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Abstract. We study the primitive integral representations of a quadratic
form in n − 1 variables by a reduced quadratic form in n variables. Our
aim is to describe the orbits of such representations under the action of the
unit group of the reduced form. That description provides the mass of the
representations, considered by Shimura. A formula for computation of the
mass is also proved in the indefinite case.

Introduction

Let φ be a symmetric matrix in GLn(Q) and q a symmetric matrix in
GLn−1(Q). We consider the set of the primitive integral representations of
q by φ in the traditional sense:

{q, φ} = {k ∈ Qn−1
n | kφ · tk = q, kZn1 = Zn−1

1 }.(0.1)

Here and throughout the paper we assume n ≥ 3 and follow the notation and
terminology in Shimura [8]; see also §1.1 in the text. Put

SO(φ) = {γ ∈ SLn(Q) | γφ · tγ = φ}, Γ(φ) = SO(φ) ∩GLn(Z).

Then Γ(φ) acts on {q, φ} on the right. Hence, if {q, φ} 6= ∅, we can consider
the orbits of {q, φ} under the action of Γ(φ). We denote by {q, φ}/Γ(φ) the
set of such orbits. It is noted that {q, φ}/Γ(φ) is a finite set.

The purpose of this paper is to describe the Γ(φ)-orbits of {q, φ} in terms of
the Γ(φ)-orbits of the set L[s, bZ] (defined below) for a given reduced symmetric
matrix φ. The term reduced was introduced by Shimura in [9, (6.2)] and should
not be confused with the same term in the sense of Minkowski. We note a
simple fact: If L0 is a Z-maximal lattice in Q1

n with respect to a symmetric
matrix φ0, then the matrix φ representing φ0 with respect to a basis of L0 is
reduced and the lattice Z1

n is Z-maximal with respect to φ; conversely, every
reduced matrix can be obtained in this fashion.
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To state our result, we need some more notation. We put φ(x, y) = xφ · ty,
φ[x] = φ(x, x), and

L[s, bZ] = {v ∈ Q1
n | φ[v] = s, φ(v, L) = bZ}(0.2)

for a Z-lattice L in Q1
n and s, b ∈ Q×. Since Γ(φ) acts on L[s, bZ] on the right,

the set L[s, bZ]/Γ(φ) is also defined. Suppose L is Z-maximal with respect to
φ; namely, L satisfies φ[L] ⊂ Z and it is maximal among such lattices. For
a fixed element v ∈ L[s, bZ], by virtue of [10, Theorem 2.2] we can define
an injection of L[s, bZ]/Γ(φ) into H\HA/(HA ∩ C(L)), which we denote by
uΓ(φ) 7→ Hξu(HA ∩ C(L)) with ξv = 1n. Here W = (Qv)⊥, H = {γ ∈ SO(φ) |
vγ = v}, C(L) = {α ∈ SO(φ)A | Lα = L}, and the subscript A means the
adelization; ξu ∈ HA is given by

ξu = γ−1
u αu

with γu ∈ SO(φ) such that uγu = v and αu ∈ C(L); see (1.6) in the text for
details. For the lattice L ∩ W in W we also put C(L ∩ W ) = {α ∈ HA |
(L ∩W )α = L ∩W} and Γ(L ∩W ) = H ∩ C(L ∩W ). Let U be a complete
set of representatives for L[s, bZ]/Γ(φ) containing v. Consider A = {u ∈ U |
ξu ∈ HC(L ∩ W )} and for u ∈ A take a complete set Zu of representatives
for Γ(L ∩W )/(H ∩ η−1

u ξuC(L)ξ
−1
u ηu) with an element ηu of H such that ξu ∈

ηuC(L ∩W ). Then our main result of this paper is stated as follows.

Theorem. Suppose L = Z1
n and it is Z-maximal with respect to φ. Let h

be an element of {q, φ}. Fix arbitrary numbers s, b ∈ Q× satisfying b−2s =
det(φ)−1 det(q). Take v ∈ L[s, bZ] so that L∩(Qv)⊥ = Z1

n−1h. Set W = (Qv)⊥

and H = {γ ∈ SO(φ) | vγ = v} for this v and take U , A, and Zu as above.
(Note that q is the matrix representing φ, restricted to W = Q1

n−1h, with respect
to the basis of L ∩W determined by h.) Then {q, φ} can be given by

{q, φ} =
⊔
u∈A

Γ(q)hη−1
u γ−1

u Γ(φ) =
⊔
u∈A

⊔
ζ∈Zu

hζη−1
u γ−1

u Γ(φ).

Here Γ(q) = SO(q) ∩ GLn−1(Z), which is isomorphic to Γ(L ∩W ) via γ′ 7→ γ
defined by the rule γ′h = hγ.

We can prove a similar result on the Γ(L)-orbits in a general setting, which
will be stated and proved in Section 1. Theorem is derived by specializing that
result. The maximality of L in the assumption means that φ is reduced. Hence
our theorem describes {q, φ}/Γ(φ) for every reduced φ and every q as long as
{q, φ} 6= ∅. It is nontrivial to find an element v in the statement for a given
h ∈ {q, φ}. The existence of such an element can be seen from our previous
result [4, Theorem 2.1]; see §1.4 for details.

As an application, Theorem provides the mass of the set {q, φ} in the sense of
Shimura in both definite and indefinite cases, which will be explained in Section
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2. In fact, from the decomposition of {q, φ} into Γ(φ)-orbits we have

m({q, φ}) =
∑
u∈A

#(Zu)ν(Γ(φ))
−1,(0.3)

where m({q, φ}) denotes the mass of {q, φ} and ν(Γ(φ)) is a quantity defined
with the measure of Γ(φ)\Z with respect to an invariant measure on a sym-
metric space Z on which SO(φ) acts; in particular, ν(Γ(φ)) = [Γ(φ) : 1]−1 and
m({q, φ}) = #{q, φ} if φ is definite. By using (0.3) in the definite case, we
can get numerical examples of #{q, φ} in §4.1, where φ is a reduced matrix
representing the sum of five squares.

In Section 3 we give a formula for ν(Γ(φ)) when φ is indefinite, involving the
measure of the unit group of 2φ in the sense of Siegel [14]. This formula plays
a fundamental role in the proof of a relationship between the mass of the set
of primitive solutions like L[s, bZ] and the measure of primitive representations
of an integer by an indefinite quadratic form, considered by Siegel [13]; the
relationship will be reported in [5].

In Section 4 we present an example of {q, φ}/Γ(φ) for an indefinite form φ
in 7 variables. In addition, we give not only m({q, φ}) but also the mass of the
set L[s, 2−1Z] by means of the formula mentioned above.

1. Orbits of the solutions of a quadratic Diophantine equation

1.1. Preliminaries. We denote by Z, Q, and R the ring of rational inte-
gers, the fields of rational numbers, and real numbers, respectively. If A is
a commutative associative ring with identity element, then we write A× for
the group of all invertible elements of A and Amn the A-module of all (m× n)-
matrices with entries in A. The transpose of a matrix x of Amn is denoted
by tx; the determinant and trace of x of Ann are denoted by det(x) and tr(x).
We denote the identity element of Ann by 1n. We put GLn(A) = (Ann)

× and
SLn(A) = {x ∈ GLn(A) | det(x) = 1}. We write diag[a1, · · · , as] for the ma-
trix with square matrices a1, · · · , as in the diagonal blocks and 0 in all other
blocks. For a finite set X, we denote by #X the number of elements in X. If
a union

⋃
i∈I Xi is disjoint, then we indicate it by writing

⊔
i∈I Xi.

Let F be an algebraic number field of finite degree or its completion at a
prime, and let g be the maximal order of F . Let V be a vector space of
dimension n over F and φ a nondegenerate symmetric F -bilinear form of V ×V
into F . The quadratic form on V is defined by x 7→ φ[x] = φ(x, x) for x ∈ V .
We let GL(V ) act on V on the right. We denote by Oφ(V ) the orthogonal
group of φ and put SOφ(V ) = {γ ∈ Oφ(V ) | det(γ) = 1}. Let L be a g-
lattice in V , that is, L is a finitely generated g-submodule of V that spans V
over F , where F is a number field or a nonarchimedean local field. We set
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L̃ = {v ∈ V | 2φ(v, L) ⊂ g}. We call L g-maximal with respect to φ if L
satisfies φ[L] ⊂ g and that if L′ is such a lattice containing L, then L′ = L.

Suppose F is a number field. We denote by a and h the sets of archimedean
primes and nonarchimedean primes of F . For v ∈ a ∪ h we denote by Fv the
completion of F at v and by gv the maximal order in Fv if v ∈ h. We also
denote by φv the Fv-bilinear extension of φ to the vector space Vv = V ⊗F Fv
over Fv; we write Lv for the gv-lattice in Vv generated by L over gv if v ∈ h.
We denote by GA the adelization of G = SOφ(V ) and by Gv for v ∈ a ∪ h the
localization of G at v. We put

C(L) = {α ∈ GA | Lα = L}, Γ(L) = G ∩ C(L).(1.1)

Also put C(Lv) = Gv ∩ C(L) for v ∈ h. We note that Γ(L) = Γ(L̃).

Let X be a vector space of dimension n − 1(> 1) over F . Given k ∈
Hom(X, V ), we denote by φ[k] the quadratic form on X defined by x 7→
φ(xk, xk) for x ∈ X. We also denote by φ(k, L̃) the g-lattice in Hom(X, F )

consisting of φ(k, ℓ) for all ℓ ∈ L̃, where φ(k, ℓ) is defined by x 7→ φ(xk, ℓ) for
x ∈ X. If φ[k] is a nondegenerate quadratic form q on X, then k is injective.

Let W be the subspace {v ∈ V | φ(y, v) = 0} of V for a fixed y ∈ V such
that φ[y] 6= 0 and ψ the restriction of φ to W . Suppose h is an element of
Hom(X, V ) such that L∩W =Mh with a g-lattice M in X. Then the special
orthogonal group of the restriction of φ to Xh is SOψ(W ). Put q = φ[h], which
is nondegenerate on X because Xh = W and ψ is nondegenerate on W . Then
we understand SOq(X) by the set of all the elements η′ determined by the rule
η′h = hη for η ∈ SOψ(W ).

1.2. Statement in a general setting. Let (V, φ), L, and X be as in §1.1 for
an algebraic number field F . Hereafter until the end of this section, we put
G = SOφ(V ). For a nondegenerate quadratic form q on X and a g-lattice B in
Hom(X, F ), we shall consider the set of solutions of a quadratic Diophantine
equation φ[x] = q in the following type:

L̃[q, B] = {k ∈ Hom(X, V ) | φ[k] = q, φ(k, L̃) = B}.(1.2)

This set was introduced by Shimura in the theory of quadratic Diophantine
equations [8, Section 13] as a generalization of the set defined by

L[s, b] = {x ∈ V | φ[x] = s, φ(x, L) = b}(1.3)

for 0 6= s ∈ F and a fractional ideal b of F .

We consider the orbits of L[s, b] or L̃[q, B] under the action of the stabilizer
Γ(L), that is, we have the sets of Γ(L)-orbits

L[s, b]/Γ(L), L̃[q, B]/Γ(L̃).
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These are finite sets by [8, Theorem 13.3]. Hence if L̃[q, B] is nonempty, there

are a finite number of Γ(L̃)-orbits of L̃[q, B] such that

L̃[q, B] =
⊔
ζ∈Z

hζΓ(L̃)

with a finite subset Z of G for an arbitrarily fixed element h ∈ L̃[q, B]. Now
assume L[s, b] 6= ∅ for s and b as in (1.3). We pick x0 ∈ L[s, b] and fix it. Put

W = (Fx0)
⊥ = {x ∈ V | φ(x0, x) = 0}

and let ψ be the restriction of φ to W . We regard SOψ(W ) as the subgroup
H = {η ∈ G | x0η = x0} of G. Let h be an element of Hom(X, V ) such that

L ∩W =Mh(1.4)

with a g-lattice M in X. Put q = φ[h] and B = φ(h, L̃). Then our aim of this

section is to describe the Γ(L̃)-orbits of L̃[q, B] in terms of the Γ(L)-orbits of
L[s, b] under the assumption that L is g-maximal with respect to φ. To state

our result on L̃[q, B], Proposition 1.2 below, we need some more notation.

Take a set {Li}i∈I of representatives for the G-classes in the G-genus of L for
which Li[s, b] 6= ∅. Note that I depends on s and b. Suppose L is g-maximal
with respect to φ. Then by virtue of [10, Theorem 2.2] we have a bijection

⊔
i∈I

{Li[s, b]/Γ(Li)} 3 xΓ(Li) 7→ Hξ[x](HA ∩ C(L)) ∈ H\HA/(HA ∩ C(L)),
(1.5)

where ξ[x] ∈ HA is given as follows:
Set Liαi = L with αi ∈ GA for i ∈ I. For x ∈ Li[s, b] there is γ ∈ G such

that xγ = x0 by [8, Lemma 1.5(ii)] as φ[x] = φ[x0]. For each v ∈ h observe that
x0 and x(αi)v belong to Lv[s, bv]. Since Lv is gv-maximal, by [10, Theorem 1.3]
there is αv ∈ C(Lv) such that x0 = x(αi)vαv. For v ∈ a we put αv = (αi)

−1
v γv.

Let α be the element of C(L) whose v-component is αv for every prime v of F .
Then assigning γ−1αiα to x, we have the bijection given in (1.5) by [8, Theorem
11.6(i)]; see also [10, Theorem 2.2]. For our argument below, we denote such γ
and α by γ[x] and α[x], respectively; notice that γ[x] and α[x] are not uniquely
determined by x ∈ Li[s, b]. We then put

ξ[x] = γ[x]−1αiα[x].(1.6)

For each i ∈ I take a complete set Ui of representatives for Li[s, b]/Γ(Li). Then
by (1.5) we have

HA =
⊔
i∈I

⊔
u∈Ui

Hξ[u](HA ∩ C(L)).
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Noticing that HA ∩ C(L) ⊂ C(L ∩W ), we further take a subset U ′
i of Ui such

that ⋃
u∈Ui

Hξ[u]C(L ∩W ) =
⊔
u∈U ′

i

Hξ[u]C(L ∩W ).(1.7)

Put Aiu = {w ∈ Ui | Hξ[w]C(L ∩W ) = Hξ[u]C(L ∩W )} for a fixed u ∈ Ui.
We identify the special orthogonal group of the restriction of φ to Xh with

H. Considering the orthogonal group SOq(X) in the manner of §1.1, set

∆u = H ∩ ξ[u]C(L ∩W )ξ[u]−1, ∆′
u = {δ′ ∈ SOq(X) | δ ∈ ∆u}

for u ∈ Ui. We note that ∆u = H ∩ C((L ∩W )ξ[u]−1) = Γ((L ∩W )ξ[u]−1).

Lemma 1.1. Let E be the subgroup of HA defined by

E = {ε ∈ HA | ε′B = B}(1.8)

with the present h. Then E = C(L∩W ). Moreover, ∆u = H ∩ ξ[u]Eξ[u]−1 and

[∆u : H ∩ ξ[u]C(L)ξ[u]−1] ≤ [C(L ∩W ) : HA ∩ C(L)](1.9)

for every u ∈ Ui and i ∈ I.

Proof. Let ε ∈ E. Since ε′B = B, we have φ(xhεv, L̃v) = φ(xh, L̃v) for every

x ∈ Mv and v ∈ h. Further since h satisfies (1.4), we have φ(xh, L̃v) ⊂
φ(Lv, L̃v) ⊂ 2−1gv. Thus Mvhεv ⊂ Lv. From this it follows that (L ∩W )ε ⊂
L ∩W , which proves E ⊂ C(L ∩W ). The opposite inclusion can be seen in
a straightforward way. Hence we have the first assertion. By using this we
see that H ∩ ξ[u]Eξ[u]−1 = ∆u ⊂ ξ[u]Eξ[u]−1. Then the map x 7→ ξ[u]−1xξ[u]
gives an injection of ∆u/(H∩ξ[u]C(L)ξ[u]−1) into E/(HA∩C(L)), which shows
(1.9). □

For w ∈ Aiu take an element η[w] of H such that ξ[w] ∈ η[w]ξ[u]C(L∩W ) and
a complete set Zu

w of representatives for ∆u/(H ∩ η[w]−1ξ[w]C(L)ξ[w]−1η[w]).

Proposition 1.2. Assume that L is g-maximal with respect to φ. Let x0 ∈
L[s, b], take h as in (1.4), and put q = φ[h] and B = φ(h, L̃) with the notation
above. Then for each i ∈ I there exists a bijection

Li[s, b]/Γ(Li) −→
⊔
u∈U ′

i

{
∆′
u\L̃i[q, ξ[u]′B]/Γ(L̃i)

}
(1.10)

and #
{
∆′
u\L̃i[q, ξ[u]′B]/Γ(L̃i)

}
= #(Aiu) for u ∈ U ′

i . Consequently we have

L̃i[q, ξ[u]
′B] =

⊔
w∈Ai

u

⊔
ζ∈Zu

w

hζη[w]−1γ[w]−1Γ(L̃i)(1.11)

for every u ∈ U ′
i and i ∈ I, where γ[w] is an element of G such that wγ[w] = x0.
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1.3. Proof of Proposition 1.2. We first show that⋃
u∈Ui

{H\(Hξ[u]E ∩Gξ[u]C(L))/D} = {Hξ[u]D | u ∈ Ui},(1.12)

where E is as in (1.8) and D = HA ∩ C(L). Since ξ[u] ∈ Hξ[u]E ∩Gξ[u]C(L),
we have Hξ[u]D ∈ H\(Hξ[u]E ∩ Gξ[u]C(L))/D for every u ∈ Ui. Conversely,
let σ ∈ Hξ[u]E ∩ Gξ[u]C(L) with u ∈ Ui. Since Hξ[u]E ∩ Gξ[u]C(L) ⊂ HA ∩
GαiC(L), by applying [10, Theorem 2.2], σ can be regarded as a representative
of the image of some element xΓ(Li) under the bijection

(V ∩ x0C(L)α−1
i )/Γ(Li) −→ H\(HA ∩GαiC(L))/D

defined in [10, Theorem 2.2(ii)] with x0, C(L), and αi in place of h, D, and y
there. Here x0C(L)α

−1
i is meaningful as a subset of V ⊗F FA. Thus we can put

σ = γ−1αiδ
−1 with γ ∈ G and δ ∈ C(L) such that xγ = x0 and x = x0δα

−1
i .

By virtue of [10, (2.5)], we have V ∩ x0C(L)α
−1
i = Li[s, b]. Hence x belongs

to Li[s, b]. Take ξ[x] = γ[x]−1αiα[x] in the manner explained in (1.6). Then
we see that σ = ξ[x]α[x]−1δ−1 and x0α[x]

−1δ−1 = xαiδ
−1 = x0. Hence we have

σ ∈ Hξ[x]D. Since we can find u ∈ Ui such that Hξ[x]D = Hξ[u]D via (1.5),
the desired (1.12) follows.

Let us take a subset U ′
i in (1.7). Clearly Ui can be given by Ui =

⊔
u∈U ′

i
Aiu,

where Aiu = {w ∈ Ui | Hξ[w]E = Hξ[u]E} for u ∈ Ui. We observe that
(Hξ[u]E ∩ Gξ[u]C(L)) ∩ (Hξ[w]E ∩ Gξ[w]C(L)) 6= ∅ if and only if w ∈ Aiu for
u, w ∈ Ui, in which case these two sets coincide. Hence the left-hand side of
(1.12) coincides with the disjoint union⊔

u∈U ′
i

{H\(Hξ[u]E ∩GαiC(L))/D} .(1.13)

Then (1.12) leads to the following fact:

Hξ[u]E ∩GαiC(L) =
⊔
w∈Ai

u

Hξ[w]D(1.14)

for every u ∈ U ′
i .

Now we put V = Hom(X, V ) and consider the set

V ∩ hξ[u]EC(L̃)α−1
i

for u ∈ U ′
i . Here hξ[u]EC(L̃)α−1

i is meaningful as a subset of V ⊗F FA and

C(L̃) = C(L). Suppose that
{
V ∩ hξ[u]EC(L̃)α−1

i

}
∩
{
V ∩ hξ[w]EC(L̃)α−1

i

}
6= ∅ for u, w ∈ U ′

i . Put hξ[u] = hξ[w]εδε1 with ε, ε1 ∈ E and δ ∈ C(L).
By [10, (2.8)] we have ξ[u] = ξ[w]εδε1. Observe that δ ∈ D ⊂ E. Then
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Hξ[u]C(L ∩W ) = Hξ[w]εδε1C(L ∩W ) = Hξ[w]C(L ∩W ) as E = C(L ∩W ).
Thus u = w by our choice of U ′

i . Hence we have a disjoint union⊔
u∈U ′

i

{
∆′
u\(V ∩ hξ[u]EC(L̃)α−1

i )/Γ(L̃α−1
i )

}
,

where ∆′
u\(V ∩hξ[u]EC(L̃)α−1

i )/Γ(L̃α−1
i ) is meaningful under the isomorphism

of SOq(X) onto H explained in §1.1. By [10, Theorem 2.3] there exists a
bijection

H\(Hξ[u]E ∩GαiC(L))/D → ∆′
u\(V ∩ hξ[u]EC(L̃)α−1

i )/Γ(L̃α−1
i )(1.15)

via σ 7→ hη−1γ with γ ∈ G and η ∈ H such that σ ∈ ηξ[u]E ∩ γαiC(L).

Furthermore, by applying [10, (2.12)] with C(L̃) in place of D there, we have

V ∩ hξ[u]EC(L̃)α−1
i = (L̃α−1

i )[q, ξ[u]′B].

Combining this with (1.15) and composing it with the bijection of Li[s, b]/Γ(Li)
onto the set of (1.13), defined by the same map as (1.5), we obtain (1.10). This
bijection can be given by

wΓ(Li) 7→ Hξ[w]D 7→ ∆′
uhη[w]

−1γ[w]−1Γ(L̃i)

for w ∈ Aiu with u ∈ U ′
i , since ξ[w] = γ[w]−1αiα[w] ∈ η[w]ξ[u]E ∩γ[w]−1αiC(L)

with η[w] ∈ H. Notice that hη[w]−1γ[w]−1 ∈ L̃i[q, ξ[u]
′B] for any w ∈ Aiu. Then

(1.10) concludes that ∆′
u\L̃i[q, ξ[u]′B]/Γ(L̃i) consists of ∆

′
uhη[w]

−1γ[w]−1Γ(L̃i)

for all w ∈ Aiu. Thus we have L̃i[q, ξ[u]
′B] =

⊔
w∈Ai

u
h∆uη[w]

−1γ[w]−1Γ(L̃i) for

every u ∈ U ′
i .

To prove (1.11), observe that ζη[w]−1γ[w]−1Γ(L̃i) = ζ ′η[w]−1γ[w]−1Γ(L̃i) if
and only if ζ−1ζ ′ ∈ H ∩ η[w]−1ξ[w]C(L)ξ[w]−1η[w] for ζ, ζ ′ ∈ ∆u. From this we

have ∆uη[w]
−1γ[w]−1Γ(L̃i) =

⊔
ζ∈Zu

w
ζη[w]−1γ[w]−1Γ(L̃i) with Zu

w given before

the statement. Suppose hζ ′ ∈ hζη[w]−1γ[w]−1Γ(L̃i)γ[w]η[w] with ζ, ζ ′ ∈ Zu
w.

Then ζ ′ ∈ ζη[w]−1γ[w]−1Γ(L̃i)γ[w]η[w] by [10, (2.8)]. Since ζ−1ζ ′ ∈ H ∩
η[w]−1ξ[w]C(L)ξ[w]−1η[w], it follows that ζ = ζ ′, which proves (1.11). This
completes the proof of Proposition 1.2.

Proposition 1.2 is not valid for arbitrary h ∈ L̃[q, B]; it needs to take h as in
(1.4). Such an h exists if L[s, b] 6= ∅. Conversely, we can prove the following.

Lemma 1.3. Assume that F has class number 1. Let L be a g-maximal lattice
in V with respect to φ. Suppose L̃[q, B] 6= ∅ with q and B as in (1.2). Let s
and b be arbitrarily fixed numbers of F× such that b−2s = det(φ)−1 det(q). For

every k ∈ L̃[q, B] there exists x0 ∈ L[s, bg] such that L ∩ (Fx0)
⊥ =Mk with a

g-lattice M in X.
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Proof. With respect to a g-basis of L we may identify V with F 1
n , L with g1n,

and φ with a symmetric element of GLn(F ). Also, fixing a g-basis of B and
taking the dual basis of X, we may identify B with 2−1gn−1

1 and X with F 1
n−1.

Then L̃ = g1n(2φ)
−1 and L̃[q, B] coincides with the set {q, φ} in (0.1), where

tq = q ∈ GLn−1(F ). Given k ∈ {q, φ}, through the mapping λ of [4, (1.5)] with
m = n− 1, k corresponds to an element x of {r, φ−1} with r = det(φ)−1 det(q),
where {r, φ−1} = {x ∈ F 1

n | xφ−1 · tx = r, xgn1 = g}. Set r = sb−2 with
s, b ∈ F×. Then bxφ−1 belongs to L[s, bg]. Also if we put x0 = bxφ−1, k can
be viewed as an inverse image of x∗0(= x) under λ. Hence by [4, Theorem 2.1]
we have L ∩ (Fx0)

⊥ = g1mk. This proves the desired fact. □

1.4. Proof of Theorem. Let V = Q1
n and let φ be a symmetric matrix in

GLn(Q). We put G = SO(φ) = {γ ∈ SLn(Q) | γφ · tγ = φ}. For the Z-
lattice L = Z1

n in V and for s, b ∈ Q× let C(L) and Γ(L) be as in (1.1) and
L[s, bZ] as in (0.2). Taking X to be Q1

m in the notation of §1.1, we may put
Hom(X, Q) = Qm

1 , Hom(X, V ) = Qm
n , and φ(k, ℓ) = kφ · tℓ for k ∈ Qm

n and
ℓ ∈ Q1

n, where m = n− 1 > 1.
We assume that L is Z-maximal with respect to φ; in other words, we treat

a reduced symmetric matrix φ in the sense of [9, (6.2)]. Let us consider the set
{q, φ} in (0.1) and prove Theorem in the introduction by applying Proposition

1.2 to L̃[q, 2−1Zm1 ] for a given q = tq ∈ GLm(Q).

We first observe that L̃ = Z1
n(2φ)

−1. Then φ(k, L̃) = 2−1Zm1 if and only if k
is primitive in the sense that kZn1 = Zm1 for k ∈ Qm

n . Hence we have

L̃[q, 2−1Zm1 ] = {q, φ}.(1.16)

Assuming {q, φ} 6= ∅, pick h from {q, φ}. By Lemma 1.3 there exists v ∈
L[s, bZ] such that

L ∩ (Qv)⊥ = Z1
mh(1.17)

with fixed s, b ∈ Q× satisfying b−2s = det(φ)−1 det(q). We set W = (Qv)⊥,
ψ = φ|W , and H = SO(ψ) = {γ ∈ G | vγ = v}. Then Proposition 1.2
is applicable to h, where we take L1 to be L and take U as a complete set
U1 of representatives for L[s, bZ]/Γ(L) containing v; we may assume v ∈ U ′

and ξ[v] = 1n with the notation of Proposition 1.2. We write simply A and
Zu for A1

v and Zv
u; also put ξv = ξ[v], γu = γ[u], and ηu = η[u]. Clearly

Γ(L) = G ∩GLn(Z) = Γ(φ). As for Γ(L ∩W ), the map γ 7→ γ′ determined by
the rule γ′h = hγ for γ ∈ Γ(L ∩W ) gives an isomorphism of Γ(L ∩W ) onto
Γ(q) = SO(q) ∩GLm(Z). Thus from (1.11) our theorem follows.
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2. The mass of L̃[q, B]

2.1. Preliminaries for the mass. In this section we assume that F is totally
real and keep the notation of Section 1. We shall recall some notation to define
the mass. If the readers are familiar with this subject, we recommend them to

proceed directly into §2.2 in which m(L̃[q, B]) is discussed.

We first represent φ by a symmetric matrix in GLn(F ) with a fixed basis of
V over F . Then SOφ(V ) is given by G = {γ ∈ SLn(F ) | γφ · tγ = φ}. For
each v ∈ a we denote by φv the image of φ under the embedding of F into R
over Q at v; we put Gv = SO(φv) = {α ∈ SLn(R) | αφv · tα = φv}. By a Witt
decomposition, φv can be represented by

0 0 −1rv

0 θv 0

−1rv 0 0

 ,(2.1)

where rv ≥ 0 and θv is an element of GLtv(R) which is positive or negative
definite. (If tv = 0, we ignore θv.) We take κ ∈ F× so that κvφv has signature
(rv + tv, rv) for every v ∈ a. Further, we fix σv ∈ GLn(R) such that

κvσvφv · tσv is of the form (2.1) with 0 < θv =
tθv ∈ GLtv(R).(2.2)

Put φ′
v = κvσvφv · tσv. We then define a set Zφ

v by

Zφ
v = Z(rv, θv) =

{[
x

y

]
∈ Rrv+tv

rv

∣∣∣∣∣ x ∈ Rrv
rv , y ∈ Rtv

rv ,
tx+ x > tyθ−1

v y

}
.

(2.3)

When rv = 0, we understand that Zφ
v consists of a single point written as 1v.

Notice that Zφ
v depends on the choice of (2.2).

For α ∈ SO(φ′
v) and z ∈ Zφ

v we can define α(z) ∈ Zφ
v in the manner explained

in [8, §16.3]. Then by [8, Proposition 16.6(i), (iii), and (v)], SO(φ′
v) acts transi-

tively on Zφ
v , C

′
v = {γ ∈ SO(φ′

v) | γ(1v) = 1v} is a maximal compact subgroup
of SO(φ′

v), and {α ∈ SO(φ′
v) | α(z) = z for every z ∈ Zφ

v } = SO(φ′
v)∩{±1n} if

rv > 0, where 1v =

[
1rv

0

]
. If rv = 0, we let SO(φ′

v) act trivially on Zφ
v = {1v}.

We set

Z =
∏
v∈a

Z(rv, θv), Ga =
∏
v∈a

Gv, Ca =
∏
v∈a

Cv, Cv = σ−1
v C ′

vσv.
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Since SO(κvφv) = SO(φv) and σvSO(φv)σ
−1
v = SO(φ′

v), we can define the
action of Ga on Z by α(z) = ((σvαvσ

−1
v )(zv))v∈a for α ∈ Ga and z ∈ Z. Hence

G acts on Z via the projection of G into Ga. Put 1 = (1v)v∈a.
Suppose Ga is not compact for a moment. Let v ∈ a such that rv > 0.

Since Zφ
v is connected, this can be viewed as a Riemannian manifold with the

Gv-invariant metric defined by

ds2v = tr
(
tdzv · ξ′(zv)−1 · dzv · ξ(zv)−1

)
,(2.4)

where zv = [(zv)ij] =

[
x

y

]
∈ Z(rv, θv), dzv = [d(zv)ij], ξ(zv) = x + tx −

tyθ−1
v y, and ξ′(zv) =

[
x+ tx ty

y θv

]
. Furthermore, Zφ

v is a symmetric space in

the following sense:

Lemma 2.1. Zφ
v is a simply connected Riemannian globally symmetric space

of the noncompact type with the metric ds2v and it is analytically diffeomorphic
to the symmetric space (Gv)0/Cv under the map αv(1v) 7→ αvCv for αv ∈ Gv if
rv > 0. Here (Gv)0 is the identity component of Gv.

We omit the proof of Lemma 2.1 because this fact seems to be well known.
As for the proof, [2, II, Proposition 4.3(a), V, §2, Example 1, and VI, Theorem
1.1(iii)], and [8, (16.10a and b)] may be referred.

Now, Z is a symmetric space on which Ga acts transitively, where the Ga-
invariant metric is defined by ds2 =

∑
v∈b ds

2
v with b = {v ∈ a | rv > 0}. We

define a Ga-invariant measure on Z by

dz =
∏
v∈b

{
det(2−1ξ(zv))

−n/2
rv+tv∏
i=1

rv∏
j=1

d(zv)ij

}
,(2.5)

where zv is as in (2.4). Let Γ(L) be as in (1.1). We have the image Γ of Γ(L)
under the projection of G into Ga. Then Γ is a discrete subgroup of Ga in
the relative topology. Hence Γ acts properly discontinuously on Z and Γ\Z is
a locally compact Hausdorff space with the quotient topology. We denote by
vol(Γ\Z) the measure of Γ\Z with respect to dz and assume that vol(Γ\Z) is
finite. We then put

ν(Γ) = [Γ ∩ T : 1]−1vol(Γ\Z),(2.6)

where T = {γ ∈ G | γ = id. on Z}.
To discuss the mass in §2.2 in a unified way, we employ the symbol ν(Γ)

also when Ga is compact. Namely, we take the measure of Ga to be 1 and set
vol(Γ\Z) = [Γ : Γ ∩ T ]−1. Hence ν(Γ) = [Γ : 1]−1 if Ga is compact.
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Let {Li}i∈I0 be a complete set of representatives for the G-classes in the
G-genus of L. Then the mass of G relative to C(L) is defined by

m(G, C(L)) =
∑
i∈I0

ν(Γ(Li)).(2.7)

This is independent of the choice of {Li}i∈I0 . Also when Ga is not compact,
m(G, C(L)) depends on the choice of (2.2).

Let X be a vector space of dimension m over F for n > m > 1 and put
V = Hom(X, V ). Let us take a subset S of V such that

S =
⊔
β∈B

kβΓ.

Here k is a fixed element of V of det(φ[k]) 6= 0, B is a finite subset of G, and
Γ = G ∩ D with an open subgroup D of GA such that D contains Ga and
Gh ∩ D is compact. We regard SO((Xk)⊥) as {γ ∈ G | kγ = k} and observe
that kβγ = kβ with some γ ∈ Γ if and only if γ ∈ β−1SO((Xk)⊥)β ∩ Γ.
Following [10, (3.4)], the mass of the set S is then defined by

m(S) =
∑
β∈B

ν(SO((Xk)⊥) ∩ βΓβ−1)/ν(Γ).(2.8)

Here ν(SO((Xk)⊥) ∩ βΓβ−1) is defined in a similar manner to (2.6). It can
be shown that m(S) is independent of the choice of B and Γ; the latter means
that m(S) defined with respect to a decomposition of S into Γ′-orbits is equal
to (2.8) for Γ′ = G∩D′ with an open subgroup D′ of GA such that D′ contains
Ga and Gh ∩D′ is compact; for the proof, see after [11, Theorem 10]. We note
that m(S) depends on the choice of matrices equivalent to φ and the restriction
φ|(Xk)⊥ over R as in (2.2). Also by [10, (3.5)], m(S) = #(S) if Ga is compact.

2.2. Results on the mass. We return to the setting of §1.2. With E, Aiu, and
Zu
w there, we observe by noticing ξ[w] ∈ η[w]ξ[u]E for w ∈ Aiu that #(Zu

w) =
[∆w : H ∩ ξ[w]C(L)ξ[w]−1], where ∆w = H ∩ ξ[w]Eξ[w]−1. Also, because of
dim(W⊥) = 1,

ν(SO(W⊥) ∩ ζη[w]−1γ[w]−1Γ(L̃i)γ[w]η[w]ζ
−1) = 1

for every ζ ∈ Zu
w and w ∈ Aiu. Thus by (1.11) with h of (1.4) the mass of

L̃i[q, ξ[u]
′B] can be given as follows:

m(L̃i[q, ξ[u]
′B]) =

∑
w∈Ai

u

[∆w : H ∩ ξ[w]C(L)ξ[w]−1]ν(Γ(L̃i))
−1(2.9)

for u ∈ U ′
i and i ∈ I. It is noted that the elements hζη[w]−1γ[w]−1γ with

w ∈ Aiu, ζ ∈ Zu
w, and γ ∈ Γ(L̃i) constitute the set L̃i[q, ξ[u]

′B] without
repetition. This is because if hζη[w]−1γ[w]−1γ = hζη[w]−1γ[w]−1 with γ ∈
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Γ(L̃i), then γ = 1 by [10, (2.8)] as dim(W⊥) = 1. Hence #{L̃i[q, ξ[u]′B]} =∑
w∈Ai

u
#(Zu

w)[Γ(L̃i) : 1] if Ga is compact, which is consistent with (2.9).

We consider the set Li[s, b] = {x ∈ V | φ[x] = s, φ(x, Li) = b}. Since
Li[s, b]/Γ(Li) is a finite set, the mass m(Li[s, b]) can be defined by (2.8) with
dz and with the Ha-invariant measure on a symmetric space associated with
ψ = φ|W in the sense of §2.1, where H = SOψ(W ) and W = (Fx0)

⊥ with a
fixed x0 ∈ L[s, b].

Lemma 2.2. For each u ∈ U ′
i , {ξ[w] | w ∈ Aiu} is a complete set of represen-

tatives for H\(Hξ[u]E ∩GαiC(L))/(HA ∩ C(L)). Moreover,

ν(Γ(Li))m(Li[s, b]) =
∑
u∈U ′

i

ν(∆u)
∑
w∈Ai

u

[∆w : H ∩ ξ[w]C(L)ξ[w]−1].

Proof. The first assertion follows from (1.14) with D = HA ∩ C(L). Put
Eu = {ξ[w] | w ∈ Aiu}. We observe that H\(HA ∩ GαiC(L))/D coincides
with

⊔
u∈U ′

i
{H\(Hξ[u]E ∩GαiC(L))/D}. Hence

⊔
u∈U ′

i
Eu gives a complete set

of representatives for H\(HA ∩GαiC(L))/D. Then the following equality is a
special case of the equality in the line 6 of page 347 of [10] with V, C(L), x0,
and αi in place of V , D, h, and y there:

ν(Γ(Li))m(Li[s, b]) =
∑
u∈U ′

i

∑
w∈Ai

u

ν(H ∩ ξ[w]C(L)ξ[w]−1).

Applying [11, Theorem 10(iii) and (iv)], we have further

ν(H ∩ ξwC(L)ξ−1
w ) = [∆w : H ∩ ξwC(L)ξ−1

w ]ν(∆w)

= [∆w : H ∩ ξwC(L)ξ−1
w ]ν(∆u).

Combining this with the above equality, we have the second assertion. □
Proposition 2.3. Let the notation be as in §1.2. Suppose that {ξ[u] | u ∈
U ′
i , i ∈ I} is a complete set of representatives for H\HA/C(L ∩W ). Then the

following assertions hold for every u ∈ U ′
i and i ∈ I:∑

w∈Ai
u

[∆w : H ∩ ξ[w]C(L)ξ[w]−1] = [C(L ∩W ) : HA ∩ C(L)],

m(L̃i[q, ξ[u]
′B]) = [C(L ∩W ) : HA ∩ C(L)]ν(Γ(L̃i))−1.

Proof. By applying [10, Theorem 3.2] to L[s, b] combined with [10, (3.3)], we
obtain ∑

i∈I

ν(Γ(Li))m(Li[s, b]) = [E : D]m(H, E),(2.10)

where E = C(L∩W ) and D = HA ∩C(L). The mass m(H, E) can be written
as

∑
i∈I

∑
u∈U ′

i
ν(∆u) by our assumption. On the other hand, by Lemma 2.2 the

13



left-hand side of (2.10) equals
∑

i∈I
∑

u∈U ′
i
ν(∆u)

∑
w∈Ai

u
[∆w : H ∩ ξwC(L)ξ−1

w ].

Therefore, in view of (1.9),
∑

w∈Ai
u
[∆w : H ∩ ξwC(L)ξ

−1
w ] must be equal to

[E : D] for every u ∈ U ′
i and every i ∈ I. This shows the first assertion. The

second assertion follows from this combined with (2.9). □
Let us apply Proposition 2.3 to m({q, φ}) of (0.3) in Introduction. To do

this, we assume that

Hε(HA ∩ C(L)) = HεC(L ∩W ) for every ε ∈ HA.(2.11)

Then Proposition 2.3 is applicable to (1.16) in the setting of §1.4 because U ′
i =

Ui for every i ∈ I. Noticing that A(= A1
v) = {v} in our theorem in this case,

we have the following.

Corollary 2.4. In the setting of Theorem suppose (2.11). Then A = {v} and
#(Zv) = [C(L ∩ W ) : HA ∩ C(L)]. Consequently the mass of the primitive
representations of q by φ is given by{

#{q, φ} = [C(L ∩W ) : HA ∩ C(L)][Γ(L) : 1] if φ is definite,

m({q, φ}) = [C(L ∩W ) : HA ∩ C(L)]ν(Γ(L))−1 if φ is indefinite,

where ν(Γ(L)) is defined by (2.6) and Γ(L) = Γ(φ) in the introduction.

3. Formula for computation of the mass

This section is divided into three subsections; §3.1 is based on [8, §16.8] by
Shimura; §3.2 is based on [14, Chapters 3 and 4] by Siegel. In §3.3 we shall
combine them.

3.1. Invariant measure on a ball B. Let φ be an indefinite symmetric matrix
in GLn(Q). Let O(φ) be the orthogonal group of φ and put O(φ)∞ = {γ ∈
GLn(R) | γφ · tγ = φ}. Set Sm+ = {tP = P ∈ Rm

m | P > 0} for 0 < m ∈ Z.
We consider a Witt decomposition of φ over R and set

φ∞ = κσφ · tσ =


0 0 −1r

0 θ 0

−1r 0 0

 , 0 < θ = tθ ∈ GLt(R),(3.1)

as in (2.2) with κ ∈ Q× and σ ∈ GLn(R); we may assume κ ∈ {±1} with
a suitable change of σ. Then φ∞ has signature (r + t, r) with r > 0. Put
p = r + t. Since O(φ)∞ acts transitively on the space Zφ defined by (2.3)
with φ∞, we have a diffeomorphism gC∞ 7→ g(1) of O(φ)∞/C∞ onto Zφ, where

C∞ = {γ ∈ O(φ)∞ | γ(1) = 1} and 1 =

[
1r

0

]
.
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Let S0 =

[
1p 0

0 −1r

]
and consider O(S0) = {α ∈ GLn(R) | αS0 · tα = S0}.

We can let O(S0) act on the ball B defined by

B = {x ∈ Rp
r | 1r − txx > 0}.

To be precise, we put

Y(S0) = {Y ∈ GLn(R) | tY S0Y = diag[A, −B] with A ∈ Sp+, B ∈ Sr+},

B(x) =

[
1p x

tx 1r

]
for x ∈ B. Then the mapping (x, κ, µ) 7→ B(x)diag[κ, µ] gives a bijection of
B ×GLp(R)×GLr(R) onto Y(S0). This can be shown in a similar way to the
proof of [8, Lemma 16.2]. For α ∈ O(S0) and x ∈ B we have αB(x) ∈ Y(S0) and
hence we can define α(x) ∈ B by the relation αB(x) = B(α(x))diag[κ, µ] with
(κ, µ) ∈ GLp(R) × GLr(R). Note that β(α(x)) = (βα)(x) for α, β ∈ O(S0).
We denote by 0 the zero matrix of p× r, which belongs to B.

Lemma 3.1. The above action is transitive. Also put C0 = {α ∈ O(S0) |
α(0) = 0}. Then C0 = O(S0)∩O(1n), ∼= O(1p)×O(1r), is a maximal compact
subgroup of O(S0), where O(1m) = {γ ∈ Rm

m | γ · tγ = 1m}.

Proof. All assertions, except the last one, can be seen from the definition. The
last assertion is a well known fact. □

Take τ ∈ GLt(R) so that τ · tτ = 2θ and set

δ = σ−1


1r 0 1r

0 τ 0

−1r 0 1r

 .(3.2)

Then we see that δS0 · tδ = κ2φ, δO(S0)δ
−1 = O(φ)∞, and δC0δ

−1 = C∞. On
the other hand, by [8, (16.15b)] we have a diffeomorphism

t : B 3

[
u

v

]
7−→

[
(1 + u)(1− u)−1

τv(1− u)−1

]
∈ Zφ.

Clearly, t(0) = 1. The following can be verified in a straightforward way.

Lemma 3.2. For α ∈ O(S0) we have t(α(0)) = δαδ−1(1).

From this lemma we obtain t(α(x)) = δαδ−1(t(x)) for α ∈ O(S0) and x ∈ B.
Hence the action of O(S0) on B corresponds to the action of O(φ)∞ on Zφ.
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Now we define an O(S0)-invariant measure on B by

dx = det(1r − txx)−n/2
p∏
i=1

r∏
j=1

dxij(3.3)

for x = [xij] ∈ B. Then it can be found in [8, §16.8] that t sends the measure
dz on Zφ back to 2rn/2 det(θ)r/2 times the measure dx on B, which we denote
by t∗dz; namely,

t∗dz = 2rn/2 det(θ)r/2dx.(3.4)

3.2. Measure of an unit group acting on a space H. For a symmetric
element S of GLn(Q) with the same signature as S0 we put

Ω(S) = {γ ∈ Rn
n | tγSγ = S}, ∆ = Ω(S) ∩GLn(Z).

Notice that Ω(S0) = O(S0). Set

H = {P ∈ Sn+ | PS−1P = S}, H0 = {P ∈ Sn+ | PS−1
0 P = S0}.

We let Ω(S) act on H by P 7→ P [γ] for γ ∈ Ω(S) and P ∈ H, where P [γ] = tγPγ.
(In this section we do not use the symbol X[y] for yX · ty.) It can be seen that
this action is transitive and ∆ is discrete in Ω(S). Then H is a symmetric space
on which ∆ acts discontinuously.

There is a diffeomorphism Φ of B onto H0 defined by

Φ : x 7−→

[
(1p − x · tx)−1(1p + x · tx) −2(1p − x · tx)−1x

−2 · tx(1p − x · tx)−1 (1r +
txx)(1r − txx)−1

]
.

Also, the mapping x 7→ δΦ(x) · tδ gives a diffeomorphism of B onto H, where δ is
a fixed element of GLn(R) such that δS0 · tδ = S. In particular, the dimension
of H is pr.

For α ∈ Ω(S0) and x ∈ B we define α[x] ∈ B by Φ(α[x]) = Φ[x][tα]. Then

δΦ(α[x]) · tδ = δΦ(x) · tδ[t(δαδ−1)] and tδ−1Ω(S0) · tδ = Ω(S). Hence the action
x 7→ α[x] of Ω(S0) on B corresponds to the action P 7→ P [γ] of Ω(S) on H.

An Ω(S0)-invariant metric on H0 is defined by 8−1tr(P−1dPP−1dP ), where
dP = [dpij] for P = [pij] ∈ H0. Its pullback under Φ is given by

tr
(
(1p − x · tx)−1dx(1r − txx)−1 · tdx

)
with dx = [dxij] for x = [xij] ∈ B. The corresponding Ω(S0)-invariant measure
on B is then given by dx of (3.3). We define the Ω(S)-invariant measure dP on
H by dx through the mapping x 7→ δΦ(x) · tδ. It can be seen from [14, Chapter
3, Section 4 and Chapter 4, Theorem 5] that there exists a fundamental domain
for ∆ in H and it has finite measure with respect to dP if n > 2. We denote
this measure by vol(H/∆).
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Let us consider the mapping X 7→ S[X] for X ∈ GLn(R) and denote the
image S[X] by W . By the inverse function theorem the n2 variables of X can
be given by differentiable functions of n(n + 1)/2 independent variables in W
and of n(n − 1)/2 new variables y = (y1, · · · , yn(n−1)/2). Let J(W, y) be the
Jacobian of this transformation of variables. Observe that y1, · · · , yn(n−1)/2 give
local coordinates on Ω(S, W ) for a fixed W , where we put Ω(S, W ) = {X ∈
Rn
n | S[X] = W}. Then dv = det(WS−1)1/2|J(W, y)|dy1 · · · dyn(n−1)/2 defines a

volume element on Ω(S, W ), which is independent of the choice of y and W .
The group Ω(S) acts on Ω(S, W ) via X 7→ γX for γ ∈ Ω(S) and dv is invariant
under this action. Take a fundamental domain for ∆ in Ω(S, W ) and let µ(S)
be the volume of that set computed with dv. Following Siegel [14, Chapter 4,
(101)], we call µ(S) the measure of the unit group ∆.

It is shown by [14, Chapter 4, Theorem 7] that

2µ(S) = ρpρr| det(S)|−(n+1)/2vol(H/∆),(3.5)

where ρm =
∏m

k=1 π
k/2/Γ(k/2). Also, µ(S) equals the quantity ρ(S) treated in

[12]. This fact can be verified by comparing the equality in the line 6 from the
bottom of [13, Page 609] with [12, Hilfssatz 10]. Hence if S is integral and if
the genus of S consists of a single class with respect to O, µ(S) can be stated
by Siegel’s product formula [12, (3)] as follows:

µ(S) = 2

{∏
p

2−1ep(S)

}−1

.(3.6)

Here the product is taken over all primes p and ep(S) is the representation
density of S at p defined by ep(S) = limm→∞ p−mn(n−1)/2#{a ∈ (Zp)

n
n/p

m(Zp)
n
n |

taSa− S ∈ pm(Zp)
n
n}.

3.3. Relationship between ν(Γ(φ)) and µ(2φ). We shall apply the argument
in §3.2 to the case S = κ2φ with δ of (3.2).

The mapping αC0 7→ C0 · tα for α ∈ O(S0) induces the diffeomorphism
α(0) 7→ α[0] of B onto itself. Thus the composition

Ψ : z 7−→ t−1(z) = α(0) 7−→ α[0] 7−→ δΦ(α[0]) · tδ

for z ∈ Zφ with α ∈ O(S0) defines a diffeomorphism of Zφ onto H. Then we
observe that Ψ(γ(z)) = Ψ(z)[tγ] for γ ∈ O(φ)∞, where tγ ∈ Ω(φ). Therefore
the action of O(φ)∞ on Zφ corresponds to the action of Ω(φ) on H. Also, we
obtain (Ψ−1)∗dz = 2rn/2 det(θ)r/2dP by (3.4).

Put Γ·(φ) = O(φ)∩GLn(Z). We then consider Γ·(φ)\Zφ in a similar manner
to §2.2 with L = Z1

n. Since #(T ∩Γ·(φ)) = 2, by using [11, Theorem 10(iii)] we
see that ν(Γ(φ)) = 2−1[Γ·(φ) : Γ(φ)]vol(Γ·(φ)\Zφ).
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Proposition 3.3. Let φ be an indefinite symmetric matrix in GLn(Q) with
n > 2. Take a pair (κ, σ) as in (3.1) so that 0 < tθ = θ ∈ GLt(R) and
κ ∈ {±1} (n=2r+t) and define ν(Γ(φ)) by (2.6). Then ν(Γ(φ)) can be given by

ν(Γ(φ)) = 2rn/2[Γ·(φ) : Γ(φ)] det(θ)r/2ρ−1
r+tρ

−1
r | det(2φ)|(n+1)/2µ(2φ).

Proof. Since κ ∈ Z×, the present H and ∆ are given by {P ∈ Sn+ | P (2φ)−1P =
2φ} and Ω(2φ) ∩ GLn(Z), respectively. Let F be a fundamental domain for
H/∆. Then Ψ−1(F ) is a fundamental domain for Γ·(φ)\Zφ. By virtue of (3.5)
we see that∫

Ψ−1(F )

dz =

∫
F

(Ψ−1)∗dz = 2rn/2 det(θ)r/2
∫
F

dP

= 2rn/2 det(θ)r/2ρ−1
r+tρ

−1
r | det(κ2φ)|(n+1)/2 · 2µ(κ2φ).

From this we obtain the desired formula. □

Corollary 3.4. In the setting of Proposition 3.3 suppose φ is semi-integral. If
the genus of φ consists of a single class with respect to SO (that is, #{SO(φ)\
SO(φ)A/C(L)} = 1 with L = Z1

n), then ν(Γ(φ)) can be given by

ν(Γ(φ)) = 22+rn/2 det(θ)r/2ρ−1
r+tρ

−1
r | det(2φ)|(n+1)/2

{∏
p

2−1ep(2φ)

}−1

,

where p runs over all prime numbers.

Proof. In view of [7, Lemma 5.6(1)] under the assumption on the genus of φ
we see that [Γ·(φ) : Γ(φ)] = 2. Since 2φ is integral, the assertion follows from
Proposition 3.3 combined with Siegel’s formula (3.6). □

Let us apply this corollary to a Z-maximal lattice L in a (nondegenerate)
quadratic space (V, φ) of dimension n > 2 over Q, where φ is indefinite. Let
φ0 be the matrix representing φ with respect to a Z-basis of L. Then φ0 is
semi-integral and Z1

n is Z-maximal with respect to φ0. Since φ is indefinite, we
have #{SOφ(V )\SOφ

A(V )/C(L)} = 1 by [8, Theorem 9.26] and [10, Remark
2.4(5)]. Hence we can apply Corollary 3.4 to φ0.

Since L is Z-maximal, the local density ep(2φ0) can be computed for each
prime p. In fact, by [7, Theorem 8.6(2)] the computation of ep(2φ0) can be
reduced to a group index, which is given by [7, Proposition 3.9] if φ0 satisfies
the condition that det(φ0) ∈ Z×

pQ
×2
p if n is odd. If φ0 does not satisfy this

condition, [6, Lemma 2.5] gives the index in question. As for det(2φ0), we have

[L̃ : L] = | det(2φ0)|, which can be computed by using [9, Theorem 6.2].
18



4. Examples

4.1. A positive definite form in five variables. We shall consider the qua-
dratic form defined by

φ =



1 0 0 1/2 0

0 1 0 1/2 0

0 0 1 1/2 0

1/2 1/2 1/2 1 0

0 0 0 0 1


and L = Z1

5. It is known that φ is equivarent to 15 over Q, L is Z-maximal
with respect to φ, and the genus of L consists of a single SO(φ)-class. In [4,
Introduction] we took up this quadratic form and showed that

3∑
i=1

#{qi, φ}
[Γ(qi) : 1]

= #L[29, Z] = 720.(4.1)

Here v1 = (−2, −2, −2, 4, 5), v2 = (−4, −4, −2, 8, 3), v3 = (−2, −2, −2, 8, 1);
Hi = {γ ∈ SO(φ) | viγ = vi}, Wi = (Qvi)

⊥, L ∩Wi = Z1
4ki with

k1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 5 −1

 , k2 =

1 0 0 0 0

0 1 0 0 0

0 0 3 0 −2

0 0 0 1 −1

 , k3 =

1 0 0 0 −2

0 1 0 0 −2

0 0 1 0 −2

0 0 0 1 −5

 ,
and qi = φ[ki] for i = 1, 2, 3 are given by

q1 =


1 0 0 5/2

0 1 0 5/2

0 0 1 5/2

5/2 5/2 5/2 26

 , q2 =


1 0 0 1/2

0 1 0 1/2

0 0 13 7/2

1/2 1/2 7/2 2

 ,

q3 =


5 4 4 21/2

4 5 4 21/2

4 4 5 21/2

21/2 21/2 21/2 26

 .
These v1, v2, v3 form a complete set of representatives for L[29, Z]/Γ(L). Also
{qi}3i=1 is a complete set of representatives for the SO-classes in the genus of q1.
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Let us determine the numerator #{qi, φ} in (4.1) for each i. To do this, we
shall apply Theorem to ki ∈ {qi, φ} with vi ∈ L[29, Z]. We first observe that ki
indeed belongs to {qi, φ} because it is primitive by [4, Corollary 2.3]. It can be
seen from the proof of [8, Theorem 12.14(iv)] that [C(L∩Wi) : (Hi)A∩C(L)] = 2
and (2.11) is satisfied with Wi and Hi in place of W and H there. From
these together with Proposition 2.3 it follows that [Γ(L ∩Wi) : Hi ∩ C(L)] =
[C(L ∩Wi) : (Hi)A ∩ C(L)] = 2. Then our theorem tells that

{qi, φ} =
⊔
ζ

kiζΓ(φ),

where ζ runs over a complete set of representatives for Γ(L∩Wi)/(Hi ∩C(L)).
Thus in view of [10, (2.8)], we obtain

#{qi, φ} = #{Γ(L ∩Wi)/(Hi ∩ C(L))} ·#Γ(φ) = 2304(4.2)

for every i, since [Γ(φ) : 1] = 1152 as noted in [4, §4.2]. As also mentioned
there, it can be computed that #Γ(q1) = 48, #Γ(q2) = 8, and #Γ(q3) = 6. By
using these together with (4.2) we can check equality (4.1).

We can also find that #{q, φ} = 2304 for every odd prime number d with a
fixed element v ∈ L[d, Z] in a similar and simpler way by applying Corollary
2.4 and employing [8, Lemma 12.13 and Theorem 12.14], where q = φ[k] and
L ∩ (Qv)⊥ = Z1

4k.

4.2. An indefinite form in seven variables. Let us consider the quadratic
form defined by

φ =

[
14 0

0 β◦

]
.

Here β is the norm form of a quaternion algebra B over Q ramified exactly at 2
and an odd prime ℓ, and β◦ is the restriction of β to the 3-dimensional subspace
B◦ = {x ∈ B | xι = −x} with the main involution ι of B; we identify β◦ with
the matrix representing it with respect to a Q-basis of B◦. It is noted that φ is
isotropic, since every indefinite quadratic form in n variables over Q is isotropic
if n > 4.

Let L be a Z-maximal lattice in Q1
7 with respect to φ. We identify φ with

the matrix representing φ with respect to a Z-basis of L and L with Z1
7. Put

G = SO(φ).

Proposition 4.1. Let s be a squarefree positive integer and suppose that s is
prime to ℓ and s ≡ 1 (mod 4). Pick v ∈ L such that φ[v] = s. Set W = (Qv)⊥,
ψ = φ|W , and H = {γ ∈ G | vγ = v}. Take h ∈ Z6

7 so that L∩W = Z1
6h and put

q = φ[h]. Let Z be a complete set of representatives for Γ(L∩W )/(H ∩C(L)).
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Then v ∈ L[s, 2−1Z], [Γ(L ∩W ) : H ∩ C(L)] = 2λ+1, and

{q, φ} = Γ(q)hΓ(φ) =
⊔
ζ∈Z

hζΓ(φ),(4.3)

where λ is the number of prime factors of s.

The existence of v in the statement can be seen from Lagrange’s theorem
that every positive integer is a sum of four squares. We also note that φ and q
satisfy det(φ) = 2−6ℓ2 and det(q) = 2−4ℓ2s, which will be found in the proof.

Proof. We start with the invariants of φ in the sense of Shimura [9], which

consist of the four data denoted by {dim(Q1
7), Q(

√
− det(φ)), Q(φ), s∞(φ)},

where Q(φ) is the characteristic algebra of φ and s∞(φ) is the index of φ.
We have A+(φ) = M4(Q(φ)) by definition, where A+(φ) is the even Clifford
algebra of φ. We may regard A+(φ) as A+(diag[14, β

◦]). Then applying [9,
Lemma 2.8(ii)] to β◦, we see that

A+(diag[14, β
◦]) ∼= A+(β◦)⊗Q A(14) = B ⊗Q M2(B2,∞) ∼= M4(Bℓ,∞),

where B2,∞ (resp. Bℓ,∞) is a definite quaternion algebra overQ ramified exactly
at 2 (resp. ℓ) and it is known that A+(β◦) = B and A(14) = M2(B2,∞). This
shows Q(φ) = Bℓ,∞. Since the signature of φ is (5, 2), the index s∞(φ) is 3 by

definition. Also det(φ) = 2−7[L̃ : L] = 2−6ℓ2 with the discriminant ideal [L̃ : L]
of φ below. To sum up, the invariants of φ are

{7, Q(
√
−1), Bℓ,∞, 3}.(4.4)

The invariants of ψ are then given by

{6, Q(
√
−s), Q, 2},(4.5)

where Q is an indefinite quaternion algebra over Q of discriminant 2ℓP and
P is the product of all prime factors p of s satisfying p ≡ 3 (mod 4); (4.5)
will be verified below. We assert that L ∩W is Z-maximal with respect to ψ.
Indeed, the discriminant ideal of φ (resp. ψ) is given by 2ℓ2Z (resp. 4sℓ2Z) by
[9, Theorem 6.2]. These combined with [3, (4.1) and (4.4)] show that φ(v, L)
must be 2−1Z. The maximality of L ∩W follows from this and [3, (4.2)]. At
the same time, we have v ∈ L[s, 2−1Z]. It is known that the core dimension of
φ at p is 3 if and only if p is ramified at Q(φ), that is, p = ℓ. In view of this
together with (4.4) and (4.5), by [6, Theorem 3.8] we see that

[C(L ∩W ) : HA ∩ C(L)] =
∏
p|2s

[C(Lp ∩Wp) : Hp ∩ C(Lp)] = 2λ+1.(4.6)
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Now, both φ and ψ are indefinite. Hence [8, Theorems 9.26 and 12.1(ii)] are
applicable. These (and the proof of Theorem 12.1) show that

#{G\GA/C(L)} = 1,

#
{
L[s, 2−1Z]/Γ(L)

}
= # {H\HA/(HA ∩ C(L))} = 1.(4.7)

From this it follows that # {H\HA/C(L ∩W )} = 1. Thus (2.11) is satisfied in
the present case. Hence Proposition 2.3 is applicable to v ∈ L[s, 2−1Z] and H;
namely, we have

A1
v = {v}, [Γ(L ∩W ) : H ∩ C(L)] = [C(L ∩W ) : HA ∩ C(L)],

where A1
v is as in Proposition 1.2 with L in place of L1 and we may take ξ[v]

to be 17. This combined with (4.6) proves the second assertion. As for the last
assertion, observe that h ∈ {q, φ} by [4, Corollary 2.3]. Then Theorem in the
introduction with γv = ηv(= ξv) = 17 gives (4.3).

To verify (4.5), let p be a prime number. If p ∤ 2ℓs, by [3, Theorem 1.1(2)] and
by noticing the discriminant of Q(

√
−s), p is unramified in the characteristic

algebra Q(ψ). Since ℓ is ramified in Q(φ) by (4.4), the same theorem tells that ℓ
is ramified in Q(ψ) in both cases (−4s/ℓ) = ±1, where (−4s/p) is the quadratic
residue symbol. Also since s > 0 and s∞(φ) = 3, we have Q(ψ)⊗QR =M2(R).
For each p | s, we recall that −1 is a norm of Qp(

√
−s)/Qp if and only if

(−1, −s)p = 1, where (−1, −s)p is the Hilbert symbol over Qp. The well
known formula shows that

(−1, −s)p =
(
−1

p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

Combining this with [3, Theorem 1.1(2)], we see that p is ramified (resp. un-
ramified) in Q(ψ) for every p | P (resp. p ∤ P ). Since #P is even as s ≡ 1
(mod 4), by the theory of central simple algebras 2 must be ramified in Q(ψ).
Summing up these, we have Q(ψ) = Q in (4.5), which completes the proof. □

Lemma 4.2. In the setting of Proposition 4.1 we have

m({q, φ}) = 2λ+1

ν(Γ(φ))
=

2λ · 35 · 52 · 7(ℓ+ 1)

2π5(ℓ6 − 1)
(4.8)

for every squarefree positive integer s such that ℓ ∤ s and s ≡ 1 (mod 4), where
m({q, φ}) is defined with Zφ = Z(2, 2 · 13). Moreover, the mass of the set
L[s, 2−1Z] is given by

m(L[s, 2−1Z]) =
2λ+1ν(Γ(L ∩W ))

ν(Γ(φ))
=

26 · 32 · 5 · 7 · s5/2L(3, χ)(ℓ2 − χ(ℓ))

π(2π)3(ℓ3 + χ(ℓ))
,

(4.9)
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where L(s, χ) is the L-function of the primitive Dirichlet character χ corre-
sponding to Q(

√
−s) and m(L[s, 2−1Z]) is defined with Zφ above and Zψ =

Z(2, 2 · 12).

Proof. Recall that q = φ[h], L∩W = Z1
6h, and W = (Qv)⊥ for v ∈ L[s, 2−1Z],

where L is the Z-maximal lattice Z1
7 with respect to φ. The first equality of

(4.8) follows from Proposition 4.1 and Corollary 2.4. We can define Zφ by
Z(2, 2 ·13) with a matrix as in (2.2). Then Corollary 3.4 is applicable to φ with
r = 2, θ = 2 · 13, and κ = 1:

ν(Γ(φ)) = 212ρ−1
5 ρ−1

2 (2ℓ2)4

{∏
p

2−1ep(2φ)

}−1

.(4.10)

We have ρ5 = 23π6/3, ρ2 = π, and ep(2φ) = p7ordp(2)−21+ordp(det(2φ))[Cφ : Dφ
1 ]

by [7, Theorem 8.6(2)]. Here ordp is the order function of the completion Qp

of Q at p and [Cφ : Dφ
1 ] is a group index depending on p; this is given by [7,

Proposition 3.9] as follows:

[Cφ : Dφ
1 ] = 2p21

{∏3
i=1(1− p−2i) if p ∤ ℓ,

2(1 + p)
∏2

i=1(1− p−2i) if p | ℓ.

Combining these with (4.10), we have

ν(Γ(φ)) =
24 · 3(ℓ6 − 1)

π7(ℓ+ 1)
ζ(2)ζ(4)ζ(6) =

22π5(ℓ6 − 1)

35 · 52 · 7(ℓ+ 1)
.(4.11)

This proves the second equality of (4.8).
Let us next compute m(L[s, 2−1Z]). We have L[s, 2−1Z] = vΓ(L) by (4.7).

The first equality of (4.9) follows from this and Lemma 2.2. Observe that q
is the matrix representing ψ with respect to the basis h of L ∩ W , and so
Z1

6 is Z-maximal with respect to q. Hence we shall compute ν(Γ(L ∩W )) =
ν(Γ(q)) = 2−1vol(Γ(q)\Zq), where Zq = Z(2, 2 · 12). By Corollary 3.4 we have
ν(Γ(q)) = 210ρ−1

4 ρ−1
2 (4sℓ2)7/2{

∏
p 2

−1ep(2q)}−1. For each prime p, 2−1ep(2q) is
given by

p6ordp(2)+ordp(det(2q))


(1− χ(p)p−3)

∏2
i=1(1− p−2i) if p ∤ 2sℓ,

2
∏2

i=1(1− p−2i) if p | 2s,
2(1 + p)(1− χ(p)p−2)−1

∏2
i=1(1− p−2i) if p | ℓ.

We have thus

ν(Γ(q)) =
27 · s5/2(ℓ3 − χ(ℓ))(ℓ2 − χ(ℓ))

2λ+1π5(ℓ+ 1)
ζ(2)ζ(4)L(3, χ).

The second equality of (4.9) follows from this and (4.11). □
23



We shall add a remark on the mass m(G, C(L)) of (2.7) in the present case.
Since #{G\GA/C(L)} = 1, the computation of ν(Γ(φ)) can be reduced to
that of m(G, C(L)). If we define such a mass by fixing φ′

∞ = σ′φ · tσ′ =
0 0 −12

0 13 0

−12 0 0

 with σ′ ∈ GL7(R) instead of φ∞ in the proof above, then

m(G, C(L)) can be computed by the formula due to Hanke [1, Theorem 5.1].
That formula is applicable to any isotropic quadratic form φ0 in n variables over
Q for which L is maximal under the condition that det(φ0) ∈ Z×

pQ
×2
p for every

prime p if n is odd (≥ 3), where Q×2
p = {a2 | a ∈ Q×

p }. Hence we can check
our result on the ν(Γ(φ)) computed with φ′

∞ by comparing with m(G, C(L))
computed by Hanke’s formula.

Acknowledgments. I wish to express my thanks to the referee who read the
manuscript carefully and helped me improve the expositions of Theorem and
Proposition 1.2.

Corrections to [4].
Page 420, line 11 from the bottom: ϕ should be read as φ.
Page 426, line 11: L[s] should be read as #L[s].
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