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Abstract. We study whether circles can be seen as geodesics on
geodesic spheres or not. If a circle on a complex projective space
has complex torsion either ±1 or 0, it can be seen as a geodesic
on some geodesic sphere. But if its complex torsion τ satisfies
0 < |τ | < 1, then it cannot be seen as geodesics on any geodesic
spheres, and can be seen as trajectories for some Sasakian magnetic
fields on geodesic spheres. We show that there are three kinds of
such expressions up to congruency.

1. Introduction

The aim of this paper is to generalize the following elementary fact
on circles on a Euclidean space to those on a complex projective space:
If we take a circle of positive geodesic curvature in a Euclidean 3-space
R3, then there is a standard 2-sphere of some radius where this circle
can be seen as a geodesic, and such a sphere is uniquely determined up
to the action of isometries of R3.
A circle on a Riemannian manifold is a helix of order two ([11]). It

is a smooth curve parameterized by its arclength which satisfies the
system of differential equations ∇γ̇ γ̇ = kγYγ and ∇γ̇Yγ = −kγ γ̇ with a
nonnegative constant kγ and a field Yγ of unit vectors along γ. This
constant kγ is called the geodesic curvature of γ. Circles on a complex
projective space, being different from those on a Euclidean space, they
are not congruent to each other even if they have the same geodesic
curvature. Circles of given positive geodesic curvature are classified by
their complex torsions which measure angles of their velocity vectors to
complex lines spanned by their acceleration vectors ([3]). A circle has
complex torsion ±1 means that its velocity and acceleration vectors
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form a complex line in the tangent space at each point, and a circle
has null structure torsion means that they form a real 2-plane. In this
paper, first we show that a circle of positive geodesic curvature can be
seen as a geodesic on some geodesic sphere if and only if its complex
torsion is either ±1 or 0. There are many results how geodesics on
submanifolds can be seen in their ambient spaces (see [12, 8, 9] and
their references). But for our problem, the above shows that we are
not enough to consider only geodesics.

To go through our study on expressions of circles on a complex pro-
jective space, we take a “nice” family of curves on geodesic spheres
which includes geodesics. In this paper, from dynamical theoretical
point of view, we consider trajectories for Sasakian magnetic fields on
geodesic spheres. On each geodesic sphere in a complex projective
space, we have an almost contact metric structure induced by the com-
plex structure on the ambient space. A trajectory for such a magnetic
field shows a motion of a charged particle under the influence of this
contact structure. Since trajectories for the trivial magnetic field are
geodesics, and since circles of complex torsion ±1 on a complex pro-
jective space are interpreted as trajectories for Kähler magnetic fields
([1]), we may say that this extension of a family of curves is reasonable.

In [6], Bao and the second author studied extrinsic shapes of trajec-
tories on geodesic spheres in a complex projective space. But they did
not consider congruency of expressions: If two extrinsic shapes coin-
cide with each other, whether they are congruent with each other or
not. In this paper, we show that every circle on a complex projective
space can be seen as a non-geodesic trajectory for some Sasakian mag-
netic field on some geodesic sphere, and that up to congruency it has a
unique expression when it has null complex torsion and has three kinds
of expressions when its complex torsion τ satisfies 0 < |τ | < 1.

The authors would like to express their hearty thanks to the ref-
eree who read this article very carefully and gave them some valuable
comments.

2. Circles on a complex projective space

A smooth curve γ parameterized by its arclength on a Riemannian

manifold M̃ is said to be a circles if it satisfies the equations

(2.1)

{
∇̃γ̇ γ̇ = kγYγ,

∇̃γ̇Yγ = −kγ γ̇.
with a nonnegative constant kγ and a field Yγ of unit tangent vectors

along γ. Here, ∇̃ denotes the Riemannian connection on M̃ . We call
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kγ and {γ̇, Yγ} the geodesic curvature and Frenet frame of γ, respec-
tively. Since γ is parameterized by its arclength, the equations (2.1) is
equivalent to the differential equation

(2.2) ∇̃γ̇∇̃γ̇ γ̇ = −k 2
γ γ̇.

For a circle γ of positive geodesic curvature on a complex projective
space CP n which satisfies (2.1), by using the complex structure J on
CP n, we set τγ = ⟨γ̇, JYγ⟩, and call it its complex torsion. Since J is
parallel, we find that it is constant along γ. When τγ = 0, which is
the case that the velocity and acceleration vectors form a real tangent
plane at each point, we call this circle totally real. When τγ = ±1, we
can interpret this circle from dynamical theoretic point of view (see §4).
Circles on CP n are classified by their geodesic curvatures and absolute
values of complex torsions under the congruency relation (see [7, 3]).

We say two smooth curves γ1, γ2 on a Riemannian manifold M̃ to be
congruent to each other (in strong sense) if there is an isometry φ of

M̃ satisfying φ◦γ1(t) = γ2(t) for all t. Since CP n is a symmetric space
of rank one and since every isometry φ of CP n is ±-holomorphic, that
is dφ ◦ J = ±J ◦ dφ, we have the following.

Lemma 1 (cf. [7]). Two circles γ1, γ2 on CP n(c) are congruent to each
other if and only if they satisfy either kγ1 = kγ2 = 0 or kγ1 = kγ2 > 0
and |τγ1 | = |τγ2 |.

Thus, the moduli space C(CP n), which is the set of all congruence
classes of circles, is set theoretically identified with the band [0,∞) ×
[0, 1]/ ∼. Here, for (k1, τ1), (k2, τ2) ∈ [0,∞)× [0, 1], we define (k1, τ1) ∼
(k2, τ2) if and only if either k1 = k2 = 0 or k1 = k2 > 0 and τ1 = τ2.

We recall some basic properties of circles on a complex projective
space CP n(c) of constant holomorphic sectional curvature c ([3]).

1) Every circle is an orbit of one-parameter family of isometries of
CP n(c).

2) Every circle of geodesic curvature k and of complex torsion ±1
is closed of length 2π/

√
k2 + c. It lies on a totally geodesic CP 1.

3) Every circle of geodesic curvature k and of null complex torsion
is closed of length π/

√
4k2 + c. It lies on a totally geodesic RP 2

4) We have both closed and open circles of complex torsion 0 <
|τ | < 1.

3. Expressions of circles by geodesics on geodesic spheres

For a curve σ on a real hypersurface M in CP n(c), we regard it as
a curve in CP n(c) through an isometric immersion ι : M → CP n(c).
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We say the curve ι ◦ σ the extrinsic shape of σ. For a circle γ on
CP n(c), if there are a real hypersurface M of CP n(c) and a smooth
curve σ on M whose extrinsic shape coincides with γ, we say that γ is
expressed by σ, and say that (M,σ) is an expression of γ. In order to
make clear the difference of two expressions of a given curve, we give
the notion of congruency of expressions. Let (M1, σ1) and (M2, σ2) be
two expressions of a circle γ on CP n(c). Hence σi is a smooth curve
on a real hypersurface Mi satisfying ιi ◦ σi(t) = γ(t) for all t, where
ιi : Mi → CP n(c) is an isometric immersion for each i = 1, 2. We say
these expressions to be congruent to each other if there is an isometry
φ̃ of CP n(c) with φ̃(M1) = M2 which either preserves γ or reverse γ,
that is, which satisfies either φ̃◦γ(t) = γ(t) for all t or φ̃◦γ(t) = γ(−t)
for all t.

In this section, corresponding to the elementary fact on circles on
a Euclidean 3-space, we study expressions of circles on CP n(c) by
geodesics on geodesic spheres. We denote by G(r) a geodesic sphere of
radius r (0 < r < π/

√
c) in CP n(c). Our results in this section are as

follows.

Theorem 1. Let γ be a geodesic on a complex projective space CP n(c)
of constant holomorphic sectional curvature c.

(1) We have infinitely many its expressions by geodesics on geodesic
spheres which are not congruent to each other.

(2) For each r with π/(2
√
c ) ≤ r < π/

√
c, it is uniquely expressed

by a geodesic on a geodesic sphere of radius r up to congruent
relation.

(3) When r < π/(2
√
c ), it is not expressed by geodesics on geodesic

spheres of radius r.

In the above, the third assertion is clear. When the radius of a
geodesic sphere is too small compared with the diameter of a geodesic
we cannot express it as a curve on this geodesic sphere.

Theorem 2. Let γ be a circle on CP n(c) of positive geodesic curvature
kγ and of complex torsion τγ.

(1) When τγ = ±1, it has two kinds of expressions by geodesics on
geodesic spheres up to congruency. The radii of these geodesic
spheres are

(
1/
√
c
)
tan−1

(√
c/kγ

)
and

(
1/
√
c
){
π−tan−1

(√
c/kγ

)}
.

(2) When τγ = 0, it has unique expression by a geodesic on a ge-
odesic sphere up to congruency. The radius of this geodesic
sphere is

(
2/
√
c
)
tan−1

(√
c/(2kγ)

)
.

(3) When 0 < |τγ| < 1, it cannot be expressed by geodesics on
geodesic spheres.
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Let NM denote the inward unit normal of a geodesic sphere M =
G(r) of radius r in CP n(c). This geodesic sphere is endowed with an
almost contact metric structure (ξ, η, ϕ, ⟨ , ⟩) induced by the complex
structure J on CP n(c). The characteristic vector field ξ is defined by
ξ = −JNM , the 1-form η by η(v) = ⟨v, ξ⟩, the structure tensor field
ϕ which is a (1, 1)-tensor field by ϕ(v) = Jv − η(v)NM , and ⟨ , ⟩ is
the induced metric. The shape operator AM of M with respect to NM

satisfies AMξ = δMξ and AMv = λMv with

δM =
√
c cot

(√
c r

)
, λM =

(√
c/2

)
cot

(√
c r/2

)
for each tangent vector v ∈ TM orthogonal to ξ (see [10], for example).
In particular, the shape operator and the structure tensor field are
simultaneously diagonalizable, that is, AMϕ = ϕAM .

For a geodesic σ on a geodesic sphere M , we set ρσ = ⟨σ̇, ξ⟩, and call

it its structure torsion. By Weingarten formula which states ∇̃XN =
−AMX for each vector field X tangent to M , we have ∇Xξ = ϕAMX.
Therefore, we have

d

dt
ρσ = ⟨σ̇, ϕAM σ̇⟩ = −⟨AMϕσ̇, σ̇⟩

because AM is symmetric and ϕ is skew-symmetric. Hence we obtain

d

dt
ρσ =

〈
σ̇,

1

2
(ϕAM − AMϕ)σ̇

〉
= 0,

and find that the structure torsion is constant along σ. We can classify
geodesics by their structure torsions.

Lemma 2 ([4]). Two geodesics on a geodesic sphere are congruent to
each other if and only if the absolute values of their structure torsions
coincide with each other.

We here give a condition that the extrinsic shape of a geodesic on a
geodesic sphere to be a circle on CP n(c). For the sake of simplicity, we
denote the extrinsic shape ι ◦ σ of σ also by σ.

Lemma 3. The extrinsic shape of a geodesic σ on a geodesic sphere
G(r) of radius r in CP n(c) is a circle if and only if one of the following
conditions holds:

i) ρσ = ±1,
ii) ρσ = 0,
iii) |ρσ| = cot

(√
c r/2

)
when π/

(
2
√
c
)
< r < π/

√
c.

Corresponding to the above cases, the geodesic curvature kσ and com-
plex torsion τσ of the extrinsic shape of σ are as follows:
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i) kσ = |δM | and τσ = ∓sgn(δM) 1, where we ignore the complex
torsion when r = π/

(
2
√
c
)
and sgn(δM) denotes the signature

of δM
ii) kσ = λM and τσ = 0;
iii) kσ = 0.

Proof. By Weingarten formula and by Gauss formula which states

∇̃XY = ∇XY + ⟨AMX,Y ⟩N for arbitrary vector fields X,Y tangent
to M , we have

∇̃σ̇σ̇ = ⟨AM σ̇, σ̇⟩N =
{
λM + (δM − λM)ρ 2

σ

}
N ,

∇̃σ̇N = −AM σ̇ = −λM
(
σ̇ − ρσξ

)
− δMρσξ = −λM σ̇ + ρσ(λM − δM)ξ.

Since we have δM − λM = −
(√

c/2
)
tan

(√
c r/2

)
, when π/

(
2
√
c
)
≤

r < π/
√
c and ρ 2

σ = λM/(λM − δM) = cot2
(√

c r/2
)
, we have ∇̃σ̇σ̇ = 0.

Hence the extrinsic shape is a geodesic. In other case, since δM ̸= λM ,
we find that the extrinsic shape of σ is a circle of positive geodesic
curvature if and only if either ρσ = ±1, the case that σ̇ is parallel to ξ,
or ρσ = 0. When ρσ = ±1, the Frenet frame of the extrinsic shape is
{σ̇ = ±ξ, sgn(δM)NM}. Hence, we find that its geodesic curvature is
|δM | and its complex torsion is ∓sgn(δM) 1. When ρσ = 0, we clearly
find that they are λM and 0 because the Frenet frame is {σ̇,NM}. □
The third assertions of Theorems 1 and 2 are direct consequences

of Lemma 3. Since two expressions are not congruent to each other
if their underlying geodesic spheres are not isometric to each other,
we have the first assertion of Theorem 1 by Lemma 1 and the third
condition in Lemma 3. Also, this condition guarantees the existence
parts of the second assertion in Theorem 1.

If we vary the radius of geodesic sphere M = G(r), then δM is
monotone decreasing with respect to the radius and takes all values in
the interval (−∞,∞). We note that δM = 0 if and only if r = π/(2

√
c ).

Thus, by Lemma 3, we get the existence parts of the first assertion
of Theorem 2. If fact, we take a geodesic sphere M which satisfies
k = δM (> 0), In this case, the radius of M is

(
1/
√
c
)
tan−1

(√
c/k

)
.

Then, the circle is expressed by a geodesic σ onM with ρσ = ∓1. Also,
if we take a geodesic sphere M which satisfies k = −δM (> 0), which
is the case that its radius is

(
1/
√
c
){
π − tan−1

(√
c/k

)}
, the circle is

expressed by a geodesic σ onM with ρσ = ±1. Similarly, if we vary the
radius of geodesic sphere, then λM is monotone decreasing with respect
to the radius and takes all values in the interval (0,∞). Hence, we get
the existence part of the second assertion of Theorem 2 by Lemma 3.
For congruency of expressions, we have the following.
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Lemma 4. If we have two expressions of a circle on CP n(c) by geodesics
on geodesic spheres of the same radius, they are congruent to each
other.

Proof. Let (M1, σ1) and (M2, σ2) be two expressions of a circle γ by
geodesics on geodesic spheres of radius r. Since geodesic spheres are of
the same radius, there is an isometry φ̃ of CP n(c) satisfying φ̃(M1) =
M2. Then φ̃|M1 ◦σ1 is a geodesic on M2. Since φ̃ is ±-holomorphic and
since we have dφ̃(NM1) = NM2 , we find

ρφ̃◦σ1 = ⟨dφ̃ ◦ σ̇1,−JNM2⟩ = ±⟨dφ̃ ◦ σ̇1,−dφ̃(JNM1)⟩ = ±ρσ1 .

Considering the geodesic curvature and complex torsion of γ, by use
of Lemma 3, we obtain |ρφ̃◦σ1 | = |ρσ2 |. Hence we find that φ̃ ◦ σ1 and
σ2 are congruent to each other by Lemma 2. We therefore have an
isometry ψ of M2 with ψ ◦ (φ̃ ◦σ1)(t) = σ2(t) for all t. It is known that

there is an isometry ψ̃ of CP n(c) satisfying ψ̃
∣∣
M2

= ψ. Considering

the isometry ψ̃ ◦ φ̃ of CP n(c), we find that it maps M1 to M2 and
preserves γ. Thus, we find that (M1, σ1) and (M2, σ2) are congruent to
each other. □

4. Expressions by trajectories on geodesic spheres

As we studied in the previous section, if a circle on CP n(c) has
complex torsion τ with 0 < |τ | < 1, it cannot be expressed by geodesics
on geodesic spheres. Therefore, we need to extend the family of curves
on geodesic spheres. Though circles are the simplest curves next to
geodesics from the viewpoint of the Frenet-Serret formula, the family
of circles is not suitable in our study by the following reason. If a circle
on R3 is expressed as a small circle of a sphere, which is a circle on this
sphere, then it is also expressed as a small circle of a sphere of larger
radius. Therefore, we here consider curves from dynamical theoretic
point of view.

Generally, a closed 2-form B on a Riemannian manifold M is said
to be a magnetic field because it can be regarded as a generalization
of static magnetic fields in a Euclidean 3-space (see [13], for example).
We define an endomorphism ΩB of the tangent bundle TM of M by
B(v, w) = ⟨v,ΩB(w)⟩ for all v, w ∈ TpM at an arbitrary point p ∈ M ,
and consider it as the Lorentz force under the influence of B. We say a
smooth curve γ parameterized by its arclength to be a trajectory for B
if it satisfies the differential equation ∇γ̇ γ̇ = ΩBγ̇ with the Riemannian
connection ∇ on M . When B is the null 2-form, its trajectories are
geodesics. Hence, we may say that trajectories are natural general-
izations of geodesics. Since trajectories are determined by their initial
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vectors, they induce a dynamical system on the unit tangent bundle of
M . In this sense, we may say that trajectories are the simplest curve
next to geodesics from the dynamical theoretic point of view.

On a complex projective space CP n(c) of constant holomorphic sec-
tional curvature c, as it is a Kähler manifold, we have a natural closed
2-form BJ called the Kähler form. It is given by BJ(v, w) = ⟨v, Jw⟩.
Its constant multiple Bκ = κBJ (κ ∈ R) is said to be a Kähler magnetic
field (see [1]). Its trajectory γ is hence a smooth curve parameterized

by its arclength which satisfies ∇̃γ̇ γ̇ = κJγ̇. Since J is parallel, it is a
circle of geodesic curvature |κ| and of complex torsion −sgn(κ) 1. Thus,
the first assertions of Theorems 1 and 2 mean that every trajectory for
an arbitrary Kähler magnetic field is expressed by a geodesic on some
geodesic sphere.

On a geodesic sphere in CP n(c), by using the structure tensor field
ϕ, we can define a 2-form Fϕ by Fϕ(v, w) = ⟨v, ϕw⟩. Since the complex
structure J is parallel, we find that this 2-form is closed (see [5]). Its
constant multiple Fκ = κFϕ (κ ∈ R) is said to be a Sasakian mag-
netic field or a contact magnetic field. A trajectory σ for Fκ is hence a
smooth curve parameterized by its arclength which satisfies the equa-
tion ∇σ̇σ̇ = κϕσ̇. As a family of representing curves, we adopt trajecto-
ries for Sasakian magnetic fields. Though the equations of trajectories
for Kähler and Sasakian magnetic fields are quite resemble, they have
different properties. For example, since ϕ is not parallel, trajectories for
Sasakian magnetic fields are not circles, in general. Likewise geodesics,
for a trajectory σ for Fκ on a geodesic sphere, we set ρσ = ⟨σ̇, ξ⟩, and
call it its structure torsion. By the same computation as for structure
torsions for geodesics, we find that it is constant along σ. Since we have
∥∇σ̇σ̇∥ = |κ|

√
1− ρ2σ, we find that the norms of acceleration vectors

depend on directions of trajectories. On contrary, for a trajectory γ
for a Kähler magnetic field Bκ, we have ∥∇γ̇ γ̇∥ = |κ| and find that it
does not depend on γ. Thus, our study on expressions of circles by
trajectories for Sasakian magnetic fields is not trivial.

First, we recall a condition that two trajectories on a geodesic sphere
to be congruent to each other. Their structure torsions play an impor-
tant role.

Lemma 5 ([2]). Let σ1 and σ2 be trajectories for Fκ1 and Fκ2, respec-
tively, on a geodesic sphere M in CP n(c). They are congruent to each
other if and only if they satisfy one of the following conditions:

i) |ρσ1 | = |ρσ2 | = 1,
ii) |ρσ1 | = |ρσ2 | < 1, |κ1| = |κ2| and κ1ρσ1 = κ2ρσ2.
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This lemma shows that the moduli space T (M) of trajectories for
Sasakian magnetic fields on a geodesic sphere M is set theoretically
coincides with the set [0,∞)× [−1, 1]/ ≈. Here, for two points (κ1, ρ1),
(κ2, ρ2) ∈ [0,∞) × [−1, 1], we define (κ1, ρ1) ≈ (κ2, ρ2) if and only if
either (κ1, ρ1) = (κ2, ρ2) or |ρ1| = |ρ2| = 1.

Now, we take a trajectory σ for Fκ on a geodesic sphere M . By use
of Gauss and Weingarten formulae, we have

∇̃σ̇∇̃σ̇σ̇ = ∇̃σ̇

{
κJσ̇ + (⟨AM σ̇, σ̇⟩ − κρσ)NM

}
= −

{
κ2(1− ρ 2

σ ) +
{
λM + (δM − λM)ρ 2

σ

}2
}
σ̇

+
{
λM − κρσ + (δM − λM)ρ 2

σ

}{
κ+ (δM − λM)ρσ

}(
ρσσ̇ − ξ

)
.

Thus, we find that the extrinsic shape of σ is a circle on CP n if and
only if the second term of the last expression vanishes. In this case, its
geodesic curvature kσ and complex torsion τσ are given by

k 2
σ = κ2

(
1− ρ 2

σ

)
+ ⟨AM σ̇, σ̇⟩2, τσ = −

{
κ(1− ρ 2

σ ) + ⟨AM σ̇, σ̇⟩ρσ
}
/kσ,

where we ignore τσ when kσ = 0. Thus, we obtain the following.

Lemma 6 ([6]). Let σ be a trajectory for Fκ on a geodesic sphere M
in CP n(c). Its extrinsic shape is a circle on CP n(c) if and only if one
of the following condition holds:

i) ρσ = ±1,
ii) λM − κρσ + (δM − λM)ρ 2

σ = 0,
iii) κ+ (δM − λM)ρσ = 0.

Corresponding to these cases, the geodesic curvature kσ and the complex
torsion τσ of the extrinsic shape of σ are as follows:

i) kσ = |δM |, τσ = ∓sgn(δM)1,
ii) kσ = |κ|, τσ = −sgn(κ) 1,

iii) kσ =
√
κ2 − 2λMκρσ + λ 2

M , τσ = (2κρ 2
σ − κ− λMρσ)/kσ.

Here, we ignore complex torsions in cases that the extrinsic shape is a
geodesic.

Remark 1. When |ρσ| = 1, we see that σ is a geodesic on M and
does not depend on κ. The second and third conditions in Lemma 3
correspond to the third and the second conditions in this lemma.

The following is the main result on expressions of circles on CP n by
non-geodesic trajectories on geodesic spheres.

Theorem 3. Let γ be a circle of positive geodesic curvature kγ and of
complex torsion τγ on CP n(c).
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(1) When τγ = ±1, up to congruency, it has infinitely many kinds
of expressions by non-geodesic trajectories for some Sasakian
magnetic fields on geodesic spheres.

(2) When τγ = 0, it is uniquely expressed by a non-geodesic trajec-
tory on some geodesic sphere up to the congruence relation.

(3) When 0 < |τγ| < 1, we have three kinds of its expressions by
non-geodesic trajectories on geodesic spheres up to the congru-
ency relation.

In order to show this theorem, we view Lemma 6 from a different
angle. We denote by E(M)

(
⊂ T (M)

)
the moduli space of trajectories

on M whose extrinsic shapes are circles. Lemma 6 tells us that we
have a map ΦM : E(M) → C(CP n). To show the image of this map we
study the second and the third cases in Lemma 6.

First we consider the case that trajectories satisfy the second con-
dition in Lemma 6. Since λM > 0, we see ρσ ̸= 0. As δM − λM < 0,
we find that the function κ(ρ) = λM/ρ + (δM − λM)ρ on the interval
(0, 1) is monotone decreasing and takes values in the interval (δM ,∞).
Thus, geodesic curvatures of extrinsic shapes of trajectories on a given
geodesic sphere which satisfy the second condition in Lemma 6 take all
values in the intrerval (δM ,∞).

Next we consider the case that trajectories satisfy the third condition
in Lemma 6. If a trajectory σ satisfies the third condition, since κ =
−(δM −λM)ρσ = cρσ/(4λM), we obtain that geodesic curvature kσ and
the complex torsion τσ of the extrinsic shape of σ are expressed as
follows:

(4.1) kσ =

√
λ 2
M − cρ 2

σ

2
+

c2ρ 2
σ

16λ 2
M

, τσ =
ρσ(2cρ

2
σ − c− 4λ 2

M)

4kσλM
.

We study how kσ varies with respect to ρσ. Since we have |ρσ| < 1 and
δM = 0 if and only if λM =

√
c/2, we have

• λM ≤ kσ < −δM , when λM <
√
2c/4,

• kσ ≡
√
2c/4, when λM =

√
2c/4,

• −δM < kσ ≤ λM , when
√
2c/4 < λM <

√
c/2,

• δM < kσ ≤ λM , when λM ≥
√
c/2.

We next study τσ. When λM =
√
2c/4, we have τσ = ρσ(4ρ

2
σ − 3).

Hence, if we vary ρσ in the interval (−1, 1), then τσ takes all values in
the interval [−1, 1], and takes three times for each value in the interval
(−1, 1) and takes once for ±1. To study other cases, we need to recall
the study in [6]. Since it is deeply related to our study, we state more
clearly. We set a function gM on the intervals corresponding to these
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cases by

gM(k) =
(k2 − λ 2

M)(32λ 2
Mk

2 + 4cλ 2
M − c2)2

c(c− 8λ 2
M)3k2

By using two equalities in (4.1), we have τ 2
σ = gM(kσ). We set

αM =
√

2c(c− 4λ 2
M)/(8λM), when λM ≤

√
c/2,

βM =
√

8λ 2
M − 2c/4, when λM ≥

√
c/2.

Computing the differential of gM , we find that this function satisfies
the following properties.
(1) When λM <

√
2c/4,

• it is monotone increasing in the union of intervals [λM ,
√
2c/4]∪

[αM ,−δM);
• it is monotone decreasing in the interval [

√
2c/4, αM ];

• we have gM(λM) = gM(αM) = 0 and gM(
√
2c/4) = limk↑−δM gM(k) =

1.

(2) When
√
2c/4 < λM <

√
c/2,

• it is monotone decreasing in the union of intervals (−δM , αM ]∪
[
√
2c/4, λM ];

• it is monotone increasing in the interval [αM ,
√
2c/4];

• we have gM(λM) = gM(αM) = 0 and gM(
√
2c/4) = limk↓−δM gM(k) =

1.

(3) When λM =
√
c/2,

• it is monotone increasing in the interval (0,
√
2c/4];

• it is monotone decreasing in the interval [
√
2c/4, λM ];

• we have g(
√
2c/4) = 1, limk↓0 gM(k) = gM(λM) = 0.

(4) When
√
c/2 < λM <

√
2c/2,

• it is monotone decreasing in the union of intervals (δM , βM ] ∪
[
√
2c/4, λM ];

• it is monotone increasing in the interval [βM ,
√
2c/4];

• we have limk↓δM gM(k) = g(
√
2c/4) = 1, gM(λM) = 0 and

0 < gM(βM) < 1;
• the value gM(βM) is monotone increasing with respect to λM .

(5) When λM ≥
√
2c/2,

• it is monotone decreasing in the interval (δM , λM ];
• we have limk↓δM gM(k) = 1, gM(λM) = 0.

Therefore, the image of ΦM is like the following figures. We note that

• when λM =
√
2c/4, we have −δM = αM =

√
2c/4,
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• when λ =
√
c/2, we have δM = αM = βM = 0,

• when λM =
√
2c/2, we have δM = βM =

√
2c/4 and gM(βM) =

1,

-

6 q
q

qq
√
2c
4

−δM

λM αM
k

τ

0

1

Fig. 1. λM <
√
2c
4

-

6q
√
2c
4

−δM

k

τ

0

1

Fig. 2. λM =
√
2c
4

-

6q
q q

q
√
2c
4

−δM

αM λM

k

τ

0

1

Fig. 3.
√
2c
4
< λM <

√
c
2

-

6

q
q

√
2c
4

λM

k

τ

0

1

Fig. 4. λM =
√
c
2

-

6q
q q

√
2c
4

δM

βM λM

k

τ

0

1

Fig. 5.
√
c
2
< λM <

√
2c
2

-

6 q
q

√
2c
4

δM

λM

k

τ

0

1

Fig. 6. λM =
√
2c
2

-

6 q
q

√
2c
4

δM

λM

k

τ

0

1

Fig. 7. λM >
√
2c
2

In order to show our result, we need to study congruency of two
expressions by trajectories.
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Lemma 7. Let (M1, σ1) and (M2, σ2) be two expressions of a circle
γ on CP n(c) by trajectories for Sasakian magnetic fields Fκ1 and Fκ2

on geodesic spheres in CP n(c). They are congruent to each other if
and only if these underlying geodesic spheres have the same radius and
trajectories satisfy one of the following conditions:

(1) |ρσ1 | = |ρσ2 | = 1,
(2) |ρσ1 | = |ρσ2 | < 1 and κ1ρσ1 = κ2ρσ2.

Proof. Through isometric embeddings, we regard geodesic spheresM1,M2

as subsets of CP n(c).
Suppose that these two expressions are congruent to each other.

Then there is an isometry φ̃ of CP n(c) with φ̃(M1) =M2 which satis-
fies either φ̃ ◦ σ1(t) = σ2(t) for all t or φ̃ ◦ σ1(t) = σ2(−t) for all t. In
particular, base geodesic spheres have the same radius. We hence have
(dφ̃ ◦ σ̇1)(t) = σ̇2(t) or (dφ̃ ◦ σ̇1)(t) = −σ̇2(−t). We set

ϵ =

{
1, when φ̃ ◦ σ1(t) = σ2(t) holds,

−1, when φ̃ ◦ σ1(t) = σ2(−t) holds.

Since we have dφ̃(NM1) = NM2 , and since φ̃ is ±-holomorphic, we find

ρσ2 = ϵ⟨dφ̃(σ̇1),−Jdφ̃(NM1)⟩ = ±ϵ⟨dφ̃(σ̇1), dφ̃(ξM1)⟩ = ±ϵρσ1 .

In particular, we have |ρσ1 | = |ρσ2 |. Also we have

κ2ϕσ̇2 = ∇σ̇2σ̇2 = ∇dφ̃◦σ̇1(dφ̃ ◦ σ̇1) = dφ̃
(
∇σ̇1σ̇1

)
= dφ̃(κ1ϕσ̇1)

= κ1dφ̃(Jσ̇1 − ρσ1NM1) = ±κ1J(dφ̃ ◦ σ̇1)− κ1ρσ1NM2

= ±ϵκ1Jσ̇2 ∓ ϵκ1ρσ2NM2 = ±ϵκ1ϕσ̇2.

When |ρσ1 | = |ρσ2 | = 1, this tells nothing. When |ρσ1 | = |ρσ2 | < 1, we
find |κ1| = |κ2| and κ2ρσ2 = κ1ρσ1 . Thus, if two expressions (M1, σ1)
and (M2, σ2) of γ are congruent to each other, then the conditions hold.

On the other hand, we suppose that (M1, σ1) and (M2, σ2) satisfy
the conditions in the assertion. Since M1,M2 are geodesic spheres of
the same radius r in CP n(c), we have an isometry φ̃ of CP n(c) with
φ̃(M1) =M2. By the same computation as above, we find ρφ̃◦σ1 = ±ρσ1

and ∇dφ̃◦σ̇1(dφ̃ ◦ σ̇1) = ±κ1ϕ(dφ̃ ◦ σ̇1) because φ̃ is ±-holomorphic.
Thus, by our conditions we find that φ̃ ◦ σ1 and σ2 are trajectories
on M2 which satisfy the conditions in Lemma 5. We therefore have an
isometry ψ ofM2 satisfying ψ◦(φ̃◦σ1)(t) = σ2(t). It is well known that
isometries on a geodesic sphere are equivariant. This means that for
the isometry ψ of M2 there is an isometry ψ̃ of CP n(c) with ψ̃

∣∣
M2

= ψ.

We hence find that the isometry ψ̃ ◦ φ̃ satisfies (ψ̃ ◦ φ̃)(M1) =M2 and
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(ψ̃ ◦ φ̃) ◦ σ1(t) = σ2(t) for all t. Hence, we see (M1, σ1) and (M2, σ2)
are congruent to each other as expressions of γ. □

This lemma guarantees that we only need to study images of maps
into C(CP n). We now show Theorem 3.

Proof of Theorem 3. (1) We study the second case in Lemma 6. As we
see in the study of the image of ΦM , structure torsions of trajectories
satisfying this condition are not null and geodesic curvatures of their
extrinsic shapes take values in the interval (δM ,∞). If we vary radii
of geodesic spheres, their principal curvatures δM vary in the interval
(−∞,∞). We hence get the first assertion.

(2) and (3). We study the third case in Lemma 6. If a trajectory
σ of null structure torsion satisfies this condition, then it is a geodesic.
We divide the image ET (M)

(
⊂ C(CP n)

)
of the moduli space of non-

geodesic trajectories on M whose extrinsic shapes are circles through
ΦM . We set

ET0(M) =
{
[k, τ ] ∈ C(CP n)

∣∣ τ 2 = gM(k), −δM < k ≤ αM

}
,

when
√
2c/4 < λM <

√
c/2. Similarly, we set

ET1(M) =



{
[k, τ ] ∈ C(CP n)

∣∣∣∣∣ τ 2 = gM(k),

λM < k ≤
√
2c/4

}
, when λM <

√
2c

4{
[k, τ ] ∈ C(CP n)

∣∣∣∣∣ τ 2 = gM(k),

αM < k ≤
√
2c/4

}
, when

√
2c

4
< λM <

√
c

2
,

{
[k, τ ] ∈ C(CP n)

∣∣∣∣∣ τ 2 = gM(k),

δM < k ≤
√
2c/4

}
, when

√
c

2
≤ λM <

√
2c

2
,

ET2(M) =



{
[k, τ ] ∈ C(CP n)

∣∣∣∣∣ τ 2 = gM(k),√
2c/4 < k ≤ αM

}
, when λM <

√
2c

4
,

{
[k, τ ] ∈ C(CP n)

∣∣∣∣∣ τ 2 = gM(k),√
2c/4 < k < λM

}
, when

√
2c

4
< λM <

√
2c

2
,

and set

ET3(M) =
{
[k, τ ] ∈ C(CP n)

∣∣ τ 2 = gM(k), αM < k < −δM
}
,
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when λM <
√
2c/4. Then we have

ET (M) =


ET1(M) ∪ ET2(M) ∪ ET3(M), when λM <

√
2c/4,

ET0(M) ∪ ET1(M) ∪ ET2(M), when
√
2c/4 < λM <

√
c/2,

ET1(M) ∪ ET2(M), when
√
c/2 ≤ λM <

√
2c/2.

In order to study how the set ET (M) depends on the radius of M , we
consider the function gM as a function on λM (see [6]). That is, we
define a function fk on a suitable domain by

fk(x) =
(k2 − x){4(8k2 + c)x− c2}2

ck2(c− 8x)3
.

Its differential is given as

dfk
dx

=
(8k2 − c)2(4x+ c){4(8k2 + c)x− c2}

ck2(8x− c)4
.

Hence, we find that
dfk
dx

(λ 2
M) > 0 if and only if λM > ϵk := c/

(
2
√
8k2 + c

)
.

We take the following five families of subsets in C(CP n):

F0 =
{
ET0(M)

∣∣ √2c/4 < λM <
√
c/2

}
,

F1 =
{
ET1(M) \ {[

√
2c/4, 1]}

∣∣ λM <
√
2c/4

}
,

F2 =
{
ET1(M)

∣∣ √2c/4 < λM <
√
2c/2

}
,

F3 =
{
ET3(M)

∣∣ λM <
√
2c/4

}
,

F4 =
{
ET2(M)

∣∣ √2c/4 < λM <
√
2c/2

}
∪
{
ET (M)

∣∣ λM ≥
√
2c/2

}
.

Since we have

lim
λM↓

√
2c/4

(−δM) = lim
λM↓

√
2c/4

αM =

√
2c

4
, lim

λM↑
√
c/2

(−δM) = lim
λM↑

√
c/2
αM = 0,

the sets in F0 cover the set
{
[k, τ ] ∈ C(CHn)

∣∣ 0 < k <
√
2c/4, τ < 1}

(see Fig. 8). For each M in this family, when −δM < k < αM , we have
λM < ϵk. This means that if we increase λM , then ET0(M) moves down
in C(CP n) ≡ [0,∞)× [0, 1]/ ∼. Thus, we find that F0 forms a foliation
of the set

{
[k, τ ] ∈ C(CP n)

∣∣ 0 < k <
√
2c/4, τ < 1

}
. Similarly,

since we have limλM↓0 gM(k) = 1, the sets in F1 cover the set
{
[k, τ ] ∈

C(CHn)
∣∣ 0 < k <

√
2c/4, 0 < τ < 1} (see Fig. 9). For each M in this

family, when λM < k <
√
2c/4, as we have ϵk >

√
2c/4, if we decrease

λM , then ET0(M) moves up in C(CP n). Thus, we find that F1 forms a
foliation of the set

{
[k, τ ] ∈ C(CP n)

∣∣ 0 < k <
√
2c/4, 0 < τ < 1}.
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-

6b
q
b
q
√
2c
4

−δM

αM
k

τ

0

1

Fig. 8. foliation F0

-

6 b
bbb
√
2c
4

λM

k

τ

0

1

Fig. 9. foliation F1

Next, we study the family F3. Since we have

lim
λM↑

√
2c/4

(−δM) = lim
λM↑

√
2c/4

αM =
√
2c/4, lim

λM↓0
(−δM) = lim

λM↓0
αM = ∞

we find that the sets in F3 cover the set
{
[k, τ ] ∈ C(CHn)

∣∣ k >√
2c/4, τ < 1

}
(see Fig. 10). For eachM in F3, when αM < k < −δM ,

as we have λM < ϵ−δM < ϵk, if we increase λM , then the set ET3(M)
moves down in C(CP n). Thus, we find that F3 forms a foliation of the
set

{
[k, τ ] ∈ C(CHn)

∣∣ k > √
2c/4, τ < 1

}
. Similarly, since we have

lim
λM↓

√
2c/2

δM =

√
2c

4
, lim

λM→∞
δM = ∞,

we find that the sets in F4 cover the set
{
[k, τ ] ∈ C(CP n)

∣∣ k >√
2c/4, 0 < τ < 1

}
(see Fig. 11). For each M in F4, when

√
2c/4 <

λM <
√
2c/2 and

√
2c/4 < k < λM or when λM ≥

√
2c/2 and δM <

k < λM , as we have ϵk < ϵ√2c/4 =
√
2c/4, if we increase λM , then the

sets ET3(M) and ET (M) in our case move up in C(CP n).

-

6

q q q
b b b

√
2c
4

αM

−δM

k

τ

0

1

Fig. 10. foliation F3

-

6 b
b b b
b b b

b b b b
√
2c
4

√
2c
2

λM1 λM2

δM2

k

τ

0

1

Fig. 11. foliation F4

Thirdly, we study the family F2. Since we have

lim
λM↓

√
2c/4

αM =
√
2c/4, lim

λM→
√
c/2
δM = lim

λM→
√
c/2
αM = 0,

lim
λM→

√
2c/2

δM =
√
2c/4, lim

λM↑
√
2c/2

gM(βM) = 1,
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we find that the sets in F2 covers the set
{
[k, τ ] ∈ C(CP n)

∣∣ 0 < k <√
2c/4, 0 < τ < 1

}
(see Figs. 12, 13). In Figs. 12 and 13, we set

F−
2 =

{
ET1(M)

∣∣ √2c/4 < λM <
√
c/2

}
,

F+
2 =

{
ET1(M)

∣∣ √c/2 ≤ λM <
√
2c/2

}
.

The dotted curves in Fig. 12 and Fig. 13 show ET (M) and ET2(M)
when λM =

√
c/2, respectively. When a geodesic sphere M satisfies√

2c/4 < λM <
√
c/2, for αM < k <

√
2c/4, as we have λM = ϵk if and

only if k = αM , if we increase λM , then the set ET1(M) moves up in
C(CP n). When a geodesic sphere M satisfies

√
c/2 ≤ λM <

√
2c/2, for

δM < k <
√
2c/4, as we have ϵk < ϵ0 =

√
c/2 < λM , if we increase λM ,

then the set ET1(M) moves up in C(CP n). Thus, we find that F2 forms
a foliation of the set

{
[k, τ ] ∈ C(CP n)

∣∣ 0 < k <
√
2c/4, 0 < τ < 1

}
.

-

6 b
bbb
√
2c
4

√
c
2

αM
k

τ

0

1

Fig. 12. F−
2

-

6 bb b
b

√
2c
4

√
c
2

δM

k

τ

0

1

Fig. 13. F+
2

When λM =
√
2c/4, through ΦM

∣∣
ET (M)

, the set ET (M) is mapped

onto the set
{
[k, τ ] ∈ C(CP n)

∣∣ k =
√
2c/4

}
. Considering the behavior

of the function h(ρ) = ρ(4ρ2− 3) on the interval (−1, 1) which satisfies

h(−ρ) = −h(ρ), we find that the inverse image
(
ΦM

∣∣
ET (M)

)−1
([
√
2c/4, τ ])

consists of a single point when τ = 0, 1, and consists of three points in
the others. We explain more on the case τ = 0. The equality h(ρ) = 0
tells ρ = 0,±

√
3/2. By the third condition in Lemma 6, we find that

κ = 0 when ρ = 0, and κ = ±
√
6c/4 when ρ = ±

√
3/2. Since we study

expressions by non-geodesic trajectories, the case ρ = 0 is not related
to our case, and trajectories for F√

6c/4 of structure torsion
√
3/2 and

those for F−
√
6c/4 of structure torsion −

√
3/2 are conguruent to each

other by Lemma 5. Thus, the inverse image consists of a single point
when τ = 0.

By taking account of all cases, we get the second and the third
assertions. □



18 YUSEI AOKI AND TOSHIAKI ADACHI

By the proof of Theorem 3, a circle σ of null structure torsion on
CP n(c) is expressed by a non-geodesic trajectory on a geodesic sphere
M satisfying kσ = αM .

Proposition 1. Each circle σ of positive geodesic curvature kσ and of
null complex torsion on CP n(c) is expressed by a non-geodesic trajec-

tory on a geodesic sphere of radius r with r =
(
2/
√
c
)
tan−1

√
(8k 2

σ + c)/c.

Paying attention to radii of geodesic spheres, our proof of the first
assertion of Theorem 3 shows the following.

Proposition 2. (1) When r > π/
(
2
√
c
)
, every circle of complex

torsion ±1 on CP n(c) is uniquely expressed by a trajectory on
a geodesic sphere of radius r up to congruency.

(2) When r ≤ π/
(
2
√
c
)
, if a circle σ of complex torsion ±1 on

CP n(c) has geodesic curvature kσ with kσ >
√
c cot

√
c r, then

it is is uniquely expressed by a trajectory on a geodesic sphere
of radius r up to congruency.
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