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Abstract

Motivated by an analysis on the well-posedness of the initial boundary value problem
for the motion of an inextensible hanging string, we first consider an initial boundary value
problem for one-dimensional degenerate hyperbolic systems with a localized term and show
its well-posedness in weighted Sobolev spaces. We then consider the linearized system for
the motion of an inextensible hanging string. Well-posedness of its initial boundary value
problem is demonstrated as an application of the result obtained in the first part.

1 Introduction

The present paper consists of two parts. In the first part, motivated by an analysis on the
well-posedness of the initial boundary value problem for the motion of an inextensible hanging
string, we consider the initial boundary value problem

i = (A(s, )u') + Q(s, )/ (1,8) + f(s,8) in (0,1) x (0,7),
u=0 on {s=1}x(0,T),

(uv i")|t=0 = (u%)n’ ulln) in (Ov 1)7

(1.1)

where u is a R¥-valued unknown function of (s,t) € [0,1] x [0, 7], while f, ull, and u* are
RN -valued given functions, and A and Q are N x N matrix valued given functions. Here, %
and v’ denote derivatives of u with respect to ¢t and s, respectively. Moreover, we assume that
A(s,t) is symmetric and satisfies A(s,t) ~ sId, where Id is an identity matrix. Therefore, the
coefficient matrix A(s,t) degenerates at one end s = 0 of the interval, so that the first equation
in (1.1) is a linear degenerate hyperbolic system with a localized term. Due to this degeneracy,
we do not need to impose any boundary conditions on this end s = 0. The first objective in this
paper is to establish the well-posedness of this initial boundary value problem.

One of difficulties of this problem comes from the degeneracy of the coefficient matrix A(s,t).
This type of degenerate hyperbolic systems in the analysis of the motion of strings has already
been analyzed by several authors, for example, Koshlyakov, Gliner, and Smilnov [5], Reeken [14,
15], Yamaguchi [18], Preston [12], and Takayama [17], and the difficulty has been overcome by
using appropriate weighted Sobolev spaces. In the present paper, we adopt the weights used by
Reeken [14, 15] and Takayama [17]. We note that weighted Sobolev spaces have been efficiently
used also in the analysis of degenerate hyperbolic systems appearing in the fluid mechanics, for
example, in the analysis of the nonlinear shallow water and Green—-Naghdi equations by Lannes
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and Métivier [6] for the motion of water surface near the shoreline where the depth of the water
vanishes, and in the analysis of the Euler—Poisson equations by Makino [9] for the motion of a
gaseous star surrounded by a free surface where the density and the pressure of the gas vanish.
Another difficulty of the problem comes from the localized term Q(s,t)u’(1,t), which cannot
be regarded as a lower order term. However, as we will see in this paper, by introducing an
appropriate energy functional we obtain an a priori energy estimate for the solution w. Although
such an energy estimate is crucial to show the well-posedness of the problem, it does not imply
directly the existence of the solution. Our idea showing the existence of the solution is to
regularize the hyperbolic system as

i = (A(s,t)u') + Q(s,t)u/(1,t) + esi’ + f(s,t) in (0,1) x (0,7),
u=0 on {s=1}x(0,7),
(, @) i=0 = (g™, uy™) in (0,1),

(1.2)

where ¢ > 0 is a regularizing parameter and the initial data (u})nS ulln “) should be modified
from the original initial data (ul, uﬁn) so that the corresponding compatibility conditions are
satisfied. Thanks to the regularized term es4/, the solution to this regularized problem has an
additional boundary regularity so that the localized term Q(s,t)u/(1,t) can be regarded as a
lower order term. As a result, to show the existence of the solution u® for € > 0 it is sufficient
to consider the case Q(s,t) = O. In such a case, we can follow the idea used by Takayama
[17], that is, we transform the problem on the one-dimensional interval (0,1) into a problem
on the two-dimensional unit disc D by the transformation uf(x1,29,t) = w(2? + x3,t). Then,
the transformed two-dimensional problem forms a non-degenerate hyperbolic system so that the
standard theory of hyperbolic systems can be applicable to show the existence of the solution u®
to the regularized problem for £ > 0. Then, passing to the limit € — 40 we obtain the solution
u to the problem (1.1). To the best of our knowledge, there is no existing result on initial
boundary value problems for hyperbolic systems with this type of a localized term. Instead, we
mention Fukuda and Suzuki [2] and Okada and Fukuda [11], where an initial boundary value
problem for a semilinear parabolic equation with a localized term has been studied.

The problem (1.1) arises in the analysis on the well-posedness of the initial boundary value
problem for the motion of an inextensible hanging string of finite length under the action of the
gravity. The model of the motion consists of the initial boundary value problem

& — (rx') = in (0,1) x (0,7),
=0 on {s=1}x(0,7),

(m>m)|t =0 — (mO 7m1 ) in (Oa 1)

(1.3)

8

for the position vector @ of the string coupled with the two-point boundary value problem

—7" 4+ |2"?>r = |2'|* in (0,1) x (0,T),
(1.4) T=0 on {s=0}x(0,T),
T'=—-g-& on {s=1}x(0,7)

for the tension 7 of the string, where g is the acceleration of gravity vector assumed to be
constant. For more details on this model, we refer to Iguchi and Takayama [4], where a priori
estimates for the solution (x, 7) were obtained in weighted Sobolev spaces. In the second part of
this paper, we consider a linearized system of this problem. Let us linearize the problem around



(x,7) and denote the variations by (y,v). Then, the linearized system has the form

y=(ry)+@wa) +f in (0,1) x(0,7),
(1.5) y=0 on {s=1}x(0,T),
(¥, 9)li=0 = (yg" u1")  in (0,1),
and
V' 2" Prv=22" -y - 2" -y")T+h in (0,1)x(0,7),
(1.6) v=0 on {s=0}x(0,T),

vV=-g-vy on {s=1}x(0,T),

where f and h can be regarded as given functions. Here, we note that under appropriate
assumptions on (x,7), once y is given, the above two-point boundary value problem for v can
be solved uniquely.

The second objective in this paper is to establish the well-posedness of the problem (1.5)
and (1.6) in weighted Sobolev spaces by applying the result in the first part of this paper on the
well-posedness of the problem (1.1). To this end, we need to figure out the principal term of
v in terms of y explicitly because the term (va’)’ in (1.5) cannot be regarded as a lower order
term. As we will see later, we decompose v as a sum of a principal part v, and a lower order
part v;. Moreover, the principal part can be written explicitly as

(1.7) vp(s,t) = —((g +2ra")(L,%) - y'(1,1))(s, 1),

where ¢ is a unique solution to the two-point boundary value problem

—¢" +|2"?¢=0 in (0,1)x (0,7),
(1.8) o=0 on {s=0}x(0,7),
¢ =1 on {s=1}x(0,7).

Plugging the decomposition v = v, 4+ 1 into (1.5), we obtain

Il
—~

AY') + QY (L 1) + (ma') + f in (0,1) x (0,T),
on {s=1}x(0,T),

Yy
(1.9) y
( ’t =0 — (y(1)n7y11n) in (07 1)7

I
vo

where A(s,t) = 7(s,t)Id and Q(s,t) = —(¢px')(s,t)@(g+272")(1,t). This problem has the same
form as (1.1) so that we can apply the result of the first part. However, in order to guarantee that
the term (ya')’ is in fact of lower order, we need a detailed analysis on a two-point boundary
value problem for .

The contents of this paper are as follows. In Section 2 we begin with introducing weighted
Sobolev spaces X and Y™ for non-negative integers m. These spaces play an important role
in the problems. We then state our main results in this paper: well-posedness of the problem
(1.3) in Theorem 2.3 and that of the problem (1.5) and (1.6) in Theorem 2.8. In Section 3 we
present basic properties of the weighted Sobolev spaces and related calculus inequalities. We
consider the initial boundary value problem (1.3) in Sections 4-6, which are the first part of this
paper. In Section 4 we evaluate initial values for time derivatives of w in terms of the initial
data (u})“, u") and the forcing term f and state precisely the compatibility conditions on the



data. In Section 5 we derive a basic energy estimate in Proposition 5.2 and a higher order energy
estimate in Proposition 5.4 for the solution to the regularized problem (1.2) including the case
€ = 0. In Section 6 we prove Theorem 2.3. To this end, we first show the well-posedness of
the regularized problem in the case Q(s,t) = O and £ > 0 by transforming the problem on the
interval (0, 1) into a problem for a non-degenerate hyperbolic system on the unit disc D. We
also derive an additional boundary regularity of the solution. We then show the well-posedness
of the problem with a non-zero localized term Q(s,t)u’(1,t) in the case £ > 0 by the standard
Picard iteration. Thanks to the energy estimate obtained in Section 5 we can pass to the limit
e — +0 and obtain a solution w of the original problem (1.3). We then consider the initial
boundary value problem (1.5) and (1.6) in Sections 7-9, which are the second part of this paper.
In Section 7 we analyze two-point boundary value problems related to (1.6) and (1.8), especially,
derive estimates for the solution ¢ of (1.8) and those for the lower order part v of v in terms
of time dependent norms. These estimates guarantee that the term (1a’)" in (1.9) is of lower
order. In Section 8 we evaluate initial values for time derivatives of (y,v) in terms of the initial
data (y*,yi") and the forcing terms (f,h) and state precisely the compatibility conditions on
the data. In Section 9 we prove Theorem 2.8. To show the existence of the solution, we use the
method of successive approximation. In each steps, we apply Theorem 2.3.

Notation. For 1 < p < oo, we denote by LP the Lebesgue space on the open interval (0,1).
For non-negative integer m, we denote by H™ the L? Sobolev space of order m on (0,1). The
norm of a Banach space B is denoted by || - ||5. The inner product in L? is denoted by (-, ) 2.
We put 9; = % and 05 = %. The norm of a weighted LP space with a weight s is denoted
by [[s*u| e, so that ||s®ulf, = fol s |u(s)|Pds for 1 < p < oco. It is sometimes denoted by
lo%u||Lr, too. This would cause no confusion. [P, Q] = PQ) — QP denotes the commutator. We
denote by C(ay,as,...) a positive constant depending on aj,as,.... f < g means that there
exists a non-essential positive constant C such that f < Cg holds. f ~ g means that f < g and
g < f hold. a1 Vaz = max{ai,as}.
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2 Main results

In order to state our main results, we first introduce function spaces that we are going to use in
this paper. For a non-negative integer m, following Reeken [14, 15], Takayama [17], and Iguchi
and Takayama [4], we define a weighted Sobolev space X™ as a set of all function u = u(s) € L?
equipped with a norm || - [|xm= defined by

k
lullFe + > ls70 w7, for m =2k,
=1
(2.1) lullfm = ft1
.1 3
lullZ + > [l 208 Hullf, for m=2k+1.
i=1

For a function u = u(s,t) depending also on time ¢ and for integers m and [ satisfying 0 < [ < m,
we introduce a norm [|-[f|,,,; and the space 3%”71”’1 by

! !
@)l = YN u®lzn, 27 = C(0,T),X™),

4



) 5 N —1
and put -l = s Dl = [l 257 = 277, and 27 = 2™, We use a
notational convention |[-[l|, . = 0.
For a non-negative integer m, we define another weighted Sobolev space Y as the set of all

function u = u(s) defined in the open interval (0,1) equipped with a norm || - [[ym defined by

HS%UHQLQ for m =0,
k+1
-
, lullFe + > Is70Fulf,  for m=2k+1,
[ullym = j=1
B2
[ ull 3, + Z 7720 ul|2, for m =2k +2.
j=1
This norm is introduced so that |ul|3ms1 = [[ull7s + [[v/[|$m holds for m = 0,1,2,.... For a

function u = u(s,t) depending also on time ¢t and for a non-negative integer m, we introduce a
norm ||||H:rn and the space %" by

m m
@l = D N u®llym-s, 25" = () C ([0, TY™ ).
jZO j:0
We use a notational convention H|H|T_1 = 0.

For a function u = wu(t) of time ¢, following Iguchi and Lannes [3], we use weighted norms
with an exponential function e~ for v > 0 defined by

1
t , P m . 2
|u|L2(0,t) = </0 e_p'Yt |U(t/)|pdt,> , |u|H”I\'{n(O7t) = (Z \Oguﬁ:%(o’t)) s

=0

and put

L) = sup ¢ u(t')] + VAlul iz 00,
o<t’'<t

We denote by S3 ,(-) its dual norm for the L%(O,t) scalar product, that is,

t
/ 2 () (t')dt!

(2.2) S i(u) = sup{ ;

©

s Iyi(p) < 1}-

From this definition, we get directly the following upper bounds

" ” 1 1
(2.3) Sa(u) < ‘U|L}Y(0,t) and S, (u) < ﬁ\uhg(o,t) < ;I%t(u)-

In order to state our result on the well-posedness of the problem (1.1), we need to impose
precise assumptions on the coefficient matrices A and Q.

Assumption 2.1. Let My and My be positive constants. For any (s,t) € (0,1) x (0,T), A(s,t)
18 symmetric and it holds that

My tsId < A(s,t) < Mysld,

A (s,8)] + 52|Q(s, )| + | Q(1)]| 2 < Mo,
0, A (s, )] + 1Q)I, < M.



These assumptions guarantee a basic energy estimate for the solution of the problem (1.1) and
the following assumptions guarantee higher order energy estimates together with the existence
of the solution.

Assumption 2.2. Let m > 2 be an integer, T, My, and M be positive constants.
() A e ZP20 270" and Q € 2,21
(i) O tA, O VEQ € L0, T; L?) and 07 A’ € L>(0,T; X1).
iii) In the case m > 3, for any t € (0,T) it holds that

(ii) y

{IHA’(t)!Hmz + 1A @z, + Qo < Mo,

1o A )|z + 107 Q)2 + 107 A'(H)l|x1 < M.

The following theorem is one of main results in this paper and gives a well-posedness of the
problem (1.1) in the weighted Sobolev space X™.

Theorem 2.3. Let m > 2 be an integer, T > 0, and assume that Assumptions 2.1 and 2.2
are satisfied with positive constants My and My. Then, for any data uion € X" ult e Xm 1
and f € %jfn_Z satisfying Otm_lf € LY(0,T; L?) and the compatibility conditions up to order
m — 1 in the sense of Definition 4.2 below, there exists a unique solution uw € 2" to the initial
boundary value problem (1.1). Moreover, the solution satisfies the estimate

(24)  Lye(llw()lll,) < Co {llugllxm + 1wt | xm-1 + L FOlllm-2) + 5007 FOllz2) }

for any t € [0,T) and any v > 1, where Cy > 0 depends only on m and My and 1 > 0 depends
also on M.

Remark 2.4. In view of (2.3) we see that the solution obtained in Theorem 2.3 satisfies

t
(@), < Coe™* (Hua“\xm + g xem-r + Oil;gtlllf(t’)!\lm_g +/0 \|3Z”_1f(t')\|L2dt'>

for any t € [0,T], where Cy > 0 depends only on m, My, and M;.

We proceed to consider the linearized system (1.5) and (1.6). In order to state our result
on the well-posedness of the problem (1.5) and (1.6), we need to impose precise assumptions on
x and 7. We recall that the coefficient matrices A and @ in the linearized problem (1.9) are
given by A(s,t) = 7(s,t)Id and Q(s,t) = —(dx') (s,t) ® (g + 27x”)(1,t). In order that these
coefficient matrices satisfy Assumptions 2.1 and 2.2, we impose the following assumptions.
Assumption 2.5. Let m > 2 be an integer, T, My, and M be positive constants.

(i) For any (s,t) € (0,1) x (0,T), it holds that

M(;ls < T(Sat) < M087
supg<<r ([ (7, 7) ()l + [l (=, &) (B)]ll) < oo

(ii) In the case m =2, for any t € (0,T") it holds that

{Wt)um + [l2(t)[| x5 < Mo,
1 ()l poe + [l (t) | xs + |2 (t) | x5 < M.



(iii) In the case m =3, for any t € (0,T) it holds that

{|||T'<t>||12,* + )l < Mo,

In order to guarantee that the term (1&’)" in (1.9) is of lower order, in addition to Assumption
2.5, we impose the following assumptions.

Assumption 2.6. Let m > 2 be an integer, T', My, and My be positive constants.
(i) In the case m =2, for any t € (0,T) it holds that

[ () [ o + [J&(8) ][ x2 < Mo,
&' (#)]| oo + [2() ]| x2 < My,

(ii) In the case m =3, & € C1([0,T); X*) and ||&(t)| x+ < Mo for 0 <t < T.

In order to obtain an optimal regularity of v relative to y, in addition to Assumptions 2.5
and 2.6, we impose the following assumptions.

Assumption 2.7. Let T and My be positive constants. In the case m = 2, x € C*([0,T]; X4)
and ||, &)(t)| xs < Mo for 0 <t <T.

The following theorem is another main result in this paper and gives a well-posedness of the
problem (1.5) and (1.6) in the weighted Sobolev space X™.

Theorem 2.8. Let m > 2 be an integer, T > 0, and assume that Assumptions 2.5 and 2.6
are satisfied with positive constants Mgy and My. Suppose that the data y%)n e XM yiln €
xml fe %T’"_Q, and h satisfy 6;'1_11” € LY0,T; L?), 3%(9{”_2h € C%(0,T); LY), s%(?;”_lh €
LY((0,1)x (0,T)). In the case m > 3, assume also that h € %>, In addition, suppose that the
data satisfy the compatibility conditions up to order m — 1 in the sense of Definition 8.2 below.
Then, there exists a unique solution (y,v) to the problem (1.5) and (1.6) in the class y € Z7"
and V' € %:}”_2. Moreover, the solution satisfies the estimate

25) Lyl + 12 Ollls) < Codllyillxm + [ xm-1
+ Lt (N F Mg + IR s + 1520720 () | 1)
+ 55107 F ()Y + CuSz (15207 ()| )

for any t € [0,T] and any v > 1, where Cy > 0 depends only on m and My and C1,v1 > 0
depend also on My. Furthermore, if we assume additionally Assumption 2.7 and h € @Tm_Q,
then we have V' € 3&”771”_1’* and

(2.6) 17 Olllpp-1,0 < Collly @l + 12/ @)z + NI, o)

for any t € [0,T].



Remark 2.9. Although the map (x,7) — (y,v) reveals loss of twice derivatives, by a standard
procedure of a quasilinearization we can construct a unique solution (x,T) to the nonlinear
problem (1.3) and (1.4) in the case m > 6. However, a priori estimates for the solution were
obtained in the case m > 4 by Igquchi and Takayama [4], so that it is natural to expect that
the well-posedness of the problem holds also in the case m = 4,5. In order to show this, we
need detailed analysis on compatibility conditions to the initial data, which do not have any
standard form due to a monlocal property caused by the tension 7. Therefore, we postpone this
well-posedness part to the nonlinear problem (1.3) and (1.4) in our future work.

3 Basic properties of the weighted Sobolev spaces

In this preliminary section, we present basic properties of the weighted Sobolev spaces X™ and
Y™ and related calculus inequalities. Many of them are proved in Takayama [17] and Iguchi and
Takayama [4]. Let D be the unit disc in R? and H™ (D) the L? Sobolev space of order m on D.
For a function u defined in the open interval (0, 1), we define uf(x1,x2) = u(x? 4 22) which is a
function on D.

Lemma 3.1 ([17, Proposition 3.2]). Let m be a non-negative integer. The map X™ > u > u? €
H™(D) is bijective and it holds that ||u|| xm =~ ||uﬁHHm(D) for any u e X™.

Lemma 3.2 ([4, Lemma 4.3]). For any € > 0 there exists a positive constant Ce = C(€) such
that for any u € X we have ||su||p= < Cellul x1-

IA

Lemma 3.3 ([4, Lemma 4.5]). For a non-negative integer m, we have ||su'||xm < ||u|| xm+1,

[/l xm < lull xm+z, and |05 ul| oo < [lull x2m+2.

Lemma 3.4 ([4, Lemma 4.6]). For a positive integer k there exists a positive constant C' such
that for any p € [2, 00| we have

.11 .
{”“"“Pafﬂ‘luum <Cllulxa for j=1,2....k,

|7 20F || e < Cllullxarss  for j=1,2,... k.

Lemma 3.5 ([4, Lemma 4.7]). For a non-negative integer m, we have ||uv||r2 < ||ullx1||v] x1
and [luv|xm S [ullxmv2[vllxm.

Lemma 3.6 ([4, Lemma 4.8]). Let m be a non-negative integer, Q@ an open set in RN, and
F € C™(Q). There exists a positive constant C = C(m, N) such that if u € X takes its value
in a compact set K in Q, then we have ||F(u)|xm < C||F|lcmry(1+ [|ullxm)™. If, in addition,
u depends also on time t, then we have also

{HIF(U(t))HIm < ClFllem (L + lllu@)ll,,)™,
IE (@l e < ClHElem ) (14 (@)l 0™

Lemma 3.7 ([4, Lemma 4.9]). Let j be a non-negative integer. It holds that

, mind||v/[| oo [[vl| 2, [lW/[| 2 0]l o} for j =0,
2 1 . .
s (02, uvllze S  mind|lu[[xz ol xr 1l x: ol xz} - for j=1,

[[ull x5 10 x5 for j>2.



Lemma 3.8 ([4, Lemma 9.1]). If a|s—o, then we have

~y

H(au/)/” < min{Ha/HLOO||U”X27Ha/||X1HuHX3} fOT m:07
min{||a’[| xmve [[ull xm+2, la’ | xm||ul|xmizva}  for m=0,1,2,....

Lemma 3.9. Let m and j be integers such that 1 < j < m. If als—o, then we have

ming |l ()l @)l Nl Oy, @l ) for m=1,
e ()Ml et for m=2,3,....

llaw’) O)llm,; < {

Proof. By Lemma 3.8, we see that

@)y < l(a') | x2 + (i) || 2 + [[(au)' | 2
SNl llull xa + lla'Lxe il xes + 167 2 ull xa
S a1yl

4,1
and that
(e ) l; < lla'll x2ullxs + [|a’[| x2llal x2 4 " || x1 [[wll xs
S Mlallg, o Meell5 -

These imply the first estimate of the lemma. We then consider the case m > 2.

@Y My S D2 D B a)(E2w)) | xomer

0<k<j k1+ko=k

We evaluate I(ki,ka; k) = [|((8/a)(0F*u)) || xm-x, where 0 < k < j and ki + ky = k. In the
following calculations, we use Lemma 3.8.

(i) The case k < m — 2.

I(ky, kas k) S 11070 || xom-# | 0F 2l xms2-

g |Ha/|Hm,k’Hu|”m+2,k

(ii) The case j =m — 1.

& d!|| x1 ||| xa for k=7,
ok < 190 Il |
10, a' || x2[|0;*ull x5 for ky <j—1
S Ml el 5
(iii) The case j = m.
167’ [| 2 [l x4 for ki = j,

I(ky, koK) S 3 0 |Owull s for ky = j— 1
Jof a2l ull 2 for Ry < j—2

S Ml sl 5-

These imply the second estimate of the lemma. O



As in Tguchi and Takayama [4], we will use an averaging operator .# defined by

(3.1) (tu)(s) = = /O " u(o)do.

S

Lemma 3.10 ([4, Corollary 4.13]). Let j be non-negative integer, 1 < p < oo, and < j+1— %.
Then, we have

1 .
B i

< - T Is”ul| .

j+1—6—5

104 (A w) | L» <

Particularly, || A u||xm < 2||u||xm form=0,1,2,....

Lemma 3.11. Let m be a positive integer and assume that a|s—o = 0. Then, we have
) 190 alw') Iz S (106 ||z + 07/ | x1 + ST 1070/ 2) et
(i) [[([0F", alu) x2S e’ l[mre el g m—1 + N[ x2)-

(i) 10107, alu' (1, )12 S (ST 107 gl 2) el

Proof. By Lemma 3.8, we see that

10:([0", alu') || 2
m+1

S (@) (@07 w)'Y [l 2 + 1((9Fa) (07" )Y [| 12 + Z 1@ @)@ w)'Y | 2
m+1
m m— j m+1—j
S 10| o< 107 ull x2 + 107 || x2 107" ull s + Y 107|210l x,
j=3
which implies (i).
Similarly, we have
m—1
(07, alY xS D 1@ @)@ w)'Y [xr + (9 a)u) || -
7j=1

Here, for 1 < j <m — 1 we see that

10/ a) (0" u)) Il x2 S 110/ alll 2108 ull x2 < Ml g

m+2,m—1-

As for the second term, in the case m > 2 we have,

10 a)u) llx2 S 1107 a [ llwll xa < MMy e el 2. 0m -1

while in the case m = 1 we evaluate it as

1
1((Gka)) || x2 < lls2 ((Qea)u)" |2 + [[((Oea)u) | 2
_1 1
< [[s720hal|poe[lsu™ || 2 + (52 0ha[| oo + [|Oral| oo ) ||u” | 2
1
+ 520" || p2l|u'l| Lo + [|10sa’|| L2t Loe

Since dials—p = 0, we have dia = s.#(da’) with the averaging operator .# defined by (3.1).
Therefore, by Lemmas 3.10 and 3.2 we obtain HS_%ataHLoo = ||s%%(0ta’)||Lm < 2Hs%8ta’\|Loo <
|0ca’|| x1, so that

(3-2) 1((Gra)u’) xS Nl0eal| el ]| 2.

10



These estimates imply (ii).
In view of [0/u/(1,t)] S 0] ullx2 < [[lullly 0., for 0 < j < m, the proof of (iii) is straight-
forward. ]

Lemma 3.12 ([4, Lemma 4.10]). It holds that
< llu|| xm+z||v]| xm+2  for m=0,1,

||| xm+ival|v]| xm+1  for m=0,1,2,....
Lemma 3.13. For a positive integer m, we have

)@ < {!Hu(t)ma,l\llv(w

@l rvamllo@O g1 for m > 1.

for m=1,

Proof. By Lemma 3.12, we see that
s YOI < /vy + [[(ew) v [yo + [ (Drv) [lyo
S lullxsllvllxs + 10wl xzlloll x2 + [lullxz(| O]l x2
S Ml llollls 2
and that
o YOI S Nullxal[vllx2 + [0l xallollx2 + ]l xalldpll

ll2,1-

These imply the desired estimates in the case m = 1. Similarly, we see that
YO < ' [ly= + D)oy + ! (9pv) ||y
+[1(871) 0" [[yo + 2] (Bpu)' (Bev) [lyo + || (Fv) | yo
S lullxallvllxs + 10wl xsllvll xs + [lullxal[ Ol x2
+ 1107 ull x2 o]l x2 + |0pullx2 Bl x2 + Jull x1 1|07 v]|x1
S Mlully2lliolls 2,
which implies the desired estimate in the case m = 2. We then consider the case m > 3.

YOI S Do > 10w (0F0) [yme.

0<J <m j1+jo=j

We evaluate I(j1,j2;5) = [[(87*w) (87v)'||ym-s, where 0 < j < m and ji + jo = j. In the
following calculations, we use Lemma 3.12.

(i) The case j < m — 3.
(1, 523 5) S 107 ull xmar-3 10720 xm1-

S Meellgs im0l g2

(ii) The case j =m — 2.
S 107" 2ul|xs||v]|xa  for j1 =,
I(]17j27]) ]1 ]2 . .
10/ ul| x4[|0;?v][ xs  for j1 <j—1

S Mlllin 1m0l 1,

11



(iii) The case j =m — 1, m.

Hatju\|Xm_+H||U||X4 for j1 =17,
I(j1,52;5) S HU"\XALHagUHXmH.—j for j2 =7,
10/ ul| xmi2—s 0P vl xmiz—s  for ji,j2 <j—1

S Meelllmgs im0l g2
These imply the desired estimate in the case m > 3. 0

Lemma 3.14 ([4, Lemma 4.11]). If 7|s=0 = 0, then we have

17" L2 lul| xa lo]l x for m =0,

7o |ym < |7/ oo min{||u| x4 llv]lx2, lul|xs ol xs}  for m =0,

TU UV ||lym X , , 1

min{{| 7’| gz Jul| xa, [|7/]| oo Jul| x3 vl x2 for m =1,

171 Leopxm—1[[ul| xm2[|0]| xm+2 for m>2.

Lemma 3.15. If 7|s—9 = 0, then we have

(" [zee 4+ 107" [ 2)l[ullly 1 [Vlll5.1 for m =1,
o II%, S 4 1 0z lllullg g vl for m=1,

—2
W07 lzee + 17l —y + 107 | L2) N ulllyn g2 0l g 2. for M= 2.
Proof. By Lemma 3.14, we see that

llra" oI} < Iruo" ys + (@) " yo + [ru” (9)" [ yo + | (er)u"v" | yo
Sl (lullxallvllxs + [0vullxallvll xs + [lullxall O]l xs)
+ 1107 L2 llull s vl x2

S (I llzoe + 1067 2)ulll 1 0]

3,1
and that
lruo" |5 < 171 e (lullxa ol xe + |0l xs vllxs + [lull xa ][9] x2)

+ 1007 | 2 lull xallvll x=

SN0zl ]

which imply the desired estimate in the case m = 1. We then consider the case m > 2.

eI S D Y @)@ W) (@07 0) lym-s.

0<i<m jo+j1+jeo=j

4,15

We evaluate I(jo, j1,J2;7) = ||(8;?07')(8glu)”(8‘tj2'l}),/”ym—j7 where 0 < j < m and jo+ j1 +j2 = J.
In the following calculations, we use Lemma 3.14.

(i) The case j < m — 2.

(o, j1, 523 ) SN0 | Loorxcm—1-3 107 ull xomer2—s |07 0] xym-+2—5
S U027 e + M7 M=) el 0l 2,

where we used || ||z < || f]] xz2-

12



(ii) The case j =m — 1.

17z 107" ull xslloll s for g1 =,
I(jo, g1, g2:3) S QI llee llullxa |07 0llxs for ja =1,
107° 7 | 2llOf ull x| 07 vl x5 for  ji,j2 <j—1
S U lzee + 7 Mo )Ml 02,

(iii) The case j = m.

(17| oo 105" ul| 2 | 0] x4 for j1=j,

17"l o< llull xa 1070l x2 for ja = j,
I(jo: - 23 4) S 3 17 |p= |10 ull xsl|0f ol x5 for o =0, ju,ja <j—1,
1077 | 221107 ul (|97 ]|
BT | 2110 ul s (|07 ]| x4

S Uz 4 M7 M=y + 0077 W z2) Wl 2,00 110 M 2,0m

=

or jo>1, 1 <jpp<j—1,

=

or jo=1, jo<j1<j—1

By noting ||7'||ze < (10727 || + [|7']ll,,_;, these imply the desired estimate in the case
m > 2. O]

Lemma 3.16. If 7|;—0 = 0, then we have

", .1
v

1 .
Is2ru"v"|| 10 S min{||7']| Lo [lullx2 [0l xs, (71 2 lull x2 [0l s 1712l xs vl x= }-

1
Proof. It is sufficient to note that |7(s)| < s* #||7/||z» for 1 < p < co. O

4 Estimates for initial values and compatibility conditions I

We consider the initial boundary value problem (1.1). Let u be a smooth solution to the problem
(1.1) and put uij“ = (8]u)|i=o for j = 0, 1,'2, .... By applying &/ to the hyperbolic system in
(1.1) and putting ¢ = 0, we see that the {u}'} are calculated inductively by

@0 =3 (D@ Aol + @ Qo) (1) + @ oo
k=0

for j =0,1,2,.... Then, by applying 9/ to the boundary condition in (1.1) and putting ¢ = 0,
we obtain

(4.2) u*(1) =0

for j = 0,1,2,.... These are necessary conditions that the data (ul', ul*, £) should satisfy for the
existence of a regular solution to the problem (1.1) and are known as compatibility conditions.
To state the conditions more precisely, we need to evaluate the initial values {u;n} Although it

is sufficient to evaluate 8§ u only at time ¢t = 0, we will evaluate them at general time ¢.

Lemma 4.1. Let m > 2 be an integer and assume that Assumptions 2.1 and 2.2 are satisfied
with a positive constant My and that f € %7’31_2. Then, there exists a positive constant Cy
depending only on m and My such that if w is a solution to (1.1), then we have [|u(t)]l],, <

Colllwll,1 + M1 El7—2)-
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Proof. Let 0 < j < m — 2. Tt follows from (1.1) that

el o < Ml + Nl
< Melllng + NCAWY g + QW L g + 1 F 2,5

We note that by Assumption 2.1 we have A|;—9 = O. Therefore, by Lemmas 3.8 and 3.9 we see
that

|4 el for m=2,
N Ilelll,,  for m=3.j=0,

ICA) N, 2,5
A g 2 Ml 5

1A
S [l

=

or m=3,j =1,

m—2llwlly,; for m=>4

m?j :

By the standard Sobolev embedding theorem, we see also that

i
k
Q' (1, )llly—25 < MQ@N—z Y 107 ullx2 < Hleelly -

k=0

Therefore, we get [[ull,, ;o < lllll,, ; + [ £[ll,—2 for 0 < j < m —2. Using this inductively on
7, we obtain the desired estimate. O

Under the same assumptions in Lemma 4.1, we see that if the initial data satisfy uijn € Xmi
for 7 = 0,1, then the initial values {u;n} satisfy u;n € X™J for j =0,1,...,m, so that their

boundary values uzn(l) are defined for j =0,1,...,m — 1.

Definition 4.2. Let m > 1 be an integer. We say that the data (ul,ul®, f) for the initial
boundary value problem (1.1) satisfy the compatibility conditions up to order m — 1 if (4.2)
holds for any j =0,1,...,m — 1.

5 Energy estimates

Difficulties showing a well-posedness of the initial boundary value problem (1.1) is caused not
only by the degeneracy of the matrix A(s,t) at the end s = 0 but also by the localized term
Q(s,t)u/(1,t). The first difficulty could be overcome by using weights in the norm of Sobolev
spaces, see Takayama [17], whereas the second one will be treated by regularizing the hyperbolic
system. In this paper, we adopt the regularized problem (1.2). As we will see later, in the case
e > 0 the regularized term esu’ makes the localized term Q(s,t)u’(1,t) to be of lower order.
Before giving energy estimates for the solution, we recall the following lemma.

Lemma 5.1 ([4, Lemma 6.1]). Let My be a positive constant. There exists a constant Cy =
C(My) > 1 such that if a symmetric matriz A(s) satisfies My 'sld < A(s) < Mysld and
|A'(s)| < My for s € [0,1], then we have the equivalence

Co ' (Isu” 172 + lu'll72) < [I(Aw)|[72 < Colllsu”|[72 + [lu'][Z2).

The following proposition gives a basic energy estimate for the solution of the problem (1.2).

14



Proposition 5.2. Let T', My, and My be positive constants and suppose that Assumption 2.1 is
satisfied and that f € C°([0,T); L?) and O,f € L'(0,T; L?). Then, there exist positive constants
Co = Co(My) and vy = v1(My, My) such that the solution u € %ﬁ* to the problem (1.2) satisfies
an additional regularity eu'|s—1 € H'(0,T) and an energy estimate
(5.1) Lya(llwC)lll) + Velu'(1, ) o

< Co {Iu(0)[lx2 + le(0) | x1 + [ F(0)l 2 + S5, (19ef ()l =) }
for any t € [0,T], v > 1, and € € [0,1].

Proof. In the following calculations, we simply denote by Cjy the constant depending only on
My and by Cj the constant depending also on M;. These constants may change from line to
line.

We first suppose that the solution u satisfies u € C2([0,T]; X2). Then, we see that

(A, ') 2 + (| (Aw) |72} — {((OeA)d,4') 2 + 2(((OpA)u'), (Au')') 12 }
= Q(A'u,/, u/>L2 + 2((A11/)/ (A’LL/)/)LQ

—2((Ad') i — (Au')) 2
—2((Au')  est’ + Qu'(1,¢) + f) e,

where we used the boundary condition |s—; = 0. Here, by integration by parts we have
2((AW) st )2 = (4 - Ad)|s=1 — (@', (A — sA )W) 2
We see also that

(AW, Qu'(L,0) + £z = (AWY, sQu + F)pz + (A%Y, Q(u(1,1) — su')) 1o
= L (awy, sQul + f)p — (BAWY, sQu' + )y

dt
— (A, 0(sQu’ + f)) 12 — (A4, (Q(w'(1,8) — su'))") 2.
In view of these identities, we introduce an energy functional &5(t) by

E(t) = (AW, )2 + | (Aw)' |72 + 2((Aw), sQu’ + £) 2 + A(l[a] 72 + Jul%0),

where A > 0 is a parameter. By Lemma 5.1, it is easy to check that there exists a sufficiently
large Ao = A(Mp) such that if we choose A = Ao, then we have

(1) < Collllu(®)ll2,« + £ D172,
(5.2) 9 5
lu(@)lz,. < Co(é2(t) + (| £()1172)

for 0 <t <T. Moreover, we have

S f(t) + (- AW o1 = (OAW )12+ 2((D A (AwY + 5Qu’ + £

dt
+2((Au'), 0,(sQu’ + f)) 2 + 2(Aw’, (Q(u'(1,1) — su'))) 12
+e(a, (A—sANd )2 + A(;i (
< Cr(llw®3 . + ) lllo £ Ollz2) + Colllw()lly, ) £ )l 2,

lalZ2 + llull %)
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where we used Lemma 5.1 together with |0;A(s,t)| < Mjs, which comes directly from Assump-
tion 2.1. Therefore, for any v > 0 we have

d
5{52%52@)} + 2ve & (1) + eMy e/ (1, 1) 2

<e O (lw)3,, + M)l N FOllz2) + Colllw@lly,. ) £ (E)]l 22}

Integrating this with respect to t and using (5.2), ‘f|Lg(0,t) < 7_%1%,5(]”), and

[ e iwerar
0

< I%t(f)sf?t(@),

we obtain

t
- 2 ot 2 .
e 27tHIU(lt)HIQ,*+27/0 e (I3, At + el (1, ) 720,

< Cofllu(O)ll2,s + Ly IFOllz2)* + Ll o, ) S5 (1 F ()l 2)}
+85 (IF Olle2)® + Cov L llu() )%

As was shown by Iguchi and Lannes [3, Lemma 2.16], we have also

(5.3) Y5 I Ollz2) < Le(lF Ollz2) < CUFO0) 2 + Sx 2 (IF Ol 22),s
[/ (1,)| 220, < C(y™ 2|/ (1,0)] + M/ (1, 1) 22 0.1))
with an absolute constant C' > 0. Therefore, by choosing 7, so large that C1v; < %, we obtain

Lyt () lllo,0) + VElu' (1) 0,y < Cofllw(0)lllp,. + 1F(0) 22 + 85, (11 F()l22)}-

By using the hyperbolic system for w, we have [|i|;2 < Co(|||ulll,, + || f|lz2). These estimates
imply the desired one. 7

In the case u € ,%”1?’*, we use a mollifier pox with respect to ¢ with a kernel p(t) = 1p(%)
satisfying p € C§°(R), suppp C (—1,0), and [ p(t)dt = 1. The procedure is standard so we
omit the details. O

We then prepare estimates for the solution w to the problem (1.1), which convert spatial
derivatives into time derivatives by using the hyperbolic system in (1.1).

Lemma 5.3. Let T' and My be positive constants and m > 2 an integer. Suppose that Assump-
tions 2.1 and 2.2 are satisfied and that f € %7731_2’* in the case m > 3. Then, there exists a
positive constant Co = Co(m, M) such that the solution w € 27" to the problem (1.2) satisfies

el < Co(l0"u®lly + W) -y + I1F O l—,)

for any t € [0,T], where we use a notational convention |||-|[|, . = 0.

Proof. It is sufficient to evaluate |8 7u||y; for 3 < j < m. To this end, we use the identity

(5.4) 107" w3 = 10"l T + 107" w52 + 20407 ul[ -
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Obviously, we have [|9;" Tz < |ull m—1- To evaluate the second term in the right-hand side,
we introduce a matrix valued function Ag(s,t) = LA(s,t) = .#(A'(-,t))(s), which is symmetric
and satisfies
{Molld < Ao(s,t) < Mold,
A0 @)l -2 + 1 Ao ()l < 2Mo

for any (s,t) € (0,1) x (0,7"), where we used Lemma 3.10 to derive the above estimates. There-
fore, by Lemma 3.6 we obtain ||| Ay (t)|,, 5 + H\Agl(t)wz’* < Cp with a constant Cj depending
only on m and Mjy. Moreover, by the hyperbolic system in (1.2) we have v’ = Aal//lF with
F =4 — (Qu'(1,t) + est + f), so that by Lemmas 3.3, 3.5, and 3.10

IF L for m=j=3
(5.5) 107" || xi-2 S { 0 F || x1 + [|-4 F|| x> for m=4,j=3,
|ya;"ﬂFHXj,2 IFNL 5 for m>5j=30rm>j>4
1)
<10 Pl a2 + 10" Vst + ey + I F s

where we used the identity .# (su') = u — .40 to evaluate || .4 F || x2 1n the case m = 4,5 = 3.
We proceed to evaluate the highest order term in (5.4). Applying - 8m 7 to the hyperbolic
system in (1.2), we obtain

s|odo ) S (10971, Aoy | + 1002 ([0, Alu)|
+ 100720 (i — (Qu/ (1, t) + esu’ + f))I.
Therefore, by Lemmas 3.7 we obtain
(5.6)  [Is2000)" Tu e < ||s%aj—1 A |+ |52 002 ([0 7, Al | 2
+s7= &7 2007 (i, — (Qu/ (1, ) 4+ est’ + )| 2
SNA xs—2ve |07 | -2 + (0], A’ || -2
11077 (i — (Qu/(1,1) + st/ + f)l| xs-2.

As for the second term in the right-hand side, it is sufficient to evaluate it in the case 3 < j <
m — 1. In the case m > 5 we see that

(", Ay |2 SO A o=+ D @ A0 )Y | x5

J1tje=m—j—2

N7 A xiellullxvs + D 10T A e |07 s
Jitia=m—j—2
S WA M sl

In the case mm = 4 we may assume j = 3 so that by (3.2) we evaluate it as ||([8]" 7, Aju')|| xi—2 =
|((0:A)u) || x1 S 1O A || x1 || || x2- To evaluate ||u/|| x2 we modify (5.5) shghtly to get ||u/]| x2 <
|07 x2 + [l|ulll; + [1£]llz,.- The last term in (5.6) can be easily evaluated so that we get

530007 Pl S 107"l o + 1079 Dl
+ 107 [ xa-2 + el -y + 1 F 2,
Summarizing the above estimates, we obtain
—j 1)
107" x5 < 1109 Pl iz + 107"V omr 4 el y + 1 F o

for 3 < j < m. Using this inductively, we finally obtain the desired estimate. O
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The following proposition gives higher order energy estimates for the solution of the problem
(1.2).

Proposition 5.4. Let T, My, and M be positive constants and m > 2 an integer. Suppose that
Assumptions 2.1 and 2.2 are satisfied and that f € 22 and 0" ' f € L*(0,T;L?). Then,
there exist positive constants Co = Co(m, My) and v1 = y1(m, My, M1) such that the solution
u € 27" to the problem (1.2) satisfies an additional regularity eu/|s—y € H™1(0,T) and an
enerqgy estimate

(5.7) Lya(llw)llln) + VElw' (L) g g
< Co {u(0)[lxm + [[@(0) [ xm-1 + Lyt (I F ) + S5 N FOlL2) }
for any t € [0,T], v > 1, and € € [0, 1].

Proof. In the following calculations, we simply denote by Cjy the constant depending only on
My and by Cj the constant depending also on M;. These constants may change from line to
line. Putting v = 9" ?u, we see that v solves

(5.8)

v = (Av') + QU'(1,t) + esv' + f, in (0,1) x (0,7),
v=0 on {s=1}x(0,7),

where f,,, = O 2f + ([0/" %, AJu') + [0/ 2, Q] (1,t). Applying Proposition 5.2 we obtain
Ly (107" u()|ll) + Vel 2’ (1, ) a1 0.
< Co {1072 (0) . + £ (O) 122 + 5,10 Fin (1 z2) } -

Here, by the first equation in (5.8) together with Lemmas 3.3 and 3.8 we get || fn(0)]r2 <
Collu(0)||,,- By Lemma 3.11 we get also [|0;finllz2 < |07 £]l12 + Ci|l|ulll,,. These estimates
and Lemma 5.3 imply

Ly ([lwC)lll) + VeI 4 (1,) a0,

< Co {0, + Ly (N F Olly—2) + Lyt (e 1) + S5, (10" £l z2) }
+ G150 (l[wC)ll)-

As was shown by Iguchi and Lannes [3, Lemma 2.16], we have also

L)l 1) < CAO)l + 5l
(1, 0) 20, < COF (O], + 7! (1,8) 10,

with an absolute constant C' > 0. Since S, ([lw()ll,,) < 7' I¢([lw()l,,), by choosing 71 so
large that 0171_1 < 1 we obtain

Ly i (llw)llln) + Vel (1) 1o,
< Co {llw(0)lll, + Lyt (N F VM) + S5, (107" £l z2) }

for any t € [0,T], v > 71, and ¢ € [0, 1]. This estimate and Lemma 4.1 give the desired one. [J
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6 Existence of solutions I

In this section we prove Theorem 2.3. To this end, we first consider the initial boundary value
problem to the regularized system (1.2) in the case @ = O, that is,

i = (A(s,t)u') +esu’ + f(s,t) in (0,1) x (0,7),
u=0 on {s=1}x(0,7),

(u7 ’l:l/)’t:() = (uhn, ulln) in (07 1)7

(6.1)

with a degenerate but smooth coefficient A and a regularizing parameter ¢ € R. The compati-
bility conditions for the data (ul, !, f) can be defined similarly to Definition 4.2.

Proposition 6.1. Let m > 2 be an integer and assume that A € C*°((0,1) x (0,T)) is symmet-
ric and satisfies My 'sId < A(s t) < Mysld for any (s,t) € (0,1)x(0,T) with a positive constant
My. Then, for any data ul} € X™, ult € XL, f € 27"2 satisfying 0" ' f € L'(0,T; L?)
and the compatibility condztzons up to order m — 1, there exists a unique solution w € 2"
to the initial boundary value problem (6.1). If, in addition, € > 0, then the solution satisfies
'u,’|s:1 S Hmfl(O,T).

Proof. This proposition can be proved along with the proof of Takayama [17, Theorem 2.1] as
follows. Let u be a solution to (6.1) and put U(z,t) = uf(z,t) = u(z? + 23,t) for (z,t) €
D x (0,T). Then, the problem (6.1) is transformed into the initial boundary value problem

iU = Z < (2,1)0,,U) + 15%8 U ) + ffx,t) in Dx(0,T),
6.2 =2
(6.2) U=0 on 0D x (0,T),
(U,0U) =0 = (UF", UT") in D,

where Ag(s,t) = TA(s,t) = (A A(-,1))(s) and U]i-n = (uij’“)ﬁ for j = 1,2. By Lemma 3.1, we
see that U}® € H™(D), U € H™Y(D), f* € (/52 C9([0,T]; H™=*7(D)) satisfy 9;" " f# €
LY(0,T; L*(D)) and compatibility conditions up to order m — 1. Since the coefficient ma-
trix Ag is strictly positive, it is classical to show the existence of a unique solution U €
Ni<o C([0,T); H™ (D)) to (6.2), which is radially symmetric; for a general theory of initial
boundary value problems of hyperbolic systems, see, for example, Benzoni and Serre [1, Chapter
9], Métivier [10, Chapter 2], Rauch and Massey [13, Theorem 3.1], and Schochet [16, Theorem
A1]. Therefore, we can define u(s,t) by u¥ = U. Then, by Lemma 3.1 we see that u € 2" and
that w is a unique solution to (6.1). Moreover, by Proposition 5.4 we have u/(1,-) € H™~ 1(0 T)
if e > 0. O

We then consider the problem (1.2) with a localized term Q(s,t)u’(1,t). We still assume
that the coefficient matrices A and @ are both smooth. Here, ¢ € (0, 1] is fixed so that we denote
the initial data by (ul®, ul").

Proposition 6.2. Let m > 2 be an integer ¢ € (0, 1] and assume that A,Q € C*°((0,1) x (0,7))
and that A(s,t) is symmetric and satisfies My 'sId < A(s, t) < MysId for any (s,t) € (0,1) x
(0,T) with a positive constant My. Then, for any data u* € X™, u® € X™ 1, f e 27" 2
satisfying 8{"‘1f € LY(0,T; L?) and the compatibility condztwns up to order m — 1, there exists

a unique solution w € 27" to the initial boundary value problem (1.2) satz’sfymg u'ls=1 €
H™10,T).
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Proof. We first consider the case where the data satisfy additional regularities.u})“ e xXmtl

e Xm and f € 277!, Let u be a smooth solution to (1.2) and put in = (8] u) 4= for j =
0,1,...,m—+1. Then, {um m+1 are calculated from the data by a snmlar recurrence formula to
(4.1) and satisfy u}n S Xerl J for j =0,1,...,m+1. Therefore, we can construct u®) e %Tmﬂ
which satisfies (8/u(®)],—o = uij“ for j = 0,1,...,m + 1. Particularly, we have (9su(?)|s—; €
H™10,T). We proceed to construct a sequence of approximate solutions {u(”)};"zo. Suppose
that u(™ e 2" is given so that

(6.3) {@ju("))\tzo =ul" for j=0,1,...,m

(Dsu™)| =1 € H™1(0,T),

and consider the initial boundary value problem

¥ = (A(s,t)v) +est’ 4+ fM(s,t) in (0,1) x (0,T),
v=20 on {s=1}x(0,7),
(le'])’t=0 - (U‘O 7“’1 ) in (07 1)7

where f(® = Q(dsu™|4—1) + f. It is easy to see that f(®) e 3&”71”*2, Btm*lf(”) € LY0,T; L?),
and that the data (uion, uiln, I (")) satisfy the compatibility conditions up to order m — 1. There-
fore, by Proposition 6.1 the above problem has a unique solution v € 27" satisfying (6.3).
Denoting this solution by w1 we have constructed the approximate solutions {u(”)}%ozo. In
order to see a convergence of these approximate solutions, we put o™ = 4+ — () which
solves

B = (A(s, Doty 4 25 4 Qs ™ (Le) i (0,1) x (0.T),
(U(n+1), 'l.)(n+1))|t:0 = (0, 0) in (07 1)

By Proposition 5.4, we see that

IV,T<||rv<"“><->|Hm> Ve (L) s oy
o )l 2>+S*T<Ham—1<c2< ) 22)

Z v'(1,)]) + Z (1))

S ’7_5 |,v(n)/( ) ')|H,7Y”—1(0,T)7

where we used I ;(|u]) < C(|u(0)] + 57 ;(|0u|) and (2.3); see [3, Lemma 2.16]. Therefore, by

choosing v so large that 7*% < (/e we obtaln

n n 1 n
LoD () + Va1 s o0y < 5 VERP (L) o

for any n = 0,1,.... This ensures that {u(}2, and {u(™'|;_1}5%, converge in 2, and
H™1(0,T), respectively, so that the limit u is the desired solution.

We then consider the case without any additional regularities on the data. By using the
method in [13] we can construct a sequence of approximate data {(ugl(n) , uiln(n), f ("))}ff’:l, which
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satisfy the additional regularities ugn(n) e xmtl, uiln(n) e xm fn ¢ %:ﬂ”_l, and compatibility
conditions up to order m — 1, and converge to the original data (u'})n, ul", f) in the corresponding
spaces stated in the proposition. Then, for each n € N there exists a unique solution u(™ 2
to the problem corresponding to the approximate data. By the linearity of the problem and
by Proposition 5.4, we see that {u(™}2° ; and {u(™’|;_1}32, converge in 27 and H™1(0,T),
respectively, so that the limit w is the desired solution. ]

We are ready to prove one of our main results in this paper, that is, Theorem 2.3.

Proof of Theorem 2.3. Once a solution w € 27" to the problem (1.1) is obtained, the energy
estimate (2.4) follows from Proposition 5.4. Since Assumption 2.2 (iii) is just imposed to exhibit
how the constants Cjy and ~; in (2.4) depends on norms of the coefficients A and @, it is sufficient
to show the existence of a solution w € 27" under Assumptions 2.1 and 2.2 (i)—(ii). The proof
consists of 4 steps and proceeds in a similar way as the proof of [16, Theorem Al].

Step 1. We assume additionally that 4,Q € C*°((0,1) x (0,7")) and that the data satisfy
additional regularities ul® € X™! 4t € X™, f € 27, and compatibility conditions up to
order m to the problem (1.1). Let 0 < ¢ < 1 and consider the regularized problem (1.2).
We note that the data (u})n,uiln, ) do not necessarily satisfy the compatibility conditions to
the regularized problem (1.2). However, by using the method in [13] we can construct initial
data (ug"®,u;"®) € X™ ! x X™ of the problem (1.2) so that the modified data (uy", u;"", f)
satisfy compatibility conditions up to order m and that the modified initial data converge to the
original ones in X *! x X™ as ¢ — 4+0. Then, by Proposition 6.2 there exists a unique solution
ut € %f““ of the regularized problem (1.2). Moreover, by Proposition 5.4 the solutions
{uf}o<c<i satisty the uniform bound [|u®(t)|l|,, < C for any t € [0,7] and € € (0,1] with a
constant C' independent of ¢ and . In order to see the convergence of these solutions as ¢ — +0,
we put v®"7 = u® — u", which solves

o7 = (A(s, )o=") + Q(s, o= (1,) + f=7(s,1) in (0,1) x (0,7),
v®"1 =0 on {s=1}x(0,T),

(1}87’7, ’1'15777)|t:0 — (uion,f-: o uionm’ uiln,s _ uiln,n) in (0, 1)’

where " = esu® — nsu”. Therefore, by Proposition 5.4 and Lemma 3.3 we obtain

Ly (I = ") () S g™ = ug™ lxm + llug™ = w™xm—s + Lo (1" () ly—1)

S Mg = ug ™ xm + [l — ™| xms

+elyr(lu Olll,) +nly (e’ Olll,,)
—0 as ¢e,n7—+0,

which shows that {u®}o<.<1 converges in 27" and the limit u is the desired solution.

Step 2. We still assume that A,Q € C*°((0,1) x (0,7")) but do not assume any additional
regularities on the data (u})n,uiln, ). Then, as before we can construct a sequence of regular
approximate data {(ui)n("), uiln(n), f (”)) o 1, which satisfies the additional regularities stated in
Step 1 and converges to the original data in the corresponding spaces. Then, by the result in
Step 1, for each n € N there exists a unique solution u(™ € Z7" to the problem corresponding
to the approximate data. By the linearity of the problem and by Proposition 5.4, we see that

{uM}2 ) converges in 277, so that the limit u is the desired solution.
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Step 3. We will prove Theorem 2.3 in the case m > 3 without any additional regularities on
the coefficients and the data. We first approximate the coefficient matrices A and () by smooth
ones {AM}2  and {Q™}22,, which satisfy A™ Q™ € C*((0,1) x (0,T)) and conditions in
Assumptions 2.1 and 2.2 with My and M; replaced by 2My and 2Mj, respectively. Moreover,
{AMee - and {QM}22, converge to A’ and Q in 277N %TQ’* and 2,72 respectively. We
then consider the initial boundary value problem

i = (A (s, t)u') + QM (s, t)u'(1,£) + f(s,t) in (0,1) x (0,7),
(6.4) u=0 . on {s=1}x(0,7),
(u, ) o = (u™ u"™) in (0,1),

where the initial data (u gl(n),uiln(n)) € X™ x X™ 1 can be constructed so that the data
(ubn(n), um n) , f) for the above problem satisfy the compatibility conditions up to order m — 1
and converge to (ul',ul") in X™ x X™ ! as n — oo. Then, by the result in Step 2, for each
n € N the above problem has a unique solution u(™ € 2" Moreover, by Proposition 5.4 these
solutions satisfy the uniform bound [|u(™(t)||,, < C for any ¢ € [0,7] and n € N with a con-
stant C independent of ¢t and n. On the other hand, by Lemma 3.1 we see that the embedding
XJ*+t «s X7 is compact so that by the Aubin-Lions lemma the embedding 27" — 3&”71"*1 is
also compact. Therefore, {u(")};’f:l has a subsequence which converges u in %71”—1. Obviously,
u is a unique solution to (1.1); we note here that this is the only place where the case m = 2
is excluded. As a result, without taking a subsequence, {u(”) o, itself converges u in 3&”:;”_1.
Moreover, by standard compactness arguments we have also

O € L(0,T; X™7) N Cy ([0, T); X™ )

for 5 =0,1,...,m. It remains to show that this weak continuity in time can be replaced by the
strong continuity. To this end, we use the technique used by Majda [7, Chapter 2.1] and Majda
and Bertozzi [8, Chapter 3.2], that is, we make use of the energy estimate. For the approximate

solution u(™, we define an energy functional (5”;%”)( t) by
éa,%n)(t) _ (A(n)amfl (n) amflu(n)) 2 + H( 8m 2 n)/) ||2
+2((AM P2l QM 2l 1 £10) 1

where £ = O f 4 ([0 2, A a7y 4 [8m 2,@ ) (1 t) Then, as in the proof of
Propositions 5.2 and 5.4 we obtain &' )( t) = ) + ft t’ dt', where F\" satisfies

|F,(,f) B < (@ F,0m2F) ()| 12 + 1) with a constant C 1ndependent of n and t. Passing
to the limit n — oo to this energy identity, we see that the corresponding energy functional
&m(t) for the solution w is continuous in ¢. This fact together with the weak continuity implies
that 0" 'u € C([0,T); X*') and 9" *u € C([0,T]; X?). Then, by using the hyperbolic system
we obtain 9"u € C([0,T]; L?). Finally, as in the proof of Lemma 5.3 we can show 0," 'u €
C([0,T); X7) inductively on j = 3,4,...,m

Step 4. We will prove Theorem 2.3 in the case m = 2. We first note that the conditions in As-
sumptions 2.1 and 2.2 (i)—(ii) in the cases m = 2 and m = 3 are exactly the same. As before, we
approximate the data (ul', ul, f) by a sequence of more regular data {(u:)n("), in(n) ,FM)ee > 1>
which satisfies the conditions in the case m = 3 and converges to the original data in the cor-
responding spaces. Then, by the result in Step 3, for each n € N there exists a unique solution
u™ e %:,3 to the problem corresponding to the approximate data. By the linearity of the
problem and by Proposition 5.2, we see that {u(”) - o converges in %ﬁ, so that the limit u is

the desired solution. O
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7 Two-point boundary value problem

We proceed to consider the linearized system (1.5) and (1.6) for the motion of an inextensible
hanging string. The solution v of the two-point boundary value problem (1.6) can be decomposed
as a sum of a principal part v, and a lower order part 11. The principal part v, can be written
explicitly as (1.7), so that the lower order part v satisfies

— + &P =22y — 2" -y")r+h in (0,1) x (0,T),
(7.1) n=0 on {s=0}x(0,T),
y=-2a"y+2" y)r on {s =1} x(0,T).

Note that from (1.7) and (1.8), the boundary condition of v on {s = 1} x (0,7) is naturally
Y| = 2(x”-y’)7. However, this boundary condition can be written as the last boundary condition
in (7.1), sincey = 0 on {s = 1}x(0,7"), which comes from (1.5). Here, we adopt (7.1) to facilitate
later analysis. In view of (7.1) and (1.8), we first consider the two-point boundary value problem

(72) {—V” +|2"|?v =h in (0,1),

v(0) =0, V(1)=q,
where h is a given function and a is a constant.

Lemma 7.1 ([4, Lemma 3.7]). For any M > 0 there exists a constant C = C(M) > 0 such that
if ||s%:1:”\|L2 < M, then the solution v to the boundary value problem (7.2) satisfies

1
15V [|» < C(lal + [|s* T2 Al 1)
for any p € [1,00] and any o > 0 satisfying o + % < 1.

The estimate in this lemma is not sufficient to guarantee that the solution v of (7.1) is in
fact a lower order term. In order to show that 1, is of lower order, we need to consider the
two-point boundary value problem

(7.3) {— 2Py =hr — My i (0,1),

V(O) =0, I//(l) :a+h[](1),
where hy and hjr are given functions and a is a constant.

Lemma 7.2. For any M > 0 there exists a constant C = C (M) > 0 such that if Hs%:c”HLz < M,
then the solution v to the boundary value problem (7.3) satisfies

1
[/1l2 < C(lal + Is2hyll 1) + [t 22

Proof. The estimate in the case hyy = 0 comes from Lemma 7.1. Therefore, by the linearity of
the problem, it is sufficient to show the estimate in the case hy = 0 and ¢ = 0. Multiplying the
first equation in (7.3) by v and integrating it over [0, 1], we see that

1 1
/(|V'(S)\2+|€B"(8)|2|V(8)|2)d8=V’(l)V(l)V’(O)V(O)/ 71(s)v(s)ds
0 0
1
:/ hir(s)V'(s)ds,
0

where we used the boundary conditions. This implies ||/|| 2 < ||hrr]|12- O
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Lemma 7.3. Let j be a positive integer and M > 0. There exists a constant C = C(j, M) > 0
such that if x satisfies

@) [lz@®)lll;; < M in the case j = 1;

(ii) Mzl < M in the case j = 2;

(i) ()l 41,51, [0](t)l|x2 < M in the case j >3,
then the solution ¢ of (1.8) satisfies |¢'(t)[l|; < C.

Proof. We first consider the case j = 1. By Lemma 7.1, under the condition ||z(f)||xs < 1
we have [|¢/(t)[|= S 1 s0 that [¢(s, t)|] S s. We note that [|¢/[ll, < |(¢/,¢')]z2 + [[¢”]lyo. By
using the first equation in (1.8) and Lemma 3.14, the second term in the right-hand side can be
evaluated as [|¢”||yo = [[¢px” - &"||yo < ||¢/ || ||z|%s- To evaluate ||| 12 we differentiate (1.8)
with respect to ¢ and obtain

—¢" + 2" 2= 202" - &" in (0,1),
$(0,t) = ¢/(1,t) = 0.
Therefore, by Lemma 7.1 we get
11122 S sz e - &)
1 :

< ¢/l lls2a” || 2]l s 2

< ¢/ llpoe o]l xa |2 | 2
These estimates give |[|¢'(¢)[|]; < 1.

We then consider the case j7 > 2. Let k be an integer such that 2 < k£ < j. We note that
o'l < Zf:o |0k || 12 + H|¢”|||Ll. By Lemma 3.15, the second term in the right-hand side can
be evaluated as

"Ly = llga” - " |IE_,
2
< ({tcalieyiEd |4,1 for k=2,
~ 2
|||¢,H|k—1|||m|||k+1,k:—1 for k>3

S M lll—r-

We proceed to evaluate ||0F¢'|| 2. Differentiating (1.8) k-times with respect to ¢ we obtain
—(0f¢)" + |="*(0F¢) = —[oF, |="[*]¢ in (0,1),
(0F)(0,) = (9F ) (1,) = 0.
Therefore, by Lemma 7.1 we get
1
10512 < lls2[0F, |2 ") 1
5 Z/ I(k(]: k1, k2)>

where I(ko, ki1, ko) = Hs%(@foqﬁ)(aflw)” - (8Mx)"|| ;1 and Y denotes the summation over all
(Ko, k1, ko) satisfying ko + k1 + ko = k, kg < k — 1, and k1 < ko. By Lemma 3.16, we see that

||¢)/HL°°||8£€1w||X3H8tkszX2 for (k()v klakQ) = (0,0,k), (07 17k - 1)>

I(ko k. ko) S 3 10 zllelxallof ele  for (ko,ka,ke) = (1,0,k — 1),
10F0 ¢/ 2108 @ xo |l for Ry <k -2
S 116y
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Summarizing the above estimates we obtain |||¢/|||,, < |||¢'||l,—; + 1 for 2 < k < j. Therefore, we
gt 16/, < 1. .

Lemma 7.4. Let j be a non-negative integer and M > 0. There exists a constant C = C(j, M) >
0 such that if x and T satisfy 7(0,t) =0, ||7/(t)||= < M, and

(i) Nlx@)|lls, < M in the case j = 0;

(i) [l2(@)llg2: 18" @l oo, 170l L2 < M in the case j = 1;

(i) ()]t Yoy 1082 () x5, 18] ()|, 1/ ()| zoe, Sogmy 10F 7/ ()| 2 < M i the case
J=2,

then the solution v| to the boundary value problem (7.1) satisfies

1 .
Clszh(®)llzr + lly@)l,.) for j=0,
C(CizolIs20rh®) s + lly @l j41) for =1

Remark 7.5. If we impose an additional condition ||z (t)||4,, [|2'(t)|| L= < M in the case j =0,
then we can improve the estimate as ||V{(t)| L2 < C(||s%h(t)||L1 + Ny @l)-

107 A ()]l 2 < {

Proof of Lemma 7.4. We first note that |7(s,t)| < Ms. By Lemmas 7.2 and 3.3, we see that
1l S 1" - o)zt | + 52 (23 - ¢ = 22" - y")7 + 1) 1
. 1. 1 1
Szl lyllxe + 12l r2lls29'llz2 + 522" 2yl 2 + 52 Rl
. . 1
S lllxsllyllxe + 2l x219lx + lzllxslylx2 + [ls2hll

This gives the desired estimate in the case j = 0.
We then consider the case j > 1. Let k be an integer such that 1 < k£ < j. Differentiating
the equations in (7.1) k-times with respect to t, we have

—(0Fn)" + [&"2(0fn) = hgs — by i (0,1) x (0,T),
(7.4) (OFv) =0 on {s=0}x (0,T),
(8{%)’ =ag + hk,[[ on {8 = 1} X (O,T),

where aq; = —2([8{“,:&3’] “Y)|s=1 + 2([8{“,7’:}3”] “Y)|s=1, hieir =27 (2" - 8fy’) — 2z - 8f+1y, and
hi1 = 8fh + 2([85, 2]y — [af,mz”} -y — [é)f, " |2y 4 2((r2")’ - ny’ —a". af“y).

Here, we see that

lak| < > oy (1, 4)]10)* T y(1, 1))
k1+ko=k,ko<k—1
+ > oo T (1,4)||0 2" (1,4)||0F2y' (1, 1)]
ko+k1+ko=k,ko<k—1
S > 105+ @] 2 |02yl 31 + > 10507 || 21 0F @ x2 1 0F2y | xc2
k1+ko=k,ko<k—1 ko+k1+ko=k ko<k—1
S Myl
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and, by Lemma 3.4, that

1 1 .
il S lls2@” o lls2 07y | 2 + (12| oo 107y 2

k
jor !

S llellxalloryllxs + 1]z 105yl 2

S Myl
We proceed to evaluate Hséhk,HHU term by term. We see that

Is¥((ra)"- ofy' =& - 0 'y

1 1,
S Nz (s |2 + 2"l 22) 5207y Nl 2 + lls2@" || 221105yl 2

k . k
S Mzl 08yl x + ] xsl|OF g o
and that
1 . . 1 .k k.
Isz[oF, &) 9/l < > Ils2 (0P ) - (0|
ki1+ko=k—1
1 1
SN2 e ls2 0y e+ S sl || e 0y o
k1+ko=k—2

S 02| x2 08yl x1 + (|0, ..., 0y a) | x1 | (B, - -, OF )| xe,
where we used Lemma 3.3. We see also that

sz [0F, 72"] - y"|l 11 < > |52 (OFor) (aFra)" - (92y)" | 1.
ko+k1+ko=k,k2<k—1

We evaluate I(ko, k1, ka) = ||s2 (9F07)(0F )" - (9¥2y)"|| .1, where ko+ki+ko = k and ky < k—1.
By Lemma 3.16, we see that

(1177 oo |0 2 1 0F | xc2 for  (ko, k1, k2) = (0,1,k — 1),
107 2 ||| x4 |0F | x2 for  (ko, k1, k2) = (1,0,k — 1),
I(ko, k1 k2) S 4§ 17 | o< 07| x2|0F >yl for (ko k1, k2) = (0,2, k — 2),

10507 | 2| Of || s | 0F 2yllxs for ky <1, ky =k —2,
L1057 || 2 |0F | x= |02yl xa for ko <k —3,

=

=

so that |s3[0F, 72| - 4"l S |ylls,- Finally, we sce that

1 1
152 [0F, |2" PJmil| 1 S > 52 (Ofom) (@1 @)" - (OfF2@)"|| 1.
ko+k1+ko=k,ko<k—1

We evaluate J(ko, k1, ko) = |52 (0F01,) (0 )" - (9F2a)"|| 11, where ko-+k1+ko = k and kg < k—1.
By Lemma 3.16, we see that
[ 2 |zl x| OF 2| x2 for ki =korks =k,

T (ko. kr, k) <
(Fo, 1, 2) {naf%fup\aflwuxs||af%uxs for ko ks < k-1,

so that ||s% [OF, |22 12 < Zf:_ol 10¢2| 2. Summarizing the above estimates, we obtain

k—1

1 1k 1
Is2hieallzr S Ns20Fhll + D 1002 + Nyl -
=0
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Now, we apply Lemma 7.2 to the solution 1y of (7.4) and obtain

1
107wl 2 S law] + 152 g ll o + [, 11l 2
k—1 )
! 1ok
S 2 l0illzz + 15207kl o + Nyl
1=0

Using this inductively on £k =1,2,...,j, we obtain the desired estimate. O
Lemma 7.6. Let j be a positive integer and M > 0. There exists a constant C = C(j, M) > 0
such that if & and 7 satisfy 7(0,t) =0, ||7/(t)||~ < M, and
(@) 11, ) (8] x4, [[€() | x2, |7 ()| 12 < M in the case j = 1;
.. . v —1 ] . .
(1) 1l 2) O j 1 1va e B 10 117 M2 107, 07N (D)2 < M in the case j > 2
and, in addition, ||0] 37 (t)|| L < M in the case j > 4,

then the solution v| to the boundary value problem (7.1) satisfies
1
4@ < € (IR + 1570 Lz + ly@ll4.) -

Proof. Let k be a positive integer such that k& < j. We note that ||| (¢)]||, < Zf:o 100 || 12 +
14 H]Ll By Lemma 7.4, the first term in the right-hand side can be evaluated as

k J
l L
S otz S Is2 0kl + llylll; 4
1=0 1=0

L
S ATy + 1520 Al o + Wyl

By using the first equation in (7.1), we have [[of [}y < B[] y-+ [l &/} +lIr("-") I} 1+
llm(" - @)}, By Lemmas 3.12-3.15, we can check that [|& - g'lIj_, + lIr(@" - ¥")llj1 £
lYlll;41- Since 11]s=0 = 0, we see also that
llnga” 21,y 4 Pl el for k=1,
k—1 ~ 9
fllz2 + o] p2)llllf,  for k=2,

which is already evaluated. Therefore, we obtain the desired estimate in the case j = 1,2.
Moreover, for 3 < k < j we have
k— k— 2
(" - 2"y S W0F Al + W ll—s + 105 Al 2) 1R 41,1
S =1

1. . . :
so that 1)1, S IR + s 00 51 + 1y (@l 4 + 1@, Using this inductively
on k=3,4,...,7, we obtain the desired estimate. O

8 Estimates for initial values and compatibility conditions II

We consider the initial boundary value problem for the linearized system (1.5) and (1.6). Let
(y,v) be a smooth solution to the problem and put y* = (8/y)li=0 and vj* = (8{v)|i=o.
Applying Gf to (1.5) and (1.6), we see that (y;-“, l/]i-n) are determined inductively by

i ! j iny/ ingaj1,./ / j
(8.1) yha= D (0P Dleoyl) + 1507 @ ) lmo) + (O] limo
Jotgr=5
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and

(8.2) —(I/Ji-n)” - ]m”|21/}n = hij“ in (0,1),
v (0) =0, (") (1) =—g-(y;")(1)

for  =0,1,..., where

1
o2 3 e ) -2 S

Jitje=j Jo+tiitje=j

N Z ]7[ ;2(8]1 ” BJQ ”)|t:0+(8gh)’t20~

15,1
Jotiitjamgijo<j—1J0 12’

(0T 1= (07 @) 1=0 - (433)"

]0']1 172!

In fact, once the initial data (y%)n, yiln) are given, the two-point boundary value problem (8.2)
in the case 7 = 0 determines u(i)n Then, (8.1) with j = 0 determines y*. Then, the two-
point boundary value problem (8.2) in the case j = 1 determines . Then, (8.1) with j = 1
determines y3', and so on. On the other hand, by applying the boundary condition in (1.5) on
s = 0 and putting ¢ = 0, we obtain

(8.3) y(1) = 0

for j =0,1,2,.... These are necessary conditions that the data (yi, yi, f, h) should satisfy for
the existence of a regular solution to the problem (1.5) and (1.6), and are known as compatibility
conditions. To state the conditions more precisely, we need to evaluate the initial values {y}n

Although it is sufficient to evaluate 8? y only at time t = 0, we will evaluate them at general
time ¢.

Lemma 8.1. Let m > 2 be an integer and assume that Assumptzons 2.5 and 2.6 are satisfied
with a positive constant My and that that f € 272 and 828m 2h € CO([0,T); LY. In the case
m > 3, assume also that h € #"~ 3. Then, there exists a positive constant Cy depending only
on m and My such that if (y, 1/) is a solution to (1.5) and (1.6), then we have

@l < ColllyOlllns + 1O s + IAOIE s + 5207 RO 1),

where we used a notational convention H|H|JL1 =0.

Proof. As before, we decompose the solution v as a sum of a principal part v, and a lower
order part v, where v, is defined by (1.7) so that 1 is a unique solution to the two-point
boundary value problem (7.1). Then, we see that y satisfies (1.9) with A(s,t) = 7(s,¢)Id and
Q(s,t) = —(¢x') (s,t) @ (g + 272")(1,t). By Lemmas 3.4, 3.9, and 7.3, we can check easily that
these matrices A(s,t) and Q(s,t) satisfy the conditions in Assumptions 2.1 and 2.2 with the
constant My replaced by a constant Cy = C(m, My). Therefore, we can apply Lemma 4.1 to
obtain [[lylll,,, < Mylll,,. 1 + 1]l where F = f + (ya')’. Here, by Lemmas 3.8, 3.9, 7.4, and
7.6 we see that

llGaz")'lll; < IHVfHI-

m—2°

Is2 for j =0,
~ U, + ls20hllz + Iyl for j=1,2,....,m—2.

Using these estimates inductively on j, we obtain the desired estimate. O
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Under the same assumptions in Lemma 8.1, we see that if the initial data satisfy y}“ e Xmi
for 7 = 0,1, then the initial values {y;“} satisfy y}“ € X™J for j =0,1,...,m, so that their
boundary values y}“(l) are defined for j =0,1,...,m — 1.

Definition 8.2. Let m > 1 be an integer. We say that the data (yi*,yi®, f,h) for the initial
boundary value problem (1.5) and (1.6) satisfy the compatibility conditions up to order m — 1 if
(8.3) holds for any j =0,1,...,m — 1.

9 Existence of solutions II

In this last section we prove Theorem 2.8. In the following calculations, we simply denote by
Cy the constant depending only on My and by C; the constant depending also on M;. These
constants may change from line to line. We assume that the data (y@',yi®, f,h) satisfy the
conditions in Theorem 2.8, define initial values {y;"}]., and {V;n}?zf by (8.1) and (8.2), and
put . .

1 ={y € 27" | (O{y)le=0 = y;" for j =0,1,...,m}.
By Lemma 8.1, we have y}n € X™J for j =0,1,...,m so that it is standard to show .77 = ().

We take yM) S arbitrarily and fix it. Given y™ e ST let I/l(n) be a unique solution to the
two-point boundary value problem

_Vl(n)” 4 ’$//’2V1(n) =2& -y — 2" -y +h in (0,1) x (0,T),
™ =0 on {s=0}x(0,T),
Y = —2a! g+ 22" y)r on {s=1}x(0,7).

By Lemmas 7.4, 7.6, 3.8, and 3.9, we have (Vl(n)az’)’ IS 3{7’?*2 and

L n
(n) 1y Co(llszhllzr + llly™Illy,,) for m =2,
|||(Vl CC) |||m—2 S T 1 m—2 (n)
Collllallls—s + 520" Rl + [y l,;,—1) for m =3,

m—1
m— n 1.5 n
o7 (™M) |2 < €y (thm_s + 3 15207kl + Iyt >|||m)-

=0

Then, we consider the initial boundary value problem

§=(Ay) +Qy'(L,t) + f™ in (0,1) x (0,T),
(9.1) y=0 on {s=1}x(0,7),
(y7 y.)‘t:() = (y%)n7 ylln) in (07 1)7

where f(") = f + (Vl(n)w’)/, A(s,t) = 7(s,t)Id, and Q(s,t) = —(¢x')(s,t) ® (g +27x")(1,t), and
these matrices satisfy the conditions in Assumptions 2.1 and 2.2 with the constants My and M,
replaced by Cj and C}, respectively. Here, we have £ e 3&”75”_2 and 8;"_11”(”) € LY0,T; L?).
Moreover, it is straightforward to check that the data (y(i)n, Yy, f(")) satisfy the compatibility
conditions up to order m — 1. Therefore, by Theorem 2.3 there exists a unique solution y € Z;"
0 (9.1). We see also that y € 7. Now, we define y(™t1) as this solution y. In this way, we
have constructed a sequence of approximate solutions {y(”)};?f:l.
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We proceed to show that {y(”) o 1 converges in 27", Put w® =yt — () and u(”) =

ntl) _ 1/1(") . Then, we see that u("*1) solves

1/1(
@) = (Au Y 4 Qu Y (1.4) + (u™a’) in (0,1) x (0,7),
w™tl) — 0o on {s=1}x(0,7),
(u(n+1)7 u(n+1))|t:0 = (0,0) in (0,1),
and (™ solves
—pu™" 2 P =23 a™ —2(x” - uw™")r in (0,1) x (0,T),
™ =0 on {s=0}x(0,7),
,u(n)/ — 9z . u™ 4+ 2(x” - u(n)/)T on {s=1}x(0,7).
We note that (Eﬂg,u(”))hzo =0for j=0,1,...,m— 2. Therefore, by Propositions 5.2 and 5.4 we
have
Ly(lae™ Ol
< CoS2 (10 (™)' ()] 2) for m =2,
Col{ Ly (1@ ) (W ll—z) + S5 (107 (2 ()| 2)} for m > 3.

Moreover, by Lemmas 7.4, 7.6, 3.8, and 3.9, we have

™) (Wlmes < Colllu™ ()ll,y  for m >3,
[0 (™) ()| 22 < Chff|lul™ () for m>2.

Il

These estimates together with (5.3) imply

L (Iw" Y Ollly) < 0S5y 2 (™ O)lll,)
< Oy L (™ Oll)-

Therefore, if we choose 7 so large that 2C7 < «, then we see that {y(”) oo 1 converges in 27",
Let y € 27" be the limit. We see also that {Z/l(n) >, converges to a 1y such that 1] € 3&”%”72.

n=1
Putting v = v, + 11 with v, = —((g +272") - y')|s=1¢, we see that (y,v) is the desired solution.
Moreover, the energy estimate (2.5) in Theorem 2.8 can be obtained similarly as above.
It remains to show (2.6) so that we assume also Assumption 2.7. Similar to the proof of
Lemma 7.6, by Lemmas 3.12-3.15 we see that

A 1,0 < Wl + N1

Sl Ha” -1, 4l " s + W + [0l
S M + N9l + W, o
Moreover, by (1.7) and Lemma 7.3 we see also that
Ml e S LA 02 2l (s, 3722 ) 9 16
S Myl

These estimates imply (2.6). The continuity in ¢, that is, v/ € 27" ~1* can be proved by
evaluating [|[v/(t1) — v/(t2)|l,,_1 . in the same way as above. The proof of Theorem 2.8 is
complete. O
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