Periodic Quaternion Expansion in Pisot Bases

Jonathan Caalim and Nathaniel Nollen

Abstract

In this paper, we consider a positional numeration system in \mathbb{R}^n called the rotational beta expansion. The expansion of an element $z \in \mathbb{R}^n$ is a sum of the form

$$z = (\beta M)^{-1} d_1 + (\beta M)^{-2} d_2 + \cdots,$$

where the radix is βM for some fixed real number $\beta > 1$ and matrix $M \in O(n)$. We reformulate the rotational beta expansion where $M \in SO(4)$ into the so-called *q*-expansion on the set \mathbb{H} of real quaternions. In particular, we obtain necessary and sufficient conditions for the *q*-expansion of a quaternion to be periodic when the base *q* is a Pisot quaternion.

Keywords: numeration systems, periodic expansions, quaternions, Pisot numbers

1 Introduction

Let $m \in \mathbb{N}$. Let $\eta := \{\eta_1, \ldots, \eta_m\} \subseteq \mathbb{R}^m$ be a set of linearly independent vectors over \mathbb{R} . Let \mathcal{L} be the lattice of \mathbb{R}^m with the fundamental domain

$$\mathcal{X} = \left\{ \sum_{i=1}^{m} x_i \eta_i \mid x_i \in [0,1) \right\},\$$

generated by the vectors η_i . Let $1 < \beta \in \mathbb{R}$ and let M be an isometry in the orthogonal group O(m) of dimension m. We define the rotational beta transformation map $T : \mathcal{X} \longrightarrow \mathcal{X}$ with parameters $[\beta, M, \eta]$ as the map given by

$$T(z) = \beta M z - d(z),$$

where d(z) is the unique element in \mathcal{L} satisfying $\beta Mz \in \mathcal{X} + d(z)$. The rotational beta expansion of $z \in \mathcal{X}$ (with respect to T) is the expansion $D(z) := d_1 d_2 \dots$, where $d_i := d(T^{i-1}z)$ for $i \in \mathbb{N}$. We have

$$z = \sum_{i=1}^{\infty} \frac{M^{-i} d_i}{\beta^i}.$$

The rotational beta expansion generalizes the beta expansion to higher dimensions (see [2, 1, 14, 12, 13]). The beta expansion of a real number $x \in [0, 1)$ is obtained

Mathematics Subject Classification 2020: 11A63, 12E15, 11R52

by setting m = 1, M = 1 and $\eta = \{1\}$. Thus, $x = \sum_{i=1}^{\infty} \frac{d_i}{\beta^i}$ where $d_i = \lfloor \beta T^{i-1}(x) \rfloor$. In 1980, Schmidt [16] showed that if β is a Pisot number, then the set $\operatorname{Per}(\beta)$ of real numbers $x \in [0,1)$ with eventually periodic beta expansion coincides with $\mathbb{Q}(\beta) \cap [0,1)$. On the other hand, if all the elements of $\mathbb{Q}(\beta) \cap [0,1)$ have an eventually periodic beta expansion, then the base β is either a Pisot or Salem number. It is an open problem

whether $\operatorname{Per}(\beta) = \mathbb{Q}(\beta) \cap [0, 1)$ when β is a Salem number. In this article, our goal is to provide an analog of the periodicity result of Schmidt for a class of rotational beta expansions in dimension 4. We do this by reformulating the rotational beta expansion in the setting of the ring \mathbb{H} of quaternions, thereby, introducing quaternion expansions in \mathbb{H} .

2 Preliminaries

Define distinct elements $\hat{i}, \hat{j}, \hat{k}$ such that

$$\hat{i}^2 = \hat{j}^2 = \hat{k}^2 = \hat{i}\hat{j}\hat{k} = -1.$$

The set \mathbb{H} of real quaternions is the 4-dimensional vector space over \mathbb{R} given by

$$\mathbb{H} = \{ a + b\hat{\imath} + c\hat{\jmath} + d\hat{k} : a, b, c, d \in \mathbb{R} \}.$$

As vector spaces, $\mathbb{H} \cong \mathbb{R}^4$. For $a, b, c, d \in \mathbb{R}$, the quaternion $x = a + b\hat{\imath} + c\hat{\jmath} + d\hat{k}$ is identified with the vector $\begin{bmatrix} a & b & c & d \end{bmatrix}^T$. Here, T denotes the transpose operator. We call a, b, c, d the coordinates of x. We define the real part of x by $\operatorname{Re}(x) := a$ and the imaginary part of x by $\operatorname{Im}(x) := b\hat{\imath} + c\hat{\jmath} + d\hat{k}$. The modulus |x| of x is given by the 2-norm $||x|| = \sqrt{a^2 + b^2 + c^2 + d^2}$. The (quaternion) conjugate of $x \in \mathbb{H}$ is

$$\overline{x} = \operatorname{Re}(x) - \operatorname{Im}(x).$$

Note that \mathbb{H} is a noncommutative division ring. In particular, every nonzero quaternion has a unique multiplicative inverse.

Our goal is to define a numeration system on \mathbb{H} corresponding to the rotational beta expansion on \mathbb{R}^4 under some mild assumptions.

2.1 Matrix Representation of Elements of \mathbb{H}

Note that \mathbb{H} can be viewed as a 2-dimensional vector space over \mathbb{C} since, for any $x \in \mathbb{H}$, we can write $x = p + q\hat{j}$ for some unique $p, q \in \mathbb{C}$. We associate the complex number $z = a + b\hat{i}$ to its matrix form $C_z := \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. The multiplication of \mathbb{R}^n .

The multiplication on \mathbb{H} is noncommutative. For $x \in \mathbb{H}$, we distinguish between the multiplication by x on the right and on the left. Define the maps $\cdot_L, \cdot_R : \mathbb{H} \longrightarrow M_4(\mathbb{R})$ by

$$x_L = \begin{bmatrix} C_p & -JC_q^T \\ C_q J & JC_p^T J \end{bmatrix} \text{ and } x_R = \begin{bmatrix} C_p & -JC_q J \\ JC_q^T J & C_p^T \end{bmatrix}$$

for $x = p + q\hat{j}$ where $p, q \in \mathbb{C}$ and $J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Note that, if $x = a + b\hat{i} + c\hat{j} + d\hat{k}$, where $a, b, c, d \in \mathbb{R}$, then we can compute for x_L and x_R explicitly as

$$x_L = \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} \text{ and } x_R = \begin{bmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{bmatrix}$$

The following result follows directly from the definition of x_L and x_R .

Proposition 2.1. For any $x, y \in \mathbb{H}$, we have

$$xy = x_L y$$
 and $yx = x_R y$.

Moreover, x_L and x_R are the only matrices with the above properties.

For $x \in \mathbb{H}$, we call x_L and x_R the left and the right matrix representations of x, respectively.

Proposition 2.2. Let $x, y \in \mathbb{H}$. Then

- 1. $(x+y)_L = x_L + y_L$ and $(x+y)_R = x_R + y_R$
- 2. $x_L = y_R$ if and only if x = y and $x \in \mathbb{R}$.

PROOF. The first part is clear. Suppose $x, y \in \mathbb{H}$ such that $x_L = y_R$. If y = 0, then x_L and y_R are the zero matrix. So, x = y = 0. Suppose $y \neq 0$. Then

$$xy^{-1} = x_L y^{-1} = y_R y^{-1} = 1.$$

Hence, x = y. Moreover, for any $z \in \mathbb{H}$,

$$xz = x_L z = x_R z = zx.$$

This means that x is an element of the center $Z(\mathbb{H}) = \mathbb{R}$. The proof of the converse is straightforward.

2.2 Isoclinic Matrices

An $M \in M_4(\mathbb{R})$ is called a left (right) pseudoskew matrix if $M = x_L$ (if $M = x_R$) for some $x \in \mathbb{H}$ (see [7]). In such a case, $M^T M = |x|^2 I_4$, where I_4 is the 4-by-4 identity matrix. We say that x is the quaternion representation of M. So, $\det(M) \in \{\pm |x|^4\}$.

A matrix $M \in M_4(\mathbb{R})$ is said to be isoclinic if M is a rotation about 2 orthogonal planes such that the rotation angles are equal, up to sign (see [15]). Suppose M is a rotation matrix about the planes P_1 and P_2 of angles α and β , respectively. If $\alpha = \beta$, then M is said to be left isoclinic. If $\alpha = -\beta$, then M is said to be right isoclinic.

Note that if $M \in M_4(\mathbb{R})$ is a left or right pseudoskew matrix and $\det(M) = 1$, then M is an isoclinic matrix [9, 7]. In what follows, we provide the details of this fact.

Note that if $x \in \mathbb{H}$ is nonzero, then $(x/|x|)_L^T (x/|x|)_L = I_4$ and $\det((x/|x|)_L) \in \{\pm 1\}$. In the next result, we determine the eigenvalues of a pseudoskew matrix. **Proposition 2.3.** Let $0 \neq x \in \mathbb{H}$. The eigenvalues of M are $\operatorname{Re}(x) \pm ||\operatorname{Im}(x)||\hat{i}$ if $M = x_L$ or x_R .

PROOF. Let λ be an eigenvalue of x_L . Then $\det(x_L - \lambda I_4) = 0$. We have $(x_L)^T x_L = |x|^2 I_4$. Hence,

$$(x_L - \lambda I_4)^T (x_L - \lambda I_4) = (|x|^2 + \lambda^2 - 2\lambda \operatorname{Re}(x))I_4$$

= ((\operatorname{Re}(x) - \lambda)^2 + ||\operatorname{Im}(x)||^2)I_4 \in M_{2^n}(\mathbb{C}).

Thus,

$$\det(x_L - \lambda I_4) = \pm ([\operatorname{Re}(x) - \lambda]^2 + ||\operatorname{Im}(x)||^2)^{2^{n-1}}.$$

Hence, $\lambda = \operatorname{Re}(x) \pm ||\operatorname{Im}(x)||\hat{\imath}.$

If $x \in \mathbb{R}$, then $x_L = x_R = xI_4$. Suppose $x \notin \mathbb{R}$. Since x_L is normal, it is diagonalizable. Then $\lambda_{\pm} = \operatorname{Re}(x) \pm ||\operatorname{Im}(x)||\hat{i}$ have algebraic and geometric multiplicities both equal to 2.

We now discuss the geometric properties of the matrices x_L and x_R . Let $x \in \mathbb{H} \setminus \mathbb{R}$. Let $\{v_1, v_2\} \subseteq \mathbb{C}^4$ be an orthogonal basis for the eigenspace $E(\lambda_+)$. Then $\{v_1^*, v_2^*\}$ is a corresponding basis for the eigenspace $E(\lambda_-)$, where * denotes the complex conjugation. For j = 1, 2, consider the plane

$$P_j := \{ zv_j + z^*v_j^* \mid z \in \mathbb{C} \} \subseteq \mathbb{R}^4.$$

Observe that, for any $z \in \mathbb{C}$,

$$x_L(zv_j + z^*v_j^*) = z\lambda_+v_j + z^*\lambda_-v_j^* = z\lambda_+v_j + (z\lambda_+)^*v_j^* \in P_j.$$

Thus, x_L fixes the orthogonal planes P_1 and P_2 . We now show that x_L and x_R are rotation matrices.

Proposition 2.4. Let $x \in \mathbb{H} \setminus \mathbb{R}$ such that |x| = 1. Let $u \in \mathbb{H}$ and let $\theta_N \in [0, \pi)$ be the angle measure between u and $x_N u$ for $N \in \{L, R\}$. Then, $\cos(\theta_N) = \operatorname{Re}(x)$.

PROOF. Note that $u^T x_L u = u^T x_R u = Re(x) u^T u$. Thus,

$$\operatorname{Re}(x)|u|^{2} = \operatorname{Re}(x)u^{T}u = u^{T}x_{L}u$$
$$= |u||x_{L}u|\cos(\theta_{L}) = |u||xu|\cos(\theta_{L}) = |u|^{2}\cos(\theta_{L}).$$

The same argument applies for θ_R .

It follows that x_L (and likewise, x_R) is similar to $\rho(\theta_1) \oplus \rho(\theta_2)$, where

$$\rho(\theta_i) = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{bmatrix}$$

for $\theta_i \in \{\pm \cos^{-1} \operatorname{Re}(x)\}$ and each $\rho(\theta_i)$ fixes the orthogonal planes P_j .

Let $x \in \mathbb{H}$ such that |x| = 1. Hence, x_L is left-isoclinic and is similar to the direct sum $A \oplus A$ where $A = \begin{bmatrix} \operatorname{Re}(x) & -|\operatorname{Im}(x)| \\ |\operatorname{Im}(x)| & \operatorname{Re}(x) \end{bmatrix}$. Meanwhile, x_R is right-isoclinic and is similar to $A \oplus A^T$.

2.3 Quaternion Expansions

We now introduce the notion of quaternion expansions. Consider the rotational beta expansion in \mathbb{R}^4 with parameters $[\beta, M, \eta]$. Suppose M is left (or right) isoclinic. We can associate the expansion

$$z = \sum_{j=1}^{\infty} \beta^{-j} M^{-j} d_j$$

with an expansion in \mathbb{H} . Let $q := \beta M e_1 \in \mathbb{H}$, where $e_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T$ is the vector form of $1 \in \mathbb{H}$. Note that if $x \in \mathbb{H}$ such that $M = x_L$ and $y \in \mathbb{H}$, then

$$q = \beta x$$
 and $\beta M y = \beta (x_L y) = \beta x y = q y$.

The basis elements of η can be viewed as elements of \mathbb{H} . Consequently, we can view \mathcal{L} as a lattice in \mathbb{H} with corresponding fundamental domain \mathcal{X} . By a lattice in \mathbb{H} , we mean an additive abelian group $\mathcal{L} \subseteq \mathbb{H}$ such that $\inf\{|x - y| : x, y \in \mathcal{L} \text{ and } x \neq y\} > 0$. Moreover, given a lattice \mathcal{L} in \mathbb{H} , a fundamental domain for \mathcal{L} is a subset $\mathcal{X} \subseteq \mathbb{H}$ such that \mathbb{H} can be partitioned as

$$\mathbb{H} = \bigcup_{d \in \mathcal{L}} (\mathcal{X} + d).$$

Define the transformation $T: \mathcal{X} \longrightarrow \mathcal{X}$ by T(z) = qz - d(z) where $d(z) \in \mathcal{L}$ is the unique digit such that $qz \in \mathcal{X} + d(z)$. Then $D(z) = (d_1, d_2, \dots) \in \mathcal{L}^{\mathbb{N}}$ is the expansion of the quaternion $z \in \mathcal{X}$ and

$$z = \sum_{j=1}^{\infty} q^{-j} d_j,$$

where $d_j = d(T^{j-1}(z))$. We call D(z) the quaternion expansion of z with respect to the base q (or simply, the q-expansion of z). Similarly, starting with an expansion of the above form with a base $q \in \mathbb{H}$, we can obtain a related rotational beta expansion such that $\beta M = q_L$.

To proceed, let us first introduce the ring \mathbb{H}_L of Lipschitz quaternions and the ring \mathbb{H}_H of Hurwitz quaternions. The rings \mathbb{H}_L and \mathbb{H}_H are lattices in \mathbb{H} .

1.
$$\mathbb{H}_L := \{a + b\hat{i} + c\hat{j} + dk \mid a, b, c, d \in \mathbb{Z}\}$$

2. $\mathbb{H}_H := \left\{ \frac{a + b\hat{i} + c\hat{j} + d\hat{k}}{2} \mid a, b, c, d \in \mathbb{Z} \text{ and } a \equiv b \equiv c \equiv d \mod 2 \right\}$

We provide some examples of q-expansions.

EXAMPLE 2.5. Let $\eta = \{1, \hat{\imath}, \hat{\jmath}, \hat{k}\}$. Then $\mathcal{L} = \mathbb{H}_L$ and $\mathcal{X} = \{a + b\hat{\imath} + c\hat{\jmath} + d\hat{k} \mid a, b, c, d \in [0, 1)\}$. Let $q = (1 + \sqrt{5})\hat{\imath}/2$. The q-expansion of $z = (1 + \hat{\jmath})/2$ is the purely periodic expansion

$$D(z) = (0, -2 - 2\hat{j}, \hat{i} + \hat{k}, -1 - \hat{j}, \hat{i} + \hat{k}, -1 - \hat{j})$$

Correspondingly, with respect to the parameters $\beta = (1 + \sqrt{5})/2$ and $M = \left(\frac{q_1}{|q_1|}\right)_L =$

 $\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, we have the following rotational beta expansion:

[1/2]	[[0]	[-2]	[0]	[-1]	[0]	[-1] \	
0	0	0	1	0	1	0	
1/2 -	0 ,	-2 ,	0 ,	$ -1 ^{2}$	0,	-1	•
$\begin{bmatrix} 1/2\\0\\1/2\\0\end{bmatrix} =$	$\left(\begin{bmatrix} 0 \end{bmatrix} \right)$		$\lfloor 1 \rfloor$		$\lfloor 1 \rfloor$	[0]/	

EXAMPLE 2.6. Let $\eta = \{1, \hat{\imath}, \hat{\jmath}, \hat{k}\}$. Then $\mathcal{L} = \mathbb{H}_L$ and $\mathcal{X} = \{a + b\hat{\imath} + c\hat{\jmath} + d\hat{k} \mid a, b, c, d \in [0, 1)\}$. Let $q = (\hat{\imath} - \hat{\jmath} + (2 + \sqrt{2})\hat{k})/2$. The q-expansion of $(1 + \hat{\jmath})/2$ is eventually periodic. Indeed,

$$\frac{1+\hat{j}}{2} = q^{-1}a_1 + q^{-2}a_2 + q^{-3}a_3 + q^{-4}a_4 + q^{-5}a_5 + \sum_{j=1}^{\infty} q^{-(j+5)}b_j,$$

where

$$a_{1} = -\hat{i} - \hat{j} + \hat{k}, \qquad a_{2} = -2 + \hat{k}, \qquad a_{3} = -1 - \hat{i} + \hat{j}, \\ a_{4} = -2 - 2\hat{i} - \hat{j} + \hat{k}, \qquad a_{5} = -2 - \hat{i} - \hat{j} + 2\hat{k}$$

and

$$b_k = \begin{cases} -2\hat{i} + 2\hat{k}, & \text{if } k \equiv 2 \mod 4\\ -1 + \hat{j}, & \text{if } k \equiv 3 \mod 4\\ -1 - \hat{j} + \hat{k}, & \text{if } k \equiv 0 \mod 4\\ -1 - \hat{i} - \hat{j} + \hat{k}, & \text{if } k \equiv 1 \mod 4. \end{cases}$$

The corresponding rotational beta expansion in \mathbb{R}^4 has the parameters $\beta = |q| = \sqrt{2 + \sqrt{2}}$ and

$$M = (q/|q|)_L = \frac{1}{2\beta} \begin{bmatrix} 0 & -1 & 1 & -\beta^2 \\ 1 & 0 & -\beta^2 & -1 \\ -1 & \beta^2 & 0 & -1 \\ \beta^2 & 1 & 1 & 0 \end{bmatrix}$$

Note that β is not a Pisot number.

EXAMPLE 2.7. Let $\eta = \{\eta_1, \eta_2, \eta_3, \eta_4\}$ where $(\eta_1, \eta_2, \eta_3, \eta_4) = (1, \sqrt{2}\hat{\imath}, \sqrt{2}\hat{\jmath}, \hat{k})$. Then the lattice $\mathcal{L} = \{a + b\sqrt{2}\hat{\imath} + c\sqrt{2}\hat{\jmath} + dk : a, b, c, d \in \mathbb{Z}\}$ is a ring distinct from \mathbb{H}_L and \mathbb{H}_H . Let $q = -(1 + \sqrt{2})\hat{\imath}$. The first few digits of the q-expansion of $z = (1 + \sqrt{3}\hat{\jmath})/2 \in \mathcal{X}$ are

$$\begin{aligned} a_1 &= -\eta_2 - 3\eta_4, & a_2 &= \eta_3, & a_3 &= -\eta_2 - 2\eta_4, \\ a_4 &= 0, & a_5 &= -\eta_2 - \eta_4, & a_6 &= 0, \\ a_7 &= -\eta_2 - 2\eta_4, & a_8 &= 0, & a_9 &= -\eta_2 - \eta_4. \end{aligned}$$

This expansion is, in fact, not eventually periodic (see Example 3.22).

3 Periodicity

In this section, we extend the notion of Pisot numbers to quaternions. We then consider q-expansions where q is a Pisot quaternion and provide a necessary and sufficient conditions for the q-expansion of a quaternion to be eventually periodic.

3.1 **Pisot Quaternions**

Recall that a real number $\beta > 1$ is Pisot if it is an algebraic integer and all of its nontrivial conjugates β' over \mathbb{Z} satisfy $|\beta'| < 1$. In this section, we define Pisot numbers over a quaternion subring. To this end, we first study polynomials over a skew field. Note that the set $\mathcal{R}[X]$ of polynomials with coefficients in a (possibly noncommutative) ring \mathcal{R} forms a ring under the usual addition and multiplication of polynomials assuming that the indeterminate X commutes with the elements of \mathcal{R} .

We now mention several useful results.

Proposition 3.1 ([6, Theorem 1]). Let \mathcal{D} be a skew field. Let $f(X) = \sum_{j=0}^{n} X^{j} a_{j}$ be a polynomial of degree n such that $a_{j} \in \mathcal{D}$ for each j. If $\alpha \in \mathcal{D}$ such that

$$f(\alpha) = \sum_{j=0}^{n} \alpha^{j} a_{j} = 0,$$

then $f(X) = (X - \alpha)g(X)$ for some $g(X) \in \mathcal{D}[X]$.

Given a skew field \mathcal{D} , we can define an equivalence relation \sim as follows: for $a, b \in \mathcal{D}$, we have $a \sim b$ if and only if $a = cbc^{-1}$ for some $c \in \mathcal{D}$.

Theorem 3.2 ([6, Theorem 2]). Let \mathcal{D} be a skew field. Let $f \in \mathcal{D}[X]$ be a polynomial of degree n. Then $|\{\alpha \in \mathcal{D} : f(\alpha) = 0\}/\sim |\leq n$. Moreover, if

$$f(X) = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n),$$

where $\alpha_i \in \mathcal{D}$ and $\alpha \in \mathcal{D}$ such that $f(\alpha) = 0$, then $\alpha \sim \alpha_k$ for some k.

Theorem 3.3 (Fundamental Theorem of Algebra for \mathbb{H} , [10]). Let $f(X) \in \mathbb{H}[X]$ be nonzero. Then

$$|\{\alpha \in \mathbb{H} \mid f(\alpha) = 0\}/\sim| = \deg f.$$

Now, let \mathcal{R} be a subring of \mathbb{H} with unity. Let $q \in \mathbb{H}$. Suppose that f(q) = 0 for some monic polynomial $f(X) \in \mathcal{R}[X]$. Assume that f is the minimal polynomial of q over \mathcal{R} , i.e., the degree of f is minimal. By Proposition 3.1, f(X) = (X - q)g(X) for some $g(X) \in \mathbb{H}[X]$. We say that q is Pisot over \mathcal{R} if |q| > 1 and whenever $g(\alpha) = 0$ for $\alpha \in \mathbb{H}$, we have $|\alpha| < 1$.

We provide some examples.

EXAMPLE 3.4. Let \mathcal{R}_1 and \mathcal{R}_2 be subrings of \mathbb{H} with unity. If $\mathcal{R}_1 \subseteq \mathcal{R}_2$ and $q \in \mathbb{H}$ is Pisot over \mathcal{R}_1 , then q is Pisot over \mathcal{R}_2 . Hence, we have the following.

1. If \mathcal{R} is a subring of \mathbb{H} with $\mathbb{Z} \subseteq \mathcal{R}$ and $\beta \in \mathbb{R}$ is a Pisot number (in the usual sense, i.e., over \mathbb{Z}), then β is also Pisot over \mathcal{R} .

Let \mathcal{R} be a subring of \mathbb{H} with $\mathbb{Z} \subseteq \mathcal{R}$ and $\beta \in \mathbb{R}$ be a Pisot number with minimal polynomial $f(X) = \sum_{j=0}^{n} X^{j} a_{j} \in \mathbb{Z}[X]$. Let $\beta = \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be the roots of f in $\mathbb{R} + \mathbb{R}\hat{i}$. Let $\theta \in \mathcal{R}$ with $\theta^{2} = -1$. Then

$$f(X) = (X - \gamma_1)(X - \gamma_2) \cdots (X - \gamma_n)$$

where $\gamma_j := \operatorname{Re}(\beta_j) + \operatorname{Im}(\beta_j)\theta$. Note that γ_j commutes with θ for all j. Consider the monic polynomial

$$g(X) = f(X\theta^{-1})\theta^n = (X - \gamma_1\theta)(X - \gamma_2\theta)\cdots(X - \gamma_n\theta) \in \mathcal{R}[X].$$

So, $\gamma_1 \theta = \beta \theta$ is integral over \mathcal{R} being a root of the g. Moreover, the (possible) nontrivial Galois conjugates of $\beta \theta$ over \mathcal{R} have the form $\gamma_j \theta$ and observe that $|\gamma_j \theta| = |\beta_j| < 1$ for $j \geq 2$. In other words, $\theta \beta$ is Pisot over \mathcal{R} . For example, $\varphi \theta$ is Pisot over \mathbb{H}_L with minimal polynomial $X^2 - X\theta + 1$ where φ is the Pisot number $(1 + \sqrt{2})/5$ and $\theta \in \{\pm \hat{i}, \pm \hat{j}, \pm \hat{k}\}$.

2. Let $q \in \mathbb{C} \setminus \mathbb{R}$ be a (nonreal) complex Pisot number, i.e., q is an algebraic integer with |q| > 1 and the Galois conjugates of q over \mathbb{Q} distinct from q and \overline{q} have moduli less than 1. Let \mathcal{R} be a subring of \mathbb{H} with $\mathbb{Z} \subseteq \mathcal{R}$. Then q is integral over \mathcal{R} , say with the minimal polynomial $\mu(X) = (X - q)g(X) \in \mathcal{R}[X]$. Note that $\mu(X)$ divides the minimal polynomial of q over \mathbb{Q} . If $g(\overline{q}) \neq 0$, then q is Pisot over \mathcal{R} .

EXAMPLE 3.5. Let $q = (a + b\hat{i} + c\hat{j} + d\hat{k})/2$ where $a, b, c, d \in \mathbb{Z}$ are odd such that $3a^2 = b^2 + c^2 + d^2$. Then $q \in \mathbb{H}_H \setminus \mathbb{H}_L$ and q is Pisot over \mathbb{H}_H (of degree 1). Now, $q^3 = -a$, i.e., q is a root of $f(X) = X^3 + a$. Thus, q is integral over \mathbb{H}_L of degree 2 or 3. Suppose f(X) = (X - q)g(X) and $\alpha \in \mathbb{H}$ is a root of g. By Theorem 3.2, $\alpha \sim \beta$ for some root β of f. Thus, $1 \leq |a| = |\beta|^3 = |\alpha|^3$. This means that the roots of g have moduli greater than 1, that is, q is not Pisot over \mathbb{H}_L . This example is rather interesting since \mathbb{H}_L and \mathbb{H}_H have the same skew field of fractions (see Section 3.2) and yet q has different degrees over the two subrings.

Proposition 3.6. Let \mathcal{R} be a subring of \mathbb{H} containing $\mathbb{Z} \subseteq \mathcal{R}$. Let $b, c, d \in \mathbb{R}$ such that $b^2 + c^2 + d^2$ is a Pisot number (over \mathbb{R}). Let $q = b\hat{i} + c\hat{j} + d\hat{k}$. Then q is integral over \mathcal{R} . Moreover, if $\mu(X) = (X - q)g(X)$ is the minimal polynomial of q over \mathcal{R} and \overline{q} is not a root of g(X), then q is Pisot over \mathcal{R} .

PROOF. Let $\gamma = b^2 + c^2 + d^2$. Then $q^2 = -|q|^2 = -\gamma$. Let $f(X) \in \mathbb{Z}[X]$ be the minimal polynomial of γ over \mathbb{Z} . Then $f(-q^2) = 0$. Since the coefficients of f are real and the powers of q commute, then q is a root of the polynomial $f(-X^2) \in \mathcal{R}[X]$ whose leading coefficient is either 1 or -1. This implies that q is integral over \mathcal{R} . Let $\gamma_n, \gamma_{n-1}, \ldots, \gamma_2, \gamma_1 = \gamma \in \mathbb{C}$ be the Galois conjugates of γ over \mathbb{Z} . Observe that $f(X) = (X - \gamma)h(X)$ where $h(X) \in \mathbb{C}[X]$. Then

$$0 = f(-X^2) = (-X^2 - \gamma)h(-X^2) = -(X - q)(X - \overline{q})h(-X^2).$$

Let $\mu(X) = (X - q)g(X)$ be the minimal polynomial of q over \mathcal{R} . So, $\mu(X)$ divides $f(-X^2)$. Assume that $g(\overline{q}) \neq 0$. If $\alpha \in \mathbb{H}$ is a root of g, then $\alpha \sim \beta$ for some $\beta \in \mathbb{H}$ such that β is a root of $h(-X^2)$. But, $h(X) = \prod_{j=2}^n (X - \gamma_j)$. Hence, β is a solution to $X^2 = -\gamma_j$ for some $j \geq 2$. So $|\alpha| = |\beta| = \sqrt{|\gamma_j|} < 1$ and therefore, q is Pisot over \mathcal{R} . \Box EXAMPLE 3.7. Let $q = (\hat{i} - \hat{j} + (2 + \sqrt{2})\hat{k})/2$. Then q is integral over \mathbb{H}_L with minimal polynomial $\mu(X) = X^2 - X(2\hat{k}) + (\hat{i} + j)$.

Note that $|q|^2 = 2 + \sqrt{2}$ is a Pisot number and $\mu(\overline{q}) = \mu(-q) \neq 0$. Therefore, q is Pisot over \mathbb{H}_L .

3.2 Ore Domains and Polynomial Skew Field Extensions

Recall that if \mathcal{R} is a commutative ring with unity, then we can define its field \mathcal{K} of fractions ab^{-1} where $a, b \in \mathcal{R}$ and $b \neq 0$. First studied by Ore in [11], Ore domains allow the formulation of field of fractions for noncommutative rings. A ring \mathcal{R} (possibly noncommutative) with unity is an Ore domain if for any $(r, s) \in \mathcal{R} \times (\mathcal{R} \setminus \{0\})$, there exist $(r_1, s_1), (r_2, s_2) \in \mathcal{R} \times (\mathcal{R} \setminus \{0\})$ such that $rs_1 = sr_1$ and $s_2r = r_2s$. To an Ore domain \mathcal{R} , we associate a skew field \mathcal{K} of elements ab^{-1} where $a, b \in \mathcal{R}$ and $b \neq 0$.

Proposition 3.8. Let \mathcal{R} be a subring of \mathbb{H} with unity. Then \mathcal{R} is an Ore domain.

PROOF. Given $r, s \in \mathcal{R} \setminus \{0\}$, take $(r_1, s_1) = (rsr^2 - r^2sr, c + r^2s^2 - (sr)^2)$ and $(r_2, s_2) = (r^2sr - rsr^2, c + r^2s^2 - (rs)^2)$ where $c = (rs - sr)^2$.

Let \mathcal{R} be a subring of \mathbb{H} with unity. By Proposition 3.8, the set $\mathcal{K} = \{ab^{-1} \mid a, b \in \mathcal{R}, b \neq 0\}$ is the skew field of fractions of \mathcal{R} , that is, \mathcal{K} is the smallest subskew field of \mathbb{H} that contains \mathcal{R} . Note that \mathcal{K} is unique up to isomorphism. The skew fields of fractions of \mathbb{H}_L and \mathbb{H}_H are both equal to the set

$$\{a+b\hat{\imath}+c\hat{\jmath}+d\hat{k} \mid a,b,c,d \in \mathbb{Q}\}\$$

Let $q \in \mathbb{H}$. Suppose f(q) = 0 where $f(X) \in \mathcal{R}[X]$ is the minimal polynomial of q over \mathcal{R} . Let $\mathcal{K}(q) \subseteq \mathbb{H}$ be the smallest skew field that contains both \mathcal{K} and q. If \mathcal{R} (and consequently, \mathcal{K}) is commutative, then $\mathcal{K}(q)$ is a field which is also a vector space over \mathcal{K} of dimension deg f. However, this is not always the case when \mathcal{K} is not commutative. We say that $\mathcal{K}(q)$ is a *polynomial skew field extension* (PSFE) of \mathcal{K} if

$$\mathcal{K}(q) = \left\{ \sum_{j=0}^{\deg f-1} q^j a_j \mid a_j \in \mathcal{K} \right\}.$$

In other words, $\{1, q, \ldots, q^{\deg f-1}\}$ is a right basis for $\mathcal{K}(q)$ over \mathcal{K} . Note that $\mathcal{K}(q)$ is both a left and right \mathcal{K} -module.

In general, the problem of determining whether $\mathcal{K}(q)$ is a PSFE of \mathcal{K} is a difficult problem. Interested readers may refer to [3, 8, 4, 5, 18]. When q is integral over a skew field $\mathcal{K} \subseteq \mathbb{H}$ of degree 2, we have the following result.

Theorem 3.9. Let q be integral over a skew field $\mathcal{K} \subseteq \mathbb{H}$ of degree 2. Then $\mathcal{K}(q)$ is a PSFE of \mathcal{K} if and only if there exist additive homomorphisms $S_0, S_1 : \mathcal{K} \to \mathcal{K}$ such that, for any $a \in \mathcal{K}$, the following "commutation rule" holds:

$$aq = S_0(a) + qS_1(a).$$

PROOF. The forward direction is Lemma 2.1 (b) of [18]. For the backward direction, observe that $q^2 = qA + B$ for some $A, B \in \mathcal{K}$ where $B \neq 0$ since q is algebraic over \mathcal{K} of degree 2. Using the commutation rule, we have

$$qaqb = BS_1(a)b + q[S_1(a)b + S_0(a)b]$$

for all $a, b \in \mathcal{K}$. It follows that $\{a+qb : a, b \in \mathcal{K}\}$ is closed under multiplication. Moreover, a nonzero element a+qb is invertible. Indeed, consider the case where $a, b \in \mathcal{K} \setminus \{0\}$. We have

$$1 = (a+qb)(x+qy),$$

where

$$x = -b^{-1}[S_1(a) + S_0(b) + AS_1(b)]y$$

and

$$y = [S_0(a) + BS_1(b) - ab^{-1}(S_1(a) + S_0(b) + AS_1(b))]^{-1}$$

= $[qS_1(b) - S_1(a) - AS_1(b)]^{-1}[b^{-1} + a^{-1}q]^{-1}a^{-1}.$

Note that one of $b^{-1} + a^{-1}q$ and $qS_1(b) - S_1(a) - AS_1(b)$ being 0 implies that $q \in \mathcal{K}$, which is a contradiction. Hence, $\{a+qb: a, b \in \mathcal{K}\}$ is a skew field and it is equal to $\mathcal{K}(q)$. The other cases are easy.

The "commutation rule" $aq = S_0(a) + qS_1(a)$ is relatively easy to verify when \mathcal{K} and q are given. We provide some examples of PSFE. We also give an example where $\mathcal{K}(q)$ is not a PSFE of \mathcal{K} .

EXAMPLE 3.10. By Example 3.7, $q = (\hat{i} - \hat{j} + (2 + \sqrt{2})\hat{k})/2$ is integral over \mathbb{H}_L of degree 2. Let \mathcal{K} be the skew field of fractions of \mathbb{H}_L . Let $w, x, y, z \in \mathbb{Q}$. Then

$$(w + x\hat{\imath} + y\hat{\jmath} + z\hat{k})q = a + qb,$$

where $a := 2y - 2x + 2w\hat{\imath} + 2w\hat{\jmath} \in \mathcal{K}$ and $b := w - x\hat{\imath} - y\hat{\jmath} + z\hat{k} \in \mathcal{K}$. Thus, the set $\{a + qb \mid a, b \in \mathcal{K}\}$ is a skew field and is equal to $\mathcal{K}(q)$. Hence, $\mathcal{K}(q)$ is a PSFE of \mathcal{K} .

EXAMPLE 3.11. The quaternion $q = (1 + \sqrt{5})\hat{i}/2$ is integral over \mathbb{H}_L with minimal polynomial $f(X) = X^2 - X\hat{i} + 1 = (X - q)(X - q^{-1})$. So, q is Pisot over \mathbb{H}_L . Let \mathcal{K} be the skew field of fraction of \mathbb{H}_L . It is easy to show that $\{a + qb \mid a, b \in \mathcal{K}\}$ is a skew field. Thus, $\mathcal{K}(q) = \{a + qb \mid a, b \in \mathcal{K}\}$ is a PSFE of \mathcal{K} .

EXAMPLE 3.12. The quaternion $q = \sqrt{2}(\hat{\imath} + \hat{\jmath})/2$ is integral over the (skew) field $\mathcal{K} = \{r + s\hat{\imath} \mid r, s \in \mathbb{Q}\}$ with minimal polynomial $f(X) = X^2 + 1$. Now, $(\hat{\imath}q)^2 = -\hat{k} \in \mathcal{K}(q)$ but $-\hat{k}$ cannot be written in the form a + bq where $a, b \in \mathcal{K}$. Hence, $\mathcal{K}(q)$ is not a PSFE of \mathcal{K} .

3.3 Main Result

If X is a normed space with norm $|\cdot|$, we say that X has the property (BF) if for every $A \subseteq X$, we have that A is finite whenever $\sup_{a \in A} |a| < \infty$. In other words, every bounded subset of X is finite. The following are examples of subrings of \mathbb{H} with the property (BF): \mathbb{H}_L , \mathbb{H}_H and $\{a + \sqrt{2}b\hat{i} + \sqrt{2}c\hat{j} + d\hat{k} \mid a, b, c, d \in \mathbb{Z}\}$.

We fix the following parameters: a linearly independent set $\eta = \{\eta_1, \eta_2, \eta_3, \eta_4\}$ of quaternions over \mathbb{R} , the lattice $\mathcal{L} = \bigoplus_{j=1}^{4} \mathbb{Z}\eta_j$ and its associated fundamental domain

$$\mathcal{X} = \left\{ \sum_{j=1}^{4} a_i \eta_j \mid a_j \in [0,1) \right\}.$$

From hereon, we let \mathcal{R} be the ring $\langle 1, \mathcal{L} \rangle$ generated by the lattice \mathcal{L} , together with 1. Then \mathcal{R} is an Ore domain containing the digits of the numeration system under consideration. Let \mathcal{K} be the skew field of fractions of \mathcal{R} . Let q be Pisot over \mathcal{R} with minimal polynomial $P(X) \in \mathcal{R}[X]$ of degree d such that $\mathcal{K}(q)$ is a PSFE of \mathcal{K} .

We follow the exposition of Schmidt in [16].

Proposition 3.13. Suppose $\mathcal{K}(q)$ is a PSFE of \mathcal{K} . If $\alpha \in \mathcal{K}(q)$, then $\alpha S = \sum_{j=0}^{d-1} q^j p_j$ for some $S, p_0, p_1, \ldots, p_{d-1} \in \mathcal{R}$.

PROOF. Since $\alpha \in \mathcal{K}(q)$, there exist $r_{0j}, s_{0j} \in \mathcal{R}$ such that $s_{0j} \neq 0$ and

$$\alpha = \sum_{j=0}^{d-1} q^j r_{0j} s_{0j}^{-1} = r_{00} s_{00}^{-1} + \sum_{j=1}^{d-1} q^j r_{0j} s_{0j}^{-1}.$$

Let $S := \mathcal{R} \setminus \{0\}$. Recall that \mathcal{R} is an Ore domain. Since $s_{00} \in \mathcal{R}$ and $s_{0j} \in S$ for $1 \leq j \leq d-1$, then there exist $a_{0j} \in \mathcal{R}$ and $b_{0j} \in S$ such that $s_{00}b_{0j} = s_{0j}a_{0j}$. Then $s_{0j}^{-1} = a_{0j}b_{0j}^{-1}s_{00}^{-1}$. Hence,

$$\alpha = r_{00}s_{00}^{-1} + \sum_{j=1}^{d-1} q^j r_{0j}a_{0j}b_{0j}^{-1}s_{00}^{-1}.$$

So,

$$\alpha s_{00} = r_{00} + \sum_{j=1}^{d-1} q^j r_{1j} s_{1j}^{-1}$$

where $r_{1j} := r_{0j}a_{0j}$ and $s_{1j} := b_{0j}$. Applying the same process,

$$\alpha s_{00} = r_{00} + qr_{11}s_{11}^{-1} + \sum_{j=2}^{d-1} q^j r_{1j}s_{1j}^{-1}$$
$$= r_{00} + qr_{11}s_{11}^{-1} + \sum_{j=2}^{d-1} q^j r_{1j}a_{1j}b_{1j}^{-1}s_{11}^{-1}$$

for some $a_{1j} \in \mathcal{R}$ and $b_{1j} \in \mathcal{S}$. So,

$$\alpha s_{00}s_{11} = r_{00}s_{11} + qr_{11} + \sum_{j=2}^{d-1} q^j r_{1j}a_{1j}b_{1j}^{-1}.$$

Continuing this process yields

$$\alpha S_0 = r_{00}S_1 + qr_{11}S_2 + \dots + q^{d-2}r_{d-2,d-2}S_{d-2} + q^{d-1}r_{d-1,d-1}s_{d-1,d-1}^{-1}$$
$$= \sum_{j=0}^{d-2} q^j r_{jj}S_{j+1} + q^{d-1}r_{d-1,d-1}s_{d-1,d-1}^{-1},$$

where $S_j = \prod_{i=1}^j s_{ii}$ and each $s_{ii} \in S$. Then $\alpha S = \sum_{j=0}^{d-1} q^j p_j$ where $S = \prod_{j=0}^{d-1} s_{jj}$ and $p_j = r_{jj}S_{j+1}$.

Once S is fixed, the tuple $(p_0, \ldots, p_{d-1}) \in \mathcal{R}^d$ that satisfies

$$\alpha S = \sum_{j=0}^{d-1} q^j p_j$$

is uniquely determined since $\{1, q, \ldots, q^{d-1}\}$ is a right basis of $\mathcal{K}(q)$ over \mathcal{K} .

From hereon, we assume that $\alpha \in \mathcal{K}(q)$ has the form

$$\alpha = \sum_{j=0}^{d-1} q^j p_j S^{-1},$$

where $S, p_0, \ldots, p_{d-1} \in \mathcal{R}$ and $S \neq 0$. For each $n \in \mathbb{N}$, set $d_j := d(T^{j-1}(\alpha))$ and

$$\rho^{(n)}(\alpha) := T^n(\alpha) = q^n \left(\alpha - \sum_{j=0}^n q^{-j} d_j \right).$$

Lemma 3.14. Let $\alpha \in \mathcal{K}(q) \cap \mathcal{X}$ and $n \in \mathbb{N}$. Then there is a unique tuple

$$(r_1^{(n)},\ldots,r_d^{(n)})\in\mathcal{R}^d$$

such that

$$\rho^{(n)}(\alpha) = \sum_{k=1}^{d} q^{-k} r_k^{(n)} S^{-1}.$$

PROOF. This follows from the fact that $\{1, q, \ldots, q^{d-1}\}$ is a right basis of $\mathcal{K}(q)$ over \mathcal{K} .

Lemma 3.15. Let $n \in \mathbb{N}$ and γ be a root of the minimal polynomial of q over \mathcal{R} . Then

$$\gamma^n \left[\sum_{j=0}^{d-1} \gamma^j p_j S^{-1} - \sum_{j=0}^n \gamma^{-j} d_j \right] = \sum_{k=1}^d \gamma^{-k} r_k^{(n)} S^{-1}.$$

Moreover, if $|\gamma| > 1$ and α has a periodic q-expansion, then

$$\sum_{j=0}^{d-1} \gamma^j p_j S^{-1} = \sum_{j=0}^{\infty} \gamma^{-j} d_j.$$

PROOF. For the first part, we replace γ by the indeterminate X and multiply S on the right to obtain a polynomial in X over \mathcal{R} . Then q and γ are roots of this polynomial.

Now, if α has a periodic q-expansion, then

$$c := \sup_{n \in \mathbb{N}} \max_{1 \le k \le d} |r_k^{(n)}| < \infty.$$

So,

$$\begin{aligned} \left| \sum_{j=0}^{d-1} \gamma^j p_j S^{-1} - \sum_{j=0}^n \gamma^{-j} d_j \right| &= \left| \sum_{k=1}^d \gamma^{-n-k} r_k^{(n)} S^{-1} \right| \\ &\leq \frac{1}{|S|} \sum_{k=1}^d |\gamma|^{-(n+k)} |r_k^{(n)}| \\ &\leq \frac{cd|\gamma|^{-n}}{|S|} \to 0 \end{aligned}$$

as $n \to \infty$.

Theorem 3.16. Let \mathcal{R} be a subring of \mathbb{H} with unity and the property (BF). Let \mathcal{K} be its skew field of fractions. Suppose $\mathcal{K}(q)$ is a PSFE of \mathcal{K} . Let $q \in \mathbb{H}$ with |q| > 1 be integral over \mathcal{R} with minimal polynomial P(X) = g(X)(X - q). If every $z \in \mathcal{K}(q) \cap \mathcal{X}$ has a periodic q-expansion with digits in \mathcal{R} , then $|\alpha| \leq 1$ whenever $g(\alpha) = 0$. In other words, q is Pisot or Salem over \mathcal{R} .

PROOF. Suppose $\alpha \in \mathbb{H}$ with $g(\alpha) = 0$ and $|\alpha| > 1$. Then $\alpha \sim \beta$ for some $\beta \in \mathbb{H}$ with $P(\beta) = 0$. Also, $|\beta| = |\alpha| > 1$. Note that $\beta \neq q$.

Let $\xi := \max\{|q|^{-1}, |\beta|^{-1}\} < 1$ and $D := \max_{z \in \mathcal{X}} |d(z)|$. Set $0 < \delta < |q^{-1} - \beta^{-1}|$. Choose $m \in \mathbb{N} \ge 2$ such that $\frac{D\xi^m}{1-\xi} < \frac{\delta}{3}$.

Now, take $z \in \mathcal{K} \cap \mathcal{X}$ such that $qz \notin \mathcal{X}$ but $qT^j(z) \in \mathcal{X}$ when $2 \leq j \leq m-2$. Then $d_1(z) \neq 0$ while $d_2(z) = d_3(z) = \cdots = d_{m-1}(z) = 0$ where $d_j(z)$ is the *j*th digit of the *q*-expansion of *z*. Then *z* has periodic *q*-expansion by assumption. By Lemma 3.15,

$$z = q^{-1}d_1(z) + \sum_{j=m}^{\infty} q^{-j}d_j(z) = \beta^{-1}d_1(z) + \sum_{j=m}^{\infty} \beta^{-j}d_j(z)$$

Since $d_1(z) \in \mathcal{R}$ and \mathcal{R} has the property (BF), then $|d_1(z)| \geq 1$. Otherwise, the sequence $\{(d_1(z))^n \mid n \in \mathbb{N}\}$ is finite but has a strictly decreasing modulus. Observe that

$$\delta < |d_1(z)||q^{-1} - \beta^{-1}|$$

$$\leq \left|\sum_{j=m}^{\infty} (q^{-j} - \beta^{-j})d_j(z)\right|$$

$$\leq 2D\sum_{j=m}^{\infty} \xi^j = \frac{2D\xi^m}{1-\xi} < \frac{2\delta}{3}.$$

We have a contradiction. So, $|\alpha| \leq 1$.

Let C_1, C_2, \ldots, C_d be the distinct equivalence classes with respect to \sim containing the roots of the minimal polynomial P(x) of q such that $q_1 = q \in C_1$. For $2 \leq j \leq d$, choose $q^{(j)} \in C_j$ to be a root of P(x).

For $1 \leq i \leq d$ and $n \in \mathbb{N}$, set

$$\rho_i^{(n)}(\alpha) := \sum_{k=1}^d (q^{(i)})^{-k} r_k^{(n)} S^{-1}.$$

Lemma 3.17. Suppose \mathcal{R} has the property (BF). Then the following are equivalent:

- (1) α has periodic q-expansion
- (2) $\max_{1 \le i \le d} \sup_{n \in \mathbb{N}} |\rho_i^{(n)}(\alpha)| < \infty$
- (3) $\sup_{n\in\mathbb{N}}\max_{1\leq k\leq d}|r_k^{(n)}|<\infty.$

PROOF. Note that $(1) \implies (3)$ follows from the previous lemma. Meanwhile, $(3) \implies (2)$ is clear. We show $(2) \implies (1)$.

Assume (2). Set

$$v^{(n)} = \begin{bmatrix} \rho_1^{(n)}(\alpha) \\ \rho_2^{(n)}(\alpha) \\ \vdots \\ \rho_d^{(n)}(\alpha) \end{bmatrix} S = \begin{bmatrix} q_1^{-1} & q_1^{-2} & \cdots & q_1^{-d} \\ q_2^{-1} & q_2^{-2} & \cdots & q_2^{-d} \\ \vdots & \vdots & \ddots & \vdots \\ q_d^{-1} & q_d^{-2} & \cdots & q_d^{-d} \end{bmatrix} \begin{bmatrix} r_1^{(n)} \\ r_2^{(n)} \\ \vdots \\ r_d^{(n)} \end{bmatrix}$$

By (2), the set $\{v^{(n)} \mid n \in \mathbb{N}\}$ is bounded. So, the set $\{(r_1^{(n)}, r_2^{(n)}, \dots, r_d^{(n)} \mid n \in \mathbb{N}\}$ is also bounded. Thus, $\{r_k^{(n)}\}$ is bounded. By the property (BF) of \mathcal{R} , the set $\{r_k^{(n)}\}$ is finite. Thus, $\{T^n(\alpha)\}_{n\in\mathbb{N}}$ is finite. Therefore, α has a periodic q-expansion.

Finally, we prove the main result.

Theorem 3.18. Let $\mathcal{R} = \langle 1, \mathcal{L} \rangle$. Let \mathcal{K} be the skew field of fractions of \mathcal{R} . Suppose \mathcal{R} has the property (BF). If $q \in \mathbb{H}$ is Pisot over \mathcal{R} and $\mathcal{K}(q)$ is a PSFE of \mathcal{K} , then $\alpha \in \mathcal{X}$ has periodic q-expansion if and only if $\alpha \in \mathcal{K}(q)$.

PROOF. The forward direction is clear. Now, let $\alpha \in \mathcal{X} \cap \mathcal{K}(q)$. We show that (2) in the previous lemma is satisfied.

Since \mathcal{X} is bounded and $T^n(\alpha) \in \mathcal{X}$, then $\sup_{n \in \mathbb{N}} |\rho_1^{(n)}(\alpha)| = \sup_{n \in \mathbb{N}} |T^n(\alpha)| < \infty$. Let $2 \leq i \leq d$. Since q is Pisot over \mathcal{R} , then $|q_i| < 1$. Let $\lambda := \max_{2 \leq i \leq d} |q_i| < 1$. By Lemma 3.15,

$$\begin{split} \rho_i^{(n)}(\alpha) &|= |q^{(i)}|^n \left| \sum_{j=0}^{d-1} (q^{(i)})^j p_j S^{-1} - \sum_{k=0}^n (q^{(i)})^{-k} d_k \right| \\ &\leq \frac{1}{|S|} \sum_{j=0}^{d-1} |q^{(i)}|^{n+j} |p_j| + B \sum_{k=0}^n |q^{(i)}|^{n-k} \\ &\leq \frac{1}{|S|} \sum_{j=0}^{d-1} |p_j| + B \sum_{k=0}^n |q^{(j)}|^k \\ &\leq \frac{1}{|S|} \sum_{j=0}^{d-1} |p_j| + B \sum_{k=0}^\infty |q^{(j)}|^k \\ &= \frac{1}{|S|} \sum_{j=0}^{d-1} |p_j| + B \sum_{k=0}^n \lambda^k \\ &= \frac{1}{|S|} \sum_{j=0}^{d-1} |p_j| + \frac{B}{1-\lambda} \end{split}$$

where $B = \max_{z \in \mathcal{X}} |d(z)|$. Thus, $\sup_{n \in \mathbb{N}} |\rho_i^{(n)}(\alpha)| < \infty$. By the previous lemma, the *q*-expansion of α is periodic.

This theorem can be translated into a rotational beta expansion version where M is left (right) isoclinic.

Corollary 3.19. Let $\beta > 1$ and M be left (right) isoclinic of size 4. Let $\mathcal{R} = \langle 1, \mathcal{L} \rangle$. Suppose \mathcal{R} has the property (BF). Let q be the vector representation of βM and \mathcal{K} be the field of fractions of \mathcal{R} . If q is Pisot over \mathcal{R} and $\mathcal{K}(q)$ is a PSFE of \mathcal{K} , then the following are equivalent:

1. z has a periodic rotational beta expansion with respect to the parameter $[\beta, M, \eta]$;

2. $z \in \mathcal{K}(q)$.

We illustrate the previous theorem through the following examples.

EXAMPLE 3.20. We revisit Examples 2.5 and 3.11. Note that $\mathcal{R} = \langle 1, \mathcal{L} \rangle = \mathbb{H}_L$ has the property (BF). The quaternion base $q = (1 + \sqrt{5})\hat{i}/2$ is Pisot over \mathbb{H}_L . The set $\mathcal{K} = \{a + b\hat{i} + c\hat{j} + d\hat{k} \mid a, b, c, d \in \mathbb{Q}\}$ is the skew field of fractions of \mathbb{H}_L . The set $\mathcal{K}(q) = \{qa + b \mid a, b \in \mathcal{K}\}$ is a PSFE of \mathcal{K} . Clearly, $(1 + \hat{j})/2 \in \mathcal{K}(q) \cap \mathcal{X}$ and it is expected that its q-expansion is periodic.

EXAMPLE 3.21. We revisit Examples 2.6, 3.7 and 3.10. The quaternion base $q = (\hat{\imath} - \hat{\jmath} + (2 + \sqrt{2})\hat{k})/2$ is Pisot over \mathbb{H}_L . Moreover, $\mathcal{K}(q)$ is a PSFE of $\mathcal{K} = \{a + b\hat{\imath} + c\hat{\jmath} + d\hat{k} \mid a, b, c, d \in \mathbb{Q}\}$. Then $(1 + \hat{\jmath})/2 \in \mathcal{K}(q) \cap \mathcal{X}$ and its q-expansion is expected to be periodic.

EXAMPLE 3.22. We revisit Example 2.7. The quaternion base $q = -(1 + \sqrt{2})\hat{i}$ is Pisot over the ring (lattice) $\mathcal{R} = \{a + b\sqrt{2}\hat{i} + c\sqrt{2}\hat{j} + d\hat{k} : a, b, c, d \in \mathbb{Z}\}$ since it is a root of

$$\mu(X) = X^2 + X(2\sqrt{2}\hat{\imath}) - 1 = (X - q)(X - q')$$

where $q' = (1 - \sqrt{2})\hat{i}$ and |q'| < 1. Note that \mathcal{R} has property (BF) and the skew field of fractions of \mathcal{R} is

$$\mathcal{K} = \{a + b\sqrt{2}\hat{\imath} + c\sqrt{2}\hat{\jmath} + d\hat{k} : a, b, c, d \in \mathbb{Q}\}.$$

Moreover, observe that $\mathcal{K}(q) = \{a+b\hat{\imath}+c\hat{\jmath}+d\hat{k}:a,b,c,d\in\mathbb{Q}(\sqrt{2})\} = \{a+qb:a,b\in\mathcal{K}\}.$ Hence, $\mathcal{K}(q)$ is a PSFE of \mathcal{K} . Therefore, $D((1+\sqrt{3}\hat{\jmath})/2)$ is not periodic since $(1+\sqrt{3}\hat{\jmath})/2 \notin \mathcal{K}(q)$.

3.4 Quasi-Pisot Base

Let \mathcal{R} be a subring of \mathbb{H} with unity. We say that $q \in \mathbb{H}$ with |q| > 1 is quasi-Pisot over \mathcal{R} if q is integral over \mathcal{R} with minimal polynomial $\mu(X)$ such that

$$\mu(X) = (X - q)(X - \overline{q})g(X)$$

and $|\gamma| < 1$ whenever $\gamma \in \mathbb{H}$ with $g(\gamma) = 0$.

EXAMPLE 3.23. Let \mathcal{R} be a subring of \mathbb{H} with unity such that $\mathbb{Z} \subseteq \mathcal{R}$. Let $q \in \mathbb{C} \setminus \mathbb{R}$ be a complex Pisot number. Then q is integral over \mathcal{R} . Let $\mu(X) = (X - q)g(X) \in \mathcal{R}[X]$ be the minimal polynomial over q. If $g(\overline{q}) = 0$, then q is quasi-Pisot over \mathcal{R} . Otherwise, q is Pisot over \mathcal{R} .

EXAMPLE 3.24. Let \mathcal{R} be a subring of \mathbb{H} with unity. Observe that $q \in \mathbb{H}$ is quasi-Pisot over \mathcal{R} of degree 2 if and only if its minimal polynomial over \mathcal{R} is $\mu(X) = (X-q)(X-\overline{q})$. Hence, $q \in \mathbb{H}$ is quasi-Pisot over \mathcal{R} if and only if $q \notin \mathcal{R}$ and $2\operatorname{Re}(q), |q|^2 \in \mathcal{R}$. For example, let $q \in \mathbb{H}_H \setminus \mathbb{H}_L$. Then $q = (a + b\hat{\imath} + c\hat{\jmath} + d\hat{k})/2$ for some odd integers a, b, c, d. Then q is quasi-Pisot over \mathbb{H}_L of degree 2.

Now, let β , M and \mathcal{R} be the same as in Corollary 3.19 and suppose $q \in \mathbb{H}$ is integral over \mathcal{R} of degree d. Then for $\alpha \in \mathcal{K}(q) \cap \mathcal{X}$ and for each $n \in \mathbb{N}$, we have

$$T^{n}(\alpha) = \sum_{k=1}^{d} q^{-k} r_{k}^{(n)} S^{-1}$$

for some tuple $(r_1^{(n)}, \ldots, r_d^{(n)}) \in \mathcal{R}^d$ and $S \in \mathcal{R} \setminus \{0\}$. If q is quasi-Pisot over \mathcal{R} and the real dimension of the span

$$\operatorname{Span}\{r_k^{(n)} \mid 1 \le k \le d, n \in \mathbb{N}\}$$

is at most 1, then α has a periodic rotational beta expansion with parameter $[\beta, M, \eta]$. In particular, this is the case when $\mu(X) \in \mathbb{R}[X]$ and the digits of the *q*-expansion of α are all real.

4 Quaternion Zeta Expansions

Let $\theta \in \mathbb{H}$ such that $\theta^2 = -1$. Let $q \in \mathcal{C}(\theta) := \mathbb{R} + \mathbb{R}\theta \cong \mathbb{C}$. Fix $\varepsilon \in [o, 1)$. The zeta expansion [17] on the fundamental domain

$$\mathcal{D}(\varepsilon) := \{a_1 + a_2(-\overline{q}) : a_1, a_2 \in [-\varepsilon, 1-\varepsilon)\} \subseteq \mathcal{C}(\theta)$$

is the rotational beta expansion with parameter $[|q|, M, \{1, -\overline{q}\}]$ where M is the 2×2 rotation matrix form of q/|q| (as an element of $\mathcal{C}(\theta)$). For $z \in \mathcal{D}(\varepsilon)$, the digits of the zeta expansion of z are all integers. We drop the arguments θ and ε from $\mathcal{C}(\theta)$ and $D(\varepsilon)$, respectively, whenever the context is clear.

EXAMPLE 4.1. Let $\theta = (\hat{\imath} + \hat{\jmath} + \hat{k})/\sqrt{3}$ and $\varepsilon = 1/2$. Let $q = 1 + \theta$. Then the zeta expansion of $(3 + \theta)/10 \in \mathcal{D}(\varepsilon)$ in base q is $\{1, -2, 2\}$.

We say that $q \in \mathcal{C} \setminus \mathbb{R}$ is a \mathcal{C} -Pisot number if q is an algebraic integer with minimal polynomial $\mu(X) \in \mathbb{Z}[X]$ such that the roots of μ distinct from q and \overline{q} have moduli less than 1. On the other hand, we say that q is a \mathcal{C} -Salem number if q is an algebraic integer with minimal polynomial $\mu(X) \in \mathbb{Z}[X]$ such that the roots of μ aside from q and \overline{q} moduli less than 1 with at least one root γ with $|\gamma| = 1$. Clearly, $q \in \mathcal{C}$ is \mathcal{C} -Pisot (\mathcal{C} -Salem) if and only if \overline{q} is \mathcal{C} -Pisot (\mathcal{C} -Salem).

Proposition 4.2. Let $q \in \mathcal{C}(\theta)$ and $0 \neq c \in \mathbb{H}$ with |c| = 1. Then

- 1. q is $\mathcal{C}(\theta)$ -Pisot ($\mathcal{C}(\theta)$ -Salem) if and only if cqc^{-1} is $\mathcal{C}(c\theta c^{-1})$ -Pisot ($\mathcal{C}(c\theta c^{-1})$ -Salem);
- 2. in particular, q is C-Pisot (C-Salem) if and only if $\operatorname{Re}(q) + \operatorname{Im}(q)\hat{i}$ is complex Pisot (complex Salem).

PROOF. For (1), it is enough to show one direction. Let $\mu(X) \in \mathbb{Z}[X]$ be the minimal polynomial of q over \mathbb{Z} . Then $\mu(X) = g(X)h(X)$ where $h(X) = X^2 - 2\operatorname{Re}(q)X + |q|^2$ for some $g(X) \in \mathbb{R}[X]$. Then cqc^{-1} and cqc^{-1} are roots of h and μ . This implies that $cqc^{-1} \in \mathcal{C}(c\theta c^{-1})$ is an algebraic integer whose possible Galois conjugates distinct from cqc^{-1} and cqc^{-1} are roots of g. By Theorem 3.2, if $\gamma \in \mathcal{C}(c\theta c^{-1})$ is a root of g, then $\gamma \sim \gamma'$ for a root $\gamma' \in \mathcal{C}(\theta)$ of g. Hence, the moduli of the roots of g in $\mathcal{C}(\theta)$ and the moduli of the roots of g in $\mathcal{C}(c\theta c^{-1})$ are the same. Thus, if $\gamma \in \mathcal{C}(c\theta c^{-1})$ is a root of g, then $|\gamma| < 1$ $(|\gamma| \leq 1)$ because q is $\mathcal{C}(\theta)$ -Pisot $(\mathcal{C}(\theta)$ -Salem).

For the second part, suppose $\theta = x\hat{i} + y\hat{j} + z\hat{k}$ for some $x, y, z \in \mathbb{R}$. Then $|\theta|^2 = x^2 + y^2 + z^2 = 1$. If $\theta = \pm \hat{i}$, then we are done since $-\hat{i} = \hat{j}\hat{i}\hat{j}^{-1}$. Suppose |x| < 1. Then x + 1 > 0. We have $\hat{i} = c\theta c^{-1}$ where

$$c = \frac{(x+1)\hat{i} + y\hat{j} + zk}{\sqrt{2(x+1)}}$$

We have the following result.

Theorem 4.3 ([17]). Let $q \in \mathcal{C}$ and $\varepsilon \in [0, 1)$.

- 1. If q is C-Pisot, then for any $z \in \mathcal{D}(\varepsilon)$, the zeta expansion (with base q) of z is periodic if and only if $z \in \mathbb{Q}(q)$.
- 2. If z has periodic zeta expansion (with base q) for any $z \in \mathbb{Q}(q)$, then z is either C-Pisot or C-Salem.

We now consider the extension of the zeta expansion on \mathbb{H} . Let $\phi \in \mathbb{H}$ such that $\operatorname{Re}(\phi) = 0, |\phi| = 1$. Suppose $\phi \cdot \theta = 0$, that is, ϕ and θ are perpendicular when viewed as elements of \mathbb{R}^3 .

We have $\mathbb{H} \cong \mathcal{C} + \mathcal{C}\phi$. Let $(\eta_1, \eta_2, \eta_3, \eta_4) = (1, -\overline{q}, \phi, -\overline{q}\phi)$. Then $\eta = \{\eta_j \mid 1 \leq j \leq 4\}$ is a basis for \mathbb{H} over \mathbb{R} . Fix $\varepsilon \in [0, 1)$. Consider the fundamental domain generated by η :

$$\mathscr{D} = \mathscr{D}(\varepsilon) := \left\{ \sum_{j=1}^{4} a_j \eta_j \mid a_j \in [\varepsilon, 1-\varepsilon) \right\}.$$

Note that $\mathscr{D} = \mathcal{D} + \mathcal{D}\phi$ where \mathcal{D} is the fundamental domain of the zeta expansion on $\mathcal{C}(\theta)$ with base q. For $z \in \mathscr{D}$, define $d(z) \in \mathscr{L} = \bigoplus_{j=1}^{4} \mathbb{Z}\eta_j$ to be the unique element of \mathscr{L} such that $qz - d(z) \in \mathscr{D}$. Let T(z) := qz - d(z). The quaternion zeta expansion of $z \in \mathscr{D}$ is given by

$$z = \sum_{j=1}^{\infty} q^{-j} d_j$$

where $d_j = d(T^{j-1}(z))$ for $j \in \mathbb{N}$. If $z = z_1 + z_2 \phi$ where $z_1, z_2 \in \mathcal{D}$, then the *j*th digit of the quaternion zeta expansion of z is

$$d_j = d_{1,j} + d_{2,j}\phi$$

where $d_{k,j}$ is the *j*th digit of the zeta expansion (on $\mathcal{C}(\theta)$) of z_k with respect to the base q for k = 1, 2.

EXAMPLE 4.4. Let $\theta = (\hat{\imath} + \hat{\jmath} + \hat{k})/\sqrt{3}$. Then $\theta^2 = -1$. Let $\phi = (\hat{\imath} - \hat{\jmath})/\sqrt{2}$. Then ϕ is perpendicular to θ in \mathbb{R}^3 . Moreover, $\mathbb{H} = \mathcal{C}(\theta) + [\mathcal{C}(\theta)]\phi$. Let $q = 1 + \theta \in \mathcal{C}(\theta)$. Consider $z_1 = (3 + \theta)/10$ and $z_2 = (2 - 2\theta)/5$. Then zeta expansion of z_1 in base q is $\{1, -2, 2\}$ while the zeta expansion of z_2 in base q is $\{\overline{1, 0, 0, 0}\}$. Therefore, the quaternion zeta expansion of $z = z_1 + z_2\phi$ in base q is $\{1 + \phi, -2, 2, -2, 2 + \phi\}$.

We have the following results.

Proposition 4.5. Let $z = z_1 + z_2 \phi \in \mathscr{D}$ where $z_1, z_2 \in \mathcal{D}$. The quaternion zeta expansion with base q of z is periodic if and only if the zeta expansions on \mathcal{C} with base q of z_1 and z_2 are both periodic.

Theorem 4.6. If $q \in C$ is C-Pisot, then the following are equivalent:

1. $z \in \mathscr{D}$ has periodic quaternion zeta expansion with base q

2. $z \in (\mathcal{D} \cap \mathbb{Q}(q)) + (\mathcal{D} \cap \mathbb{Q}(q))\phi$

Theorem 4.7. If every $z \in (\mathcal{D} \cap \mathbb{Q}(q)) + (\mathcal{D} \cap \mathbb{Q}(q))\phi$ has periodic quaternion zeta expansion with base q, then q is either C-Pisot or C-Salem.

ACKNOWLEDGEMENTS. The authors are grateful to the anonymous referee for giving comments and suggestions which improved the readability of the paper.

References

- S. AKIYAMA AND J. CAALIM, Invariant measure of rotational beta expansion and Tarski's Plank problem, Discrete & Computational Geometry, 57 (2017), pp. 357– 370.
- [2] —, Rotational beta expansion: ergodicity and soficness, Journal of the Mathematical Society of Japan, 69 (2017), pp. 397–415.
- [3] P. M. COHN, Quadratic extensions of skew fields, Proceedings of the London Mathematical Society, s3-11 (1961), pp. 531–556.
- [4] J. DIEUDONNÉ, Les extensions quadratiques des corps non commutatifs et leurs applications, Acta Mathematica, 87 (1952), pp. 175–242.
- [5] A. DONEDDU, Sur les extensions quadratiques des corps non commutatifs, Journal of Algebra, 18 (1971), pp. 529–540.
- [6] B. GORDON AND T. S. MOTZKIN, On the zeros of polynomials over division rings, Transactions of the American Mathematical Society, 116 (1965), pp. 218–226.
- [7] M. HUNT, G. MULLINEUX, R. J. CRIPPS, AND B. CROSS, Characterizing isoclinic matrices and the Cayley factorization, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230 (2016), pp. 3267– 3273.
- [8] N. JACOBSON, A note on two dimensional division ring extensions, American Journal of Mathematics, 77 (1955), pp. 593–599.
- [9] J. E. MEBIUS, A matrix-based proof of the quaternion representation theorem for four-dimensional rotations, arXiv preprint math/0501249, (2005).
- [10] I. NIVEN, Equations in quaternions, The American Mathematical Monthly, 48 (1941), pp. 654–661.
- [11] O. ORE, Theory of non-commutative polynomials, Annals of mathematics, (1933), pp. 480–508.
- [12] W. PARRY, On the β -expansions of real numbers, Acta Mathematica Academiae Scientiarum Hungaricae, 11 (1960), pp. 401–416.
- [13] —, Representations for real numbers, Acta Mathematica Academiae Scientiarum Hungaricae, 15 (1964), pp. 95–105.

- [14] A. RÉNYI, Representations for real numbers and their ergodic properties, Acta Mathematica Academiae Scientiarum Hungaricae, 8 (1957), pp. 477–493.
- [15] A. RICHARD, L. FUCHS, G. LARGETEAU-SKAPIN, AND E. ANDRES, *Decomposi*tion of nD-rotations: Classification, properties and algorithm, Graphical Models, 73 (2011), pp. 346–353.
- [16] K. SCHMIDT, On periodic expansions of pisot numbers and salem numbers, Proceedings of the London Math. Society, 12 (1980), pp. 269–278.
- [17] P. SURER, Representations for complex numbers with integer digits, Research in Number Theory, 6:47 (2020).
- [18] J. TREUR, Polynomial extensions of skew fields, Journal of Pure and Applied Algebra, 67 (1990), pp. 73–93.

Jonathan Caalim Institute of Mathematics, College of Science University of the Philippines - Diliman Quezon City, Philippines 1101 e-mail: jcaalim@math.upd.edu.ph

Nathaniel Nollen Institute of Mathematics, College of Science University of the Philippines - Diliman Quezon City, Philippines 1101 e-mail: nnollen@math.upd.edu.ph