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Abstract. Athanasiadis studied arrangements obtained by adding shifted hyperplanes to the
braid arrangement. Similarly, Bailey studied arrangements obtained by adding tilted hyperplanes
to the braid arrangement. These two kinds of arrangements are associated with directed graphs
and their freeness was characterized in terms of the associated graphs. In addition, there is coin-
cidence of freeness. Namely, if Athanasiadis’ arrangement is free, then the corresponding Bailey’s
arrangement is free, and vice versa.

In this paper, we generalize this phenomenon by using gain graphs.

1. Introduction

A hyperplane arrangement is a finite collection of affine hyperplanes in a finite dimensional
vector space. If every hyperplane in an arrangement goes through the origin, we call the arrange-
ment central.

One of the interesting properties in the study of central hyperplane arrangements is their free-
ness (see Definition 2.4). Although freeness is a highly algebraic property, it is closely related to
combinatorial properties. Terao’s conjecture, whether freeness is determined by the combinatorial
data of intersections of hyperplanes, remains open. There are two important known classes of free
arrangements called inductively free and divisionally free arrangements. The conditions for
inductive and divisional freeness are combinatorial and hence Terao’s conjecture hold for these
subclasses.

Another remarkable property of hyperplane arrangements concerning freeness is supersolvability.
A central arrangement is said to be supersolvable if its intersection poset contains a maximal
chain consisting of modular elements (see [16] for more details). Note that there are the following
inclusions for central arrangements (see [12, Theorem 4.2] and [2, Theorem 4.4(2)] ).

{supersolvable} ( {inductively free} ( {divisionally free} ( {free}

Let Γ = ([`], EΓ) be an acyclic digraph (directed graph) on [`] := {1, . . . , `} with directed edge
set EΓ. Athanasiadis and Bailey studied (inductive) freeness and supersolvability of A(Γ) and
B(Γ) in C` respectively, which are defined by

A(Γ) := Cox(`) ∪ { {xi − xj = 1} | (i, j) ∈ EΓ } ,
B(Γ) := Cox(`) ∪ { {xi = 0} | i ∈ [`] } ∪ { {xi − qxj = 0} | (i, j) ∈ EΓ } ,

where q is a fixed element in C× which is not a root of unity and Cox(`) denotes the Coxeter
arrangement of type A`−1 (or the braid arrangement) defined by

Cox(`) := { {xi − xj = 0} | 1 ≤ i < j ≤ ` } .
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Figure 1. Obstructions to freeness for cA(Γ) and B(Γ) in Theorem 1.1.

Note that when EΓ = { (i, j) | 1 ≤ i < j ≤ ` } the arrangement A(Γ) is called the Shi arrange-
ment and if EΓ a subset of { (i, j) | 1 ≤ i < j ≤ ` }, then A(Γ) interpolates between the Coxeter
arrangement Cox(`) and the Shi arrangement.

Given an arrangement A in `-dimensional space, we can obtain its cone cA in a (` + 1)-
dimensional space by adding the hyperplane at infinity and homogenizing all the defining equations
of the hyperplanes in A. For example

cA(Γ) := {z = 0} ∪ { {xi − xj = 0} | 1 ≤ i < j ≤ ` } ∪ { {xi − xj = z} | (i, j) ∈ EΓ } ,
where z denotes an additional coordinate and {z = 0} is the hyperplane at infinity.

Athanasiadis and Bailey characterized freeness and supersolvability of cA(Γ) and B(Γ) as follows.

Theorem 1.1 ([5, Theorem 4.1], [7, Corollary 7.4]). The following are equivalent.
(1) cA(Γ) is (inductively) free.
(2) B(Γ) is (inductively) free.
(3) Γ does not have any of two digraphs in Figure 1 as an induced subgraph.

Theorem 1.2 ([5, Theorem 4.2], [7, Theorem 7.8]). The following are equivalent.
(1) cA(Γ) is supersolvable.
(2) B(Γ) is supersolvable.
(3) All the edges of Γ have the same terminal vertex or have the same initial vertex.

As Athanasiadis [5, Remark in p.15] and Bailey [7, p.105] pointed out, although the arrangements
cA(Γ) and B(Γ) are different, the coincidences described in Theorem 1.1 and Theorem 1.2 occur.
In this article, we will discuss these coincidence in more general setting.

Definition 1.3. A simple gain graph Γ = (VΓ, EΓ, GΓ) consists of the following data
• VΓ is a finite set.
• GΓ is a group.
• EΓ is a finite subset of

{ (i, j, g) ∈ VΓ × VΓ ×G | i 6= j } /∼,

where we use the plus sign + for the operation of GΓ and ∼ denotes the equivalence
relation generated by (i, j, g) ∼ (j, i,−g). We call elements in VΓ, EΓ, GΓ, vertices, edges
and gains, respectively. Let [i, j, g] denote the equivalence class of (i, j, g).

We simplify the notion of gain graphs for our purpose. See [28, 29, 30, 32] for general theory of
gain graphs.

Definition 1.4. Let Γ be a simple gain graph on VΓ = [`] and suppose that the gain group GΓ is
the additive group of Z or Fp, the finite field of p elements, where p is a prime. We define the
affinographic arrangement A(Γ) in Q` if GΓ = Z or in F`

p if GΓ = Fp as follows.
A(Γ) := { {xi − xj = g} | [i, j, g] ∈ EΓ } .

Let q ∈ C× an element which is not a root of unity if GΓ = Z or the primitive p-th root of unity
if GΓ = Fp. Define the bias arrangement B(Γ) in C` by

B(Γ) := { {xi = 0} | 1 ≤ i ≤ ` } ∪ { {xi − qgxj = 0} | [i, j, g] ∈ EΓ } .
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Figure 2. A gain graph with integral gains.

Note that the definitions of A(Γ) and B(Γ) are well-defined. Namely, the hyperplanes {xi−xj =
g} and {xi − qgxj = 0} are independent of the choice of a representative of an edge of Γ since

{xi − xj = g} = {xj − xi = −g} and {xi − qgxj = 0} = {xj − q−gxi = 0}.

Example 1.5. Let Γ be the simple gain graph of Figure 2 with GΓ = Z on 3 vertices consisting of
the edges

[1, 2, 0], [1, 3, 0], [1, 2, 1], [2, 3, 1], [2, 3,−1], [1, 3, 2].

Then the defining polynomial of A(Γ) is
QA(Γ) = (x1 − x2)(x1 − x3)(x1 − x2 − 1)(x2 − x3 − 1)(x2 − x3 + 1)(x1 − x3 − 2)

and the defining polynomial of B(Γ) is
QB(Γ) = x1x2x3(x1 − x2)(x1 − x3)(x1 − qx2)(x2 − qx3)(x2 − q−1x3)(x1 − q2x3),

where q ∈ C× is not a root of unity.

Example 1.6. If the gains of all edges in Γ are 0, then Γ can be regarded as a simple graph. The
arrangement A(Γ) is known to be a graphic arrangement. Stanley proved that freeness and
supersolvability are equivalent in the class of graphic arrangements and they are also equivalent
to chordality of Γ (see [17, Corollary 4.10] and [9, Theorem 3.3]). Moreover, if the edges form a
complete graph and GΓ = Z, then A(Γ) is the Coxeter arrangement of type A`−1.

Remark 1.7. Suppose that GΓ = Z and EΓ consists of all edges in { [i, j, 0] | 1 ≤ i < j ≤ ` } and
some edges in { [i, j, 1] | 1 ≤ i < j ≤ ` }. Then the edges with gain 1 forms an acyclic digraph and
the arrangements A(Γ) and B(Γ) are the same with the arrangements studied by Athanasiadis and
Bailey.

Example 1.8. Let m be a positive integer. Define the extended Catalan arrangements and
the extended Shi arrangements in Q` as follows.

Cat(`,m) := { {xi − xj = g} | 1 ≤ i < j ≤ `,−m ≤ g ≤ m } ,
Shi(`,m) := Cat(`,m− 1) ∪ { {xi − xj = m} | 1 ≤ i < j ≤ ` } ,

where Cat(`, 0) := Cox(`). Both these arrangements are affinographic arrangements of gain graphs
with gain groups Z and the cones over them are shown to be inductively free by Edelman and
Reiner [11, Proof of Theorem 3.2] and Athanasiadis [5, Corollary 3.4].

Arrangements between Cat(`,m) and Cat(`,m − 1) are characterized by the edges with gain
m, that is, the digraph on [`] whose arc (i, j) corresponds with the hyperplane {xi − xj = m}.
Athanasiadis [6] conjectured that these arrangements are free if and only if the corresponding
graphs satisfy certain conditions. Abe, Nuida, and Numata [3] and Abe [1] resolved this conjecture.

Wang and Jiang [25] characterized freeness of subarrangements of Shi(`, 1) which may not contain
all hyperplanes in Cox(`).
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Nakashima and the third author [13] extended the class consisting of arrangements between
Cat(`,m) and Cat(`,m − 1) and characterized freeness in terms of graphs. As corollaries, it is
shown that cCat(`,m) is hereditarily free, that is, every restriction of cCat(`,m) is free and if
` ≥ 6, then c Shi(`,m) is not hereditarily free.

In general, it is not easy to determine a concrete basis for the module of logarithmic derivations
of free arrangements. Yoshinaga and the first author [19] gave explicit formulas for bases for the
extended Catalan and Shi arrangements using with discrete integrals.

Example 1.9. When the edge set of Γ is the empty set, the arrangement B(Γ) is known to be the
Boolean arrangement, which can be proven to be supersolvable and hence free easily.

Example 1.10. Suppose that GΓ = F2 and q = −1. Then the bias arrangement B(Γ) is known
as a signed graphic arrangement. If Γ is complete, that is, Γ has all possible edges, then
B(Γ) is known as the Coxeter arrangement of type B`. Freeness and supersolvability for these
arrangements are studied in [9, 31, 18, 22]

Example 1.11. If GΓ = Fp and Γ is complete, then B(Γ) is the arrangements consisting of reflecting
hyperplanes for the complex reflection group G(p, 1, `) (the full monomial group) and hence
supersolvable. Note that every reflection arrangement associated with G(r, 1, `), where r is a
positive integer is supersolvable.

Example 1.12. Let ` = 3, GΓ = Z, and EΓ = { [i, j, g] | 1 ≤ i < j ≤ 3, g ∈ {0, 1} }. Then the bias
arrangement B(Γ) is given by the following defining polynomial

x1x2x3(x1 − x2)(x1 − x3)(x2 − x3)(x1 − qx2)(x1 − qx3)(x2 − qx3).

This is the first example of arrangements which is free and not K(π, 1) obtained by Edelman and
Reiner [10, Theorem 2,1]. They also constructed a family of free bias arrangements including this
arrangement [11, Theorem 3.4].

Example 1.13. Let GΓ = Z and suppose that EΓ consists of all edges with gain in { g ∈ Z | −m ≤ g ≤ m }.
Then the corresponding affinographic arrangement A(Γ) is the extended Catalan arrangement as
mentioned in Example 1.8. Define the two-parameter Fuss-Catalan number or the Raney
number A`(s, r) by

A`(s, r) :=
r

`s+ r

(
`s+ r

`

)
.

Note that A`(2, 1) =
1

2`+1

(
2`+1
`

)
= 1

`+1

(
2`
`

)
it is the `-th Catalan number and it is well known that the

number of the chambers of the extended Catalan arrangement Cat(`,m) is equal to `!·A`(m+1, 1).
Recently, Deshpande, Menon, and Sarkar [8] introduced an arrangement whose number of cham-

bers is `! · A`(m + 1, 2). This arrangement coincides with the bias arrangement B(Γ) and it is
determined by the following defining polynomial

x1 · · ·x`

∏
1≤i<j≤`
−m≤g≤m

(xi − qgxj).

From the discussion above, it is clear that both of A(Γ) and B(Γ) form classes including im-
portant well-studied arrangements. Characterizing freeness of A(Γ) and B(Γ) in terms of a gain
graph Γ might be an interesting problem. The third author [23] provided a sufficient condition for
freeness of these arrangements.

Zaslavsky characterized supersolvability of cA(Γ) and B(Γ) in terms of a vertex ordering and,
as a result, we obtain the following theorem.
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Theorem 1.14 (A consequence of [31, Theorems 2.2 and 3.2]). If B(Γ) is supersolvable, then
cA(Γ) is supersolvable. If Γ is biconnected, then also the converse statement holds true.

Note that Theorem 1.14 and Remark 1.7 implies Theorem 1.2. To state results concerning
freeness we will introduce the notions of inductive and divisional freeness along edges for our
arrangements A(Γ) and B(Γ) (See Definition 2.14 and 2.15). The main results are as follows.

Theorem 1.15. Let Γ be a simple gain graph. Then the following statements are equivalent.
(1) cA(Γ) is inductively free along edges.
(2) B(Γ) is inductively free along edges.

Theorem 1.16. Let Γ be a simple gain graph. Then the following statements are equivalent.
(1) cA(Γ) is divisionally free along edges.
(2) B(Γ) is divisionally free along edges.

Unfortunately, Theorem 1.15 and 1.16 cannot imply Theorem 1.1 directly since there might be
an arrangement that is free but not divisionally free in these classes. However, if freeness for one
class is characterized, then Theorem 1.15 and 1.16 are useful to characterize freeness for the other
class. We will give an example in the case G = F2 (see Section 4). We have a natural question
below for freeness.

Question 1.17. Let Γ be a simple gain graph. Are the following statements equivalent?
(1) cA(Γ) is free.
(2) B(Γ) is free.
If these are equivalent, then is there a conceptual reason?

We will give a few evidence for Question 1.17.

Theorem 1.18. When Γ is a simple gain graph with gain group G = F2, the statement in Question
1.17 is true.

Theorem 1.19. Let Γ be a simple gain graph on 3 vertices with gain group G = Z. Suppose that
q is a transcendental number or a positive real number other than 1. Then cA(Γ) is free if and
only if B(Γ) is free.

The organization of this paper is as follows.
In Section 2, we review the theory of free arrangements and gain graphs. In Section 3, we give

the proofs of Theorems 1.15 and 1.16. As a corollary, we prove that the arrangement in Example
1.13 is free (Corollary 3.3). In Section 4, we review the characterization of freeness for B(Γ) when
GΓ = F2 and characterize freeness for the other arrangements cA(Γ) as an application (Theorem
1.18). In Section 5, we review the theory of freeness of multiarrangements in dimension 2 and give
a proof of Theorem 1.19.

2. Preliminaries

2.1. Characteristic polynomials of hyperplane arrangements. Let K be an arbitrary field,
A an arrangement in the `-dimensional vector space K`. Our main reference on the theory of
hyperplane arrangement is [14].

Define the intersection poset L(A) of A by

L(A) :=

{ ⋂
H∈B

H 6= ∅

∣∣∣∣∣ B ⊆ A

}
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with the partial order defined by reverse inclusion: X ≤ Y
def⇔ X ⊇ Y . Note that when B is empty,

the intersection over B is the ambient vector space K`.
The one-variable Möebius function µ : L(A) → Z is defined recursively by

µ(K`) := 1 and µ(X) := −
∑
Y <X

µ(Y ).

The characteristic polynomial χ(A, t) of A is defined by

χ(A, t) :=
∑

X∈L(A)

µ(X)tdimX .

Remark 2.1. If A is central, then t− 1 divides χ(A, t). Also note that since A(Γ) is non-essential,
that is, every maximal element in L(A(Γ)) has dimension greater than 0, χ(A(Γ), t) is divisible by
t.

For any X ∈ L(A) define the localization of A to X as the subarrangement AX of A by
AX = {H ∈ A | X ⊆ H}.

For each hyperplane H ∈ A, we define the restriction AH by
AH := {H ∩K | K ∈ A \ {H} } .

Note that AH is an arrangement in H.

Proposition 2.2 ([14, Corollary 2.57]). Let A be an arrangement and H ∈ A. Then
χ(A, t) = χ(A′, t)− χ(AH , t),

where A′ denotes the deletion A′ := A \ {H}.

Proposition 2.3 ([14, Proposition 2.51]). Let cA denote the cone over A. Then
χ(cA, t) = (t− 1)χ(A, t).

2.2. Freeness of hyperplane arrangements. In this subsection, we suppose that A is cen-
tral. Let S = K[x1, . . . , x`] be the ring of polynomial functions on K` and Der(S) the module of
derivations of S. Namely,

Der(S) := { θ : S → S | θ is K-linear and θ(fg) = θ(f)g + fθ(g) for any f, g ∈ S } .

Given a map m : A → Z>0, we call the pair (A,m) a multiarrangement. Define the module of
logarithmic derivations D(A,m) by

D(A,m) :=
{
θ ∈ Der(S)

∣∣∣ θ(αH) ∈ α
m(H)
H S for any H ∈ A

}
,

where αH ∈ (K`)∗ denotes a defining linear form of a hyperplane H ∈ A. Note that D(A,m) is a
graded S-module. We identify A with the multiarrangement (A,1), where 1 is a map identically
1 and D(A) := D(A,1).

Definition 2.4. A multiarrangement (A,m) is said to be free with exponents exp(A,m) =

(d1, . . . , d`) if D(A,m) is a free S-module and D(A,m) ∼=
⊕`

i=1 S(−di).

Proposition 2.5 ([33, Corollary 7][27, Proposition1.21]). If ` = 2, then (A,m) is free and the
exponents (d1, d2) satisfies d1 + d2 = |m|.

Proposition 2.6 ([14, Theorem 4.37], [3, Proposition 1.7]). Suppose that (A,m) is free. Then the
localization (AX ,m|AX

) is free for any X ∈ L(A).
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Proposition 2.7 ([14, Corollary 4.47]). Let H ∈ A. If A and A\{H} is free, then the restriction
AH is free.

We can define the characteristic polynomial χ((A,m), t) for multiarrangements (A,m) which
generalizes the characteristic polynomial of a simple arrangement, using the Hilbert series of the
derivation modules.

The following theorem shows close relation between freeness and combinatorics of arrangements.

Theorem 2.8 (Factorization Theorem, [20], [4, Theorem 4.1]). Suppose that a multiarrangement
(A,m) is free with exponents (d1, . . . , d`). Then

χ((A,m), t) = (t− d1) · · · (t− d`).

Now, we give the definitions of inductive and divisional freeness for simple arrangements. They
are actually free by the Addition-Deletion Theorem [14, Theorem 4.51] and the Division Theorem
[2, Theorem 1.1].

Definition 2.9. The class of inductively free arrangements is defined to be the smallest class
of arrangements such that the following conditions hold.
(1) The empty arrangements are inductively free.
(2) If there exists H ∈ A such that both A \ {H} and AH are inductively free and exp(AH) ⊆

exp(A \ {H}), then A is inductively free.

Definition 2.10. The class of divisionally free arrangements is defined to be the smallest class
of arrangements such that the following conditions hold
(1) The empty arrangements are divisionally free.
(2) If there exists H ∈ A such that AH is divisionally free and χ(AH , t) divides χ(A, t), then A is

divisionally free.

2.3. Deletion and contraction of gain graphs. Let Γ = (VΓ, EΓ, GΓ) be a simple gain graph
and e = [i, j, g] an edge of Γ. We define the deletion and contraction of Γ with respect to e.

Define the deletion Γ\e by deleting the edge e from Γ. Namely, Γ\e is defined by the following
data

• VΓ\e := VΓ.
• EΓ\e := EΓ \ {e}.
• GΓ\e := GΓ.

The edge e has two direction (i, j, g) and (j, i,−g). In order to define the contraction, we need
to fix a direction of e. Define the contraction Γ/(i, j, g) by identifying i closer to j and change
every edge of the form [k, i, h] to [k, j, h + g] (see Figure 3). Namely, the contraction Γ/(i, j, g)
consists of the following data

• VΓ/(i,j,g) := VΓ \ {i}.
• EΓ/(i,j,g) := { [u, v, h] | u, v ∈ VΓ \ {i}, [u, v, h] ∈ EΓ }

∪ { [k, j, h+ g] | k ∈ VΓ \ {i}, [k, i, h] ∈ EΓ }.
• GΓ/(i,j,g) := GΓ.

The deletion and contraction of gain graphs are compatible with the deletion and restriction of
the affinographic arrangement A(Γ) and the bias arrangement B(Γ). Namely, the following two
lemmas hold.

Lemma 2.11. Let e = [i, j, g] be an edge of Γ. Then
(1) A(Γ \ e) = A(Γ) \ {xi − xj = g},
(2) B(Γ \ e) = B(Γ) \ {xi − qgxj = 0}.
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Figure 3. Contraction of (i, j, g).

Lemma 2.12. Let e = [i, j, g] be an edge of Γ and fix a direction (i, j, g). Then
(1) A(Γ/(i, j, g)) is affinely equivalent to A(Γ){xi−xj=g},
(2) B(Γ/(i, j, g)) is affinely equivalent to B(Γ){xi−qgxj=0},
where two arrangements A1 and A2 are affinely equivalent if there exists an affine isomorphism φ
between the ambient spaces such that A2 = { φ(H) | H ∈ A1 }.

Remark 2.13. Since {xi − xj = g} = {xj − xi = −g}, A(Γ/(i, j, g)) is affinely equivalent to
A(Γ/(j, i,−g)) although Γ/(i, j, g) is distinct from Γ/(j, i,−g) in general. By the same reason
B(Γ/(i, j, g)) is affinely equivalent to B(Γ/(j, i,−g)). Thus we will use the notation A(Γ/e) and
B(Γ/e) to denote the arrangements corresponding to the contraction.

Thanks to Lemma 2.11 and 2.12, we define the inductive and divisional freeness along edges for
cA(Γ) and B(Γ) as follows. (We mention the definitions only for cA(Γ). The definitions for B(Γ)
are similar.)

Definition 2.14. We say that cA(Γ) is inductively free along edges if it satisfies the following
recursive conditions.
(1) If EΓ = ∅, then cA(Γ) is inductively free along edges.
(2) If there exists an edge e ∈ EΓ such that cA(Γ\e) and cA(Γ/e) are inductively free along edges

and exp(cA(Γ/e)) ⊆ exp(cA(Γ \ e)), then cA(Γ) is inductively free along edges.

Definition 2.15. We say that cA(Γ) is divisionally free along edges if it satisfies the following
recursive conditions.
(1) If EΓ = ∅, then cA(Γ) is divisionally free along edges.
(2) If there exists an edge e ∈ EΓ such that cA(Γ/e) are divisionally free along edges and

χ(cA(Γ/e), t) divides χ(cA(Γ), t), then cA(Γ) is divisionally free along edges.

Remark 2.16. If EΓ = ∅, then cA(Γ) consists of just one hyperplane (the hyperplane at infinity)
and B(Γ) is the Boolean arrangement. Since they are inductively and divisionally free, inductive
and divisional freeness along edges imply inductive and divisional freeness. When we use the
Addition-Deletion Theorem and the Division Theorem, we may choose the infinite hyperplane for
cA(Γ) or the coordinate hyperplanes for B(Γ) that do not correspond to any edge of Γ. Therefore,
there may be exist a gain graph Γ such that cA(Γ) is inductively free but not inductively free
along edges (and other variations also may occur). However, such examples are not yet known.

To study freeness of an arrangement, the characteristic polynomial plays an important role. The
lemma below states a relation between the characteristic polynomials of cA(Γ) and B(Γ), which is
also proven in [8, Theorem 2.10 and Remark 2.12] when GΓ = Z by using the finite field method.

Lemma 2.17. Let Γ be a simple gain graph. Then
χ(A(Γ), t) = χ(B(Γ), t+ 1)

and
χ(cA(Γ), t) = (t− 1)χ(B(Γ), t+ 1).
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Proof. We will prove this result by induction on |EΓ|. If |EΓ| = 0, then A(Γ) is the empty arrange-
ment and B(Γ) is the boolean arrangement. This implies that χ(A(Γ), t) = t` and χ(B(Γ), t) =
(t− 1)`, and hence χ(A(Γ), t) = χ(B(Γ), t+ 1).

Assume |EΓ| ≥ 1 and consider e ∈ EΓ. Then

χ(A(Γ), t) = χ(A(Γ \ e), t)− χ(A(Γ/e), t),

χ(B(Γ), t+ 1) = χ(B(Γ \ e), t+ 1)− χ(B(Γ/e), t+ 1)

by Proposition 2.2, Lemma 2.11, and Lemma 2.12. Since |EΓ\e|, |EΓ/e| < |EΓ|, by the induction
hypothesis, χ(A(Γ), t) = χ(B(Γ), t+ 1).

Using Proposition 2.3, we have

χ(cA(Γ), t) = (t− 1)χ(A, t) = (t− 1)χ(B(Γ), t+ 1)

�

Corollary 2.18. Suppose that cA(Γ) and B(Γ) are free and let exp(cA(Γ)) = (0, 1, d2, . . . , d`).
Then exp(B(Γ)) = (1, d2 + 1, . . . , d` + 1).

Proof. Use Lemma 2.17 and Theorem 2.8. �

3. Proofs of Theorem 1.15 and 1.16

Theorem 3.1 (Restatement of Theorem 1.15). Let Γ be a simple gain graph. Then the following
statements are equivalent
(1) cA(Γ) is inductively free along edges.
(2) B(Γ) is inductively free along edges.

Proof. We will proceed by induction on |EΓ|. If |EΓ| = 0, then both of cA(Γ) and B(Γ) are
inductively free along edges by definition.

Suppose that |EΓ| ≥ 1 and cA(Γ) is inductively free along edges. Then there exists e ∈ EΓ such
that cA(Γ/e) and cA(Γ \ e) are inductively free along edges with exp(cA(Γ/e)) ⊆ exp(cA(Γ \
e)). By the induction hypothesis, B(Γ/e) and B(Γ \ e) are inductively free along edges. Since
exp(B(Γ/e)) ⊆ exp(B(Γ \ e)) by Corollary 2.18, we conclude that B(Γ) is inductively free along
edges. The opposite implication is similar. �

Theorem 3.2 (Restatement of Theorem 1.16). Let Γ be a simple gain graph. Then the following
statements are equivalent.
(1) cA(Γ) is divisionally free along edges.
(2) B(Γ) is divisionally free along edges.

Proof. We will prove this result by induction on |EΓ|. If |EΓ| = 0, then cA(Γ) and B(Γ) are both
divisionally free along edges by definition.

Consider the case |EΓ| ≥ 1. Assume that cA(Γ) is divisionally free along edges, and hence
consider e ∈ EΓ such that cA(Γ/e) is divisionally free along edges and χ(cA(Γ/e), t) divides
χ(cA(Γ), t). By the induction hypothesis and Lemma 2.17, we have that B(Γ/e) is divisionally
free along edges and χ(B(Γ/e), t) divides χ(B(Γ), t). This implies that B(Γ) is divisionally free
along edges. A similar argument proves the opposite implication. �

As mentioned in Example 1.8, the cones over the extended Catalan and Shi arrangements
cCat(`,m) and c Shi(`,m) are inductively free. Moreover, according to the proofs, they are induc-
tively free along edges. Hence we obtain the following corollaries.
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Figure 4. An obstruction to freeness for the signed graphic arrangement B(Γ).
(Solid and dashed line segments denote positive and negative edges respectively.)

Corollary 3.3. The arrangement determined by

x1 · · ·x`

∏
1≤i<j≤`
−m≤g≤m

(xi − qgxj).

is inductively free along edges with exponents (1,m`+ 2,m`+ 3,m`+ `).

Corollary 3.4. The arrangement determined by

x1 · · ·x`

∏
1≤i<j≤`

1−m≤g≤m

(xi − qgxj).

is inductively free along edges with exponents (1,m`+ 1,m`+ 1,m`+ 1).

4. Proof of Theorem 1.18

In this section, we suppose that GΓ = F2. Since the additive group of F2 is isomorphic to the
multiplicative group {±1}, the gain graph Γ is called a signed graph. We call an edge with gain
0 (resp. 1) a positive edge (resp. negative edge). When Γ is a signed graph, we call B(Γ) the
signed graphic arrangement.

A cycle in a signed graph Γ is called balanced is the number of negative edges in it is even.
Otherwise, we call it unbalanced. A signed graph Γ is called balanced chordal if every balanced
cycle in Γ of length at least four has a chord separating the cycle into two balanced cycles.

A switching at a vertex i in Γ is an operation interchanging the signs of the edges incident to i.
We say that two signed graphs are switching equivalent if one is obtained by applying a finite
number of switchings to the other. Note that if two signed graphs Γ and Γ′ are switching equivalent,
then the corresponding signed graphic arrangements B(Γ) and B(Γ′) are affinely equivalent since
a switching at i corresponds to the coordinate change xi 7→ −xi. The affinographic arrangements
A(Γ) and A(Γ′) are affinely equivalent since switching at i corresponds to the coordinate change
xi 7→ xi + 1 and the base field is F2.

The authors previous works characterized freeness of signed graphic arrangement B(Γ) as follows.

Theorem 4.1 ([18, 22]). Let Γ be a signed graph. Then the following conditions are equivalent.
(1) Γ satisfies the following three conditions.

(I) Γ is balanced chordal.
(II) Γ has no induced subgraphs isomorphic to unbalanced cycles of length at least three.

(III) Γ has no induced subgraphs which are switching equivalent to the graph in Figure 4.
(2) B(Γ) is divisionally free along edges.
(3) B(Γ) is free.

Remark 4.2. In the paper [22], the condition (2) in Theorem 4.1 does not assert “along edges”.
However, it was shown that B(Γ) is divisionally free along edges if the condition (1) holds.

Theorem 4.3 (Restatement of Theorem 1.18). Let Γ be a signed graph, that is, a simple gain
graph with GΓ = F2 ' {±1}. Then the following conditions are equivalent
(1) cA(Γ) is free.
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2K2 C4 P4

Figure 5. Forbidden induced subgraphs for threshold graphs.

(2) B(Γ) is free.

Proof. First, suppose that B(Γ) is free. Then B(Γ) is divisionally free along edges by Theorem 4.1.
Therefore cA(Γ) is divisionally free along edges by Theorem 1.16 and hence free.

Next, suppose that cA(Γ) is free. In order to show B(Γ) is free, it suffices to prove that Γ
satisfies the condition (1) in Theorem 4.1. Assume that Γ does not satisfy the the condition (1).
Then Γ has an induced subgraph Σ satisfying one of the following three conditions.

(i) Σ is a balanced cycle of length at least four.
(ii) Σ is an unbalanced cycle of length at least three.
(iii) Σ is switching equivalent to the graph in Figure 4.

Since cA(Σ) is affinely equivalent to a localization of cA(Γ), it is sufficient to show that cA(Σ)
is non-free by Proposition 2.6.

Consider the case (i). By switching we may assume that the balanced cycle Σ consists of positive
edges. Then A(Σ) is a graphic arrangement (over F2) of the non-chordal graph Σ and hence cA(Σ)
is non-free.

Next, consider the case (ii). Suppose that the length of the unbalanced cycle Σ is three. Then
the characteristic polynomial of A(Σ) is

χ(A(Σ), t) = t(t2 − 3t+ 3).

By Theorem 2.8, cA(Σ) is non-free. Assume that the length of Σ is at least four and cA(Σ) is
free. Chose an edge e of Σ. Then the deletion Σ \ e is switching equivalent to a path consisting of
positive edges and hence cA(Σ \ e) is free. However, the contraction Σ/e is an unbalanced cycle
of length at least three and cA(Σ/e) is non-free by induction. This contradicts to Proposition 2.7
and hence cA(Σ) is non-free.

Finally, consider the condition (iii). Then

χ(A(Σ), t) = t(t− 2)(t2 − 6t+ 10).

By Theorem 2.8, cA(Σ) is non-free. �

Edelman and Reiner [9, Theorem 4.6] characterized freeness of subarrangements between Weyl
arrangements of type A`−1 and B` in terms of signed graphs. From this result, we have the following
corollary.

Corollary 4.4. Let Γ be a signed graph and Γ+ and Γ− denote the simple graphs consisting of
positive and negative edges. Suppose that Γ+ is a complete graph. Then the following conditions
are equivalent.
(1) B(Γ) is free.
(2) Γ− is a threshold graph.
In this context, a simple graph is threshold if the graph does not contain graphs in Figure 5 as
induced subgraphs.
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Example 4.5. Let Γ be a signed graph and suppose that Γ+ is complete. Then the affinographic
arrangement A(Γ) over F2 is defined by

A(Γ) = { {xi − xj = 0} | 1 ≤ i < j ≤ ` } ∪
{
{xi − xj = 1}

∣∣ {i, j} ∈ EΓ−

}
.

Then A(Γ) is an arrangement between the “Coxeter arrangement” and the “Shi arrangement” over
F2. By Theorem 1.18 and Corollary 4.4, cA(Γ) is free if and only if Γ− is threshold.

Remark 4.6. Freeness of subarrangements between the Coxeter arrangement and the Shi arrange-
ment of type A is characterized by Athanasiadis (Theorem 1.1), which is different from Example
4.5. See [15] and [21] for behavior of freeness for different characteristic of the base fields.

5. Proof of Theorem 1.19

The proof of Theorem 1.19 requires the following lemmas.

Lemma 5.1 ([26, Corollary 3.3]). Let A be an arrangement in dimension 3 and H ∈ A. Then the
following conditions are equivalent
(1) A is free.
(2) χ(A, t) = (t− 1)(t− d1)(t− d2) and exp(AH ,mH) = (d1, d2),
where (AH ,mH) denotes the Ziegler restriction, that is,

mH(X) := # {K ∈ A \ {H} | K ∩H = X } .

Lemma 5.2 ([27, Proposition 1.23], [24, Theorem 1.5]). Let A = {H1, . . . , Hn} be an arrangement
in dimension 2. Let m be a multiplicity on A with mi := m(Hi) and m1 ≥ m2 ≥ · · · ≥ mn. Then
the following conditions hold.
(1) If n ≥ |m|

2
+ 1, then exp(A,m) = (|m| − n+ 1, n− 1).

(2) If n = 3 and the characteristic of the base field is 0, then

exp(A,m) =


(m2 +m3,m1) if m1 ≥ m2 +m3,

(k, k) if m1 ≤ m2 +m3 and |m| = 2k,

(k, k + 1) if m1 ≤ m2 +m3 and |m| = 2k + 1.

Lemma 5.3. Suppose that q ∈ C× is a transcendental number or a positive real number other than
1 and let (A,m) be a multiarrangement in C2 determined by

xs+1
1 xt+1

2

∏
g∈Λ

(x1 − qgx2),

where Λ is a finite subset of Z and 0 ≤ s ≤ t ≤ u := |Λ|. Then

exp(A,m) =


(s+ t+ 1, u+ 1) if u ≥ s+ t,

(k + 1, k + 1) if u ≤ s+ t and s+ t+ u = 2k,

(k + 1, k + 2) if u ≤ s+ t and s+ t+ u = 2k + 1.

Proof. First, suppose that u ≥ s+ t. In order to use Lemma 5.21, let n := |A| = u+ 2. Then

n− |m|
2

− 1 = u+ 2− s+ t+ u+ 2

2
− 1 =

u− s− t

2
≥ 0.

Therefore exp(A,m) = (|m| − n+ 1, n− 1) = (s+ t+ 1, u+ 1).
Next, suppose that u ≤ s + t and s + t + u = 2k. Let exp(A,m) = (d1, d2) and d1 ≤ d2. It

satisfies to show that d1 ≥ k + 1 since d1 + d2 = |m| = s + t + u + 2 = 2(k + 1) ≤ 2d1 implies
d1 = d2 = k+1. Assume that θ ∈ D(A,m) is a homogeneous element and d := deg θ ≤ k. We will
show that θ = 0.
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Since θ(x1) ∈ xs+1
1 S and θ(x2) ∈ xt+1

2 S, there exist polynomials f, g ∈ S such that
θ = xs+1

1 f∂1 + xt+1
2 g∂2,

where ∂1 denotes the derivation d
dxi

. Write f and g as

f =
d−s−1∑
i=0

bix
d−s−1−i
1 xi

2 and g =
d−t−1∑
i=0

cix
d−t−1−i
1 xi

2.

Let Λ = {g1, . . . , gu}. To ease notation write qi := qgi . Then in modulus x1 − qix2

0 ≡ θ(x1 − qix2)

= xs+1
1 f − qix

t+1
2 g

≡ xd
2

(
b0q

d
i + b1q

d−1
i + · · ·+ bd−s−1q

s+1
i − c0q

d−t
i − c1q

d−t−1
i − · · · − cd−t−1qi

)
.

Note that the powers in the last expression distinct since
(s+ 1)− (d− t) = s+ 1− d+ t

≥ s+ 1− k + t

=
1

2
(2s+ 2− s− t− u+ 2t)

=
1

2
(s+ t− u+ 2) > 0.

Therefore
λ := (d, d− 1, . . . , s+ 1, d− t, d− t− 1, . . . , 1)

is decreasing and defines an integer partition. The length `(λ) satisfies
`(λ) = (d− s) + (d− t) = 2d− s− t ≤ 2k − s− t = u.

Thus we have the following linear equation.


qd1 . . . qs+1

1 qd−t
1 . . . q1

qd2 . . . qs+1
2 qd−t

2 . . . q2
... ... ... ...

qd`(λ) . . . qs+1
`(λ) qd−t

`(λ) . . . q`(λ)





b0
...

bd−s−1

−c0
...

−cd−t−1


= 0.

Let aλ(q1, . . . , q`(λ)) denote the determinant of the coefficient matrix. By the definition of the Schur
polynomial sλ, we have

aλ(q1, . . . , q`(λ)) = sλ(q1, . . . , q`(λ)) ∆(q1, . . . , q`(λ)),

where ∆ denotes the Vandermonde determinant. Since q ∈ C× is not a root of unity, q1, . . . , q`(λ)
are distinct and hence ∆(q1, . . . , q`(λ)) 6= 0. It is well known that the Schur polynomial is a positive
linear combination of monomials. Therefore sλ(q1, . . . , q`(λ)) 6= 0 if q is a positive real number or a
transcendental number. In this case we have aλ(q1, . . . , q`(λ)) 6= 0, which implies θ = 0.

The remaining case is similar. We leave the proof for the reader. �

Now, we are ready to prove Theorem 1.19.

Theorem 5.4 (Restatement of Theorem 1.19). Let Γ be a simple gain graph on 3 vertices with
gain group G = Z. Suppose that q is a transcendental number or a positive real number other than
1. Then cA(Γ) is free if and only if B(Γ) is free.
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Proof. Define subsets Λ1,Λ2, and Λ3 by
Λ1 := { g ∈ Z | [1, 2, g] ∈ EΓ } ,
Λ2 := { g ∈ Z | [2, 3, g] ∈ EΓ } ,
Λ3 := { g ∈ Z | [1, 3, g] ∈ EΓ } .

Let mi = |Λi| for each i ∈ {1, 2, 3}. We may assume that m1 ≥ m2 ≥ m3. The defining polynomials
of cA(Γ) and B(Γ) are

Q(cA(Γ)) = z
∏
g∈Λ1

(x1 − x2 − gz)
∏
g∈Λ2

(x2 − x3 − gz)
∏
g∈Λ3

(x1 − x3 − gz),

Q(B(Γ)) = x1x2x3

∏
g∈Λ1

(x1 − qgx2)
∏
g∈Λ2

(x2 − qgx3)
∏
g∈Λ3

(x1 − qgx3).

Taking the Ziegler restrictions of cA(Γ) and B(Γ) with z = 0 and {x3 = 0} respectively yields

Q(cA(Γ){z=0},mA) = (x1 − x2)
m1(x2 − x3)

m2(x1 − x3)
m3 ,

Q(B(Γ){x3=0},mB) = xm3+1
1 xm2+1

2

∏
g∈Λ1

(x1 − qgx2).

By Lemma 2.17, 5.1, 5.2, and 5.3,
cA(Γ) is free.

⇐⇒ χ(cA(Γ), t) = t(t− 1)(t− d1)(t− d2)

and exp(cA(Γ){z=0},mA) = (d1, d2).

⇐⇒ χ(B(Γ), t) = (t− 1)(t− d1 − 1)(t− d2 − 1)

and exp(B(Γ){x3=0},mB) = (d1 + 1, d2 + 1).

⇐⇒ B(Γ) is free.
�
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