THE ORBITS OF PRIMITIVE REPRESENTATIONS OF A
QUADRATIC FORM BY A QUADRATIC FORM

MANABU MURATA

ABSTRACT. We study the primitive integral representations of a quadratic
form in n — 1 variables by a reduced quadratic form in n variables. Our
aim is to describe the orbits of such representations under the action of the
unit group of the reduced form. That description provides the mass of the
representations, considered by Shimura. A formula for computation of the
mass is also proved in the indefinite case.

INTRODUCTION

Let ¢ be a symmetric matrix in GL,(Q) and ¢ a symmetric matrix in
GL, 1(Q). We consider the set of the primitive integral representations of
q by ¢ in the traditional sense:

(0.1) {g. o} ={ke Q)" | kp "k =q, kZ} =Z}7'}.

Here and throughout the paper we assume n > 3 and follow the notation and
terminology in Shimura [8]; see also §1.1 in the text. Put

SO(p) ={7 € SL.(Q) | ¢ - 'y =9}, T(p) =SO() N GL,(Z).

Then T'(¢) acts on {q, ¢} on the right. Hence, if {q, ¢} # 0, we can consider
the orbits of {q, ¢} under the action of I'(¢). We denote by {q, ¢}/I'(¢) the
set of such orbits. It is noted that {¢, ¢}/T'(¢) is a finite set.

The purpose of this paper is to describe the I'(¢)-orbits of {q, ¢} in terms of
the I'(¢)-orbits of the set L[s, bZ] (defined below) for a given reduced symmetric
matrix ¢. The term reduced was introduced by Shimura in [9, (6.2)] and should
not be confused with the same term in the sense of Minkowski. We note a
simple fact: If Ly is a Z-maximal lattice in Q! with respect to a symmetric
matrix ¢p, then the matrix ¢ representing ¢, with respect to a basis of Ly is
reduced and the lattice Z! is Z-maximal with respect to ¢; conversely, every
reduced matrix can be obtained in this fashion.
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To state our result, we need some more notation. We put p(z, y) = zp - 'y,
plz] = o(z, ), and
(0.2) L[s, bZ) = {v € Q; | p[v] = 5, p(v, L) = bZ}

for a Z-lattice L in Q! and s, b € Q*. Since ['(¢) acts on L[s, bZ] on the right,
the set L[s, bZ]/T'(p) is also defined. Suppose L is Z-maximal with respect to
¢; namely, L satisfies p[L] C Z and it is maximal among such lattices. For
a fixed element v € L[s, bZ], by virtue of [10, Theorem 2.2] we can define
an injection of L[s, bZ]/I'(¢) into H\Ha/(Ha N C(L)), which we denote by
ul'(¢) — HE(Ha NC(L)) with &, = 1,,. Here W = (Qu)*, H = {y € SO(y) |
vy = v}, C(L) = {a € SO(¢)a | La = L}, and the subscript A means the
adelization; &, € Ha is given by

§u= 'Vq:lau

with v, € SO(¢) such that uy, = v and a,, € C(L); see (1.6) in the text for
details. For the lattice LNW in W we also put C(LNW) = {a € Ha |
(LNW)a=LnW}and I(LNW)=HNC(LNW). Let U be a complete
set of representatives for L[s, bZ]/T'(¢) containing v. Consider A = {u € U |
& € HC(LNW)} and for u € A take a complete set Z, of representatives
for T(LNW)/(H Nn,'&C(L)E, 'n,) with an element 7, of H such that &, €
1,C(L N W). Then our main result of this paper is stated as follows.

Theorem. Suppose L = Z! and it is Z-mazimal with respect to p. Let h
be an element of {q, ¢}. Fix arbitrary numbers s, b € Q* satisfying b=%s =
det(¢)~tdet(q). Takev € L[s, bZ] so that LN (Qu)*t = ZL |h. Set W = (Qu)*
and H = {y € SO(p) | vy = v} for this v and take U, A, and Z, as above.
(Note that q is the matriz representing @, restricted to W = QL h, with respect
to the basis of LNW determined by h.) Then {q, ¢} can be given by

{a, o} = | | T@hn v ' Te) = | | || hmtv'T(p).
ucA ucACeZ,
Here T'(q) = SO(q) N GL,,—1(Z), which is isomorphic to I'(L N W) via v +— 7
defined by the rule v'h = hy.

We can prove a similar result on the ['(L)-orbits in a general setting, which
will be stated and proved in Section 1. Theorem is derived by specializing that
result. The maximality of L in the assumption means that ¢ is reduced. Hence
our theorem describes {q, p}/I'(p) for every reduced ¢ and every q as long as
{q, ¢} # 0. Tt is nontrivial to find an element v in the statement for a given
h € {q, ¢}. The existence of such an element can be seen from our previous
result [4, Theorem 2.1]; see §1.4 for details.

As an application, Theorem provides the mass of the set {q, ¢} in the sense of

Shimura in both definite and indefinite cases, which will be explained in Section
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2. In fact, from the decomposition of {g, ¢} into I'(¢)-orbits we have

(0.3) m({g, o}) =Y #(ZJv(T(p)

u€A

where m({q, ¢}) denotes the mass of {q, ¢} and v(I'(¢)) is a quantity defined
with the measure of I'(p)\Z with respect to an invariant measure on a sym-
metric space Z on which SO(y) acts; in particular, v(I'(p)) = [['(¢) : 1] and
m({q, ¢}) = #{q, ¢} if ¢ is definite. By using (0.3) in the definite case, we
can get numerical examples of #{q, ¢} in §4.1, where ¢ is a reduced matrix
representing the sum of five squares.

In Section 3 we give a formula for v(I'(p)) when ¢ is indefinite, involving the
measure of the unit group of 2¢ in the sense of Siegel [14]. This formula plays
a fundamental role in the proof of a relationship between the mass of the set
of primitive solutions like L[s, bZ] and the measure of primitive representations
of an integer by an indefinite quadratic form, considered by Siegel [13]; the
relationship will be reported in [5].

In Section 4 we present an example of {g, ¢}/I'() for an indefinite form ¢
in 7 variables. In addition, we give not only m({q, ¢}) but also the mass of the
set L[s, 271Z] by means of the formula mentioned above.

1. ORBITS OF THE SOLUTIONS OF A QUADRATIC DIOPHANTINE EQUATION

1.1. Preliminaries. We denote by Z, Q, and R the ring of rational inte-
gers, the fields of rational numbers, and real numbers, respectively. If A is
a commutative associative ring with identity element, then we write A* for
the group of all invertible elements of A and A" the A-module of all (m x n)-
matrices with entries in A. The transpose of a matrix = of A} is denoted
by tz; the determinant and trace of z of A" are denoted by det(z) and tr(x).
We denote the identity element of A? by 1,. We put GL,(A) = (A?)* and
SL,(A) ={z € GL,(A) | det(x) = 1}. We write diag[a, --- , as] for the ma-
trix with square matrices aq, --- , as in the diagonal blocks and 0 in all other
blocks. For a finite set X, we denote by #X the number of elements in X. If
a union | J,;; X; is disjoint, then we indicate it by writing | |, , X;.

Let F' be an algebraic number field of finite degree or its completion at a
prime, and let g be the maximal order of F. Let V be a vector space of
dimension n over F' and ¢ a nondegenerate symmetric F-bilinear form of V' x V'
into F. The quadratic form on V' is defined by z — ¢[z] = ¢(z, z) for x € V.
We let GL(V) act on V' on the right. We denote by O?(V') the orthogonal
group of ¢ and put SO?(V) = {y € O?(V) | det(y) = 1}. Let L be a g-
lattice in V| that is, L is a finitely generated g-submodule of V' that spans V'

over I, where F' is a number field or a nonarchimedean local field. We set
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L ={veV |2, L) C g}. We call L g-mazimal with respect to ¢ if L
satisfies p[L] C g and that if L’ is such a lattice containing L, then L' = L.

Suppose F' is a number field. We denote by a and h the sets of archimedean
primes and nonarchimedean primes of F. For v € aUh we denote by F, the
completion of F at v and by g, the maximal order in F, if v € h. We also
denote by ¢, the F,-bilinear extension of ¢ to the vector space V,, =V Qp F,
over F,; we write L, for the g,-lattice in V, generated by L over g, if v € h.
We denote by Ga the adelization of G = SO¥(V') and by G, for v € aUh the
localization of G at v. We put

(1.1) C(L)={a€Ga|La=L}, T(L)=GNC(L).

Also put C(L,) = G, N C(L) for v € h. We note that I'(L) = T'(L).

Let X be a vector space of dimension n — 1(> 1) over F. Given k €
Hom(X, V), we denote by ¢[k] the quadratic form on X defined by = ~—
o(zk, zk) for z € X. We also denote by o(k, L) the g-lattice in Hom(X, F)
consisting of ¢(k, ¢) for all £ € L, where o(k, ¢) is defined by x > o(zk, £) for
x € X. If p[k] is a nondegenerate quadratic form ¢ on X, then k is injective.

Let W be the subspace {v € V | p(y, v) = 0} of V for a fixed y € V' such
that ¢ly] # 0 and ¢ the restriction of ¢ to W. Suppose h is an element of
Hom(X, V) such that LW = Mh with a g-lattice M in X. Then the special
orthogonal group of the restriction of ¢ to Xh is SO¥(W). Put ¢ = ¢[h], which
is nondegenerate on X because Xh = W and % is nondegenerate on W. Then
we understand SOY(X) by the set of all the elements 7’ determined by the rule
n'h = hn for n € SO¥(W).

1.2. Statement in a general setting. Let (V| ¢), L, and X be as in §1.1 for
an algebraic number field F'. Hereafter until the end of this section, we put
G = SO?(V). For a nondegenerate quadratic form ¢ on X and a g-lattice 98 in
Hom(X, F'), we shall consider the set of solutions of a quadratic Diophantine
equation p[z] = ¢ in the following type:

(1.2) Llg, B] = {k € Hom(X, V) | p[k] = q, ¢(k, L) = B}.

This set was introduced by Shimura in the theory of quadratic Diophantine
equations [8, Section 13| as a generalization of the set defined by

(1.3) Lis, bl ={x € V | p[z] = s, ¢(x, L) = b}

for 0 # s € I and a fractional ideal b of F.
We consider the orbits of L[s, b] or L[g, *B] under the action of the stabilizer
['(L), that is, we have the sets of I'(L)-orbits

L[s, b]/T(L),  Llg, B]/I(L).



These are finite sets by [éi, Theorem 13)3] Hence if Z[q, B] is nonempty, there
are a finite number of I'(L)-orbits of L[g, B] such that

Lig, B] = | | h¢T(L)

(ez

with a finite subset Z of GG for an arbitrarily fixed element h € Z[q, B|. Now
assume L[s, b] # ) for s and b as in (1.3). We pick 2o € L[s, b] and fix it. Put

W = (Fxo)t ={z €V | o(xg, x) = 0}

and let 1 be the restriction of ¢ to W. We regard SO¥(W) as the subgroup
H={neG|xon=uxo}of G. Let h be an element of Hom(X, V') such that

(1.4) LOAW = Mh

with a g-lattice M in X. Put ¢ = @[h] and B = ¢(h, L). Then our aim of this
section is to describe the I'(L)-orbits of L[g, B8] in terms of the I'(L)-orbits of
L[s, b] under the assumption that L is g-maximal with respect to ¢. To state
our result on Z[q, B], Proposition 1.2 below, we need some more notation.

Take a set {L; };cr of representatives for the G-classes in the G-genus of L for
which L;[s, b] # 0. Note that I depends on s and b. Suppose L is g-maximal
with respect to ¢. Then by virtue of [10, Theorem 2.2] we have a bijection

(1.5)

| [{Lils, b]/T(L:)} 3 aT'(Li) — HE[x](Ha N C(L)) € H\Ha/(Ha NC(L)),

iel
where £[z] € Hp is given as follows:

Set L;cy; = L with o; € Ga for i € I. For x € L;[s, b] there is v € G such
that 7y = zo by [8, Lemma 1.5(ii)] as ¢[x] = p[zo]. For each v € h observe that
zo and z(«;), belong to L,[s, b,]. Since L, is g,-maximal, by [10, Theorem 1.3]
there is a,, € C(L,) such that zy = z(a;),,. For v € a we put a, = (), 17,
Let « be the element of C'(L) whose v-component is «, for every prime v of F.
Then assigning 7~ *a;a to z, we have the bijection given in (1.5) by [8, Theorem
11.6(i)]; see also [10, Theorem 2.2]. For our argument below, we denote such ~
and « by v[x] and afz], respectively; notice that v[z] and «a[z] are not uniquely
determined by = € L;[s, b]. We then put

(1.6) §[2] = yla] " oala].

For each i € I take a complete set U; of representatives for L;[s, b]/I'(L;). Then
by (1.5) we have

Ha=| | | Helal(Ha N D).
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Noticing that Ha N C(L) C C(L N W), we further take a subset U/ of U; such
that

(1.7) U BEC(Lnw) = | | HEwC(L W),

uelU; uEUZ-’

Put A" = {w e U; | H{[w]C(LNW) = HE[u]C(LN W)} for a fixed u € U;.
We identify the special orthogonal group of the restriction of ¢ to Xh with
H. Considering the orthogonal group SO?(X) in the manner of §1.1, set

A, = HNEWOLNW)Eu] ™, A ={8e€SOUX)|de A}
for u € U;. We note that A, = HNC(LNW)&[u]™) = T((LNW)E[u] ™).
Lemma 1.1. Let E be the subgroup of Ha defined by

(1.8) E={c€ Hp|e'B =2}
with the present h. Then E = C(LNW). Moreover, A, = HNE[u|EE[u]™ and
(L9 [Av: HOEWCLER ) < [C(LAW) : Hy N C(L)

for every u € U; and v € I.

Proof. Let € € E. Since &8 = B, we have p(zhe,, L,) = ¢(zh, L,) for every
x € M, and v € h. Further since h satisfies (1.4), we have p(zh, f:,) C
o(Ly, Ly) C 27'g,. Thus M,he, C L,. From this it follows that (L N W)e C
L N'W, which proves E C C(L N W). The opposite inclusion can be seen in
a straightforward way. Hence we have the first assertion. By using this we
see that H N &[u|E&[u]™ = A, C £[u]E€¢[u]™!. Then the map = — &[u] ' w€[u]
gives an injection of A, /(HNE[u]C(L)E[u]™) into E/(HaNC(L)), which shows
(1.9). O

For w € A! take an element n[w] of H such that &[w] € n[w]&[u]C(LNW) and
a complete set Z“ of representatives for A, /(H N nfw]|~ ¢[w]C(L)E[w] ™ n[w]).

Proposition 1.2. Assume thal L is g-mazimal with respect to ¢. Let xg €
L[s, b], take h as in (1.4), and put ¢ = @[h| and B = p(h, L) with the notation
above. Then for each v € I there exists a bijection

(1.10) Lils, 8/T (L) — || {A0\Lila, €[ B)/T(L) |

uel/

and # {A;\Ei[q, §[u]’£B]/F(IZ)} = #(A) foru € U/. Consequently we have
(1.11) Lilg, €[u)'B) = | | | A¢nlw] " ylw] ' T(L)
weAl CEZLY,

for everyu € U! andi € I, where y[w] is an element of G such that wy[w] = ;.
6



1.3. Proof of Proposition 1.2. We first show that

(1.12) U {H\(HEWE NGEWIC(L))/DY = {HEW]D | u € Uy},

ueU;

where E is as in (1.8) and D = Ha N C(L). Since {[u| € HE[u|E N GE[u]C(L),
we have H¢[u|D € H\(HE[u|E N GEu|C(L))/D for every u € U;. Conversely,
let 0 € HE[ulE N GE[u]C(L) with uw € U;. Since HE[u]E N GE[u]C(L) C Ha N
Ga;C (L), by applying [10, Theorem 2.2], o can be regarded as a representative
of the image of some element xI'(L;) under the bijection

(V N aoC(L)a; ) /T(L;) — H\(Ha N GoyC(L))/D

defined in [10, Theorem 2.2(ii)] with =y, C(L), and «; in place of h, D, and y
there. Here 7oC(L)a; ! is meaningful as a subset of V @5 Fa. Thus we can put
o =7"ta;6"! with v € G and § € C(L) such that vy = xy and = = z¢dc; .
By virtue of [10, (2.5)], we have V N xoC(L)a; " = Ly[s, b]. Hence z belongs
to L;[s, b]. Take ¢[x] = v[z] 'ayafz] in the manner explained in (1.6). Then
we see that o = ¢[x]alz] 167! and zoalz] 167! = xa;0 ' = 2. Hence we have
o € H¢[z|D. Since we can find u € U; such that HE[z]D = H&[u]D via (1.5),
the desired (1.12) follows.

Let us take a subset U/ in (1.7). Clearly U; can be given by U; = UUEUZ Al
where A = {w € U; | H{[w|E = HE[u|E} for w € U;. We observe that
(H¢[u)E N GE[u)C(L)) N (HE[w]E N GE[w]C (L)) # 0 if and only if w € A’ for
u, w € U;, in which case these two sets coincide. Hence the left-hand side of
(1.12) coincides with the disjoint union

(1.13) | | {E\(HE[u]E N GoiC(L))/D} .
uel]
Then (1.12) leads to the following fact:
(1.14) HE[uE N Ga;C(L) = | | HEw]D
weAl
for every u € U/.
Now we put ¥V = Hom(X, V') and consider the set
VN he[u] EC(L)a; !

1

for u € U!. Here h&[u]EC(L
C(L) = C(L). Suppose that

# 0 for u, w € U/. Put h¢|
By [10, (2.8)] we have {[u]

~—

a; - is meaningful as a subset of V ®p Fa and

Vel EC(L)a; ' } 0 {v 0wl EC(L)a; ! |
| = h&wlede; with €,e; € E and 6 € C(L).

¢lwlede;. Observe that § € D C E. Then
7
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Heu|C(LNW) = HE[wlede 1 C(LNW) = HEw|C(LNW) as E=C(LNW).
Thus u = w by our choice of U;. Hence we have a disjoint union

| {0 nngEC@)ar/r(Ea )

uel]

where A/\(VNhe[u] EC(L)a; ") /T (La; ") is meaningful under the isomorphism
of SO?(X) onto H explained in §1.1. By [10, Theorem 2.3] there exists a
bijection

(1.15)  H\(HE[u]E N GeyC(L))/D — NNV N he[u] EC(L)o; ) /T (La; ™)

via 0 — hn™'y with v € G and n € H such that o € nélu]E Ny, C(L).
Furthermore, by applying [10, (2.12)] with C'(L) in place of D there, we have

VN he[u EC(L)a;* = (La; g, £[u)'B].

Combining this with (1.15) and composing it with the bijection of L;[s, b]/T'(L;)
onto the set of (1.13), defined by the same map as (1.5), we obtain (1.10). This
bijection can be given by

wl'(L;) = HE[w]D — Al hnfw) ™ y[w]'T(L;)

for w € Al with u € U, since &[w] = y[w] Lasalw] € nlw]é[u] ENy[w] " a;C(L)
with nw] € H. Notice that hn[w] " y[w] ™ € Li[q, £[u]’B] for any w € A’. Then
(1.10) concludes that A’ \ L;[q, &[u]'B]/T(L Z) consists of A hn[w] ™ y[w]™ 1F(E)
for all w € A%, Thus we have L;[q, £[u]'B] = Uweas AAWn[w] Ay [w]~ IT(L;) for
every u € UJ.

To prove (1.11), observe that ¢n[w]™y[w] '['(L;) = ¢'nlw] " y[w]"'T(L;) if
and only if (7!'¢’ € H Nnlw]| '¢[w]C(L)&[w] 'nw] for ¢, ¢’ € A,. From this we
have Ayn[w] A w]'T(L;) = Leezu Cnlw]~y[w] ' 0(L;) with Z* given before
the statement. Suppose h¢' € h¢nlw] ™ y[w]'T(L;)y[w]n[w] with ¢, ¢ € Z.
Then ¢’ € Cnlw] ™ y[w]T(L;)y[wlnlw] by [10, (2.8)]. Since (¢’ € H N
n[w] 1 E[w]C(L)E[w] ™ nfw], it follows that ¢ = ¢/, which proves (1.11). This
completes the proof of Proposition 1.2.

Proposition 1.2 is not valid for arbitrary h € Z[q, B]; it needs to take h as in
(1.4). Such an h exists if L[s, b] # (). Conversely, we can prove the following.

Lemma 1.3. Assume that F' has class number 1. Let L be a g-mazimal lattice
in V' with respect to ¢. Suppose z[q, B] # 0 with ¢ and B as in (1.2). Let s
and b be arbitrarily fized numbers of F* such that b=2s = det(p) ! det(q). For
every k € L{q, B there exists xo € L[s, bg] such that LN (Fao)* = Mk with a

g-lattice M in X.
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Proof. With respect to a g-basis of L we may identify V with F! L with g},
and ¢ with a symmetric element of GL,(F). Also, fixing a g-basis of 6 and
taking the dual basis of X, we may identify B with 27'g7 ' and X with F!_,.

Then L = gl (2¢)~! and L[q, B] coincides with the set {q, ¢} in (0.1), where
tg=q € GL,_1(F). Given k € {q, ¢}, through the mapping \ of [4, (1.5)] with
m = n— 1, k corresponds to an element x of {r, =1} with r = det(p)~* det(q),
where {r, o'} = {z € E! | zp™' -tz = r, zg} = g}. Set r = sb™? with
s, b € F*. Then bxy~! belongs to L[s, bg]. Also if we put zog = bwp~!, k can
be viewed as an inverse image of (= z) under A. Hence by [4, Theorem 2.1]
we have L N (Fxo)t = gl k. This proves the desired fact. OJ

1.4. Proof of Theorem. Let V = Q! and let ¢ be a symmetric matrix in
GL,(Q). We put G = SO(¢) = {y € SL.(Q) | v¢ - v = ¢}. For the Z-
lattice L = Z. in V and for s, b € Q* let C(L) and I'(L) be as in (1.1) and
L[s, bZ] as in (0.2). Taking X to be Q} in the notation of §1.1, we may put
Hom(X, Q) = Q*, Hom(X, V) = Q™, and ¢(k, {) = kp - "0 for k € Q™ and
(e QL wherem=n—-1>1.

We assume that L is Z-maximal with respect to ¢; in other words, we treat
a reduced symmetric matrix ¢ in the sense of [9, (6.2)]. Let us consider the set
{q, ¢} in (0.1) and prove Theorem in the introduction by applying Proposition

1.2 to L[g, 27'Z™] for a given ¢ = 'q € GLn(Q).

We first observe that L = Z!(2¢)~'. Then o(k, L) = 27'Z™ if and only if k
is primitive in the sense that kZ} = Z7" for k € Q). Hence we have

(1.16) Lig, 2727 = {q. ¥}

Assuming {q, ¢} # 0, pick h from {q, ¢}. By Lemma 1.3 there exists v €
L[s, bZ] such that

(1.17) LN (Qu)*t=Z:h

with fixed s, b € Q* satisfying b=2s = det(p) *det(q). We set W = (Qu)*,
Y = ¢lw, and H = SO(¢) = {y € G | vy = v}. Then Proposition 1.2
is applicable to h, where we take L, to be L and take U as a complete set
U, of representatives for L[s, bZ|/T'(L) containing v; we may assume v € U’
and &[v] = 1, with the notation of Proposition 1.2. We write simply A and
Z, for Al and Z?; also put & = &[v], v. = 7[u], and 5, = nlu]. Clearly
I'L)=GNGLL(Z) =T(p). As for I'(L N W), the map v — +" determined by
the rule v'h = hy for v € I'(L N W) gives an isomorphism of I'(L N W) onto

I'(q) = SO(q) N GL,,(Z). Thus from (1.11) our theorem follows.
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2. THE MASS OF L[, B]

2.1. Preliminaries for the mass. In this section we assume that F'is totally
real and keep the notation of Section 1. We shall recall some notation to define
the mass. If the readers are familiar with this subject, we recommend them to
proceed directly into §2.2 in which m(L[g, B]) is discussed.

We first represent ¢ by a symmetric matrix in GL,(F") with a fixed basis of
V over F. Then SO¢(V) is given by G = {y € SL,(F) | v¢ - 'y = ¢}. For
each v € a we denote by ¢, the image of ¢ under the embedding of F' into R
over Q at v; we put G, = SO(p,) = {a € SL,(R) | ap, - ' =, }. By a Witt
decomposition, ¢, can be represented by

0 0 -1,
(2.1) 0o 6, 0 |,
1, 0 0

where r, > 0 and 6, is an element of GL,; (R) which is positive or negative
definite. (If ¢, = 0, we ignore 6,.) We take k € F'* so that k,p, has signature
(ry + t,, 1) for every v € a. Further, we fix 0, € GL,,(R) such that

(2.2) KyOupy - L0, is of the form (2.1) with 0 < 6, =0, € GL;,(R).
Put ¢! = ky0,p, - 'o,. We then define a set Z¢ by

(2.3)

Z? = Z(r,, 0,) = { [x] e Rjvt
Yy

xER:Z,yeRff;,t:c—l—x>ty001y}.

When 7, = 0, we understand that Z¥ consists of a single point written as 1,.
Notice that Z¥ depends on the choice of (2.2).

For a € SO(¢))) and z € Z¥ we can define a(z) € Z¢ in the manner explained
in [8, §16.3]. Then by [8, Proposition 16.6(i), (iii), and (v)], SO(¢!) acts transi-
tively on Z¢, C! = {y € SO(¥) | 7(1,) = 1,} is a maximal compact subgroup
of SO(¢)), and {a € SO(¢)) | a(z) = z for every z € Z¢} = SO(p))N{£1,} if

Ly
ry >0, where 1, = | "|. If r, =0, we let SO(¢)) act trivially on Z¢ = {1,}.
0

We set
z=1[20w 6,), Ga=][Gw Ca=]]C» Cv=0,'Clon.

vEa vea vea
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Since SO(kypy) = SO(p,) and 0,50(p,)o, ' = SO(¢!), we can define the
action of G on Z by a(z) = ((0,0,0,1)(2,))vea for a € G, and 2z € Z. Hence
G acts on Z via the projection of G into G,. Put 1 = (1,),ca-

Suppose GG, is not compact for a moment. Let v € a such that r, > 0.
Since Z¥ is connected, this can be viewed as a Riemannian manifold with the
G,-invariant metric defined by

(2.4) ds? = tr (tdzv ' (z) 7t dz, - §(zv)_1) ,

where z, = [(2)i] = € Z(ry, 0,), dz, = [d(2y)i5], £(20) = & + 'z —
Yy

t -1 ! r + tx ty . . .

Y0 ty, and £'(z,) = ol Furthermore, Z¢ is a symmetric space in
Yy v

the following sense:

Lemma 2.1. Z? is a simply connected Riemannian globally symmetric space
of the noncompact type with the metric ds* and it is analytically diffeomorphic
to the symmetric space (G,)o/C, under the map a,(1,) — «,C, for o, € G, if
ry > 0. Here (G,)o is the identity component of G,.

We omit the proof of Lemma 2.1 because this fact seems to be well known.
As for the proof, [2, II, Proposition 4.3(a), V, §2, Example 1, and VI, Theorem
1.1(iii)], and [8, (16.10a and b)] may be referred.

Now, Z is a symmetric space on which GG, acts transitively, where the G,-
invariant metric is defined by ds* = > ., ds2 with b = {v € a | r, > 0}. We
define a G,-invariant measure on Z by

(2.5) dz =[] {det(2‘1§(zv))‘”/2 H f[d(zv)ij} ,

vEb i=1 j=1

where z, is as in (2.4). Let I'(L) be as in (1.1). We have the image I" of I'(L)
under the projection of G into G,. Then I' is a discrete subgroup of G, in
the relative topology. Hence I' acts properly discontinuously on Z and I'\ Z is
a locally compact Hausdorff space with the quotient topology. We denote by
vol(I'\ Z) the measure of I'\ Z with respect to dz and assume that vol(I'\ Z) is
finite. We then put

(2.6) v(I) = [[NT: 1] vol(I\2),

where T'= {7y € G | y =1id. on Z}.

To discuss the mass in §2.2 in a unified way, we employ the symbol v(T")
also when G, is compact. Namely, we take the measure of GG, to be 1 and set
vol(I\Z) = [[': T NT]~ % Hence v(T') = [[": 1]7! if G, is compact.

11



Let {L;}ic1, be a complete set of representatives for the G-classes in the
G-genus of L. Then the mass of G relative to C(L) is defined by

(2.7) m(G, C(L)) =Y _v(T(L:)).

i€lp
This is independent of the choice of {L;};cr,. Also when G, is not compact,
m(G, C(L)) depends on the choice of (2.2).

Let X be a vector space of dimension m over F' for n > m > 1 and put
V = Hom(X, V). Let us take a subset S of V such that

S=||ksr.
BeB
Here k is a fixed element of V of det(yp[k]) # 0, B is a finite subset of G, and
I' = G N D with an open subgroup D of G such that D contains G, and
Gn N D is compact. We regard SO((Xk)*) as {y € G | ky = k} and observe
that k8y = kB with some v € T if and only if v € ~1SO((Xk)H)BNT.
Following [10, (3.4)], the mass of the set S is then defined by

(2.8) m(S) =Y v(SO((Xk)*) N BLs~") /().

BeB
Here v(SO((Xk)Y) N BTB7Y) is defined in a similar manner to (2.6). It can
be shown that m(S) is independent of the choice of B and I'; the latter means
that m(S) defined with respect to a decomposition of S into I'-orbits is equal
to (2.8) for I = GN D’ with an open subgroup D’ of G such that D’ contains
Ga and Gy, N D’ is compact; for the proof, see after [11, Theorem 10]. We note

that m(S) depends on the choice of matrices equivalent to ¢ and the restriction
©|(xwr over R asin (2.2). Also by [10, (3.5)], m(S) = #(S5) if G, is compact.

2.2. Results on the mass. We return to the setting of §1.2. With E, A’ and
Z" there, we observe by noticing &[w] € n[w]é[u]E for w € Al that #(Z") =
A, : H N Ew]|C(L)E[w] ™Y, where A, = H N &[w]EE[w]™!. Also, because of
dim(W+t) =1,

(SOW) N nfw] ™ A w] ™ T(Lwnlw]¢™) =1
for every ¢ € Z* and w € A’. Thus by (1.11) with & of (1.4) the mass of

Lilq, £[u)"B] can be given as follows:

(2.9) m(Lilg, £[ul'B]) = Y [Aw : HNEw|C(L)Ew]u(T(L;)) ™
weAL
for w € Uj and i € I. It is noted that the elements h¢n[w]'y[w]™'y with

w e A, ¢ € Z' and v € T'(L;) constitute the set L;[q, [u]B] without
repetition. This is because if h(n[w] y[w] ™'y = hlnlw] y[w]™! with v €
12



I(L;), then v = 1 by [10, (2.8)] as dim(W<) = 1. Hence #{L;[q, £[u]'B]} =
> wear #(ZU)T(L;) : 1] if Gy is compact, which is consistent with (2.9).

We consider the set L;[s, b] = {x € V | ¢[z] = s, ¢(z, L;) = b}. Since
Li[s, b]/T'(L;) is a finite set, the mass m(L;[s, b]) can be defined by (2.8) with
dz and with the H,-invariant measure on a symmetric space associated with
1 = p|lw in the sense of §2.1, where H = SOY(W) and W = (Fxy)* with a
fixed xy € Lis, b].

Lemma 2.2. For each u € U}, {{[w] | w € A%} is a complete set of represen-
tatives for H\(HE[u]E N Goy,C(L))/(Ha NC(L)). Moreover,

v(D(Ly))m(Lifs, b]) = > v(A) > [Ay: HNEw]C(L)E[w] ™).

uel] weAY,

Proof. The first assertion follows from (1.14) with D = Hx N C(L). Put
Ew = {&w] | w e A'}. We observe that H\(Ha N Go;C(L))/D coincides
with | |,co {H\(HEu]E N Go;C(L))/D}. Hence | |, Eu gives a complete set

of representatives for H\(Ha N Go;C(L))/D. Then the following equality is a
special case of the equality in the line 6 of page 347 of [10] with V. C(L), xo,
and «; in place of V, D, h, and y there:

v(D(Li))m =D > vHNEw|C(LEw] ™).
ueU] we Ay,
Applying [11, Theorem 10(iii) and (iv)], we have further
v(HN&C(L)E,") = [Aw: HN&GC(D)E, v (Aw)
= [Au: HOEC(DE (A,
Combining this with the above equality, we have the second assertion. 0
Proposition 2.3. Let the notation be as in §1.2. Suppose that {{[u] | u €

Ul, 1 € I} is a complete set of representatives for H\Ha/C(LNW). Then the
following assertions hold for every w € U] and i € I:

> [Aw s HOE]CL)Ew] ™) = [CILAW) - Ha N C(L)],
m(Lilg, €[u]B)) = [C(LAW) : Ha 0 C(L)w(T(Ly)) .
Proof. By applying [10, Theorem 3.2] to L[s, b] combined with [10, (3.3)], we
obtain
(2.10) Zu i[s, b)) = [E : DIm(H, E),

where E = C(LNW) and D = Hx NC(L). The mass m(H, E) can be written
as Y icr X ouerr V(Ay) by our assumption. On the other hand, by Lemma 2.2 the
13



left-hand side of (2.10) equals >,/ 7 cr V(Au) 3o e s [Aw : HNE,C(L)E,.
Therefore, in view of (1.9), 3, i [Ay © H N &,C(L)ESY] must be equal to
[E : D] for every u € U] and everyui € I. This shows the first assertion. The
second assertion follows from this combined with (2.9). O

Let us apply Proposition 2.3 to m({g, ¢}) of (0.3) in Introduction. To do
this, we assume that

(2.11) He(HaNC(L)) = HeC(LNW) for every € € Ha.

Then Proposition 2.3 is applicable to (1.16) in the setting of §1.4 because U] =
U; for every ¢ € I. Noticing that A(= A!) = {v} in our theorem in this case,
we have the following.

Corollary 2.4. In the setting of Theorem suppose (2.11). Then A = {v} and
#(Z,) = [C(LNW) : Hx N C(L)]. Consequently the mass of the primitive
representations of q by ¢ is given by

#{q, o} = [CLNW): HANCL)[I(L) : 1] if ¢ is definite,
m({q, p}) = [C(LNW): HAxNC(L)v(T'(L))™ if ¢ is indefinite,

where v(I'(L)) is defined by (2.6) and I'(L) = I'(¢) in the introduction.

3. FORMULA FOR COMPUTATION OF THE MASS

This section is divided into three subsections; §3.1 is based on [8, §16.8] by
Shimura; §3.2 is based on [14, Chapters 3 and 4] by Siegel. In §3.3 we shall
combine them.

3.1. Invariant measure on a ball B. Let ¢ be an indefinite symmetric matrix
in GL,(Q). Let O(¢) be the orthogonal group of ¢ and put O(¢)s = {7 €
GL,(R) |vp-"v=p}. Set ST ={'P=PeR" | P>0}for 0 <meZ.

We consider a Witt decomposition of ¢ over R and set

0 0 —1,
(3.1) Yo =kop-lo=10 6 0 |, 0<60="0¢eGL(R),
-1, 0 0

as in (2.2) with k € Q* and ¢ € GL,(R); we may assume x € {£1} with
a suitable change of 0. Then ¢, has signature (r 4+ ¢, r) with » > 0. Put
p = r+t. Since O(p)s acts transitively on the space Z¥ defined by (2.3)
with ¢, we have a diffeomorphism gCy, — ¢(1) of O(¢)s/Cs onto Z¥, where

Coo = {7 € 0(¢)o | 7(1) = 1} and 1 = [10]

14



Let SO =

1 0
Op X ] and consider O(Sp) = {a € GL,(R) | aSy - fae = Sp}.

We can let O(S) act on the ball B defined by
B={reR|1, —"'zz >0}
To be precise, we put

V(Sy) = {Y € GL,(R) | 'Y S,Y = diag[A, —B] with A € 8%, B € 8%},

1, =
B(z)=|"
-0
for € B. Then the mapping (z, k, u) — B(z)diag[k, p] gives a bijection of
B x GL,(R) x GL,(R) onto Y(Sp). This can be shown in a similar way to the
proof of [8, Lemma 16.2]. For o € O(S) and x € B we have aB(x) € Y(S) and
hence we can define a(x) € B by the relation aB(z) = B(a(x))diag[k, u| with
(k, ) € GLy(R) x GL.(R). Note that f(a(x)) = (Ba)(x) for a, 5 € O(Sy).
We denote by 0 the zero matrix of p x r, which belongs to B.

Lemma 3.1. The above action is transitive. Also put Co = {a € O(Sp) |
a(0) =0}. Then Cy = O(S)) NO(1,,), = O(1,) x O(1,), is a mazimal compact
subgroup of O(Sp), where O(1,) ={y € R” | v -ty = 1}

Proof. All assertions, except the last one, can be seen from the definition. The
last assertion is a well known fact. 0J

Take 7 € GL/(R) so that 7 -7 = 260 and set

L. 0 1,
(3.2) =00 7 0
1, 0 1,

Then we see that §S; - 6 = k2, 00(S5)0! = O(p)es, and 6Cy0~ " = Cs. On
the other hand, by [8, (16.15b)] we have a diffeomorphism

u
—
v

Clearly, (0) = 1. The following can be verified in a straightforward way.
Lemma 3.2. For a € O(Sy) we have t(a(0)) = dad1(1).

(1 +u)(l—u)™

o(1 —u)™?

t: B>

]ezw.

From this lemma we obtain t(a(z)) = dad ' (t(z)) for a« € O(Sp) and = € B.

Hence the action of O(Sp) on B corresponds to the action of O(¢) on Z¥.
15



Now we define an O(Sp)-invariant measure on B by

p r
(3.3) dz = det(1, — txz) "2 H H dz;;

i=1 j=1
for x = [z;;] € B. Then it can be found in [8, §16.8] that t sends the measure

dz on 2% back to 272 det(f)"/? times the measure dz on B, which we denote
by t*dz; namely,

(3.4) t'dz = 2% det(6)"/*dx.
3.2. Measure of an unit group acting on a space $). For a symmetric
element S of GL,,(Q) with the same signature as S, we put
QS)={yeR!|'ySy=S5}, A=QS)NGL,(Z).
Notice that ©Q(Sy) = O(Sp). Set
H={PeS|PS'P=S}, §H={PeS!|PS;'P=5S}

We let (S) act on $ by P — P[y] for v € Q(S) and P € §, where P[y] = ‘yP~.
(In this section we do not use the symbol X[y] for yX -'y.) It can be seen that
this action is transitive and A is discrete in £2(S). Then §) is a symmetric space
on which A acts discontinuously.

There is a diffeomorphism ® of B onto $, defined by

(1, —z-t2)" Y1, +z-'2) —2(1,—x-'z) 'z
=21, —a-tz)™t (1, 4 tzx) (1, = tax) !

d:x+—

Also, the mapping x +— §®(z)-'0 gives a diffeomorphism of B onto §), where J is
a fixed element of G L, (R) such that §Sp - *§ = S. In particular, the dimension
of $ is pr.

For a € Q(Sy) and = € B we define alz] € B by ®(a[z]) = ®[z]['a]. Then
60 (afz]) - 16 = 00 (x) - L[ (Jad~1)] and 6-1Q(S) - 16 = Q(S). Hence the action
x +— alx] of Q(Sp) on B corresponds to the action P +— P[y] of Q(S) on $.

An Q(Sp)-invariant metric on $) is defined by 8 *tr(P~'dPP~'dP), where
dP = [dp;;| for P = [p;;] € $o. Its pullback under @ is given by

tr (1, — 2 'z) 'da(1, — 'zz)" - 'da)

with dx = [dx;;] for © = [x;;] € B. The corresponding €2(.Sp)-invariant measure
on B is then given by dz of (3.3). We define the 2(S)-invariant measure dP on
$ by dz through the mapping o + d®(x)-*6. It can be seen from [14, Chapter
3, Section 4 and Chapter 4, Theorem 5] that there exists a fundamental domain
for A in $) and it has finite measure with respect to dP if n > 2. We denote
this measure by vol($)/A).
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Let us consider the mapping X — S[X] for X € GL,(R) and denote the
image S[X] by W. By the inverse function theorem the n? variables of X can
be given by differentiable functions of n(n + 1)/2 independent variables in W
and of n(n — 1)/2 new variables y = (y1, -+, Yn(n—1)/2). Let J(W, y) be the
Jacobian of this transformation of variables. Observe that yi, -+, Ynmn-1)/2 give
local coordinates on Q(S, W) for a fixed W, where we put Q(S, W) = {X €
R" | S[X] = W}. Then dv = det(WS~H)Y2|J(W, y)|dy; - - - dyn(n—1)/2 defines a
volume element on (S, W), which is independent of the choice of y and W.
The group Q(S) acts on Q(S, W) via X — X for v € Q(5) and dv is invariant
under this action. Take a fundamental domain for A in Q(S, W) and let u(S)
be the volume of that set computed with dv. Following Siegel [14, Chapter 4,
(101)], we call u(S) the measure of the unit group A.

It is shown by [14, Chapter 4, Theorem 7| that

(3.5) 20(S) = pppr| det(S)|” "V 2vol(H/A),

where p,, = [[1, 7%/2/T(k/2). Also, u(S) equals the quantity p(S) treated in
[12]. This fact can be verified by comparing the equality in the line 6 from the
bottom of [13, Page 609] with [12, Hilfssatz 10]. Hence if S is integral and if
the genus of S consists of a single class with respect to O, u(S) can be stated
by Siegel’s product formula [12, (3)] as follows:

(3.6) u(S) =2 {H 2lep<5)} .

Here the product is taken over all primes p and e,(S) is the representation
density of S at p defined by e,(S) = lim,, oo p~™ "~ V/24t{a € (Z,)" /p™(Z,)" |
taSa — S € p™(Z,)"}.

3.3. Relationship between v(I'(¢)) and u(2¢). We shall apply the argument
in §3.2 to the case S = K2y with 0 of (3.2).

The mapping aCy — Cj - ‘o for a € O(Sp) induces the diffeomorphism
a(0) — «[0] of B onto itself. Thus the composition

Uz t71(2) = a(0) — af0] — §®(al0]) - '6

for 2 € Z% with @ € O(Sy) defines a diffeomorphism of Z¢ onto §). Then we
observe that U(y(z)) = U(z)['v] for v € O(p)w, where 'y € Q(¢p). Therefore
the action of O(p)a on Z? corresponds to the action of Q(p) on $. Also, we
obtain (U~1)*dz = 2"/2 det(0)"/2d P by (3.4).

Put I (p) = O(¢)NGL,(Z). We then consider I (¢)\ Z% in a similar manner
to §2.2 with L = Z!. Since #(T'NT"(¢)) = 2, by using [11, Theorem 10(iii)] we

see that v(I'()) = 271 [I" () : F(w)}vollg'(@\z“")-



Proposition 3.3. Let ¢ be an indefinite symmetric matriz in GL,(Q) with
n > 2. Take a pair (k, o) as in (3.1) so that 0 < 0 = 6 € GL,(R) and
k€ {£1} (n=2r+t) and define v(I'(p)) by (2.6). Then v(I'(p)) can be given by

v(L(p)) =221 (¢) : T(p)] det(0)2prlypr [ det(20) D2 1(2¢0).

Proof. Since k € Z*, the present $ and A are given by {P € S} | P(2¢)™'P =
2¢p} and Q(2¢) N GL,(Z), respectively. Let F' be a fundamental domain for
$/A. Then U~(F) is a fundamental domain for I''(p)\Z¥. By virtue of (3.5)
we see that

/ dz = /(\Il‘l)*dz—2’""/2det(6’)7'/2/dP
U-L1(F) F F

272 det(0) 2 pi oy | det(r2) D2 - 2p(w2p).
From this we obtain the desired formula. O

Corollary 3.4. In the setting of Proposition 3.3 suppose p is semi-integral. If
the genus of ¢ consists of a single class with respect to SO (that is, #{SO(¢)\
SO(p)a/C(L)} =1 with L =17 ), then v(T'(p)) can be given by

—1
v(I(p)) = 2272 det(0) 2y} oy | det(2¢0) |/ {H 2—16,)(2@)} ,

p

where p runs over all prime numbers.

Proof. In view of [7, Lemma 5.6(1)] under the assumption on the genus of ¢
we see that [I"(p) : I'(p)] = 2. Since 2¢ is integral, the assertion follows from
Proposition 3.3 combined with Siegel’s formula (3.6). O

Let us apply this corollary to a Z-mazimal lattice L in a (nondegenerate)
quadratic space (V, ¢) of dimension n > 2 over Q, where ¢ is indefinite. Let
o be the matrix representing ¢ with respect to a Z-basis of L. Then ¢y is
semi-integral and Z! is Z-maximal with respect to ¢g. Since ¢ is indefinite, we
have #{SO?(V)\SOX(V)/C(L)} = 1 by [8, Theorem 9.26] and [10, Remark
2.4(5)]. Hence we can apply Corollary 3.4 to ¢.

Since L is Z-maximal, the local density e,(2¢) can be computed for each
prime p. In fact, by [7, Theorem 8.6(2)] the computation of e,(2¢q) can be
reduced to a group index, which is given by [7, Proposition 3.9] if ¢, satisfies
the condition that det(pg) € ZXQ)* if n is odd. If ¢y does not satisfy this
condition, [6, Lemma 2.5] gives the index in question. As for det(2¢y), we have

[L : L] = |det(2¢)|, which can be computed by using [9, Theorem 6.2].
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4. EXAMPLES

4.1. A positive definite form in five variables. We shall consider the qua-
dratic form defined by

(1 0 0 1/2 0]

0 1 0 1/2 0
e=10 0 1 1/20
1/2 1/2 1/2 1 0

0o 0 0 0 1

and L = Z!. Tt is known that ¢ is equivarent to 15 over Q, L is Z-maximal
with respect to ¢, and the genus of L consists of a single SO(p)-class. In [4,
Introduction]| we took up this quadratic form and showed that
3

(4.1) ——— = = #[[29, Z] = 720.

; () : 1]
Here vy = (=2, =2, =2, 4, 5), vy = (—4, —4, =2, 8, 3), v3 = (-2, =2, =2, 8, 1);
H; = {v € SO(p) | viy = vi}, Wi = (Qu;)*, LNW; = Zk; with

000 0] 000 0]

1 1 1000 —2
0100 O 01 00 O 0100 =2
kl = 5 k2 = ) k3 = )
0010 0 00 3 0 =2 0010 =2
0005 —1 0001 —1 0001 -5
and ¢; = ¢[k;] for i = 1, 2, 3 are given by
(1 0 0 5/2 (1 0 0 1/2
0 1 0 5/2 0 1 0 1/2
q1 = ) q2 = )
0 0 1 5/2 0 0 13 7/2
5/2 5/2 5/2 26 1/2 1/2 7/2 2

5 4 4 21/2

45 4 21/2

4 4 5 21/2
21/2 21/2 21/2 26

qs3

These vy, va, v3 form a complete set of representatives for L[29, Z]/I'(L). Also

{q:}3_, is a complete set of representatives for the SO-classes in the genus of ¢;.
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Let us determine the numerator #{¢;, ¢} in (4.1) for each i. To do this, we
shall apply Theorem to k; € {¢;, ¢} with v; € L[29, Z]. We first observe that k;
indeed belongs to {¢;, ¢} because it is primitive by [4, Corollary 2.3]. It can be
seen from the proof of [8, Theorem 12.14(iv)] that [C(LNW;) : (H;)aNC(L)] = 2
and (2.11) is satisfied with W; and H; in place of W and H there. From
these together with Proposition 2.3 it follows that [['(L NW;) : H; N C(L)] =
[C(LNW;): (H)aNC(L)] = 2. Then our theorem tells that

{a@:, v} = |_| kiCL (),
¢

where ¢ runs over a complete set of representatives for I'(L N W;)/(H; N C(L)).
Thus in view of [10, (2.8)], we obtain

(42)  #{g ¢} = #{TLOWL)/(H; N C(L))} - #T(p) = 2304

for every i, since [I'(¢) : 1] = 1152 as noted in [4, §4.2]. As also mentioned
there, it can be computed that #I'(¢q;) = 48, #I'(¢2) = 8, and #I'(¢3) = 6. By
using these together with (4.2) we can check equality (4.1).

We can also find that #{q, ¢} = 2304 for every odd prime number d with a
fixed element v € L[d, Z] in a similar and simpler way by applying Corollary
2.4 and employing [8, Lemma 12.13 and Theorem 12.14], where ¢ = ¢[k] and
LN (Qu)*t =Zik.

4.2. An indefinite form in seven variables. Let us consider the quadratic

form defined by
1, 0
Y= .
0 p°

Here [ is the norm form of a quaternion algebra B over Q ramified exactly at 2
and an odd prime /¢, and ° is the restriction of 3 to the 3-dimensional subspace
B° = {x € B | z* = —z} with the main involution ¢ of B; we identify 5° with
the matrix representing it with respect to a Q-basis of B°. It is noted that ¢ is
isotropic, since every indefinite quadratic form in n variables over Q is isotropic
if n > 4.

Let L be a Z-maximal lattice in Q} with respect to ¢. We identify ¢ with
the matrix representing ¢ with respect to a Z-basis of L and L with Z1. Put
G = SO(y).

Proposition 4.1. Let s be a squarefree positive integer and suppose that s is

prime to £ and s =1 (mod 4). Pickv € L such that plv] = s. Set W = (Qu)*,

VY =¢|lw, and H={y € G | vy =wv}. Takeh € Z$ so that LNW = Z}h and put

q = @lh]. Let Z be a complete set of representatives for T(LNW)/(HNC(L)).
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Then v € L[s, 27YZ], [[(LNW): HNC(L)] =2, and

(4.3) {0, ¢} = T(q)hT(p) = | | h¢T(w),

ez
where X is the number of prime factors of s.

The existence of v in the statement can be seen from Lagrange’s theorem
that every positive integer is a sum of four squares. We also note that ¢ and ¢
satisfy det(¢) = 2762 and det(q) = 27425, which will be found in the proof.

Proof. We start with the invariants of ¢ in the sense of Shimura [9], which
consist of the four data denoted by {dim(Q}), Q(v/— det(¢)), Q(¢), sx(¥)},
where Q(¢) is the characteristic algebra of ¢ and s.(y) is the index of .
We have AT (p) = My(Q(p)) by definition, where A™(p) is the even Clifford
algebra of ¢. We may regard AT (p) as AT (diag[ls, 8°]). Then applying 9,
Lemma 2.8(ii)] to 5°, we see that

AT (diag[Ly, 5°)) = AT(8°) ®q A(Ls) = B ®@q Ma(Ba,0) = My(By,0),

where By o (resp. By «) is a definite quaternion algebra over Q ramified exactly
at 2 (resp. ) and it is known that AT(5°) = B and A(14) = M2(Bs ). This
shows Q(¢) = By, . Since the signature of ¢ is (5, 2), the index so(¢) is 3 by
definition. Also det(y) = 277[L : L] = 27%¢? with the discriminant ideal [L : L]
of ¢ below. To sum up, the invariants of ¢ are

(4.4) {7, Q(v~1), By, 3}.

The invariants of 1 are then given by

(4.5) {6, Q(V-s), Q. 2},

where () is an indefinite quaternion algebra over Q of discriminant 2/P and
P is the product of all prime factors p of s satisfying p = 3 (mod 4); (4.5)
will be verified below. We assert that L N W is Z-maximal with respect to .
Indeed, the discriminant ideal of ¢ (resp. ¢) is given by 20*Z (resp. 4s(*Z) by
[9, Theorem 6.2]. These combined with [3, (4.1) and (4.4)] show that (v, L)
must be 27!'Z. The maximality of L N W follows from this and [3, (4.2)]. At
the same time, we have v € L[s, 27'Z]. Tt is known that the core dimension of
@ at p is 3 if and only if p is ramified at Q(p), that is, p = ¢. In view of this
together with (4.4) and (4.5), by [6, Theorem 3.8] we see that

(46) [C(LNW):HanC(L)] =[]IC(L,nW,) : H,NC(Ly,)] =2,
pl2s
21



Now, both ¢ and ¢ are indefinite. Hence [8, Theorems 9.26 and 12.1(ii)] are
applicable. These (and the proof of Theorem 12.1) show that

H{G\Ga/C(L)} = 1.
(47)  #{Lls, 27'2)/T(L)} = # {H\Ha/(Ha N C(L))} = 1.

From this it follows that # { H\Ha/C(L N W)} = 1. Thus (2.11) is satisfied in
the present case. Hence Proposition 2.3 is applicable to v € L[s, 27'Z] and H;
namely, we have

A= (v},  [LAW): HNCO(L)] = [C(LAW): Ha N C(L)],

where A} is as in Proposition 1.2 with L in place of L; and we may take &[]
to be 17. This combined with (4.6) proves the second assertion. As for the last
assertion, observe that h € {q, ¢} by [4, Corollary 2.3]. Then Theorem in the
introduction with v, = n,(= &) = 17 gives (4.3).

To verify (4.5), let p be a prime number. If p { 2¢s, by [3, Theorem 1.1(2)] and
by noticing the discriminant of Q(yv/—s), p is unramified in the characteristic
algebra Q (). Since ¢ is ramified in Q(p) by (4.4), the same theorem tells that ¢
is ramified in Q(¢) in both cases (—4s/¢) = +1, where (—4s/p) is the quadratic
residue symbol. Also since s > 0 and s (¢) = 3, we have Q(¢) ®qR = My(R).
For each p | s, we recall that —1 is a norm of Q,(v/—s)/Q, if and only if
(-1, —s), = 1, where (-1, —s), is the Hilbert symbol over Q,. The well
known formula shows that

_/(-1\ _J1 ifp=1 (mod4),
(=1, =s)p = <?) - {—1 ifp=3 (mod 4).

Combining this with [3, Theorem 1.1(2)], we see that p is ramified (resp. un-
ramified) in Q(¢) for every p | P (resp. p t P). Since #P is even as s = 1
(mod 4), by the theory of central simple algebras 2 must be ramified in Q(1)).
Summing up these, we have Q(¢) = @ in (4.5), which completes the proof. [

Lemma 4.2. In the setting of Proposition 4.1 we have

LMt A3 52 T(0+ 1)

for every squarefree positive integer s such that {1 s and s =1 (mod 4), where
m({q, ¢}) is defined with Z¥ = Z(2,2 - 13). Moreover, the mass of the set
L[s, 27'Z] is given by
(4.9)
2 y(D(LNW))  20-32.5-7-s%2L(3, x)(¢* — x(0))
v(L(p)) m(2m)3 (€ + x(£)) ’
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m(L[s, 27'Z]) =



where L(s, x) is the L-function of the primitive Dirichlet character x corre-
sponding to Q(v/—s) and m(L[s, 27 Z)) is defined with Z% above and Z¥ =
Z(2,2-1,).

Proof. Recall that ¢ = p[h], LONW = Zlh, and W = (Qu)=* for v € L[s, 271Z],
where L is the Z-maximal lattice Z} with respect to . The first equality of
(4.8) follows from Proposition 4.1 and Corollary 2.4. We can define Z¥ by
Z(2, 2-13) with a matrix as in (2.2). Then Corollary 3.4 is applicable to ¢ with
r=20=2-13, and k = 1:

(4.10) v(L(p)) = 2%p5 ' pyt(20%)" {H2 ep(2) } :

We have ps = 2°7°/3, py = m, and e,(2¢p) = p ordr@-21+ordp(det)[Cw . D]
by [7, Theorem 8.6(2)]. Here ord, is the order function of the completion Qp
of Q at p and [C¥ : DY] is a group index depending on p; this is given by [7,
Proposition 3.9] as follows:

3 —2i :

j— 1 — P ) lfp)fga
Cgo . DQD — 2p21 Hzfl( . '
7= bl 20 +p) L (- p2) ifp|L.

Combining these with (4.10), we have

24.3(¢6 — 1)
(0 +1)

This proves the second equality of (4.8).

Let us next compute m(L[s, 27'Z]). We have L[s, 27'Z] = v['(L) by (4.7).
The first equality of (4.9) follows from this and Lemma 2.2. Observe that ¢
is the matrix representing 1 with respect to the basis h of L N W, and so
Z; is Z-maximal with respect to g. Hence we shall compute v(I'(L N W)) =
v(T'(q)) = 2 vol(T'(q)\2?), where Z? = Z(2, 2 - 13). By Corollary 3.4 we have
v(I'(q)) = 210p;1p51(4s€2)7/2{np 27'e,(2¢)} . For each prime p, 27'e,(2q) is
given by

227546 — 1)
3-52-7(0+1)

(4.11) v(I'(e)) = C(2)¢(4)¢(6) =

(1= X)) T2 (1 —p7) if p {25,
pPordn(2)+ordy (det(29)) | o Hz (1—p ) it p| 2s,
2(1+p)(1 = x(p)p ) I (1—p ) ifp|L.
We have thus

T, 5/2(p3 _ 2
() = A = D . v

The second equality of (4.9) follows from this and (4.11). O]
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We shall add a remark on the mass m(G, C'(L)) of (2.7) in the present case.
Since #{G\Ga/C(L)} = 1, the computation of v(I'(¢)) can be reduced to
that of m(G, C(L)). If we define such a mass by fixing ¢, = o' ‘o’ =

0 0 -1y
0 13 0 | with o/ € GL;(R) instead of ¢, in the proof above, then

-1, 0 0
m(G, C(L)) can be computed by the formula due to Hanke [1, Theorem 5.1].
That formula is applicable to any isotropic quadratic form g in n variables over
Q for which L is maximal under the condition that det(wo) € Z) Q;Z for every
prime p if n is odd (> 3), where Q* = {a® | a € Q)}. Hence we can check
our result on the v(I'(p)) computed with ¢/ by comparing with m(G, C(L))
computed by Hanke’s formula.

Acknowledgments. 1 wish to express my thanks to the referee who read the
manuscript carefully and helped me improve the expositions of Theorem and
Proposition 1.2.

Corrections to [4].
Page 420, line 11 from the bottom: ¢ should be read as ¢.
Page 426, line 11: L[s] should be read as #L][s].
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