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Abstract

We fix an integer n > 1, a prime number ¢ with ¢  2n and an
integer e > 0. We deal with a prime number p of the form p = 2néf +1.
For 0 < t < f, let K; be the real cyclic field of degree ¢! contained
in the pth cyclotomic field. For a prime number r # £, let Kt(r)/Kt
be the cyclotomic Z,-extension and €2/ Kt(T) the maximal r-ramified
pro-r abelian extension. When the conductor of the decomposition
field of 7 in Q((ye) equals £¢, we show that Qf,lK}T) = Qg if p (or f)
is large enough with respect to n, £ and e.

1 Introduction

We fix an integer n > 1 and a prime number ¢ with ¢ 1 2n. We deal with a
prime number p of the form p = 2n¢/ + 1. For such a prime number p and an
integer t with 0 <t < f, let K, be the real cyclic field of degree ¢! contained
in the pth cyclotomic field Q((,):

Ky=QCK C---CK C--CKj.

Here, for an integer m > 2, (,,, denotes a primitive mth root of unity. Let r be
a prime number with r # ¢, and let Kt(r) /K be the cyclotomic Z,-extension,
where Z, denotes the (additive group of the) ring of r-adic integers. Let
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Q/ Kt(r) be the maximal r-ramified pro-r abelian extension. In other words,
Q/ Kt(r) is the maximal pro-r abelian extension unramified outside r. We
have Qp = K(()T) by [9, Lemma 1], and we have a tower

QK =K C COKY CCp

Let s > 0 be an integer. In [10, Theorem 1.4], we dealt with the case where
r is a primitive root modulo 2 and showed that Qf,(sﬂ)KJ(f) = 1y when

p=2nt/ +1 (or f) is large enough with respect to n, £ and s. In particular,
the following assertion holds when s = 0.

Theorem 1.1 ([10]). Fiz an integer n > 1 and a prime number  with £ 1 2n,
and let r be a prime number which is a primitive root modulo ¢*. For a prime
number p = 2nl7 4+ 1 with f > 2, the equality Qf_lKJ(f) = ¢ holds when

(1.1) p=2nt" +1>(2(rn —1))%.
Here, ¢(*) denotes the Euler function.

In this paper, we deal with the general case where r is not necessarily a
primitive root modulo £2. Let D, be the decomposition field of r in Q((s=)/Q.
For e > 0, let P, be the set of prime numbers r such that the conductor of
D, equals ¢¢. Theorem 1.1 deals with those prime numbers r in F,. The
following is a generalization of Theorem 1.1 to the case e > 1.

Theorem 1.2. Let n and ¢ be as in Theorem 1.1. Let e > 1 be an integer,
and let v be a prime number with r € P,. For a prime number p = 2nt/ + 1
with f > e, the equality Qf,lK)(f) = Qy holds when

(1.2) p=2nt + 1> (rf°n — 2)%2n),

For 0 <t < f, let h; be the class number of K; in the ordinary sense.
It is known that h; is divisible by h;_; (Washington [14, Theorem 10.1]).
The following assertion on the ratio hy/hs_; is an immediate consequence of
Theorem 1.2. (For this, see [10, Remark 3.1].)

Proposition 1.1. Letn, ¢, e > 1 and r € P, be as in Theorem 1.2. For a
prime number p = 2nt/ + 1 with f > e, hy/hs_y is not divisible by r when
the inequality (1.2) holds.
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Remark 1.1. (I) Let B,,/Q be the cyclotomic Zg-extension, and IBQ;)/BOO
the cyclotomic Z,-extension. Regarding the pair (K;/Q, K](f)) as analog of

(Bs/Q,BY)), assertions such as Theorems 1.1 and 1.2 correspond to some
results in Friedman [1] and [8]. For details, see [10, Remark 1.2].

(IT) For a prime number r # ¢, Horie [6, 7] studied the r-part of the class
number in B.; for r € Py in [6] and for a general 7 in [7]. Theorems 1.1 and
1.2 are shown by modifying some arguments in [6] and in [7], respectively.

(III) In contrast to the Zs-extension B.,/Q, the conductors of the layers
K (1 <t < f) of the finite (-tower K;/Q are obviously the same. This
bothers us to study under what condition on p = 2néf 4+ 1 or f, the equality
QtKJ(f) = ¢ holds in the general case where t < f — 1 and e > 1, with the
method in this paper.

(IV) An assertion similar to Theorem 1.1 holds also when f = 1 for a
prime number r which is a primitive root modulo ¢ ([9, Theorem 1}). In
Theorem 1.2, the inequality (1.2) does not hold when f < e.

Remark 1.2. Let n =1 and ¢ = 3. Using a method in Grau, Oller-Marcén
and Sadornil [5], Shoichi Fujima computed, upon the request of the author,
that for f <2000, p =2 -3/ 4+ 1 is a prime number when

f = 1,2,4,5,6,9,16,17,30, 54, 57, 60, 65, 132, 180, 320,
696, 782, 822, 897, 1252, 1454.

For this type of prime numbers p, we dealt with in [10, Remark 1.1] the ratios
hf/hf—(s-H) (5 =0,1, 2)'

A prime number r is contained in Py (resp. P;) when r = 2,5 mod 9 (resp.
r=4,7mod 9). When r = 2, 5 and 11, we see that the inequality (1.1) holds
and hence Qf,lKj(f) = Qy forall f >2, f>4and f > 5, respectively. For a
prime number r € Py with 23 < r < 83 (resp. 101 < r < 4637), (1.1) holds
for f > 9 (resp. f > 16). When r = 7 and 13, we see that (1.2) holds and
hence (2 f_lK](f) = Qg for f > 5 and f > 6, respectively. For a prime number
r € Py with 31 < r <61 (resp. 67 <r < 3067), (1.2) holds for f > 9 (resp.
f > 16).

We organize this paper as follows similarly to [10, Sections 2-6] where
we showed [10, Theorem 1.4]. In Section 2, we recall several lemmas from
[9, 10]. In Section 3, we derive an r-adic congruence on certain cyclotomic

units of Ky assuming that Qf_lKJ(f) C Q. In Section 4, we show that the
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congruence does not hold under the assumption of Theorem 1.2, and obtain
the theorem.

Lemmas in Sections 3 and 4 are similar to those in [10]. For some of them,
we omit or only outline their proofs. However, we give full proofs of three
lemmas in Section 3 (Lemmas 3.1-3.3) on the above mentioned cyclotomic
units of Ky, because they contain new aspects caused by the general setting
r € P, with e > 1. A point of the aspects is the formula (3.1) in Section 3 on
r-adic characters of Gal(K;/Q), and the above mentioned cyclotomic units
are defined by using (3.1). The formula is peculiar to the case e > 1, and it
does not hold when e = 0 (the case we dealt with in [10]). In the proof of
Lemma 3.1, we use the equality (3.1), and in the proof of Lemma 3.3, we use
a property of an integer “ay” related to the right hand side of (3.1).

2 Lemmas

In this section, we recall several lemmas from [9, 10] using the same notation
as in [10].

Let A be a finite abelian group, and let r be a prime number with r { |A|.
Let Q, be a fixed algebraic closure of the r-adic rational number field Q,.
For a Q,-valued character y of A, let

(2.1) ey = ﬁ S Trg, (e, (x(571))0

JYAN

be the idempotent of the group ring Z,.[A] associated to x. Here, Q,(x) is
the subfield of Q, generated by the values of x over Q,, and Tr denotes the
trace map. Let O, be the ring of integers of Q,(x). For a module M over
Z.|Al, we denote by M (x) = e, M (or M®x) the x-part of M. We naturally
regard M (x) as a module over O, as in [10, Section 2|. Let @5 be a complete
set of representatives of the Q,-conjugacy classes of the Q,-valued characters
of A. Then, we have a canonical decomposition

(2.2) M= M(x).

XEPA

Let K be a real abelian field and let A = Gal(K/Q). Let r be a prime
number with r { |A[, and let K /K be the cyclotomic Z,-extension. Let
Qx /K™ be the maximal pro-r abelian extension unramified outside r, and
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put G = Gal(Qx/K™). Identifying Gal(K /Q™) with A, we can nat-
urally regard G as a module over Z,[A]. Let x be a nontrivial Q,-valued
character of A, which is also regarded as a primitive Dirichlet character of
conductor f,. Let 7 = 4 or r according as r = 2 or r > 3, and let ¢ be the
least common multiple of f, and 7. Iwasawa [11, §6] constructed a power
series ¢, (1) € O,[[T]] related to the r-adic L-function L, (s, x) by

(140" 1) = 5 L,(5,%)

for s € Z,. We denote by A} the lambda invariant of the power series g, as in
[10, Section 2]. For the trivial character xq of A, we simply set A} = 0. The
following lemma is a consequence of the Iwasawa main conjecture proved by
Mazur and Wiles [12] and Greither [4], and is known to specialists. For a
proof of this lemma, see [10, Lemma 2.1].

Lemma 2.1. Under the above notation, the O, -module Gk (x) is isomorphic
to X}, copies of O,.

Remark 2.1. Under the above notation, let » = 2. Then, by Greenberg |3,
Theorem 1], we have A} > 1 when x(2) = 1 and x # Xo.

Now, let n, ¢ be as in Theorem 1.1, and let r # ¢ be a prime number.
Let p = 2n¢f + 1 be a prime number with f > 1, and let K, Kt(r), Q; with
0 <t < f be as in Section 1. We put Ay = Gal(K;/Q) and Gy = Ok, =
Gal(Qf/KJ(f)). We naturally regard G; as a module over Z,[Ay]. Let @, be a
complete set of representatives of the Q,-conjugacy classes of the Q,-valued
characters of Ay with order ¢!. We write characters in ®; as x; with subscript
t. Then, all the characters y; € @, for all 0 < t < f constitute a complete set

of representatives of the Q,-conjugacy classes of the Q,-valued characters of
Ay,

Lemma 2.2. Under the above notation, let s be an integer with 0 < s < f—1.
Then, Qf,(sH)KJ(f) = Qy holds if and only if X, = 0 for every x; € ®; with
every f—s <t < f.

Proof. This lemma was shown in [10, Lemma 3.2] (combined with [10, Lemma
3.3(A)]) when r is a primitive root modulo ¢?. Since it is shown similarly in
the general case, we only outline its proof. Let 7 be a generator of the cyclic
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group Ay = Gal(K](f)/KéT)) of order ¢/. In the proof of [10, Lemma 3.2], we
have seen that
Tlf7<s+1)71f

Gal(Qf/Qf_(erl)Kj(f)) - gf )
where 1y is the identity element of A;. By (2.2), we have a decomposition

—(s+1) @ @ gf Xt T)gf (s+1) 1.

t=0 x+€D:

From this and Lemma 2.1, we obtain the assertion similarly to [10, Lemma
3.2]. m

For a number field F', let F= [z Fr be the product of the completions
Fr of F' for all prime ideals R of F' over r. The field Fis diagonally embedded
in the ring F F C F. Let Up (C FX) be the group of semi-local units of F'
at r.

We put Uy = Ug,;. Let Cy be the group of cyclotomic units of Ky in
the sense of Sinnott [13, page 209], and let C¢ be the topological closure of
CyNUy in Uy. The groups Uy and C; are naturally regarded as modules over
Z.|Ay]. The following lemma is a consequence of a theorem of Gillard [2,
Theorem 2] on semi-local units modulo cyclotomic units, and is known to
specialists. For a proof of this lemma, see [10, Lemma 2.2].

Lemma 2.3. Under the above notation, let 1 < t < f and x; € ®;, and
assume that x;(2) # 1 when r = 2. Then, we have Xy, > 1 if and only if
Cr(xe) S Up(xe)"

We put Ly = Q((,). When r # p, we can define the Frobenius automor-
phism v = 7, of Ly at r. Then, a” = a” mod rOf, for an integer a of Ly.
The following lemma was shown in [9, Lemma 4].

Lemma 2.4. Let v # p. For an integer a of Ly, the congruence o) =
o mod 1?0y, holds when o is an rth power in Zf.

Let L;f be the maximal real subfield of Ly. Then, ¢, +(, 1'is a cyclotomic

unit of L;{, and K; C Lj[. We define a cyclotomic unit ¢, of K; by

€ = NL}F/Kt(Cp + Cp_l)v
where N denotes the norm map. The following lemma was shown in [10,
Lemma 4.1].

Lemma 2.5. For 1 < t < f, we have ¢ = %1 if and only if 22" =
1 mod p.
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3 Congruence on cyclotomic units

Let n, ¢, e > 1 and r € P, be as in Theorem 1.2, and let p = 2né/ + 1 be
a prime number with f > e. Under this setting, the extreme case r = p
is excluded (see Lemma 2.4); because if r = p = 2né/ + 1, then r splits
completely in Q((ys), but r € P, and f > e. We use the same notation as in
the previous sections. Let Ly be the subfield of Ly = Q((,) of degree 2n, so
that we can identify the Galois group Ay = Gal(K;/Q) with Gal(L;/L,). We
fix an arbitrary primitive root g modulo p. Let ¢ = 0, be the automorphism
of Ly sending (, to ¢, and set
T =0

The Galois groups Ay and Gal(Ly/Ky) are generated by 7 and o'’ respec-
tively. Let ©, = Afcf_e = (Tff_e) be the subgroup of A; of order ¢¢. In
the rest of this section, we fiz a character x; € ®;. Let ¢ = X{f|o. be the
restriction of xy to ®., whose order is ¢°. As r € P, and e > 1, the de-
gree of the extension Q,(xs) = Q.((yr) over Q,(¢re) equals /=¢. Hence, for
0 <i < ¢/ —1, noting that x;(7%) is an ¢“th root of unity if and only if £/~¢
divides 7, we see that

i ff_eTI‘Qr . Qr(X (Ti))u when ff_6’i7
Trg, (/0. (Xp (7%)) = { 0, ()l ! otherwise.

Therefore, we see from the definition (2.1) of the idempotent associated to a
Q,-valued character that

(31) Ex; = €y € Zr[ge].

We choose and fix an element

e—1

(3.2) éy=>Y di-7" " ez[®] with d;eN
=0

such that é, = ey mod rZ,[®.] and

e—1
(3.3) > " di=0mod 2r.

1=0
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The cyclotomic unit €7 of K, which appeared at the end of Section 2, is
expressed as follows:

n—1

_ of _ef
Gf:NL;t/Kf(gp"‘Cp D) :H(Cg +6,7 )
=0

We put
(3.4) T =}
and

n—1 s

of é

(3.5) np= ] +1) and & =n}".

j=0

The cyclotomic unit £ of L, which depends on x, plays a role for showing
Theorem 1.2.

Lemma 3.1. Assume that 2" = 1 mod p or )\;f > 1. Then, the congruence
£} =& mod r°0Of, holds.

Proof. As we mentioned at the beginning of this section, we have r # p. Let
o0 be the Frobenius automorphism of L; at the prime 2. Then, as r # p, we
can write nji = ("€ with some a € Z. It follows that 5? = Cz"wf with some
b € Z. Therefore, because of Lemma 2.4, it suffices to show that 7 is an rth
power in L f

When 2** =1 mod p, we have ¢; = 1 by Lemma 2.5, and hence 7; = 1
by (3.2), (3.3) and (3.4). The condition 22" # 1 mod p is equivalent to
xf(2) # 1. Noting this, we see that when 22" # 1 mod p and Ay, 21 my s

an rth power in Ef by (3.1), (3.4) and Lemma 2.3. O

Let I (resp. J) be the set of integers i (resp. j) with 0 < i < ¢ —1 (resp.
0<j<n-—1),andset H = IxJ. For apair (a,b) € H,let H,,, = H\{(a,b)}
and let ©,; be the set of maps from H,; to {0,1}. We write a map in O,
as 0,5, pap With subscripts a, b. We put v = vy, = (2né/=¢ ¢/), and for a
pair (i,7) € H, we set

v (i,7) = 2nb/ =% + 075,
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For a pair (a,b) € H, amap 0,5 € O, and an integer k with 1 <k <r —1,
we put

B<9a,b) = B((CL, b)a ea,b) = Z 9a,b<<i7 j))gv.(i’j)a
(

i,j)GHa,b
Ak, 0,5) = Ak, (a,D),0,5) = kg¥ Y +7B(0,,),

and
1
Cp, — — er.
T

Here, ,.C} is the binomial coefficient. Then, Lemma 3.1 is rephrased as
follows.

Lemma 3.2. Assume that 2" = 1 mod p or )\;f > 1. Then, the congruence

r—1
(3.6) ST 3 Y adap " = 0 mod oy,

k=1 (a,b)€H O
holds. Here, in the third sum, 0, runs over the maps in ©Ogy.

Proof. Noting that T = 0", we see from (3.2) and (3.5) that

e—1n—1

I - f—e; d; v-(i,j )
67 &=TITI (¢ "+ ) = IT @+ ™
i=0 j=0 (i,5)eH
It follows that
(3.8) &= I @ + 1)

(ij)eH
For an integer b > 1, we can show that

r—1
(T+ 1) = (T" + 1) x ((TT +1)+rby ckT’“> mod r?Z[T]
k=1

by induction on b. Then, we see from (3.7) that

r—1
g=1I {(c;;g“‘“‘” T x ((c;g““‘” F1) Y <> }
k=1

(4,)eH
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modulo 7?Oy,;. Now, assume that 2°* = 1 mod p or A}, > 1. Then, {} =

¢ mod r?0Op, by Lemma 3.1. Therefore, we observe from (3.8) and the
above congruence on £} that

r—1
H (C;gv-(w) +1) = H ((C;gw(m) +1)+Tdizck<—§gv-(z,3)>
k=1

(i.j)€H (3,4)eH

H (" 4+1) + rX mod Oy,

P
(i.j)eH

with
-1
Z G TG+
(a,p)eH k=1 (1,5)€EHa b
It follows that X = 0 mod rOr,. We easily see that
D)
(G Z
(4,5)€Hap

Therefore, we see from the above that

r—1
= Z Z Z ckdagf(k’ea’b) = 0 mod rOy,,
=

=1 (a,b)EH 904713
and we obtain the assertion. O

Since &, # 0 mod 7Z,[D.], we can choose and fix an integer ag = ag(xs) €
I with r 1 d,,. We see that ag actually depends on y s or ¢ = x flo. in Remark
3.1 at the end of this section.

Lemma 3.3. Let ag = ao(xs). Assume that there exists a map pqay,0 € a0
such that

A(k,0,p) # AL, @ay0) mod p
for all triples (k,(a,b),0u5) # (1,(ao,0),ap0). Then, 22" £ 1 mod p and
AL =0,
Proof. Assume to the contrary that 2?® = 1 mod p or )\;f > 1. Then, the
congruence (3.6) in Lemma 3.2 holds. Dividing the both sides of (3.6) by

A(Lpa
Cp (1ga.0) , we see that

= c1dg, + Z crdaCp Alk:fa,0)=ALpag0) _ 0 mod rO¢,.
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Here, in the sum Y’ the symbols k, (a,b) and 6,, run over the triples
(k, (a,b),045) # (1,(ag,0),pae0). Since the exponents of ¢, in the sum >’
are not divisible by p, we see that

TI'Q(%)/@(Y) = cldao (p - 1) - Zlckda = Cldaop - Z Z Z dea
k 0

(a,b) Oa,p

= C1dg,p — (Z Cr) - (Z dy) -n-2°""1 = 0mod r.
k a

Then, it follows from (3.3) that ¢;d,,p = dup = 0 mod r. Since we have
chosen ag so that r { d,,, we obtain = p. However, this is impossible as we
mentioned at the beginning of this section. ]

Remark 3.1. (I) When r 1 (¢ — 1), we can choose ag = 0. Actually, ¢¢-dy =
[Q,(Cee) : Q] mod r by the definition of the idempotent e, and (3.2), and
[Q,(Cre) : Q] is a divisor of £ — 1 as r € P, and e > 1. It follows that r { d;
when 71 (¢ — 1).

(IT) In general, the integer ay depends on (the Q,-conjugacy class of) the
character xy or ¢ = Xf|o. - Actually, let £ = 17 and r = 2. Then, 2 € P; and
the order of 2 mod 17 is 8. We choose a primitive ¢th root ¢ = (, of unity in
Q, and a square root v/¢ in Q5 so that

—14+¢
Tro,(¢)/0.(¢) = — =0 mod 27Z.

Then, for ¢ with £ 14, Trg,()/g.(¢") = 0 or 1 modulo 2Z, according as i is a
square modulo ¢ or not. Let p be a generator of the cyclic group ©; of order
¢, and let 9, (resp. 1) be the character of ®; sending p to ¢ (resp. (?).
Then, we see that ¢ and vy are not conjugate over @, and that

ey = Z/pi mod 2Z,[D;] and ey, = Z//p’i mod 27Z,[9],

where in the first (resp. second) sum, ¢ runs over the integers 1 < i < 16
which are non-square (resp. square) modulo £.

4 Proof of Theorem 1.2

Letn, ¢, e > 1 and r € P, be as in Theorem 1.2, and we use the same notation
as in the previous sections. Let (s (resp. (o,) be a fixed primitive £th (resp.
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2nth) root of unity in the complex field C. In this section, we work in the
2nl°th cyclotomic field M = Q((se, (2,,) contained in C. In the following, k
and m denote integers in the range [1,7 — 1], (a,b) and (¢, d) denote pairs in
H, and 0, and p.4 denote maps in ©,; and O, 4, respectively. We put

B(0ap) = B((a,0),60) = D Bap((i, )il

(i’j)eHa,b

and
Oé(k, Qa,b) = a(kv <a7 b)? ea,b) - kCzae(Sn + Tﬁ((a’v b)v Qa,b)'

On these integers of M, the following assertions hold.

Lemma 4.1. Let (m,(c,d)) # (k,(a,b)). Then, a(m, pea) # a(k,0.p) for
any ped € Ocq and any Oqp € O4p.

Lemma 4.2. For each u € I, there exists a map p,0 € O, such that
05(17 eu,O) 7& 05(17 qu,O) fO’l" any map eu,O € @u,O H)Zth eu,O 7& SOU,O'

Lemma 4.1 is shown similarly to [10, Lemma 6.1(II)]. Lemma 4.2 is shown
using [6, Lemma 7] similarly to [10, Lemmas 6.3, 6.4].

For a positive integer T, let Supp(7’) be the finite set of prime numbers
dividing T". For each u € I, we choose and fix a map ¢, o € 6, as in Lemma
4.2, and we define a set

Pu = Pn,é,e,r,apuyg

to be the union of the sets

Supp (Nagjg(a(k, bap) — (1, up)))

for all triples (k, (a,b),0.5) # (1, (©,0), pu0). By Lemmas 4.1 and 4.2, P, is
actually a finite set of prime numbers.

Lemma 4.3. We have p < (rt°n — 2)%C™) for every prime number p € P,
with every u € 1.

Proof. We put = a(k,8,p) — (1, pu0). Then, similarly as in the proof of
[10, Lemma 6.5], we can show that |¢(z)| < rl°n — 2 for every embedding
t: M — C. The assertion follows from this. O

Lemma 4.4. Let n, ¢, ¢ > 1 and r € P, be as in Theorem 1.2. Let p =
20t/ + 1 be a prime number with f > e, and let x; € ®; with ag = ag(x;).
Then, we have 22 # 1 mod p and Ay, = 0 when p ZP,.
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Proof. Tt suffices to show that the assumption of Lemma 3.3 is satisfied. As
f >e, p=1mod 2nf° and so p splits completely in M. We fix a prime ideal
P of M over p. Then, the condition p ¢ P,, implies that

(4.1) a(k,8.p) # a(l, @ay0) mod P

for all triples (k, (a,b),0.5) # (1, (ao,0), ¢ae0). Re-choosing a primitive root
g modulo p in Section 3 so that ¢>*° = ¢ and ¢*' = ¢, modulo B, we
can show from (4.1) that the assumption of Lemma 3.3 is satisfied exactly
similarly as in the proof of [10, Theorem 6.1]. O

Proof of Theorem 1.2. Assume that a prime number p = 2né/ +1 with f > e
satisfies the inequality (1.2). Then, by Lemma 4.3, p & P,, with ag = ao(x)
for every x; € ®4. Therefore, we obtain the assertion from Lemma 2.2 with
s =0 and Lemma 4.4. ]

Acknowledgement. The author thanks S. Fujima for the computation on
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1.2. The author is grateful to the referees for several valuable comments
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