yk2}) ⊂ Ua,yk2 ,1

×{yk2}. Otherwise, for any path in v2∩(C×Dε1(a,yk2 )/2
(yk2)) between (x2, yk2)

and (z2, w2), the path necessarily intersects γa,yk2 ,1 × Dε1(a,yk2 )/2
(yk2). This leads to a contradiction

(see the proof of (15)). Thus we have v2 ∩ (C × {yk2}) ⊂ Ua,yk2 ,1
× {yk2}, which implies that

Pr1 h̃
−1
a,λ,yk2

(v2 ∩ (C × {yk2})) ⊂ U1. On the other hand, v2 ∩ (Ua,0,2 × {0}) ̸= ∅ since v2 ⊂ va,λ,2

is a vertical component of va,λ. Thus Pr1 h̃
−1
a,λ,0(v2 ∩ (C × {0})) ⊂ U2. Since U1 ∩ U2 = ∅ and

Pr1
⋃

y∈Dr
h̃−1
a,λ,y(v2∩(C×{y})) consists of a single point, we have a contradiction. This contradiction

implies that (18) holds.
By using (18), we show that

va,λ,2 ∩ (Dr × Dr/2) ∩U1,N = ∅. (19)

By the same argument as in the proof of (17), it suffices to show that va,λ,2 ∩ (Dr × {y})∩U1,N = ∅
for y ∈ Dr/2. Fix ŵ2 ∈ Dr/2. By (18), we have va,λ,2 ∩ (Dr × {ŵ2}) ∩ U1,N = ∅. Note that
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U1,N ∩ (Dr ×{ŵ2}) can be represented by a finite union of the sets Ua,yj ,1 ×{ŵ2}. Thus, by (14), we

have va,λ,2 ∩ (Dr × {ŵ2}) ∩U1,N ∩ (Dr × {ŵ2}) = ∅. Hence we have (19) by va,λ,2 ∩ (Dr × {ŵ2}) ∩
U1,N ∩ (Dr × {ŵ2}) = va,λ,2 ∩ (Dr × {ŵ2}) ∩U1,N .

Finally, we show that Ja,λ is disconnected. We setU2 := (C×Dr/2)\U1,N . Then Ja,λ ⊂ U1,N∪U2.
Indeed, we have Ja,λ ⊂ Dr×Dr/2 by (2) and ( i ) in Definition 3.1. Thus Ja,λ ⊂ (va,λ,1∪va,λ,2)∩ (Dr×
Dr/2). Therefore, by (17) and (19), Ja,λ ⊂ U1,N ∪U2. Clearly, we have Ja,λ ∩U1,N ̸= ∅ by (16) and
Lemma 3.9. Similarly, we have Ja,λ∩U2 ̸= ∅ by (18) and Lemma 3.9. Thus Ja,λ is disconnected.

4 Application for radial perturbations of semi-parabolic

Hénon maps

In this section, we apply Theorem 3.10 to perturbations of semi-parabolic Hénon maps. To consider
the connectivity of J for the parameters near the boundary of the Mandelbrot set, we consider
perturbations of semi-parabolic Hénon maps by using a perturbation of one eigenvalue of semi-
parabolic fixed points. Let λ0 = exp(2πim/l), where l ∈ Z \ {0}, m ∈ Z and (m, l) = 1. Let
{λt}t∈[0,δ0) be a one-parameter continuous family of complex numbers, where δ0 > 0. Assume that
λlt = exp(Lt + iθt) and R ∋ θt → 0 as t→ 0, where Lt ∈ R \ {0} and θt ∈ R for 0 < t < δ0.

Definition 4.1 (Radial perturbations). We say that a family RDλt,δ0 := {Ha,λt}a∈Dδ0
,0<t<δ0 is a

radial perturbation of the semi-parabolic Hénon family {Ha,λ0}a∈Dδ0
if θt = O(Lt).

In order to apply Theorem 3.10 to RDλt,δ0 , we first check that the section {Ha,λt}a∈Dδ0
of RDλt,δ0

satisfies the condition (VC)ε,r for each t with 0 < t < δ0.

Lemma 4.2. There is δ0 > 0 such that the section {Ha,λt}a∈Dδ0
of RDλt,δ0 satisfies the condition

(VC)ε,r for each t with 0 < t < δ0.

Proof. If λ0 ̸= 1, then the section {Ha,λt}a∈Dδ0
of RDλt,δ0 satisfies the (VC)ε,r for 0 < t < δ0 by

Lemma 3.2, taking a smaller δ0 > 0 if necessary (see Remark 3.3).
Assume that λ0 = 1. We may assume that each Ha,λt ∈ RDλt,δ0 with a ̸= 0 satisfies the condition

(2) with respect to r by taking a smaller δ0 and a larger r if necessary. Fix ε > 0. We can show
that {Ha,λt}a∈Dδ0

satisfies ( i ), (ii) in Definition 3.1 for 0 < t < δ0 in the same way as in the proof
of Lemma 3.2, taking a smaller δ0 > 0 if necessary (see Remark 3.4). Thus it suffices to show that
{Ha,λt}a∈Dδ0

satisfies (iii) in Definition 3.1 for 0 < t < δ0, taking a smaller δ0 > 0 if necessary.
To show that (iii) in Definition 3.1 holds, we first show that Ha,λt has a saddle fixed point for

0 < t < δ0. In order to show this, we show that Ha,λt has two distinct fixed points. Consider the
equation (x2 + c(a, λt) + ay, ax) = (x, y). By y = ax, we have

x2 + (a2 − 1)x+ c(a, λt) = 0. (20)

Assume that (x − α)(x − β) = x2 + (a2 − 1)x + c(a, λt). If α = β, then α = 1/2 − a2/2. In
this case, Ha,λt has only one fixed point (1/2 − a2/2, a/2 − a3/2). Since Ha,λt has a fixed point
qa,λt

= (λt/2− a2/(2λt), a(λt/2− a2/(2λt))) (see (4)), we have λt = 1 or λt = −a2. Since λ0 = 1, we
have λt = 1 for a ∈ Dδ0 , by taking δ0 > 0 so that 0 < δ0 < 1/2 and |λt| > 1/2 for 0 < t < δ0. This
contradicts λt = exp(Lt+iθt) with Lt ̸= 0 for 0 < t < δ0. This contradiction shows that Ha,λt has two
distinct fixed points. The other fixed point of Ha,λ is ua,λ := (1− a2 − Pr1 qa,λ, a(1− a2 − Pr1 qa,λ))
by (20). These fixed points qa,λ,ua,λ depend holomorphically for (a, λ) in a small neighborhood of
(0, 1). At least one of the fixed points qa,λt

, ua,λt is a saddle by qa,λt
̸= ua,λt (see [14, Theorem 7.1.16,
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p.234]). Hence, there is a fixed point sa,λ of Ha,λ depending holomorphically for (a, λ) in a small
neighborhood of (0, λ0), and sa,λt is a saddle fixed point of Ha,λt ∈ RDλt,δ0 , by taking a smaller δ0 if
necessary.

Finally, we show that (iii) in Definition 3.1 holds. Let Φ̃0,λ(z) := (Pr1 s0,λ, z) and Φ̃a,λ be the
parametrization of W ss(sa,λ) for (a, λ) ∈ Dδ0 \ {0} × Dδ0(λ0) given by (5). In the same way as
in the proof of Lemma 2.13, Φ̃a,λ(z) is holomorphic with (a, λ, z) ∈ Dδ0 × Dδ0(λ0) × C. We have
W ss

loc(sa,λ) = {(Φ̃a,λ,1(Φ̃
−1
a,λ,2(y)), y) : y ∈ Dr} for (a, λ) ∈ Dδ0 × Dδ0(λ0), taking a smaller δ0 if

necessary, where Φ̃a,λ = (Φ̃a,λ,1, Φ̃a,λ,2) (see the proof of Lemma 3.2). We have sa,λ0 = qa,λ0
since

ua,λt ,qa,λt
→ qa,λ0

as t→ 0. SinceW ss
loc(q0,λ0

) = {Pr1 q0,λ0
}×Dr, we see that T(x,y)W

s
loc(sa,λt) ⊂ Cv

(x,y)

for (x, y) ∈ W s
loc(sa,λt), a ∈ Dδ0 and 0 < t < δ0, taking a smaller δ0 > 0 if necessary. Thus,

Ha,λt ∈ RDλt,δ0 satisfies (iii) in Definition 3.1 for 0 < t < δ0.

We next prepare local coordinates near semi-parabolic fixed points to check that the condition
(7) holds for RDλt,δ0 .

Lemma 4.3 ([16, Theorem 3.5 and its proof]). Let r > 3 be a fixed constant, λ0 := exp(2πim/l)
and λt := (1 + t)λ0 where t ∈ R. Then, there exist δ > 0, δ′ > 0 such that for |a| < δ and |t| < δ′

there exists a coordinate transformation ϕa,t : B = Dρ′(Pr1 q0,λt
) × Dr → Dρ × Dr+O(|a|) such that

ϕa,t(qa,λt
) = (0, 0), W ss

loc(qa,λt
) ⊂ Dρ′(Pr1 q0,λt

) × Dr, ϕa,t(W
ss
loc(qa,λt

)) ⊂ {0} × C, the image of any
horizontal curve Dρ′(Pr1 q0,λt

)× {y1} under ϕa,t is a subset of C× {y2} for some y2 ∈ Dr+O(|a|), and

H̃a,λt = ϕa,t ◦Ha,λt ◦ ϕ−1
a,t , H̃a,λt(x, y) = (X1, Y1) has the form

(X1, Y1) = (λt(x+ xl+1 + Ca,tx
2l+1 + ba,t,2l+2(y)x

2l+2 + · · · ), νa,ty + xha,t(x, y)), (21)

where Ca,t is a constant depending only on a and t, xha,t(x, y) = O(a) and νa,t is the other eigenvalue
of (DHa,λt)qa,λt . Moreover, the transformation ϕa,t is analytic for a and t,

lim
a→0

ϕa,t(x, y) = (ϕt(x), y)

uniformly for t. The map ϕt : Dρ′(Pr1 q0,λt
) → Dρ is the transformation of the polynomial pλt and

ϕt ◦ pλt ◦ ϕ−1
t (x) = λt(x+ xl+1 + C0,tx

2l+1 +O(x2l+2)).

For r > 3, λ0 = exp(2πim/l), if (c, a) ∈ Pλ0 with sufficiently small |a|, then the sets U± given in
Definition 2.3 satisfy the equations (2). The condition λt = (1 + t)λ0 in Lemma 4.3 corresponds to
θt = 0 for 0 < t < δ0 in Definition 4.1. To see that Ha,λt ∈ RDλt,δ0 has the form (21) (Lemma 4.4),
we sketch the proof of Lemma 4.3.
Sketch of the proof of Lemma 4.3. The proof of Lemma 4.3 breaks into four steps.
Step 1. Let Φa,λt = (Φa,λt,1,Φa,λt,2) be given in Lemma 2.8. Then Φa,λt(y) = Φ0,λt(y) + O(a) by
Lemma 2.8. For sufficiently small |a| and |t|, we may assume that there exists Φ−1

a,λt,2
in Dr by

Rouché’s theorem and Φa,λt,2(z) = z. For (x, y) ∈ C× Dr, consider the transformation

(X, Y ) = (x− Φa,λt,1(Φ
−1
a,λt,2

(y)),Φ−1
a,λt,2

(y)) with inverse (x, y) = (X + Φa,λt,1(Y ),Φa,λt,2(Y )), (22)

which maps W ss
loc(qa,λt

) into {0} × C. By using the transformation (22), Ha,λt and H0,λt have the
forms

(ba,t,1(Y )X + ba,t,2(Y )X2 + · · · , νa,tY +Xha,t(X, Y )) and (λtX +X2, 0)

respectively. Note that ba,t,1(0) = λt and ba,t,1(Y ) = λt +O(a) since Φa,t(y) = Φ0,t(y) +O(a).
Step 2. Suppose that Ha,λt(x, y) has the form

(ba,t,1(y)x+ ba,t,2(y)x
2 + · · · , νa,ty + xha,t(x, y)). (23)
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Let us reduce the function ba,t,1(y) to ba,t,1(0) = λt (see Proposition 3.2 in [17]). Since
ba,t,1(ν

n
a,ty)

λt
=

1 +O(νna,ty), the product

ua,t(y) =
∏
n≥0

(
ba,t,1(ν

n
a,ty)

λt

)
converges for y ∈ Dr. By using (X, Y ) = (ua,t(y)x, y) with inverse (x, y) = (X/ua,t(Y ), Y ), (23) has
the form

ua,t(νa,tY +Xha,t(X/ua,t(Y ), Y )/ua,t(Y ))× (ba,t,1(Y )X/ua,t(Y ) + ba,t,2(Y )(X/ua,t(Y ))2 + · · · )

=
ua,t(νa,tY )ba,t,1(Y )

ua,t(Y )
X +O(X2) = λtX +O(X2)

in the first coordinate.
Step 3. We may assume that Ha,λt has the form

(λtx+ ba,t,2(y)x
2 + ba,t,3(y)x

3 + · · · , νa,ty + xha,t(x, y)).

We next reduce the function ba,t,k(y) to constants by induction on 2 ≤ k ≤ 2l + 1. Consider

(λtx+ ba,t,2x
2 + ba,t,3x

3 + · · ·+ ba,t,k−1x
k−1 + ba,t,k(y)x

k + · · · , νa,ty + xha,t(x, y)), (24)

where ba,t,j is constant for j = 1, 2, . . . , k − 1. We set

va,t(y) =
∞∑
n=0

(ba,t,k(ν
n
a,ty)− ba,t,k(0))λ

n(k−1)−1
t .

This series converges since |νa,tλk−1
t | < |νa,tλ2lt | < 1 for sufficiently small t and |a|. By using local

coordinate (X, Y ) = (x + va,t(y)x
k, y) with inverse (x, y) = (X − va,t(Y )Xk + · · · , Y ), (24) has the

form

λtX + · · ·+ ba,t,k−1X
k−1 + (ba,t,k(Y ) + λkt va,t(νa,tY )− λtva,t(Y ))Xk +O(Xk+1)

= λtX + · · ·+ ba,t,k−1X
k−1 + ba,t,k(0)X

k +O(Xk+1)

in the first coordinate.
Step 4. We may assume that Ha,λt has the form

λt(x+ ba,t,2x
2 + · · ·+ ba,t,2l+1x

2l+1 + ba,t,2l+2(y)x
2l+2 + · · · )

in the first coordinate. We reduce ba,t,k to 0 for each k with 2 ≤ k ≤ 2l + 1 and k − 1 /∈ lN by
induction. We first assume that Ha,λt has the form

λt(x+ ba,t,kx
k + · · ·+ ba,t,l+1x

l+1 + · · · ) (25)

in the first coordinate. By the local coordinate

(X, Y ) = (x−λtba,t,kx
k/(λkt −λt), y) with inverse (x, y) = (X +λtba,t,kX

k/(λkt −λt)+ · · · , Y ), (26)

(25) has the form

λtX + (λtba,t,k − (λkt − λt)λtba,t,k/(λ
k
t − λt))X

k + · · · = λtX +O(Xk+1).
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By induction and a linear transformation, we may assume that the first coordinate of Ha,λt has the
form

λt(x+ xl+1 + ba,t,l+2x
l+2 + · · ·+ ba,t,2l+1x

2l+1 + ba,t,2l+2(y)x
2l+2 + · · · ).

We next assume that Ha,λt has the form

λt(x+ xl+1 + ba,t,kx
k + · · ·+ ba,t,2l+1x

2l+1 + · · · ) (27)

in the first coordinate. By induction, we reduce ba,t,k to 0 for each k with l + 2 ≤ k ≤ 2l. By (26),
(27) has the form

λt(X +X l+1) + (λtba,t,k − (λkt − λt)λtba,t,k/(λ
k
t − λt))X

k + · · · = λt(X +X l+1) +O(Xk+1)

in the first coordinate. Therefore, we may assume that Ha,λt has the form

λt(x+ xl+1 + Ca,tx
2l+1 + ba,t,2l+2(y)x

2l+2 +O(x2l+3))

in the first coordinate. Hence we have Theorem 4.3. Note that, by repeating Step 3 and Step 4,
Ha,λt has the form

(λt(x+ xl+1 + Ca,tx
2l+1 + ba,t,3l+1(y)x

3l+1 + · · · ), νa,ty + xha,t(x, y)). (28)

We obtain the following lemma by the same computation as in the proof of Theorem 3.5 in [16].

Lemma 4.4. There is δ0 > 0 such that by a coordinate transformation ϕa,t, ϕa,t ◦Ha,λt ◦ϕ−1
a,t has the

form (21) for each Ha,λt ∈ RDλt,δ0.

We now prove the second main result of this paper.

Theorem 4.5. There is δ0 > 0 such that each Ha,λt ∈ RDλt,δ0 with a ̸= 0 has connected Julia set
Ja,λt.

Proof. It suffices to show the statement of Theorem 4.5 for Ha,λ−1
t

instead of Ha,λt . Moreover, by
Theorem 3.10 and Lemma 4.2, it suffices to show that there are ε > 0 and δ0 > 0 such that
(Dε × Dr) ∩ J+

a,λ−1
t

= ∅ for Ha,λ−1
t

∈ RDλ−1
t ,δ0

, and Jp
λ−1
t

is connected for 0 < t < δ0.

We first consider the case λ0 = 1. By a transformation ϕa,t (see Lemma 4.4), ϕa,t ◦Ha,λ−1
t

◦ ϕ−1
a,t

is of the form
(x1, y1) = (λ−1

t (x+ x2 + Ca,tx
3 +Oy(x

4)), νa,ty + xha,t(x, y)) (29)

in Dρ×Dr+O(|a|), where the notation Oy(x
α) represents a holomorphic map of (x, y) which is bounded

by K|x|α for some K. By the transformation ψt(x, y) = (−1/(λtx), y), the map ψt ◦ ϕa,t ◦ Ha,λ−1
t

◦
ϕ−1
a,t ◦ ψ−1

t (X, Y ) = (X1, Y1) is of the form

(λtX +1+ ga,t(X, Y ), νa,tY + fa,t(X, Y )) =
(
λtX + 1 +Da,t/X +OY

(
1/|X|2

)
, νa,tY +OY (1/|X|)

)
.

(30)
We take a constant M > 0 such that

|ga,t(X, Y )| ≤
M

|X|
and |fa,t(X, Y )| ≤

M

|X|
(31)

for a ∈ Dδ0 and 0 < t < δ0. Recall that ϕa,t is a transformation from Dρ′(Pr1 q0,λt
) × Dr to

Dρ × Dr+O(|a|). Since Pr2 ϕa,t(x, y) = y + O(a) (see the sketch of the proof of Lemma 4.3), we may
assume that the forms (30) are defined in {|X| > 1/ρ}×Dr and the inequalities (31) hold for (X, Y ) ∈
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{|X| > 1/ρ} × Dr. Note that ψt ◦ ϕa,t(qa,λ−1
t
) = (∞, 0). We set (X0, Y0) := ψ0 ◦ ϕ0,0 ◦ HN

0,λ−1
0

(0, 0)

for some large N ∈ N. We have ReX0 > 1/ρ, by taking a larger N if necessary, since the forward
orbit of critical point 0 under pλ−1

0
converges to its parabolic fixed point (see [1], p.120). Let γ > 0

be a number such that Dγ(X0)× Dr ⊂ {X ∈ C : ReX > 1/ρ} × Dr. We set E := Dγ(X0)× Dr. We
consider the affine transformations

Qt(z, w) =

(
z − bt

X0 − bt
, w

)
and Q−1

t (z, w) = ((X0 − bt)z + bt, w), where bt :=
1

1− λt
.

We set
Fa,t(z, w) = Qt ◦ ψt ◦ ϕa,t ◦Ha,λ−1

t
◦ ϕ−1

a,t ◦ ψ−1
t ◦Q−1

t (z, w).

Then, we have

Pr1 Fa,t(z, w) = Pr1Qt ◦ ψt ◦ ϕa,t ◦Ha,λ−1
t

◦ ϕ−1
a,t ◦ ψ−1

t ◦Q−1
t (z, w) = λtz +

ga,t((X0 − bt)z + bt, w)

X0 − bt
.

We set

Ga,t(z, w) :=
ga,t((X0 − bt)z + bt, w)

X0 − bt
.

Further we set E ′(= E ′
t) := Qt(E) and U

′(= U ′
t) := Qt(U), where U = {|z| < 1/ρ} × Dr. Then we

have

E ′ =

{
z ∈ C : |z − 1| <

γ

|bt −X0|

}
× Dr and U ′ =

{
z ∈ C :

∣∣∣∣∣z − bt

bt −X0

∣∣∣∣∣ < 1

ρ|bt −X0|

}
× Dr.

Clearly, if ρ and δ0 are sufficiently small, then for each a ∈ Dδ0 and each t ∈ (0, δ0), we have

Pr2 Fa,t((C× Dr) \ U ′) ⊂ Dr. (32)

Indeed, |Pr2 ψt ◦ϕa,t ◦Ha,λ−1
t
◦ϕ−1

a,t ◦ψ−1
t (X, Y )| ≤ |νa,tY |+M/|X| < |νa,t|r+Mρ for (X, Y ) ∈ {|X| >

1/ρ} × Dr (see (30) and (31)). Recall that νa,t = −a2/λ−1
t and |λ0| = 1. By taking ρ and δ0 with

sufficiently small, we have |νa,t|r +Mρ < r for a ∈ Dδ0 and 0 < t < δ0. Since Pr2Qt(z, w) = w, we
have (32).

By X0 = Pr1 ψ0 ◦ϕ0,0 ◦HN
0,λ−1

0

(0, 0), E = Dγ(X0)×Dr and (32), we have Qt ◦ψt ◦ϕa,t ◦HN
a,λ−1

t
(Dε×

Dr) ⊂ E ′ for a ∈ Dδ0 and 0 < t < δ0, by taking δ0 > 0 and ε > 0 sufficiently small if necessary. Thus,
to show that there are ε > 0 and δ0 > 0 such that (Dε × Dr) ∩ J+

a,λ−1
t

= ∅ for Ha,λ−1
t

∈ RDλ−1
t ,δ0

, it

suffices to show that there is δ0 > 0 such that⋃
k∈N

F k
a,t(E

′) ∩ U ′(=
⋃
k∈N

F k
a,t(E

′
t) ∩ U ′

t) = ∅ (33)

for a ∈ Dδ0 and 0 < t < δ0, taking smaller γ > 0, ρ > 0 and a larger N ∈ N if necessary.
Indeed, if (33) holds for Fa,t, then

⋃
n≥0H

n
a,λ−1

t
(Dε × Dr) is a bounded set of C2, which implies that

Dε × Dr ⊂ IntKa,λ−1
t
. To obtain (33), we show the following Claims 1,2,3.

Claim 1. For sufficiently small δ0, the following hold. If Lt > 0 for 0 < t < δ0, then U
′ ⊂ D × Dr

for 0 < t < δ0. If Lt < 0 for 0 < t < δ0, then U
′ ∩ (D× Dr) = ∅ for 0 < t < δ0.
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Figure 4: Lt > 0 and θt > 0 (left), Lt < 0 and θt > 0 (right)

We prove Claim 1. Assume that Lt > 0 for each 0 < t < δ0. We show that
|bt|

|bt −X0|
+

1

ρ|bt −X0|
<

1 for sufficiently small t to obtain the conclusion. The inequality is equivalent to

|1−X0(1− λt)| − |1− λt|/ρ− 1 > 0. (34)

Let x1 := Re(λt − 1) and y1 := Im(λt − 1). Then, x1 = Lt +O(L2
t ) and y1 = θt +O(θtLt). First, we

have

|1 +X0(λt − 1)| =
√

(1 + Re(X0)x1 − Im(X0)y1)2 + (Re(X0)y1 + Im(X0)x1)2

=
√

1 + 2Re(X0)x1 − 2Im(X0)y1 +O((x1 + y1)2)

=
√

1 + 2Re(X0)x1 − 2Im(X0)y1 +O(L2
t )

= 1 + Re(X0)x1 − Im(X0)y1 +O(L2
t ).

We now show the inequality (34). By the above computation, we have

|1−X0(1− λt)| − |1− λt|/ρ− 1 = Re(X0)x1 − Im(X0)y1 +O(L2
t )− |1− λt|/ρ.

Recall that X0 = Pr1 ψ0 ◦ ϕ0,0 ◦ HN
0,λ−1

0

(0, 0). Since ReX0 > 0, 0 < x1 ≍ Lt, y1 = O(θt) and

|1−λt| = O(Lt), we have the assertion, taking a large N ∈ N so that |ImX0|/ReX0 and 1/(ρReX0)
are sufficiently small (see [1], p.120), where x1 ≍ Lt means that there is K > 0 such that Lt/K <
x1 < KLt for sufficiently small t.

Assume that Lt < 0 for 0 < t < δ0. We claim that
|bt|

|bt −X0|
−

1

ρ|bt −X0|
> 1 for sufficiently small

t. The inequality is equivalent to 1− |1− λt|/ρ− |1−X0(1− λt)| > 0. We have

1− |1− λt|/ρ− |1−X0(1− λt)| = −|1− λt|/ρ− Re(X0)x1 + Im(X0)y1 +O(L2
t ).

By ReX0 > 0 and x1 < 0, we have the assertion, taking a larger N ∈ N so that |ImX0|/ReX0 and
1/(ρReX0) are sufficiently small if necessary (see [1], p.120). Thus, we have proved Claim 1.

Claim 2. For sufficiently small δ0, the following hold. If Lt > 0 for 0 < t < δ0, then |Pr1 Fa,t(z, w)| >
eLt/2|z| > |z| for a ∈ Dδ0 , 0 < t < δ0 and (z, w) ∈ ({|z| > 1/2} × Dr) \ U ′. If Lt < 0 for 0 < t < δ0,
then |Pr1 Fa,t(z, w)| < eLt/2|z| < |z| for a ∈ Dδ0 , 0 < t < δ0 and (z, w) ∈ ({|z| > 1/2} × Dr) \ U ′.

We prove Claim 2. Assume that (z, w) ∈ ({|z| > 1/2} × Dr) \ U ′. By using the inequality (31), we
have

|Ga,t(z, w)|
||λtz| − eLt/2|z||

<
2|Ga,t(z, w)|
|eLt − eLt/2|

≤
2Mρ

|eLt − eLt/2||X0 − bt|
=

2Mρ|1− λt|
eLt/2|eLt/2 − 1||X0(1− λt)− 1|

.
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Since |1 − λt| = O(Lt), there exists a positive constant δ0 such that the ratio is less than 1/2 if
0 < t < δ0, taking ρ > 0 sufficiently small if necessary. We note that the constant δ0 does not depend
on z. By the inequality

|λtz| − eLt/2|z| − |Ga,t(z)| ≤ |Pr1 Fa,t(z, w)| − eLt/2|z| ≤ |λtz| − eLt/2|z|+ |Ga,t(z, w)|, (35)

the statement of Claim 2 holds.

Claim 3. For sufficiently small δ0, the following hold. If Lt > 0 for 0 < t < δ0, then Fa,t(E
′) ∩ (D×

Dr) = ∅ for a ∈ Dδ0 and 0 < t < δ0. If Lt < 0 for 0 < t < δ0, then Fa,t(E
′) ⊂ D×Dr for a ∈ Dδ0 and

0 < t < δ0.

We prove Claim 3. Let (z, w) ∈ E ′. Then, we have z = 1 + z0, where |z0| < γ/|bt −X0|. Since

|Pr1 Fa,t(z, w)| = |λt(1 + z0) +Ga,t(1 + z0, w)| = |λt + λtz0 +Ga,t(1 + z0, w)|,

we have

eLt − |λtz0 +Ga,t(1 + z0, w)| ≤ |Pr1 Fa,t(z, w)| ≤ eLt + |λtz0 +Ga,t(1 + z0, w)|.

Since |z0| < γ/|bt −X0| = O(Lt) and |Gn(1 + z0)| < Mρ/|X0 − bt| = O(Lt), we have the assertion,
taking smaller γ, ρ if necessary. Hence, we have proved Claim 3.

We now show that there is δ0 > 0 such that F k
a,t(E

′) ∩ U ′ = ∅ for a ∈ Dδ0 , 0 < t < δ0 and
each k ∈ N by using Claims 1, 2, and 3. First, assume that Lt > 0 for 0 < t < δ0. By Claim 1,
U ′ ⊂ D×Dr. By Claim 3, Fa,t(E

′)∩(D×Dr) = ∅, and so Fa,t(E
′)∩U ′ = ∅ for a ∈ Dδ0 and 0 < t < δ0.

By U ′ ⊂ D × Dr and Claim 2, we have |Pr1 Fa,t(z, w)| > |z| > 1 for (z, w) ∈ (C \ D) × Dr, and so
Fa,t((C \ D)× Dr) ⊂ (C \ D)× Dr. By using Fa,t(E

′) ⊂ (C \ D)× Dr, for k ≥ 2, we have

F k
a,t(E

′) = F k−1
a,t (Fa,t(E

′)) ⊂ F k−1
a,t ((C \ D)× Dr) ⊂ (C \ D)× Dr.

Hence, we have F k
a,t(E

′) ∩ U ′ = ∅ for a ∈ Dδ0 , 0 < t < δ0 each k ∈ N by U ′ ⊂ D× Dr.
Assume that Lt < 0 for 0 < t < δ0. Similarly, we have Fa,t(E

′) ∩ U ′ = ∅ for a ∈ Dδ0 and
0 < t < δ0. We note that U ′ ⊂ (C \ D)× Dr by Claim 1. Therefore, Fa,t is defined in D× Dr. It is
easy to see that

Fa,t(D1/2 × Dr) ⊂ D2/3 × Dr (36)

for a ∈ Dδ0 and 0 < t < δ0, taking a smaller δ0 if necessary. Indeed, if (z, w) ∈ D1/2 × Dr, then
|Pr1 Fa,t(z, w)| ≤ |λtz| + |Ga,t(z, w)| ≤ |λt|/2 +Mρ/(|X0 − bt|) < 2/3 for a ∈ Dδ0 and 0 < t < δ0,
taking a smaller δ0 if necessary. Thus we have (36). By Claim 2, U ′ ⊂ (C\D)×Dr and (36), we have
|Pr1 Fa,t(z, w)| < |z| < 1 or |Pr1 Fa,t(z, w)| < 2/3 for (z, w) ∈ D×Dr, and so Fa,t(D×Dr) ⊂ D×Dr.
For k ≥ 2, we have

F k
a,t(E

′) = F k−1
a,t (Fa,t(E

′)) ⊂ F k−1
a,t (D× Dr) ⊂ D× Dr.

Hence, we have F k
a,t(E

′) ∩ U ′ = ∅ for a ∈ Dδ0 , 0 < t < δ0 and each k ∈ N by U ′ ∩ (D × Dr) = ∅.
Hence we obtain (33). This implies that there are δ0 > 0 and ε > 0 such that (Dε ×Dr)∩ Ja,λ−1

t
= ∅

for a ∈ Dδ0 and 0 < t < δ0. For the constant ε > 0, {Ha,λt}a∈Dδ0
satisfies the condition (VC)ε,r for

0 < t < δ0 by Lemma 4.2, taking a smaller δ0 if necessary (see Remark 3.4).
In order to apply Theorem 3.10 to {Ha,λ−1

t
}a∈Dδ0

for 0 < t < δ0, we show that Jp
λ−1
t

⊂ C is

connected for 0 < t < δ0. It suffices to show that pλ−1
t

has an attracting fixed point. Since pλ−1
t

has a

fixed point with multiplier λ−1
t = exp(−Lt− iθt), if Lt > 0 for 0 < t < δ0, then pλ−1

t
has an attracting
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fixed point. If Lt < 0 for 0 < t < δ0, then F0,t(D× Dr) ⊂ D × Dr by Claim 2 and (36). Thus pλ−1
t

has an attracting fixed point.
In the case of l ≥ 2, by the transformation X = −1/(lxl), Y = y and a linear transformation, the

form of (28) with λt replaced by λ−1
t is conjugate to

(X1, Y1) = λltX + 1 +Da,t/X +OY (1/X
2), νnY +OY (1/|X|1/l)).

Similar to the case of l = 1, we can show the statement in Theorem 4.5 in the case of l ≥ 2.
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