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Abstract

In this paper, we consider a positional numeration system in R" called the
rotational beta expansion. The expansion of an element z € R™ is a sum of the
form

2= (BM) " dy + (BM) 2y + -,

where the radix is SM for some fixed real number 5 > 1 and matrix M € O(n).
We reformulate the rotational beta expansion where M € SO(4) into the so-called
g-expansion on the set H of real quaternions. In particular, we obtain necessary
and sufficient conditions for the g-expansion of a quaternion to be periodic when
the base ¢ is a Pisot quaternion.
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1 Introduction

Let m € N. Let n:={m,...,nm} CR™ be a set of linearly independent vectors over R.
Let £ be the lattice of R™ with the fundamental domain

X = {Z xin;
=1

ZT; - [0, 1)},

generated by the vectors n;. Let 1 < 8 € R and let M be an isometry in the orthogonal
group O(m) of dimension m. We define the rotational beta transformation map 7' :
X — X with parameters [3, M, 7| as the map given by

T(z) = fM=z —d(z),

where d(z) is the unique element in L satisfying SMz € X + d(z). The rotational
beta expansion of z € X (with respect to T') is the expansion D(z) := dids ..., where

d; == d(T"'2) for i € N. We have

[e’s) —idi
Z = . .
25

The rotational beta expansion generalizes the beta expansion to higher dimensions
(see [2, 1, 14, 12, 13]). The beta expansion of a real number x € [0,1) is obtained
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by setting m = 1, M = 1 and n = {1}. Thus, z = Zgi where d; = |BT" (z)].
i=1

In 1980, Schmidt [16] showed that if § is a Pisot number, then the set Per(3) of real

numbers = € [0, 1) with eventually periodic beta expansion coincides with Q(5) N[0, 1).

On the other hand, if all the elements of Q(/5) N [0,1) have an eventually periodic beta

expansion, then the base f is either a Pisot or Salem number. It is an open problem

whether Per(5) = Q(8) N [0,1) when § is a Salem number.

In this article, our goal is to provide an analog of the periodicity result of Schmidt
for a class of rotational beta expansions in dimension 4. We do this by reformulating the
rotational beta expansion in the setting of the ring H of quaternions, thereby, introducing
quaternion expansions in H.

2 Preliminaries
Define distinct elements 7, j,l% such that
2 =2 =k =k=—1.
The set H of real quaternions is the 4-dimensional vector space over R given by
H = {a+bi+cj+dk:abcdeR}.

As vector spaces, H = R*. For a,b,c,d € R, the quaternion z = a + bi + ¢j + dk is
identified with the vector [a b ¢ d]T. Here, T denotes the transpose operator. We
call a, b, c,d the coordinates of x. We define the real part of z by Re(z) := a and the
imaginary part of z by Im(z) := bi+cj+dk. The modulus |z| of z is given by the 2-norm
|z]| = Va2 + b2 + 2 + d2. The (quaternion) conjugate of z € H is

7T = Re(z) — Im(z).

Note that H is a noncommutative division ring. In particular, every nonzero quaternion
has a unique multiplicative inverse.

Our goal is to define a numeration system on H corresponding to the rotational beta
expansion on R* under some mild assumptions.

2.1 Matrix Representation of Elements of H

Note that H can be viewed as a 2-dimensional vector space over C since, for any = € H,
we can write x = p + ¢J for some unique p,q € C. We associate the complex number
a —b
b a |

The multiplication on H is noncommutative. For x € H, we distinguish between the
multiplication by z on the right and on the left. Define the maps -7, g : H — My(R)
by

z = a + bi to its matrix form C, :=

¢, —Jct wdan— | G —ICJT
L= e Jorg| MCTRT ety of
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0 -1
a,b,c,d € R, then we can compute for x; and xg explicitly as

for x = p+ qj) where p,q € C and J = [ . Note that, if r =a+ bl +cj+ dl%, where

a —b —c —d a —b —c —d

I b a —-d c and 2o — b a d -—c

L c d a -—b R c —d a b
d —c b a d ¢ —b

The following result follows directly from the definition of z; and xg.

Proposition 2.1. For any z,y € H, we have
Yy =2xLY and Yyr = TRY.
Moreover, x;, and xg are the only matrices with the above properties.

For x € H, we call x; and xg the left and the right matrix representations of =z,
respectively.

Proposition 2.2. Let x,y € H. Then
. (z+y) =2, +yr and (x +y)gr = g + Yr
2. x;, = yg if and only if z =y and = € R.

ProOF. The first part is clear. Suppose z,y € H such that z;, = yg. If y = 0, then
xp and yg are the zero matrix. So, x =y = 0. Suppose y # 0. Then

vyt =ay =yry =1

Hence, x = y. Moreover, for any z € H,
Tz =Tz = TRZ = ZT.

This means that x is an element of the center Z(H) = R. The proof of the converse is
straightforward. O]

2.2 Isoclinic Matrices

An M € My(R) is called a left (right) pseudoskew matrix if M = zp (if M = xp) for
some x € H (see [7]). In such a case, M*M = |z|*I;, where I, is the 4-by-4 identity
matrix. We say that z is the quaternion representation of M. So, det(M) € {£|z|*}.

A matrix M € M,(R) is said to be isoclinic if M is a rotation about 2 orthogonal
planes such that the rotation angles are equal, up to sign (see [15]). Suppose M is a
rotation matrix about the planes P; and P, of angles o and f3, respectively. If a = £,
then M is said to be left isoclinic. If &« = —f3, then M is said to be right isoclinic.

Note that if M € My(R) is a left or right pseudoskew matrix and det(M) = 1, then
M is an isoclinic matrix [9, 7]. In what follows, we provide the details of this fact.

Note that if z € H is nonzero, then (x/|z|)I (x/|x|); = I, and det((z/|z|)) € {&1}.
In the next result, we determine the eigenvalues of a pseudoskew matrix.



Proposition 2.3. Let 0 # = € H. The eigenvalues of M are Re(z) % |[Im(z)||7 if M =z,
or rp.

PROOF. Let A be an eigenvalue of 2. Then det(z; — AIy) = 0. We have (z;)" 'z, =
|z|?1,. Hence,

(xp — M) (zp — My) = (|2* + A2 — 2ARe(z)) 14
= ((Re(z) — A)* + [[Im(x)|[*)Is € Mo (C).
Thus,

2n—1

det(z; — ML) = £([Re(z) — A\]? + [|[Im(z)[[*)

Hence, A = Re(z) £ ||Im(x)|]3. O

If v € R, then z;, = xp = xl;. Suppose = ¢ R. Since x, is normal, it is diagonalizable.
Then Ay = Re(z) &£ ||Im(x)||i have algebraic and geometric multiplicities both equal to
2.

We now discuss the geometric properties of the matrices x;, and zr. Let z € H\ R.
Let {vy, v} € C* be an orthogonal basis for the eigenspace E()\,). Then {v},v;} is a
corresponding basis for the eigenspace E(A_), where * denotes the complex conjugation.
For 7 = 1,2, consider the plane

Pj = {zv; + 2"} | z € C} CR"
Observe that, for any z € C,
wp(2vj + 270)) = 2A v + 2N ) = 2A v + (M) € Py

Thus, x, fixes the orthogonal planes P, and P,. We now show that x; and zg are rotation
matrices.

Proposition 2.4. Let x € H \ R such that |z| = 1. Let v € H and let 0y € [0, 7) be the
angle measure between u and xyu for N € {L, R}. Then, cos(6x) = Re(x).

PrOOF. Note that v’z u = u" 2zru = Re(x)u’u. Thus,

Re(2)|ul* = Re(z)u"vu = vz u

= |u||zpu|cos(0r) = |u||zu| cos(8L) = |ul* cos(6y).

The same argument applies for 0. O
It follows that x; (and likewise, xg) is similar to p(6;) @ p(#z), where

p(6) = [2?5533 ;slsr(le()%)]

for 6; € {£cos ' Re(x)} and each p(6;) fixes the orthogonal planes P;.
Let x € H such that |z| = 1. Hence, z, is left-isoclinic and is similar to the direct sum

AP A where A = Re(z) =~ —|Im(2)]

ITm(z)| Re(z) ] . Meanwhile, xp is right-isoclinic and is similar to
Ag AT,



2.3 Quaternion Expansions

We now introduce the notion of quaternion expansions. Consider the rotational beta
expansion in R* with parameters [3, M,7]. Suppose M is left (or right) isoclinic. We can

associate the expansion
(o)

Zz = Z ﬂ_jM_jdj
j=1
T
with an expansion in H. Let ¢ := SMe; € H, where e; = {1 0 0 O} is the vector
form of 1 € H. Note that if x € H such that M = x; and y € H, then

q = Bz and My = B(xry) = Bry = qy.

The basis elements of 1 can be viewed as elements of H. Consequently, we can view
L as a lattice in H with corresponding fundamental domain X. By a lattice in H, we
mean an additive abelian group £ C H such that inf{|z — y| : 2,y € £ and = # y} > 0.
Moreover, given a lattice £ in H, a fundamental domain for £ is a subset X C H such
that H can be partitioned as

H=J(X+4d).
deL

Define the transformation 7' : X — X by T'(z) = gz —d(z) where d(z) € L is the unique
digit such that gz € X + d(z). Then D(z) = (dy,dy,...) € L is the expansion of the
quaternion z € X and

z = Z q_jdj,
j=1

where d; = d(T7'(2)). We call D(z) the quaternion ezpansion of z with respect to the
base ¢ (or simply, the g-expansion of z). Similarly, starting with an expansion of the
above form with a base ¢ € H, we can obtain a related rotational beta expansion such
that SM = qr.

To proceed, let us first introduce the ring Hj, of Lipschitz quaternions and the ring
Hpy of Hurwitz quaternions. The rings H; and Hy are lattices in H.

1. Hy :={a+bi+c)+dk|abcdelZ}

‘a,b,c,dEZandaEbEczd mon}

We provide some examples of g-expansions.

EXAMPLE 2.5. Let n = {1,2,j,k}. Then £ =Hy and X = {a + bi + c¢j+ dk | a,b,c,d €
[0,1)}. Let ¢ = (1 - \/5) i/2. The g-expansion of z = (1 + 7)/2 is the purely periodic
expansion

D(z)=(0,—2—2,i+k,—1—7i+k —1—7).

Correspondingly, with respect to the parameters § = (1 + v/5)/2 and M = <|Ch|> =
al /g,



0 -1 0 O
1 0 0 0 . ) .
00 0 —1 , we have the following rotational beta expansion:
0O 0 1 O
1/2 0 -2 0 —1 0 —1
o] [0 0 1 0 1 0
Vol [ |07 [=2]" |0 |—=1|"[0] |-1
0 0 0 1 0 1 0

EXAMPLE 2.6. Let n = {1,€,j,/2:}. Then £ =Hy and X = {a+ bi+ c¢j + dk | a,b,c,d €
[0,1)}. Let ¢ = (1 — 74 (24 v2)k)/2. The g-expansion of (14 7)/2 is eventually periodic.
Indeed,

1+7 _ _ _ _ _ (i
szq 'ar + ¢ P+ ¢ Pas + g tas+ g Pas + > g G+o)p,
j=1
where
a; = —1—J+k, ay = —2+k, az =—1—10+},
ag=—-2—20—7+k, as=—2—1—)+2k
and A
—20+ 2k, if k=2 mod4
b — -1+, if k=3 mod4
b —1—j+lA€, if k=0 mod4

—1—72—j+Fk ifk=1 mod4

The corresponding rotational beta expansion in R* has the parameters 5 = |q| = \/2 + V2
and
0o -1 1 =p
11 0 -5 -1
23 |-1 B2 0 -1
21 1 0

M = (q/lq])L

Note that  is not a Pisot number.

EXAMPLE 2.7. Let n = {n, 12,13, n1} where (1,72,13,74) = (1,v/23,v/2), k). Then the
lattice £ = {a + W2+ cv2i+dk :a,b,c,d € Z} is a ring distinct from H; and Hy. Let
¢ = —(1 4 /2)i. The first few digits of the g-expansion of z = (1 +/3%)/2 € X are

ap = —n2 — 314, as = 13, as = —1 — 21y,
ay = 0, as = —M2 — N4, ag = 0,
ay = —1 — 21y, ag =0, ag = —MN2 — M.

This expansion is, in fact, not eventually periodic (see Example 3.22).

3 Periodicity

In this section, we extend the notion of Pisot numbers to quaternions. We then consider ¢-
expansions where ¢ is a Pisot quaternion and provide a necessary and sufficient conditions
for the g-expansion of a quaternion to be eventually periodic.
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3.1 Pisot Quaternions

Recall that a real number g > 1 is Pisot if it is an algebraic integer and all of its
nontrivial conjugates 8’ over Z satisfy |3'| < 1. In this section, we define Pisot numbers
over a quaternion subring. To this end, we first study polynomials over a skew field. Note
that the set R[X] of polynomials with coefficients in a (possibly noncommutative) ring
R forms a ring under the usual addition and multiplication of polynomials assuming that
the indeterminate X commutes with the elements of R.

We now mention several useful results.

Proposition 3.1 ([6, Theorem 1]). Let D be a skew field. Let f(X) = > X’a; be a
=0
polynomial of degree n such that a; € D for each j. If a € D such that

flo) =Y da; =0,
=0

then f(X) = (X — a)g(X) for some g(X) € D[X].

Given a skew field D, we can define an equivalence relation ~ as follows: for a,b € D,
we have a ~ b if and only if a = ¢be™! for some ¢ € D.

Theorem 3.2 ([6, Theorem 2]). Let D be a skew field. Let f € D[X] be a polynomial
of degree n. Then |{a € D: f(a) =0}/ ~ | < n. Moreover, if

JX) = (X —an)(X —ag) -+ (X — ),
where a; € D and a € D such that f(a) =0, then a ~ «y for some k.

Theorem 3.3 (Fundamental Theorem of Algebra for H, [10]). Let f(X) € H[X] be
nonzero. Then

{a e H| f(e) =0}/ ~ | =deg f.

Now, let R be a subring of H with unity. Let ¢ € H. Suppose that f(q) = 0 for some
monic polynomial f(X) € R[X]. Assume that f is the minimal polynomial of ¢ over
R, i.e., the degree of f is minimal. By Proposition 3.1, f(X) = (X — ¢)g(X) for some
g(X) € H[X]. We say that ¢ is Pisot over R if |¢| > 1 and whenever g(«) = 0 for a € H,
we have |o| < 1.

We provide some examples.

EXAMPLE 3.4. Let Ry and Ry be subrings of H with unity. If Ry C Ry and ¢ € H is
Pisot over Ry, then ¢ is Pisot over R,. Hence, we have the following.

1. If R is a subring of H with Z C R and € R is a Pisot number (in the usual sense,
i.e., over Z), then (3 is also Pisot over R.
Let R be a subring of H with Z C R and 8 € R be a Pisot number with minimal
polynomial f(X) = ZXjaj € Z[X]. Let 8 = B4, B2, ..., s be the roots of f in

j=0
R + R?. Let 8 € R with 6> = —1. Then

fX) = (X =7)(X =) (X =)



where 7, := Re(8;) + Im(5;)¢. Note that v; commutes with 6 for all j. Consider
the monic polynomial

g(X) = f(XO7H0" = (X = nO)(X = 30) -+ (X — 3b) € R[X].

So, 110 = (30 is integral over R being a root of the g. Moreover, the (possible)
nontrivial Galois conjugates of 56 over R have the form +;0 and observe that
17;0] = 15;] < 1 for j > 2. In other words, 5 is Pisot over R. For example, (6 is
Pisot over H; with minimal polynomial X* — X6 4 1 where ¢ is the Pisot number
(1++/2)/5 and 0 € {+i, +j, £k}.

2. Let ¢ € C\ R be a (nonreal) complex Pisot number, i.e., ¢ is an algebraic integer
with |¢] > 1 and the Galois conjugates of g over Q distinct from ¢ and g have
moduli less than 1. Let R be a subring of H with Z C 'R. Then q is integral over
R, say with the minimal polynomial u(X) = (X —¢)g(X) € R[X]. Note that u(X)
divides the minimal polynomial of ¢ over Q. If ¢(g) # 0, then ¢ is Pisot over R.

EXAMPLE 3.5. Let ¢ = (a + bi + ¢j + dk)/2 where a,b,¢,d € Z are odd such that
3a> = b* + ¢ + d*. Then q € Hy \ H; and ¢ is Pisot over Hy (of degree 1). Now,
¢® = —a, i.e., qis aroot of f(X) = X*+a. Thus, ¢ is integral over Hj, of degree 2 or 3.
Suppose f(X) = (X —q)g(X) and o € H is a root of g. By Theorem 3.2, a ~ /3 for some
root B of f. Thus, 1 < |a| = |B|> = |af>. This means that the roots of g have moduli
greater than 1, that is, ¢ is not Pisot over Hj. This example is rather interesting since
H;, and Hy have the same skew field of fractions (see Section 3.2) and yet ¢ has different

degrees over the two subrings.

Proposition 3.6. Let R be a subring of H containing Z C R. Let b,c,d € R such that
b? 4 ¢* 4 d? is a Pisot number (over R). Let ¢ = bi 4 ¢} + dk. Then q is integral over R.
Moreover, if pu(X) = (X — ¢)g(X) is the minimal polynomial of ¢ over R and § is not a
root of g(X), then ¢ is Pisot over R.

PROOF. Let v = b* + ¢ + d*>. Then ¢* = —|q|* = —7. Let f(X) € Z[X] be the
minimal polynomial of v over Z. Then f(—¢*) = 0. Since the coefficients of f are
real and the powers of ¢ commute, then ¢ is a root of the polynomial f(—X?) € R[X]
whose leading coefficient is either 1 or —1. This implies that ¢ is integral over R. Let
Vs Y1, - - -5 Y2, 71 = 77 € C be the Galois conjugates of v over Z. Observe that f(X) =
(X —v)h(X) where h(X) € C[X]. Then

0= f(=X?%) = (=X = )h(=X*) = =(X = )(X —g)h(-X?).

Let u(X) = (X — q)g(X) be the minimal polynomial of ¢ over R. So, u(X) divides
f(=X?). Assume that g(g) # 0. If a € H is a root of g, then o ~ 3 for some 3 € H

such that (3 is a root of h(—X?). But, h(X) = [J(X — ;). Hence, 8 is a solution to
j=2

X? = —; for some j > 2. So |a| = |B8] = \/|7;] < 1 and therefore, g is Pisot over R. [

EXAMPLE 3.7. Let ¢ = (1 — 7+ (2+ v/2)k)/2. Then ¢ is integral over H, with minimal
polynomial A
w(X) = X?*— X(2k) + (i +j).

Note that |g|* = 2 + v/2 is a Pisot number and (q) = u(—q) # 0. Therefore, ¢ is Pisot
over Hj; .



3.2 Ore Domains and Polynomial Skew Field Extensions

Recall that if R is a commutative ring with unity, then we can define its field IC of
fractions ab~' where a,b € R and b # 0. First studied by Ore in [11], Ore domains
allow the formulation of field of fractions for noncommutative rings. A ring R (possibly
noncommutative) with unity is an Ore domain if for any (r,s) € R x (R \ {0}), there
exist (71,51),(re,82) € R x (R \ {0}) such that rs; = sr; and ser = res. To an Ore
domain R, we associate a skew field K of elements ab~' where a,b € R and b # 0.

Proposition 3.8. Let R be a subring of H with unity. Then R is an Ore domain.

PROOF. Given 7,5 € R\ {0}, take (r1,s,) = (rsr® — r’sr,c + r?s* — (sr)?) and
(9, 52) = (r*sr —rsr?, c 4+ r?s* — (rs)?) where ¢ = (rs — sr)% O

Let R be a subring of H with unity. By Proposition 3.8, the set K = {ab™' | a,b €
R,b # 0} is the skew field of fractions of R, that is, K is the smallest subskew field of H
that contains R. Note that K is unique up to isomorphism. The skew fields of fractions
of H; and Hy are both equal to the set

{a+bi+cj+dk | a,b,c,de Q}.

Let ¢ € H. Suppose f(q) = 0 where f(X) € R[X] is the minimal polynomial of ¢ over
R. Let K(q) € H be the smallest skew field that contains both K and ¢. If R (and
consequently, K) is commutative, then K(q) is a field which is also a vector space over
IC of dimension deg f. However, this is not always the case when K is not commutative.
We say that IC(q) is a polynomial skew field extension (PSFE) of K if

CLjEIC}.

In other words, {1,¢,...,q%"8/ "} is a right basis for K(q) over K. Note that K(g) is both
a left and right K-module.

In general, the problem of determining whether K(q) is a PSFE of K is a difficult
problem. Interested readers may refer to [3, 8, 4, 5, 18]. When ¢ is integral over a skew
field IC C H of degree 2, we have the following result.

deg f—1 )
’C(C]>:{ Z ¢’ a;

J=0

Theorem 3.9. Let ¢ be integral over a skew field K C H of degree 2. Then K(q) is a
PSFE of K if and only if there exist additive homomorphisms Sy, S7 : K — K such that,
for any a € K, the following “commutation rule" holds:

aq = So(a) + ¢Si(a).

ProOF. The forward direction is Lemma 2.1 (b) of [18]. For the backward direction,
observe that ¢> = gA + B for some A, B € K where B # 0 since ¢ is algebraic over K of
degree 2. Using the commutation rule, we have

gagb = BS1(a)b+ q[S1(a)b+ So(a)d]

forall a,b € K. It follows that {a+¢b : a,b € K} is closed under multiplication. Moreover,
a nonzero element a + ¢b is invertible. Indeed, consider the case where a,b € K\ {0}. We
have

1= (a+gb)(z+ qy),
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where

z=—b"1[S1(a) + So(b) + AS,(b)]y

and

y = [So(a) + BSi(b) — ab™'(Si(a) + So(b) + ASy(b))] ™
= [gS1(b) — Si(a) — ASy(B)] bt +a g rat

Note that one of b™' + a~'q and ¢S;(b) — S;(a) — AS;(b) being 0 implies that ¢ € K,
which is a contradiction. Hence, {a+¢b : a,b € K} is a skew field and it is equal to K(q).
The other cases are easy. O]

The “commutation rule” aqg = Sp(a) + ¢S1(a) is relatively easy to verify when K and

q are given. We provide some examples of PSFE. We also give an example where K(q) is
not a PSFE of K.

EXAMPLE 3.10. By Example 3.7, ¢ = (i — j+ (24 v/2)k) /2 is integral over H, of degree
2. Let IC be the skew field of fractions of Hy. Let w,z,y, 2z € Q. Then

(w+:ci+yj+z/%)q:a+qb,

where a := 2y — 20 + 2wi + 2wj € K and b := w — 27 — y] + 2k € K. Thus, the set
{a+qb|a,be K} is a skew field and is equal to K(g). Hence, K(q) is a PSFE of K.

EXAMPLE 3.11. The quaternion ¢ = (1 + v/5)i/2 is integral over H; with minimal
polynomial f(X) = X?— X1+ 1= (X —¢)(X —¢ ). So, ¢ is Pisot over Hj. Let K be
the skew field of fraction of Hy. It is easy to show that {a+¢b | a,b € K} is a skew field.
Thus, K(¢) ={a+qb|a,b e K} is a PSFE of K.

EXAMPLE 3.12. The quaternion ¢ = v/2(i + j)/2 is integral over the (skew) field K =
{r +si | r,s € Q} with minimal polynomial f(X) = X* + 1. Now, (iq)? = —k € K(q)
but —k cannot be written in the form a + bg where a,b € K. Hence, K(q) is not a PSFE
of IC.

3.3 Main Result

If X is a normed space with norm | - |, we say that X has the property (BF) if for every

A C X, we have that A is finite whenever sup |a| < co. In other words, every bounded
acA

subset of X is finite. The following are examples of subrings of H with the property (BF):
Hyp, Hy and {a 4+ v2bi + V2¢j + dk | a,b, ¢, d € Z}.

We fix the following parameters: a linearly independent set n = {n,n2,13,m4} of

4
quaternions over R, the lattice £ = @ Zn; and its associated fundamental domain
j=1

4
X = {Z ain;
j=1

From hereon, we let R be the ring (1, £) generated by the lattice £, together with 1. Then
R is an Ore domain containing the digits of the numeration system under consideration.
Let IC be the skew field of fractions of R. Let ¢ be Pisot over R with minimal polynomial
P(X) € R[X] of degree d such that IC(q) is a PSFE of K.

We follow the exposition of Schmidt in [16].

Q; € [0,1)}
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d—1
Proposition 3.13. Suppose K(q) is a PSFE of K. If o € K(g), then oS = > ¢’p; for
=0
some Sap07p17 - yPd-1 € R.

PROOF. Since a € K(q), there exist ro;, so; € R such that sp; # 0 and

d—1 d—1
_ -1 —1 i1
o= Z q]rUJSOj = T00Sgp T Z QJTOJ'SOJ' .
=0 j=1

Let § := R\ {0}. Recall that R is an Ore domain. Since so0 € R and so; € S for
1 < j < d—1, then there exist ap; € R and by; € S such that sgyby; = spjap;. Then
sajl = aojbajlsaol. Hence,

d—1
-1 j -1_-1
=1
So,
d—1
j -1
«Spp = Too + Z quljslj
Jj=1

where 7y, 1= roja9; and s := byj. Applying the same process,

d—1
-1 j -1
asgo = Too + qrinsyy + Y ¢°riysy;
Jj=2
d—1
-1 j -1.-1
=Too + 911817 T+ Z quljaljblj S115
=2
for some a;; € R and by; € S. So,
d—1
j -1
aSp0S11 = To0S11 + qri1 + Z q]rljaljblj .
Jj=2

Continuing this process yields

d—2 d—1 -1
aSy =151 +qrinSe + -+ q¢" rg_24-254-2 + q Td—1,d—154-1,d—1

d—2
= Z ¢’155Sj41 + qd717,d717d713;7117d71’
=0
J d-1 d—1
where S; = [] su and each s; € S. Then aS = > ¢/p; where S = [] s;; and p; =
i=1 j=0 5=0
Tjij+1. ]
Once S is fixed, the tuple (po,...,ps_1) € R? that satisfies
d-1
alS = Z ¢’ p;j
5=0

is uniquely determined since {1,¢,...,¢* '} is a right basis of K(q) over K.

11



From hereon, we assume that o € K(g) has the form

d—1
a=3 ¢pS™,

J=0

where S, po, . ..,pa—1 € R and S # 0. For each n € N, set d; := d(T’"!(a)) and

P (@) = T(a) = (a—zq fd)
Lemma 3.14. Let a € K(¢) N X and n € N. Then there is a unique tuple
iy e rY
such that

d
a) =S g kst
k=1

PrROOF. This follows from the fact that {1,q,...,¢%'} is a right basis of K(q) over
K. O

Lemma 3.15. Let n € N and v be a root of the minimal polynomial of ¢ over R. Then
d—1 ) n ) (n)
> VST =3 Z 7t
=0 3=0
Moreover, if |y| > 1 and « has a periodic g-expansion, then
d—1 ) [e%S) )
S 57 = Sy,
j=0 5=0

PRrROOF. For the first part, we replace v by the indeterminate X and multiply S on
the right to obtain a polynomial in X over R. Then ¢ and ~y are roots of this polynomial.
Now, if a has a periodic ¢g-expansion, then

¢ 1= sup max |rk | < 0.

nEN
So,
d—1 ) n ] d ()
Yo AVpi STt =Y AT = Doy s
j=0 j=0 k=1
< [y |-+ )
92 Z
cdly|™"
< — 0
S|
as . — o0. ]

12



Theorem 3.16. Let R be a subring of H with unity and the property (BF). Let K be
its skew field of fractions. Suppose K(q) is a PSFE of K. Let ¢ € H with |¢| > 1 be
integral over R with minimal polynomial P(X) = g(X)(X —q). If every z € K(¢) N X
has a periodic g-expansion with digits in R, then |a| < 1 whenever g(a) = 0. In other
words, ¢ is Pisot or Salem over R.

PROOF. Suppose a € H with g(a) = 0 and |a] > 1. Then a ~ f for some § € H
with P(3) = 0. Also, || = |a| > 1. Note that § # gq.
Let ¢ := max{|¢|™",|8]7'} < 1and D := max |d(2)|. Set 0 < & < |¢~' — 37!|. Choose
Sm
m € N > 2 such that 1 —¢ <§
Now, take z € K N X such that gz ¢ X but ¢77(z) € X when 2 < j < m — 2. Then
di(z) # 0 while dy(2) = d3(2) = --+ = d;—1(2) = 0 where d;(z) is the jth digit of the

g-expansion of z. Then z has periodic g-expansion by assumption. By Lemma 3.15,

=+ 3 ) =)+ 3 ()

j=m

Since di(z) € R and R has the property (BF), then |d;(z)| > 1. Otherwise, the
sequence {(d1(2))" | n € N} is finite but has a strictly decreasing modulus. Observe that

0 <ldy(2)llg™ = B~

<D (g7 = B7)d;(2)
Jj=m
2D§m
<2D I = < —.
Yeo-<g
We have a contradiction. So, |a| < 1. O
Let C1, Cs, ..., Cy be the distinct equivalence classes with respect to ~ containing the

roots of the minimal polynomial P(z) of ¢ such that ¢; = ¢ € Cy. For 2 < j < d, choose
¢ € C; to be a root of P(x).
For1 <i:<dandn €N, set

(¢9) Fri" s

M&

o) =

k=1

Lemma 3.17. Suppose R has the property (BF). Then the following are equivalent:
(1) « has periodic g-expansion

(2) gg%wplpz (a)] < o0

(3) sup ax, |7’k )| < 00.
neN 1<k<

ProOOF. Note that (1) = (3) follows from the previous lemma. Meanwhile,
(3) = (2) is clear. We show (2) = (1).

13



Assume (2). Set

pé";(a) 4 i 4 z @ Z T%";

n a — — — n

o™ — P2 (@) g 3 G Q2. 2
pgln)( ) qgl qq PR q(;d ré")

By (2), the set {v™ | n € N} is bounded. So, the set {(T1 RSN ,rén) | n € N} is also

bounded. Thus, {rk } is bounded. By the property (BF) of R, the set {7’,53")} is finite.

Thus, {T" () }nen is finite. Therefore, o has a periodic g-expansion. O
Finally, we prove the main result.

Theorem 3.18. Let R = (1,L£). Let K be the skew field of fractions of R. Suppose R
has the property (BF). If ¢ € H is Pisot over R and K(q) is a PSFE of K, then o € X
has periodic g-expansion if and only if o € K(q).

PROOF. The forward direction is clear. Now, let o € X N C(q). We show that (2) in
the previous lemma is satisfied.
Since X is bounded and T"(«) € X, then sup|p1 ( )| = sup|T"( )| < oco. Let

2 < < d. Since q is Pisot over R, then |¢;| < 1. Let A= max |qz| < 1. By Lemma 3.15,

d—1 n
167 ()] = g9 13 (gD Y p; 5~ = 3 (¢@)Fdy,
7=0 k=0
1 d—1

|S| ZIQ’)IWIPJHBZIQ "
|S|ZIPJI+BZIQ”I
|S|ZIPJI+BZIQ”I
|S|z:|p]|+Bz:)\’C

1d1

|S| Z|pj|+

where B = max |d(z)|. Thus, sup | P ()| < 00. By the previous lemma, the g-expansion
z neN

of « is periodic. O
This theorem can be translated into a rotational beta expansion version where M is
left (right) isoclinic.

Corollary 3.19. Let 5 > 1 and M be left (right) isoclinic of size 4. Let R = (1, L).
Suppose R has the property (BF). Let ¢ be the vector representation of SM and K be the
field of fractions of R. If ¢ is Pisot over R and K(q) is a PSFE of K, then the following
are equivalent:

1. z has a periodic rotational beta expansion with respect to the parameter [3, M, n];

14



2. ze K(g).
We illustrate the previous theorem through the following examples.

ExXAMPLE 3.20. We revisit Examples 2.5 and 3.11. Note that R = (1,£) = Hj, has
the property (BF). The quaternion base ¢ = (1 + v/5)i/2 is Pisot over Hy. The set
K={{a+bi+c)+ dk | a,b,c,d € Q} is the skew field of fractions of H. The set
K(q) = {qa+b | a,b € K} is a PSFE of K. Clearly, (1 +)/2 € K(¢) N X and it is
expected that its g-expansion is periodic.

EXAMPLE 3.21. We revisit Examples 2.6, 3.7 and 3.10. The quaternion base ¢ = (7 —
74 (2 + V2)k)/2 is Pisot over Hy. Moreover, K(q) is a PSFE of K = {a + bi + ¢j + dk |
a,b,c,d € Q}. Then (14 7)/2 € K(¢q) N X and its g-expansion is expected to be periodic.

EXAMPLE 3.22. We revisit Example 2.7. The quaternion base ¢ = —(1 + v/2)i is Pisot
over the ring (lattice) R = {a + bv/2i + ¢v/2j + dk : a,b,c,d € Z} since it is a root of

p(X) = X%+ X(2v2) = 1 = (X - q)(X — ¢)

where ¢ = (1 — v/2)i and |¢/| < 1. Note that R has property (BF) and the skew field of
fractions of R is .
K ={a+b/2+cV2j+dk :a,b,c,d € Q}.

Moreover, observe that K(q) = {a+bi+cj+dk : a,b,c,d € Q(v2)} = {a+qb: a,be K}.
Hence, KC(q) is a PSFE of K. Therefore, D((14++/35)/2) is not periodic since (1++v/37)/2 ¢
K(q)-

3.4 Quasi-Pisot Base

Let R be a subring of H with unity. We say that ¢ € H with |¢| > 1 is quasi-Pisot over
R if g is integral over R with minimal polynomial p(X) such that

pX) = (X = g)(X —g)g(X)
and |y| < 1 whenever v € H with g(vy) = 0.

ExAMPLE 3.23. Let R be a subring of H with unity such that Z C R. Let ¢ € C\ R be
a complex Pisot number. Then ¢ is integral over R. Let pu(X) = (X — ¢)g(X) € R[X]
be the minimal polynomial over ¢. If g(g) = 0, then ¢ is quasi-Pisot over R. Otherwise,
q is Pisot over R.

EXAMPLE 3.24. Let R be a subring of H with unity. Observe that ¢ € H is quasi-Pisot
over R of degree 2 if and only if its minimal polynomial over R is pu(X) = (X —¢)(X —7).
Hence, q € H is quasi-Pisot over R if and only if ¢ ¢ R and 2Re(q), |¢|* € R. For example,
let ¢ € Hy \ Hy. Then g = (a+bi+¢j+ dl%)/Q for some odd integers a, b, ¢,d. Then ¢ is
quasi-Pisot over H, of degree 2.

Now, let 8, M and R be the same as in Corollary 3.19 and suppose g € H is integral
over R of degree d. Then for a € K(q) N X and for each n € N, we have

d
T" () = Z q_kr,gn)S_l
k=1
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for some tuple (r§"’, . ,rén)) € R%and S € R\ {0}. If ¢ is quasi-Pisot over R and the
real dimension of the span

Span{r{” |1 <k <d,n € N}

is at most 1, then « has a periodic rotational beta expansion with parameter [3, M, 7).
In particular, this is the case when p(X) € R[X] and the digits of the g-expansion of «
are all real.

4 Quaternion Zeta Expansions

Let 0 € H such that 6> = —1. Let ¢ € C(d) := R+ R = C. Fix ¢ € [0,1). The zeta
expansion [17] on the fundamental domain

D(e) :=={a1 + ax(—q) : ar,a2 € [—¢,1 —¢)} CC(0)

is the rotational beta expansion with parameter [|q|, M, {1, —g}] where M is the 2 x 2
rotation matrix form of ¢/|q| (as an element of C(6)). For z € D(e), the digits of the
zeta expansion of z are all integers. We drop the arguments 6 and ¢ from C(6) and D(¢),
respectively, whenever the context is clear.

EXAMPLE 4.1. Let = (i4+ 7+ k)/v3 and ¢ = 1/2. Let ¢ = 1 + 6. Then the zeta
expansion of (34 60)/10 € D(e) in base ¢ is {1, —2,2}.

We say that ¢ € C \ R is a C-Pisot number if ¢ is an algebraic integer with minimal
polynomial p(X) € Z[X] such that the roots of p distinct from ¢ and § have moduli less
than 1. On the other hand, we say that ¢ is a C-Salem number if ¢ is an algebraic integer
with minimal polynomial (X)) € Z[X] such that the roots of i aside from ¢ and § moduli
less than 1 with at least one root v with |y| = 1. Clearly, ¢ € C is C-Pisot (C-Salem) if
and only if g is C-Pisot (C-Salem).

Proposition 4.2. Let ¢ € C(A) and 0 # ¢ € H with |¢| = 1. Then
1. qis C(0)-Pisot (C()-Salem) if and only if cgc™" is C(cfc™')-Pisot (C(chc™t)-Salem);

2. in particular, ¢ is C-Pisot (C-Salem) if and only if Re(q) 4+ Im(q)i is complex Pisot
(complex Salem).

PROOF. For (1), it is enough to show one direction. Let u(X) € Z[X] be the minimal
polynomial of ¢ over Z. Then u(X) = g(X)h(X) where h(X) = X? — 2Re(q)X + ¢/
for some g(X) € R[X]. Then cqgc™' and cqge! are roots of h and p. This implies that
cqc™' € C(chc™!) is an algebraic integer whose possible Galois conjugates distinct from
cqc and cge! are roots of g. By Theorem 3.2, if v € C(cfc ™) is a root of g, then v ~ +/
for a root 4" € C(6) of g. Hence, the moduli of the roots of ¢ in C(6) and the moduli of
the roots of g in C(cfc ') are the same. Thus, if v € C(cfc™?) is a root of g, then |y] < 1
(I7] < 1) because q is C(#)-Pisot (C(#)-Salem).

For the second part, suppose 6 = zi + yj + zk for some z,y,z € R. Then 0> =
2?2+ 9?4+ 2% = 1. If § = +i, then we are done since —i = jj'. Suppose |z| < 1. Then
r+1>0. We have 7 = cfc™! where

(z + 1)0+y] + 2k
2(x +1)

CcC =
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We have the following result.

Theorem 4.3 ([17]). Let ¢ € C and € € [0, 1).

1. If ¢ is C-Pisot, then for any z € D(e), the zeta expansion (with base ¢) of z is
periodic if and only if z € Q(q).

2. If 2z has periodic zeta expansion (with base ¢) for any z € Q(q), then z is either
C-Pisot or C-Salem.

We now consider the extension of the zeta expansion on H. Let ¢ € H such that
Re(¢) = 0,|¢| = 1. Suppose ¢ -0 = 0, that is, ¢ and 6 are perpendicular when viewed as
elements of R

We have H = C+C¢. Let (m1,m2,m3,m1) = (1, =G, ¢, —q¢). Thenn={n; | 1 <j <4}
is a basis for H over R. Fix € € [0, 1). Consider the fundamental domain generated by 7:

D =9(e) = {Z:ajnj aj € g, 1 —5)}.

Note that ¥ = D + D¢ where D is the fundamental domain of the zeta expansion on
4
C(#) with base ¢q. For z € 2, define d(z) € £ = @) Zn; to be the unique element of &

j=1
such that gz —d(z) € 2. Let T(z) := qz —d(z). The quaternion zeta expansion of z € &
is given by

0 .
z=2_47d;
=1

where d; = d(T77'(z)) for j € N. If 2z = z; + 2¢ where 21, 2, € D, then the jth digit of
the quaternion zeta expansion of z is

dj - d17j "— d27j¢

where dy, ; is the jth digit of the zeta expansion (on C(6)) of z; with respect to the base
q for k=1,2.

EXAMPLE 4.4. Let 0 = (i+ )+ k)/v/3. Then 6#? = —1. Let ¢ = (i — j)/v/2. Then ¢ is
perpendicular to § in R®. Moreover, H = C(#) + [C(#)]¢. Let ¢ =1+ 6 € C(0). Consider
z1 = (34 60)/10 and z, = (2 — 260)/5. Then zeta expansion of z; in base ¢ is {1, —2,2}
while the zeta expansion of z5 in base ¢ is {1,0,0,0}. Therefore, the quaternion zeta
expansion of z = z; 4+ 23¢ in base ¢ is {1 + ¢, —2,2,—2,2 4 ¢}.

We have the following results.

Proposition 4.5. Let z = 21+ 29¢ € & where 21, 25 € D. The quaternion zeta expansion
with base ¢ of z is periodic if and only if the zeta expansions on C with base ¢ of z; and
zo are both periodic.

Theorem 4.6. If ¢ € C is C-Pisot, then the following are equivalent:

1. z € & has periodic quaternion zeta expansion with base ¢
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2. 2€ (DNQ(q)) + (DNQ(q)¢

Theorem 4.7. If every z € (DN Q(q)) + (D N Q(q))¢ has periodic quaternion zeta
expansion with base ¢, then ¢ is either C-Pisot or C-Salem.
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