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İsmail Sağlam and Athanase Papadopoulos

Abstract

Given an ordered pair of Euclidean triangles with marked vertices
whose angles are all acute, we find a homeomorphism with the small-
est Lipschitz constant among all homeomorphisms from the first one
to the second that preseerve the marking and we give a formula for
the Lipschitz constant of this map. We show that on the set of pairs of
marked acute triangles with fixed area, the function which assigns the
logarithm of the infimum of the Lipschitz constants of Lipschitz home-
omorphisms between them induces a symmetric metric. We show that
this metric is Finsler, we give a necessary and sufficient condition for
a path in the resulting metric space to be geodesic and we determine
the isometry group of this metric space.

This study is motivated by Thurston’s asymmetric metric on the
Teichmüller space of a hyperbolic surface, and the results in this paper
constitute an analysis of a basic Euclidean analogue of Thurston’s
hyperbolic theory. Many interesting questions in the Euclidean setting
deserve further attention.
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1 Introduction

In this paper, we study a metric on the moduli space of Euclidean triangles
which is an analogue of Thurston’s (asymmetric) metric on the Teichmüller
space of a surface of finite type. Thurston introduced this metric in his
1985 preprint [22]. Gradually, the metric has been studied from various
viewpoints. A first survey appeared in 2007 [18], in which properties of this
metric were compared to analogous properties of the Teichmüller metric.
A recent survey of work done on this metric is the paper [16], where, in
particular, the limiting behavior of geodesics is studied. The paper [21],
published in 2015, contains a set of open problems on this metric. The paper
[17] contains several results on the comparison between the Thurston metric
and the Teichmüller metric. Several new techniques have been introduced
recently in the study of Thurston’s metric, see in particular the papers [1,
10, 13]. This metric has been generalized to various settings, see [5, 9] for
an analogous metric on spaces of geometrically finite hyperbolic manifolds
and [12] for a generalization to the setting of higher Teichmüller theory.
In the papers [6, 7], stretch maps, which constitute a fundamental tool for
the study of Thurston’s metric are constructed from the point of view of
geometric analysis. The Finsler structure of this metric has been analysed
leading to infinitesimal rigidity results, see [11] and [?]. Euclidean analogues
of Thurston’s metric have also been studied, see [2] for an analogue on the
Teichmüller space of Euclidean tori and [14] for a recent sequel. The recent
work [24] addresses the question of a Thurston-type metric on the moduli
space of semi-translation surfaces. In the paper [20], a Thurston type metric
is defined and studied on the space of singular flat metrics with a fixed
quadrangulation.

There is a natural analogue of Thurston’s metric on a basic model space,
namely, the moduli space of Euclidean triangles. This elementary setting
has not been investigated yet. Our aim in this article is to settle the case of
the moduli space of acute Euclidean triangles (that is, triangles whose three
angles are acute), which turns out to be a natural space to study.

We now present the main results of this paper.
Consider a triangle in the oriented Euclidean plane. Label its vertices

by the set {v1, v2, v3} such that this labeling induces a counter-clockwise
orientation on the boundary of the triangle. We call such a triangle labeled.

Consider two such labeled triangles T and T ′ and let f : T → T ′ be a
label-preserving homeomorphism. The Lipschitz constant of f is defined as
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L(f) = sup
x,y∈T,x̸=y

deuc(f(x), f(y))

deuc(x, y)

where deuc is the metric in the Euclidean plane. Now let

L(T, T ′) = log
(
inf{L(f) : f is a label-preserving

homeomorphism between T and T ′}
)
.

This formula induces a distance function on the space of Euclidean tri-
angles which is an analogue of Thurston’s Lipschitz metric defined in the
hyperbolic setting (see [22, p. 4] where this distance function is also denoted
by L).

We obtain the following:

1. In the case where T and T ′ are acute triangles, we give another formula
for the distance L(T, T ′), which we denote by m(T, T ′), in terms of the
lengths of the edges and altitudes of the triangles T and T ′. The new
formula is an analogue of Thurston’s alternative form of his distance
function in terms of lengths of simple closed geodesics (see [22, p. 4]
where this distance function is denoted by K). The equality L(T, T ′) =
m(T, T ′) is an analogue of Thurston’s equality between his two distance
functions K and L (see [22, p. 40]).

2. For every A > 0, the metric induced by L on the space ATA of acute
triangles having fixed areaA is Finsler (this is an analogue of Thurston’s
result in [22, p. 20]).

3. We give a characterization of geodesics in ATA: a path is geodesic if
and only if the angle at each labeled vertex of a triangle in this family
of triangles varies monotonically.

4. The isometry group of ATA is isomorphic to S3, the symmetric group
on three letters.

In the case of triangles that are not acute, there might not exist any
best Lipschitz homeomorphism between them (see Remark 4) and the theory
in this general setting needs more investigation. In the paper [15], further
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properties of the Thurston metric on the Teichmüller spaces of Euclidean
triangles are obtained.

The paper is organized as follows. Section 2 is the technical heart of
our work. For any two labeled triangles T and T ′, we define their Lipschitz
distance, we introduce the distance m(T, T ′) and we show that m(T, T ′) =
L(T, T ′) for any pair of acute triangles T and T ′. In Section 3 we introduce
several spaces of triangles and study some of their topological and metric
properties. Among these spaces, the space of acute triangles and the space
of non-obtuse triangles having area A will play central roles in this paper.
We denote these spaces by ATA and ATA respectively. In Section 4 we give
a necessary and sufficient condition for a path in ATA to be a geodesic. In
Section 5 we prove that the metric L on ATA is Finsler. We determine the
isometry group of ATA in Section 6.

We now introduce some notation used throughout the paper. Let T be
a labeled triangle, with vertices v1, v2, v3. For i ∈ {1, 2, 3}, we denote the
edge opposite to the vertex vi by ei, the angle at the vertex vi by θi and the
altitude from the vertex vi by hi. We let ||ei|| and ||hi|| be the lengths of ei
and hi, respectively. We denote the intersection of the altitude hi with the
line containing the edge ei by pi. A triangle with vertices v1, v2, v3 is denoted
by ∆v1v2v3. The line segment between two points x and y in the Euclidean
plane is denoted by [x, y], and its length by |[x, y]|. Finally, Area(T ) will
denote the area of a triangle T .

The authors thank Ken’ichi Ohshika with whom they discussed matters
related to this paper. The authors are also grateful to the referee of this
paper for his careful reading.

2 Acute triangles

Let T and T ′ be two acute triangles. We use the notation introduced above
for the triangle T . Similarly, for T ′, we denote the vertices by v′1, v

′
2, v

′
3, the

edge opposite to the vertex v′i by e′i, the angle at the vertex e′i by θ′i, etc.

Proposition 1. For any two acute triangles T and T ′, we have

exp(L(T, T ′)) ≥ max{||e
′
1||

||e1||
,
||e′2||
||e2||

,
||e′3||
||e3||

,
||h′

1||
||h1||

,
||h′

2||
||h2||

,
||h′

3||
||h3||

}.
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Proof. Since any label-preserving homeomorphism from T to T ′ sends e1 to
e′1, e2 to e′2 and e3 to e′3, it is clear that

exp(L(T, T ′)) ≥ max{||e
′
1||

||e1||
,
||e′2||
||e2||

,
||e′3||
||e3||

}.

Let f : T → T ′ be a label-preserving homeomorphism. Since T is acute,
it follows that each pi lies in the interior of the edge ei. Therefore we have

deuc(f(pi), f(vi)) = deuc(f(pi), v
′
i) ≥ ||h′

i||.
Since

deuc(pi, vi) = ||hi||,

it follows that L(f) ≥ ||h′
i||

||hi|| . Therefore for any two acute triangles T and T ′,
we have

exp(L(T, T ′)) ≥ max{||e
′
1||

||e1||
,
||e′2||
||e2||

,
||e′3||
||e3||

,
||h′

1||
||h1||

,
||h′

2||
||h2||

,
||h′

3||
||h3||

},

which is the inequality we need.

For two arbitrary labeled triangles T and T ′, we define

m(T, T ′) = log(max{||e
′
1||

||e1||
,
||e′2||
||e2||

,
||e′3||
||e3||

,
||h′

1||
||h1||

,
||h′

2||
||h2||

,
||h′

3||
||h3||

}). (1)

Assume that we scale the triangle T by a factor λ and the triangle T ′ by a
factor λ′, where λ, λ′ > 0. Let us denote the scaled triangles by λT and λ′T ′.
This means that the triangle λT has edge lengths λ||e1||, λ||e2||, λ||e3|| and
that the triangle λ′T ′ has edge lengths λ′||e′1||, λ′||e′2||, λ′||e′3||. The following
formulae are clear:

exp(L(λT, λ′T ′)) =
λ′

λ
exp(L(T, T ′)) (2)

exp(m(λT, λ′T ′)) =
λ′

λ
exp(m(T, T ′)). (3)

Remark 1. We shall prove that for any two acute triangles T and T ′, L(T, T ′) =
m(T, T ′), see Theorem 2. We shall use the following fact in the proof: If
λ, λ′ > 0, then L(T, T ′) = m(T, T ′) if and only if L(λT, λ′T ′) = m(λT, λ′T ).
This follows from Identities (2) and (3).
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Figure 1: A best Lipschitz homeomorphism between the two triangles is the
affine map (Subsection 2.1).

2.1 Right triangles

Right triangles appear naturally as sitting on the boundary of the moduli
space of acute triangles, and they are also needed in our proofs of some
statements concerning acute triangles.

Assume that T and T ′ are two right triangles where θ1 and θ′1 are equal
to π

2
, see Figure 1. In this subsection we calculate L(T, T ′).

Proposition 2. Let T and T ′ be two right triangles such that θ1 = θ′1 =
π
2
.

Then

exp(L(T, T ′)) = max{||e
′
3||

||e3||
,
||e′2||
||e2||

}.

Proof. It is clear that

exp(L(T, T ′)) ≥ max{||e
′
3||

||e3||
,
||e′2||
||e2||

}. (4)
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Let us prove the reverse inequality.
We consider a Euclidean system of coordinates (x, y) in R2.
Up to performing some isometries to T and T ′, we may assume that the

vertices v1 and v′1 are at the origin, the edges e3 and e′3 are on the x-axis, and
the edges e2 and e′2 are on the y-axis. Consider the following homeomorphism
from T to T ′:

f : (x, y) → (
||e′3||
||e3||

x,
||e′2||
||e2||

y).

It is clear that

L(f) ≥ max{||e
′
3||

||e3||
,
||e′2||
||e2||

}.

Let q1 = (x1, y1) and q2 = (x2, y2) be two points in T .
Then

deuc(f(q1), f(q2)) = deuc((
||e′3||
||e3||

x1,
||e′2||
||e2||

y1), (
||e′3||
||e3||

x2,
||e′2||
||e2||

y2))

=

√
(
||e′3||
||e3||

)2(x2 − x1)2 + (
||e′2||
||e2||

)2(y2 − y1)2

≤ max{||e
′
3||

||e3||
,
||e′2||
||e2||

}
√

(x2 − x1)2 + (y2 − y1)2

= max{||e
′
3||

||e3||
,
||e′2||
||e2||

}d(q1, q2).

Therefore L(f) ≤ max{ ||e′3||
||e3|| ,

||e′2||
||e2||}. Combined with (4), this gives L(f) =

max{ ||e′3||
||e3|| ,

||e′2||
||e2||}. From this we conclude that exp(L(T, T ′)) = max{ ||e′3||

||e3|| ,
||e′2||
||e2||}.

Note that exp(L(T, T ′)) is given by an infimum and that this infimum
is attained by the map we just constructed. Therefore the map we defined
above is a best Lipschitz homeomorphism.
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Figure 2: If the triangle T ′ is contained in the triangle T and T and if T ′

have the same altitudes, then exp(L(T, T ′)) = 1(Proposition 3).
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2.2 A problem related to right triangles

We continue using the above notation.

Proposition 3. Let T and T ′ be two acute triangles satisfying θ2 ≤ θ′2 and
θ3 ≤ θ′3. Assume that ||h1|| = ||h′

1||. Then exp(L(T, T ′)) = 1 and there is a
label-preserving homeomorphism f : T → T ′ satisfyingL(f) = 1.

Proof. We can move the triangle T into T ′ so that their altitudes coincide, see
Figure 2. Therefore we have two triangles T = ∆v1v2v3 and T ′ = ∆v′1v

′
2v

′
3

satisfying v1 = v′1 and h1 = h′
1. We want to find L(T, T ′). Since T and

T ′ have a common altitude from v1 = v′1, we readily see that for any label-
preserving homeomorphism f : T → T ′, we have L(f) ≥ 1. Now we construct
a label-preserving homeomorphism f : T → T ′ such that L(f) = 1; this
will complete the proofs of the two statements in the proposition. Consider
the homeomorphism f as in Section 2.1 which sends the triangle ∆v1v2p1
to the triangle ∆v1v

′
2p1. Likewise, consider the homeomorphism h as in

Section 2.1 which sends the triangle ∆v1p1v3 to the triangle ∆v1p1v
′
3. Clearly

L(g) = L(h) = 1 and since g and h agree on the altitude h1 = h′
1 = [v1, p1],

they induce a homeomorphism f : T → T ′. Furthermore it is clear that
L(f) = 1.

2.3 Acute triangles

We are now ready to prove the main result on the space of acute triangles.
This is an analogue, in the case we are discussing, of a result of Thurston in
[22] (see Corollary 8.5).

Theorem 2. If T and T ′ are two acute triangles, then L(T, T ′) = m(T, T ′).
Furthermore, there exists a best Lipschitz homeomorphism between the two
acute triangles.

Proof. As already noted, we have exp(L(T, T ′)) ≥ exp(m(T, T ′)), see Propo-
sition 1. We will show that exp(L(T, T ′)) ≤ exp(m(T, T ′)). There exist
distinct i, j ∈ {1, 2, 3} such that either

1. θi ≤ θ′i and θj ≤ θ′j, or

2. θi ≥ θ′i and θj ≥ θ′j.
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Figure 3: The case where θ2 ≥ θ′2 and θ3 ≥ θ′3 (Theorem 2).

Without loss of generality we suppose that {i, j} = {2, 3}.
Assume that the first case holds, that is, θ2 ≤ θ′2 and θ3 ≤ θ′3. We may

scale the triangles T and T ′ so that they have altitudes of the same length
from the vertex labeled by 1. That is, we may suppose that ||h1|| = ||h′

1||.
In that case the triangle T ′ can be moved inside the triangle T so that their
altitudes coincide, see Figure 2. Therefore there exists a homeomorphism
f : T → T ′ such that L(f) = 1. Hence we have

exp(L(T, T ′)) ≤ L(f) = 1 ≤ exp(m(T, T ′)).

This completes the proof of the claim for the first case.
Assume now that the second case holds, that is, θ2 ≥ θ′2 and θ3 ≥ θ′3.

After scaling the triangle T by 1
||e1|| and the triangle T ′ by 1

||e′1||
, we may

suppose that the lengths of e1 and e′1 are equal to 1. Also, we may assume
that T and T ′ share an edge and two vertices, that is, e1 = e′1, v2 = v′2 and
v3 = v′3. It follows that T contains T ′, see Figure 3. Consider the triangle
∆q1v2v3 where q1 is the intersection of the line passing through the points v′1
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and v3 with the line segment [v1, v2]. Consider the homeomorphism g sending
∆v1v2v3 to ∆q1v2v3 which is the identity on the triangle ∆p1v2v3 and which
maps the triangle ∆v1p1v3 to the triangle ∆q1p1v3 as in the Section 2.1.
Clearly L(g) = 1.

Now consider the homeomorphism h from ∆q1v2v3 to ∆v′1v2v3 which is
the identity on the triangle ∆p′2v2v3 and which sends ∆q1v2p

′
2 to ∆v′1v2p

′
2 as

in Section 2.1. Clearly L(h) = 1.
Therefore h◦g is a homeomorphism between T and T ′ satisfying L(h◦g) =

1. We have

exp(L(T, T ′)) ≤ L(h ◦ g) = 1 ≤ exp(m(T, T ′)).

In particular, L(T, T ′) is given by an infimum which is attained by the
map constructed above. Thus, there exists a best Lipschitz homeomorphism
between any two acute triangles.

Remark 3. Assume that T and T ′ have the same area. Since

||ei|| · ||hi|| = ||e′i|| · ||h′
i||,

it follows that
||ei||
||e′i||

=
||h′

i||
||hi||

for any i ∈ {1, 2, 3}.

Therefore

m(T, T ′) = log(max{||e
′
1||

||e1||
,
||e′2||
||e2||

,
||e′3||
||e3||

,
||e1||
||e′1||

,
||e2||
||e′2||

,
||e3||
||e′3||

})

= max
i

{|log(||e′i||)− log(||ei||)|}.

Observe that m(T, T ′) = m(T ′, T ).

Remark 4. (The case of obtuse triangles.) Consider Figure 4. Let T and T ′

be the triangles ∆v1v2v3 and ∆v′1v
′
2v

′
3, respectively. Note that v2 = v′2 and

v3 = v′3. We will show that L(T, T ′) > m(T, T ′). Indeed it is easy to see that

exp(m(T, T ′)) =
||h′

1||
||h1||

=
3

1
= 3.

Consider the point p1 which is the intersection of the altitude from the
vertex v1 and the edge e1. If f is any label-preserving homeomorphism from
T to T ′, then f(p1) is in the interior of the edge e1. It follows that
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Figure 4: Two triangles T and T ′ such that L(T, T ′) > m(T, T ′) (Remark 4).

deuc(f(p1), f(v1)) = deuc(f(p1), v
′
1) > deuc(v2, v1) = 2

√
3.

Hence

L(f) >
deuc(f(p1), f(v1))

deuc(p1, v1)
= 2

√
3. (5)

Thus exp(L(T, T ′)) ≥ 2
√
3 > 3 = exp(m(T, T ′)). Note that one can scale

the triangles T and T ′ to get λT and λ′T ′ so that they have the same area.
In this case we have L(λT, λ′T ′) > m(λT, λ′T ′).

Also, for each ϵ > 0 one can find a homeomorphism fϵ : T → T ′ such that

2
√
3 < L(fϵ) < 2

√
3 + ϵ.

It follows that L(T, T ′) = log(2
√
3) and there is no best Lipschitz homeo-

morphism between T and T ′.

2.4 Some Facts about Two Non-obtuse Triangles Shar-
ing an Edge

Let T be a triangle with vertices v1, v2, v3 and T ′ a triangle with vertices
v′1, v

′
2, v

′
3 such that v1 = v′1 and v2 = v′2. Suppose that T and T ′ are non-
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Figure 5: The case where T and T ′ are non-obtuse and where T is contained
in T ′ (Subsection 2.4).

obtuse and that T is contained in T ′, as in Figure 5. We claim that

exp(m(T, T ′)) =
||h′

3||
||h3||

.

Consider the line which passes through v3 and which is parallel to the
line passing through v1 and v2. Let y be the point of intersection of this line
with the edge e′1. Then we have

||h′
3||

||h3||
=

||e′1||
||[v2, y]||

≥ ||e′1||
||e1||

.

Similarly,

||h′
3||

||h3||
≥ ||e′2||

||e2||
.

We also have
||h′

3||
||h3||

≥ 1 =
||e′3||
||e3||

.
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Now we show that
||h′

3||
||h3||

≥ ||h′
1||

||h1||
.

We have
||h′

3||
||h3||

=
Area(T ′)

Area(T )
=

||h′
1||

||h1||
||e′1||
||e1||

.

Since
||e′1||
||e1|| ≥ 1, we get

||h′
3||

||h3|| ≥
||h′

1||
||h1|| . Similarly,

||h′
3||

||h3|| ≥
||h′

2||
||h2|| . Hence,

exp(m(T, T ′)) =
||h′

3||
||h3||

,

which proves the claim.
Now we want to scale T so that the new triangle and T ′ have the same

area. Clearly we need to scale T by the factor λ =

√
||h′

3||√
||h3||

. Let T ′′ = λT .

Then Equality 3 implies that

exp(m(T ′′, T ′)) = λ =

√
||h′

3||√
||h3||

=
||e′′3||
||e′3||

,

where e′′3 is the edge of T ′′ which is opposite to the vertex with label 3, v′′3 .
Let us summarize the above discussion as a lemma.

Lemma 1. Let T and T ′ be labeled non-obtuse triangles having the same
area. There exists i ∈ {1, 2, 3} such that

1. θj ≤ θ′j and θk ≤ θ′k, or

2. θj ≥ θ′j and θk ≥ θ′k,

where j, k ∈ {1, 2, 3}, j, k ̸= i. Then, we have

exp(m(T, T ′)) = max{||ei||
||e′i||

,
||e′i||
||ei||

},

or, equivalently,

m(T, T ′) = |log(||e′i||)− log(||ei||)|.

More precisely,
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1. If θj ≤ θ′j and θk ≤ θ′k then

exp(m(T, T ′)) =
||ei||
||e′i||

, (6)

2. and if θj ≥ θ′j and θk ≥ θ′k then

exp(m(T, T ′)) =
||e′i||
||ei||

. (7)

Lemma 2. Let T and T ′ be two labeled triangles of the same area with angles
(θ1, θ2, θ3) and (θ′1, θ

′
2, θ

′
3). Let {i, j, k} = {1, 2, 3}.

1. If θi > θ′i, θj < θ′j and θk ≤ θ′k, then

exp(m(T, T ′)) =
||ei||
||e′i||

> max{||ek||
||e′k||

,
||e′k||
||ek||

}.

2. If θi > θ′i, θj < θ′j and θk > θ′k, then

exp(m(T, T ′)) =
||e′j||
||ej||

> max{||ek||
||e′k||

,
||e′k||
||ek||

}.

Proof. Without loss of generality, we will assume that i = 1, j = 2, k = 3.

1. By Lemma 1, have exp(m(T, T ′)) = ||e1||
||e′1||

, and clearly exp(m(T, T ′)) >

1. This means that ||e1||
||e′1||

≥ max{ ||e3||
||e′3||

,
||e′3||
||e3||}. Assume that ||e3||

||e′3||
= ||e1||

||e′1||

or
||e′3||
||e3|| =

||e1||
||e′1||

. If
||e′3||
||e3|| =

||e1||
||e′1||

, then

||e′1|| · ||e′3|| sin θ′2 > ||e1|| · ||e3|| sin θ2,
since θ2 < θ′2 < π

2
. This is a contradiction since T and T ′ have the

same area. If ||e3||
||e′3||

= ||e1||
||e′1||

, since

||e′2|| · ||e′3|| sin θ′1 = ||e2|| · ||e3|| sin θ1,

we have

||e′2||
||e2||

=
||e3||
||e′3||

sin θ1
sin θ′1

>
||e3||
||e′3||

=
||e1||
||e′1||

= exp(m(T, T ′)),

which is impossible. This completes the proof of the claim.
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2. We know that

1 < exp(m(T, T ′)) =
||e′2||
||e2||

≥ max{||e3||
||e′3||

,
||e′3||
||e3||

}.

If
||e′2||
||e2|| =

||e3||
||e′3||

, then

||e2|| · ||e3|| sin θ1 > ||e′2|| · ||e′3|| sin θ′1,

which is a contradiction. If
||e′2||
||e2|| =

||e′3||
||e3|| , since

||e′1|| · ||e′3|| sin θ′2 = ||e1|| · ||e3|| sin θ2,

we have

||e1||
||e′1||

=
||e′3||
||e3||

sin θ′2
sin θ2

>
||e′3||
||e3||

=
||e′2||
||e2||

= exp(m(T, T ′)),

which is impossible. This completes the proof of the claim.

Remark 5. Let T and T ′ be two labeled triangles of equal area such that
θi > θ′i and θj < θ′j. Scale T to get a new triangle T ′′ satisfying ||e′′k|| = ||e′k||,
see Figure 6. Then it follows from the discussion before Lemma 1 that

max{||ek||
||e′k||

,
||e′k||
||ek||

} = max{

√
||h′′

k||
||h′

k||
,

√
||h′

k||
||h′′

k||
}.

Thus Lemma 2 implies that

exp(m(T, T ′)) > max{

√
||h′′

k||
||h′

k||
,

√
||h′

k||
||h′′

k||
}.

3 The space of triangles

In this section, we consider the set of isometry classes of triangles. First, we
define the notion of metric. The definition we give is different from the usual
definition of a metric since we drop the symmetry axiom.
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Figure 6: The case of two triangles sharing an edge and such that one is not
contained in the other (see Remark 5).
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Definition 6. A metric on a set X is a function η : X ×X → R such that

• η(x, x) = 0 for all x ∈ X,

• η(x, y) > 0 if x ̸= y,

• η(x, y) + η(y, z) ≥ η(x, z) for all x, y, z ∈ X.

The pair (X, d) or the set X is called a metric space. If η(x, y) = η(y, x) for
all x, y ∈ X, then the metric is said to be symmetric. Otherwise, the metric
is said to be asymmetric.

For a fixed A > 0, let TA be the set of equivalence classes of labeled tri-
angles with area A, where two triangles are equivalent if there is an isometry
between them which respects the labeling.

We show that L defines a metric on TA. If T is a labeled triangle with
area A, then we denote its equivalence class in TA by [T ]. It is clear that L
gives a well-defined function on TA × TA. We denote this function by L as
well.

The proof of the following lemma is similar to that of Proposition 2.1 of
[22].

Lemma 3. Let T and T ′ be two labeled triangles of equal area. If L(T, T ′) ≤
0, then L(T, T ′) = 0 and T and T ′ are isometric.

Proof. For any λ ≥ 0 the set of λ-Lipschitz homeomorphisms from T to T ′

which respect the labeling is equicontinuous. Suppose that L(T, T ′) ≤ 0.
Then we can pick a map ϕ : T → T ′ which has minimum global Lipschitz
constant eL(T,T

′) ≤ 1.
If L(T, T ′) < 0, we can assume that ϕ is a homeomorphism and that its

Lipschitz constant (which might be larger than eL(T,T
′)) is < 1. But then we

can cover the surface T by a countable family of discs of different radii such
that the interiors of these discs are pairwise disjoint and their complement
has measure zero, and such that ϕ maps one of these discs to a disc of strictly
smaller radius. This is impossible since T and T ′ have the same area. Thus,
L(T, T ′) = 0.

Now we consider a covering of the surface T by a countable family of discs
of different radii such that the interiors of these discs are pairwise disjoint
and their complement has measure zero. Since the Lipschitz constant of the
map is 1, as in the previous paragraph, we conclude that each such disc is
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mapped by f surjectively onto a disc of the same radius. Repeating the same
argument with a covering of T by discs whose radii tend uniformly to zero,
we see that ϕ is an isometry.

Note that Lemma 3 implies that for any [T ], [T ′] ∈ TA we have L([T ], [T ′]) ≥
0 and L([T ], [T ′]) = 0 if and only if [T ] = [T ′].

Lemma 4. If T, T ′, T ′′ are three labeled triangles of the same area, then

L(T, T ′) + L(T ′, T ′′) ≥ L(T, T ′′).

Proof. Let f : T → T ′ and g : T ′ → T ′′ be label-preserving homeomorphisms.
The assertion follows from the fact that

L(g ◦ f) ≤ L(g)L(f).

The following theorem follows immediately from Lemma 3 and Lemma
4.

Theorem 7. The function L is a metric on TA.

Clearly the function m defined by Equation (1) induces a function on
TA × TA. We denote this function by m as well. Our next objective is to
prove that m is a symmetric metric on TA.

Theorem 8. m is a symmetric metric on TA.

Proof. Let [T ], [T ′] ∈ TA. Then T has edges of length ||e1||, ||e2||, ||e3|| and
T ′ has edges of length ||e′1||, ||e′2||, ||e′3||. Since T and T ′ have the same area,
by Remark 3, we have

m(T, T ′) = log(max{||e
′
1||

||e1||
,
||e′2||
||e2||

,
||e′3||
||e3||

,
||e1||
||e′1||

,
||e2||
||e′2||

,
||e3||
||e′3||

}).

It is clear from this formula that m separates points and m is sym-
metric. Let T ′′ be another triangle with area A having edges of lengths
||e′′1||, ||e′′2||, ||e′′3||. It follows from the following inequality that m satisfies the
triangle inequality:

max{||e
′
1||

||e1||
,
||e′2||
||e2||

,
||e′3||
||e3||

,
||e1||
||e′1||

,
||e2||
||e′2||

,
||e3||
||e′3||

}
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×max{||e
′′
1||

||e′1||
,
||e′′2||
||e′2||

,
||e′′3||
||e′3||

,
||e′1||
||e′′1||

,
||a′2||
||a′′2||

,
||e′3||
||e′′3||

}

≥ max{||e
′′
1||

||e1||
,
||e′′2||
||e2||

,
||e′′3||
||e3||

,
||e1||
||e′′1||

,
||e2||
||e′′2||

,
||e3||
||e′′3||

}.

The fact that the metric m is symmetric implies that it induces on the
underlying set a well-defined topology, and that one may talk about Cauchy
sequences and completeness in the usual sense, and we shall do this in the
sequel. (Note that in the case of a non-symmetric metric, these notions are
more complicated to define, see [3, Chapter 1].)

3.1 The space of acute triangles

If there is no risk of confusion, we will denote the equivalence class of a
labeled triangle T in TA by T as well.

We denote the set of equivalence classes of acute triangles by AT. For
each fixed A > 0, let ATA be the set of equivalence classes of acute triangles
having area A. By Theorem 2 the restrictions of L and m on ATA give the
same metric.

3.2 Two models for ATA

In this section, we introduce two models of ATA. Since each labeled triangle
is determined by the length of its edges, there is an injection ATA → (R∗

+)
3

sending the class of a labeled triangle T to (||e1||, ||e2||, ||e3||), where e1, e2, e3
are the edges of T . The image of this map is a 2-dimensional submanifold of
(R∗

+)
3, namely, the submanifold defined as the following subset of (R∗

+)
3:

{(a1, a2, a3) ∈ (R∗
+)

3 : a21 + a22 − a23 > 0, a22 + a23 − a21 > 0,

a23 + a21 − a22 > 0,Area(a1, a2, a3) = A},

where Area(a1, a2, a3) denotes the area of a triangle with edge lengths a1, a2
and a3. The inequalities

a21 + a22 − a23 > 0, a22 + a23 − a21 > 0, a23 + a21 − a22 > 0
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follow from the law of cosines, since the angles of the triangles are acute.
Furthermore m induces a metric on this manifold, which we will denote

by m as well. Clearly, if a = (a1, a2, a3) and a′ = (a′1, a
′
2, a

′
3) are points in

this manifold, then

m(a, a′) = log(max{a1
a′1

,
a′1
a1

,
a2
a′2

,
a′2
a2

,
a3
a′3

,
a′3
a3

})

= max{|log a′1 − log a1|, |log a′2 − log a2|, |log a′3 − log a3|}.
(8)

If there is no risk of confusion, we will denote this submanifold by ATA

as well. We shall call this model the edge model.
Now we introduce the second model. We first note that each labeled

triangle having area A is determined by its angles, that is, the map ATA →
R∗3

+ sending a triangle T to (θ1, θ2, θ3) is injective, where θ1, θ2, θ3 are the
angles at the vertices of T . Its image is the interior of a Euclidean equilateral
triangle in a hyperplane in R3. If there is no risk of confusion, we shall also
denote this image by ATA. We shall denote by (θ1, θ2, θ3) the triangle having
angles θ1, θ2, θ3. We shall call this model the angle model.

3.3 Topology of TA

We consider the edge model for TA. It is equipped with two topologies:
the one which comes from the Euclidean metric (that is, the one induced
from the ambient space) and the one which comes from m. We denote these
topologies by Teuc and Tm, respectively.

Proposition 4. Teuc and Tm coincide.

Proof. It suffices to show that the identity map of TA is a homeomorphism.
This can be done by proving that for a sequence Tn = (an, bn, cn), we have
Tn → (a, b, c) with respect to m if and only if Tn → (a, b, c) with respect
to deuc. If (an, bn, cn) → (a, b, c) with respect to deuc, then log an → log a,
log bn → log b and log cn → log c as n → ∞. Thus (an, bn, cn) → (a, b, c)
with respect to m as n → ∞. If (an, bn, cn) → (a, b, c) with respect to m,
then |log an − log a| → 0, |log bn − log b| → 0 and |log cn − log c| → 0 as
n → ∞. Then an → a, bn → b and cn → c as n → ∞, but this means that
(an, bn, cn) → (a, b, c) with respect to deuc as n → ∞.
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3.4 The Space of non-obtuse triangles

We will prove that TA is complete and introduce the space of non-obtuse
triangles as the closure of ATA in TA.

Proposition 5. (TA,m) is complete.

Proof. We use the edge model of TA. Let Tn = (an, bn, cn) be a Cauchy
sequence of triangles with edge lengths an, bn, cn. It follows from Equation 8
that log an, log bn, log cn are Cauchy sequences. Then we have

log an → log a, log bn → log b, log cn → log c,

where log a, log b, log c ∈ R. Thus, (an, bn, cn) → (a, b, c) (with respect to
m), where a, b, c > 0. Note that (a, b, c) is a triangle with area A since
area is a continuous function of the length of edges of triangles, and (a, b, c)
satisfies strict triangle inequalities since the corresponding “triangle” is non-
degenerate. Indeed any degenerate triangle has zero area.

Furthermore, the set of non-obtuse triangles is a closed subset of TA.
This follows from the fact that the angle functions are continuous. The set
of acute triangles ATA is an open subset of TA and it is easy to see that its
closure in TA is the set of non-obtuse triangles of area A, which we denote
by ATA.

3.5 The spaces TA and TA′ are isometric

For any two triangles T and T ′, we have

m(λT, λT ′) = m(T, T ′),

It follows that TA and Tλ2A are isometric by the map sending the class of a
triangle T to the class of the triangle λT . Similarly, for any A,A′ > 0, ATA

and ATA′ are isometric.

4 Geodesics in ATA

Let (X, d) be a metric space where d is not necessarily symmetric. We use
the following version of the notion of geodesic (this is the usual notion of
geodesic in a non-symmetric metric space, see e.g. Def. 3.2 in [19]).
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Definition 9. A geodesic in X is a map h : I → X where I is an interval of
R such that for any triple x1, x2, x3 ∈ I satisfying x1 ≤ x2 ≤ x3, we have

d(h(x1), h(x3)) = d(h(x1), h(x2)) + d(h(x2), h(x3)).

Note that if d is symmetric, a map obtained from h by reversing the
direction of a geodesic is also a geodesic. But this is not necessarily true
for asymmetric metrics. Note also that if d is asymmetric, one needs, in the
above definition, to be careful about the order of the arguments.

For A > 0, let T = (a1, a2, a3) and T ′ = (a′1, a
′
2, a

′
3) be two different

elements in ATA, where we use the edge model. In this section, we prove
that T and T ′ can be joined by a geodesic. In other words, we show that the
metric space (ATA,m) is geodesic.

As before, there is unique i ∈ 1, 2, 3 such that one of the following holds:

1. θj ≤ θ′j and θk ≤ θ′k,

2. θj ≥ θ′j and θk ≥ θ′k,

where j, k ∈ {1, 2, 3} and j, k ̸= i. Without loss of generality, we assume that
i = 3 and

θ1 ≥ θ′1 and θ2 ≥ θ′2,

and we shall find a geodesic from T to T ′. Since geodesics are reversible in a
symmetric metric space, this argument should cover the case

θ1 ≤ θ′1 and θ2 ≤ θ′2.

Consider the scaled triangles T̄ = 1
a3
T = (a1

a3
, a2
a3
, 1) and T̄ ′ = 1

a′3
(
a′1
a′3
,
a′2
a′3
, 1).

The fact that they have an edge of equal length and the conditions on the
angles imply that T̄ ′ can be drawn inside T̄ , see Figure 7. Let the set of ver-
tices of T̄ ′ be {v̄′1, v̄′2, v̄′3} and the set of vertices of T̄ be {v̄1, v̄2, v̄3}. Consider
a family of triangles {T̄t}, t ∈ [0, 1], with angles (θ1(t), θ2(t), θ3(t)) having the
following properties:

1. For each t, T̄t is a triangle with two vertices being v̄1 and v̄2.

2. T̄0 = T̄ and T̄1 = T̄ ′.

3. Each θi(t) is either a decreasing or increasing function.
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4. Each θi(t) is a continuous function.

5. (θ1(t), θ2(t), θ3(t)) is not constant on any subinterval of [0, 1].

See Figure 7 for an example of such a family.
If we scale each T̄t by a factor λ(t) such that the area of λ(t)T̄t is A,

then we get a family of triangles Tt = (a1(t), a2(t), a3(t)) such that T0 =
(a1, a2, a3) and T1 = (a′1, a

′
2, a

′
3, ). By Lemma 1, this family satisfies the

following property:

exp(m(Tt1 , Tt2)) =
a3(t2)

a3(t1)
(9)

for any t1 ≤ t2, t1, t2 ∈ [0, 1]. It follows that if t1 ≤ t2 ≤ t3 then

exp(m(Tt1 , Tt3)) =
a3(t3)

a3(t2)

a3(t2)

a3(t1)
.

Thus,

m(Tt1 , Tt3) = m(Tt1 , Tt2) +m(Tt2 , Tt3).

This means that the 1-parameter family of triangles Tt is a geodesic.
Therefore we proved the following.

Theorem 10. The space (ATA,m) is geodesic, that is, any two points of
ATA can be joined by a geodesic.

In fact, we also proved that any two distinct point in ATA can be joined
by a special geodesic which is a straight line segment in the angle model of
ATA. To be more precise, let T = (θ1, θ2, θ3) and T ′ = (θ′1, θ

′
2, θ

′
3). Let

θi(t) = (1− t)θi + tθ′i, t ∈ [0, 1], i ∈ {1, 2, 3}.

Then clearly Tt = (θ1(t), θ2(t), θ3(t)) is a geodesic joining T and T ′.

Remark 11. If T and T ′ are two elements in ATA that have different angles
at each vertex, then there are uncountably many geodesics joining them up
to parametrization. But if T and T ′ have an equal angle at some vertex,
then up to parametrization there is a unique geodesic joining them. This is
implied by the fact that the angle sum is equal to π.

Now we determine when a path in ATA is a geodesic.
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Figure 7: α(t) is a parametrization of the line segment between v̄3 and v̄′3.
The family of triangles T̄t = ∆v̄1v̄2α(t) is a geodesic in ATA. See §4.

Theorem 12. Let Tt = (θ1(t), θ2(t), θ3(t)), t ∈ [a, b] be a continuous family
of triangles. Then Tt is a geodesic if and only if each θi(t) is monotone, that
is, either θi(t) is non-decreasing or non-increasing.

Proof. The above argument shows that if each θi(t) is monotone, then Tt

is a geodesic. To prove the converse, we assume that there is a family Tt

which is a geodesic but not all θi(t) are monotone. We also assume that
θ1(a) ≤ θ1(b), θ2(a) ≤ θ2(b) and θ3(a) > θ3(b). It follows that one of the
θi(t) is not monotone. Since it is not possible that both θ1(t) and θ2(t) are
non-decreasing, but θ3(t) is not monotone, we should only consider the cases
where θ1(t) or θ2(t) are not non-decreasing. By symmetry, we only need
to assume that θ1 is not non-decreasing. Since θ1(a) ≤ θ1(b), there exists
t1, t2, t3 ∈ [a, b] such that t1 < t2 < t3 and θ1(t1) < θ1(t2) > θ1(t3).

Consider the triangles Tt1 , Tt2 ans Tt3 . Scale these triangles so that the
edges opposite to the vertex with label 3 have the same length, see Figure
8. Let T̄ti be the scaled triangles. Let h3(ti) be the altitude of T̄ti from the

25



Figure 8: A continuous family of triangles forming a geodesic, see Theorem
12

vertex labeled by 3. We have

m(Tt1 , Tt3) = log(

√
||h3(t3)||√
||h3(t1)||

),

m(Tt1 , Tt2) ≥ log(

√
||h3(t2)||√
||h3(t1)||

),

m(Tt2 , Tt3) > log(

√
||h3(t3)||√
||h3(t2)||

),

(see Section 2.4). Thus, m(Tt1 , Tt3) < m(Tt1 , Tt2) + m(Tt2 , Tt3). Hence the
family {Tt} does not form a geodesic.
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5 The Finsler Structure on ATA

Let us first recall the notion of a Finsler structure on a differentiable manifold.
We work in the global Finsler setting, adopted e.g. in [19] (that is, without
the tensor apparatus). We shall prove that the metric space (ATA,m), or,
equivalently, (ATA, L), is Finsler, that is, it is a length metric associated with
a Finsler structure. We shall briefly recall the bases of this setting. We start
with the definition of a weak norm.

Definition 13. Let V be a real vector space. A weak norm on V is a function
V → [0,∞), v 7→ ||v|| such that the following properties hold for every v and
w in V :

1. ||v|| = 0 if and only if v = 0,

2. ||tv|| = t||v|| for every t > 0,

3. ||tv + (1− t)w|| ≤ t||v||+ (1− t)||w|| for every t ∈ [0, 1].

Let M be a differentiable manifold and TM be the tangent bundle of M .

Definition 14. A Finsler structure on M is a function F : TM → [0,∞) such
that

1. F is continuous,

2. for each x ∈ M , F |TxM is a weak norm.

Let F be a Finsler structure on a manifold M . For each C1 curve c :
[a, b] → M , we define

l(c) = lF (c) =

∫ b

a

F (ċ(t))dt.

Definition 15. A metric d on a differentiable manifold M is called Finsler if it
is the length metric associated to a Finsler structure, that is, if there exists
a Finsler structure F on M such that for every x, y ∈ M we have

d(x, y) = inf{lF (c)}

where c ranges over all piecewise C1 curves such that c(0) = x and c(1) = y.
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Now we show that the metric m on ATA is Finsler. Recall that we
identified ATA with the submanifold in (R∗

+)
3:

ATA ={(a1, a2, a3) ∈ (R∗
+)

3 : a21 + a22 − a23 > 0, a22 + a23 − a21 > 0,

a23 + a21 − a22 > 0,Area(a1, a2, a3) = A}.

Let F be the following function on ATA:

(a1, a2, a3, v1, v2, v3) 7→ max
i

{|vi|
ai

}.

Here, we have identified the tangent space of the manifold ATA at a point
(a1, a2, a3) with the Euclidean subspace of (R∗

+)
3 spanned by the set ATA

itself, and (v1, v2, v3) are the coordinates of a tangent vector in the tangent
space at the point (a1, a2, a3), where the coordinates are relative to the stan-
dard basis of R3.

It is not difficult now to see that F is a Finsler structure on ATA:

Theorem 16. The metric m on ATA is Finsler. More precisely, the metric
m is the length metric associated with the Finsler structure F .

Proof. Let a′ = (a′1, a
′
2, a

′
3) and a′′ = (a′′1, a

′′
2, a

′′
3) be in ATA. As in Section 4,

we may assume that

exp(m(a′, a′′)) =
a′′3
a′3

and therefore that there exists a C1 function g : [0, 1] → ATA, g(t) =
(a1(t), a2(t), a3(t)) such that g(0) = a′, g(1) = a′′ and

exp(m(c(t1), c(t2))) =
a3(t2)

a3(t1)

for all t1, t2 ∈ [0, 1], t1 ≤ t2. Note that this implies that a3(t) is increasing.
We claim that

F (ġ(t)) =
|d(a3(t))|
a3(t)

=
ȧ3(t)

a3(t)
(10)

for each t ∈ [0, 1]. For otherwise there exists t1 ∈ [0, 1] and i ∈ {1, 2} such
that
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|ȧi(t1)|
|ai(t1)|

>
ȧ3(t1)

a3(t1)
.

Assume that
ȧi(t1)

ai(t1)
>

ȧ3(t1)

a3(t1)
.

It follows that d
dt
(log( ai(t)

a3(t)
)) > 0 at t = t1 and we may assume that t1 < 1.

Therefore there is t2 > t1 such that

log(
ai(t2)

a3(t2)
) > log(

ai(t1)

a3(t1)
).

Hence we have

ai(t2)

a3(t2)
>

ai(t1)

a3(t1)
, or equivalently

ai(t2)

ai(t1)
>

a3(t2)

a3(t1)
.

This implies that exp(m(g(t1), g(t2))) ≥ ai(t2)
ai(t1)

> a3(t2)
a3(t1)

, which is a contra-
diction. Similarly, we can show that

−ȧi(t)

ai(t)
≤ ȧ3(t)

a3(t)
.

Equation (10) implies that

lF (g(t)) =

∫ 1

0

F (ġ(t)) =

∫ 1

0

ȧ3(t)

a3(t)
dt

= log a3(1)− log a3(0) = log a′′3 − log a′3 = m(a′, a′′).

Now we show that for any C1 curve c : [0, 1] → ATA, c(t) = (a1(t), a2(t), a3(t)).
we have

lF (c) ≥ m(a′, a′′).

We have

Lf (c) ≥
∫ 1

0

|ȧi(t)|
ai(t)

dt ≥ |log ai(1)− log ai(0)| = |log a′′i − log a′i|.

Hence,
Lf (c) ≥ max

i
{|log a′′i − log a′i|} = m(a, a′).
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We conclude that

m(a′, a′′) = inf lF (c),

where c : [0, 1] → ATA is a C1 curve such that c(0) = a′ and c(1) = a′′.

6 Symmetries of the space ATA

In this section, we study the isometry group Isom(ATA) of ATA with respect
to the metric m.

The space ATA has three boundary components, each of them corre-
sponding to one angle of the triangle becoming right. If we consider the
angle model and fix i ∈ {1, 2, 3}, then a boundary component is given by

{(θ1, θ2, θ3) : 0 < θ1, θ2, θ3 ≤
π

2
, θ1 + θ2 + θ3 = π, θi =

π

2
}.

This shows first that topologically ATA is a disc with three punctures
on its boundary. A puncture may be regarded as a “triangle” with angles
π
2
, π
2
, 0 and area A. Furthermore these boundary components are geodesics

since any injective continuous map from [0, 1] to a boundary component is
a geodesic. This can easily be deduced from Theorem 12. We represent the
boundary component for which θi =

π
2
by Bi. Note that in the angle model,

ATA is just a Euclidean triangle with three punctures at its vertices.
It is not difficult to see that ATA is unbounded. Let us take, in this

paragraph, A = 1
2
and let us denote the equilateral triangle having area 1

2
by

Te. Consider a sequence of isosceles triangles Tn = (θ1(n), θ2(n), θ3(n)) such
that θ2(n) = θ3(n) and limn→∞ θ3(n) =

π
2
. It requires a simple calculation to

show that m(Te, Tn) → ∞ as n → ∞. Now consider a sequence of triangles
T ′
n = (θ1(n),

π
2
, θ3(n)), where θ1(n) → π

2
as n → ∞. Let us also consider

the sequence T ′′
n = (π

2
, θ1(n), θ3(n)). It can be shown that m(T ′

n, T
′′
n ) → 0 as

n → ∞, see Remark 17. This means that AT 1
2
resembles an ideal triangle

in the hyperbolic plane: it has three geodesic boundary components and
any two of these components is a line which converges from each side to a
puncture.

Now we consider the isometry group Isom(ATA). The symmetric group
S3 = Sym{1, 2, 3} can be regarded as a subgroup of Isom(ATA) as follows.
Let σ ∈ S3 and consider the length model for ATA. We identify σ with the
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map sending (a1, a2, a3) to (aσ(1), aσ(2), aσ(3)). It is not difficult to see that

this map is an isometry of ATA. Thus we may consider S3 as a subgroup of
Isom(ATA). We wish to prove now that there are no other isometries, that
is, S3 = ATA.

Let {i, j, k} = {1, 2, 3}. The 2-uple {T, T ′} is called an i-pair if T ∈ Bj,
T ′ ∈ Bk and θk = θ′j. Note that since θi = θ′i, there is a unique geodesic
between T and T ′ up to parametrization.

Lemma 5. If {T, T ′} and {T1, T
′
1} are different i-pairs, then m(T, T ′) ̸=

m(T1, T
′
1).

Proof. Without loss of generality, assume that i = 1, j = 2, k = 3. Since
ATA and AT 1

2
are isometric, we may suppose that A = 1

2
. This will make

the calculations easier. Then, in the edge model,

T = (a,

√
a2 +

1

a2
,
1

a
), T ′ = (a,

1

a
,

√
a2 +

1

a2
).

It follows that

m(T, T ′) = log

√
a2 +

1

a2
− log

1

a
=

1

2
log(1 + a4),

which is an injective function of a. This proves the claim.

Remark 17. As a → 0, we have m(T, T ′) = 1
2
log(1 + a4) → 0. This means

that the distance between two boundary components is arbitrarily small near
a puncture.

Theorem 18. Isom(ATA) = S3.

Proof. It suffices to prove that an isometry that sends Bi to itself for all
i ∈ {1, 2, 3} is the identity. Let σ be such an isometry. Consider an i−pair
{T, T ′}. First of all observe that {σ(T ), σ(T ′)} is an i-pair. This is true
since two elements in different boundary components are l-pairs for some
l ∈ {1, 2, 3} if and only if there is, up to parametrization, a unique geodesic
between them. But to be joined by a unique geodesic is an isometry in-
variant. It follows that m(T, T ′) = m(σ(T ), σ(T ′)). Since σ fixes boundary
components, Lemma 5 implies that T = σ(T ) and T ′ = σ(T ′). Therefore σ
gives us an isometry of the geodesic between T and T ′. But if we restrict
m to this geodesic, we get the usual metric on some interval of the real line.
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Figure 9: The angle model, see §3.2.

Since an isometry of an interval fixing its endpoint is trivial, it follows that
the restriction of σ to such a geodesic is the identity map. Since any point
in ATA lies in such a geodesic, it follows that σ is the identity map.

In Figure 9, we give the angle model together with some 1-pairs and
geodesics between them. Note that the geodesic between two i-pairs is a
straight line segment which is parallel to the boundary component Bi. Let R∗

+

be the set of nonzero positive real numbers. Consider the function ATA → R∗
+

which sends a triangle to its angle at the i-th vertex. Then it follows that the
inverse image of any point in R∗

+ is a geodesic segment between two i-pairs.
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