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Abstract

Let G be a �nite p-solvable group. For a given p-block B of G; we de�ne
a canonical pair (K;A), refered to as a nucleus for B; where K is a subgroup
of G and A is a block of K of maximal defect, de�ned uniquely by B up to G-
conjugacy. The irreducible characters (ordinary or modular) associated with B
are closely related to those associated with A: Also, not surprisingly, (K;A) is
just (G;B) in case B is of maximal defect.

Given a normal subgroup N of G and a block b of N; we show that there
exist a nucleus ( bN;bb) for b and a subgroup bG of G containing bN as a normal
subgroup such that the blocks of G covering b behave quite analogously to those
of bG covering bb:
1. Introduction

Fix a prime p and let G be a �nite group. Next, let Bl(G) be the set of p-
blocks of G: Recall that a block B 2 Bl(G) is said to be of maximal defect if it
has a Sylow p-subgroup of G as a defect group. Since the principal block of G
is of maximal defect, then it is clear that a block B ofG is of maximal defect if
and only if B is of maximal defect in Bl(G): It is well known that, in general,
a block is not of maximal defect, and in some situations blocks of maximal
defect are more amenable to proving the validity of certain statements about
blocks.
Assume now that G is p-solvable and let B be a block of G: In this paper,

we associate with B a canonical pair (K;A); where K is a subgroup of G
and A is a block of K of maximal defect, de�ned uniquely by B up to G-
conjugacy such that AG is de�ned and equals B and any Sylow p-subgroup
of K is a defect group for B: As might be expected, (K;A) is just (G;B) in
case B is of maximal defect. Any such pair (K;A) is said to be a nucleus for
B, and we refer to A as a nucleus block for B: (We should mention that we
have borrowed the term nucleus from [6], where G. Navarro constructed, in
a somewhat similar manner, the (normal) nucleus of an irreducible character
of a p-solvable group.)
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If A is a nucleus block for B; then the irreducible characters (ordinary or
modular) associated with B are closely related to those associated with A:
In fact, character induction de�nes height-preserving bijections from Irr(A)
onto Irr(B) and from IBr(A) onto IBr(B); where, as is customary, Irr(A)
(resp. IBr(A)) is the set of ordinary (resp. p-Brauer) irreducible characters
belonging to the block A:
We continue to assume that G is p-solvable. Let now N be a normal

subgroup of G and b a block of N:We denote by Bl(Gjb) the set of blocks of
G that cover b: A block B of G covering b is said to be of maximal defect in
Bl(Gjb) if the defect of B is greatest among the defects of all the members of
Bl(Gjb): Next, given B 2 Bl(Gjb) and � 2 Irr(b); we write Irr(Bj�) for the set
of all characters in Irr(B) that lie over �: The �rst of our main results shows
that there exist a nucleus ( bN;bb) for b and a subgroup bG of G containing bN as
a normal subgroup such that the blocks in Bl( bGjbb) behave quite analogously
to those in Bl(Gjb):
Theorem A. Let N C G; where G is p-solvable and let b be a block of

N: Then there exist a nucleus ( bN;bb) for b and a subgroup bG of G containingbN as a normal subgroup such that the following statements hold.
(a) bG \N = bN:
(b) bb is bG-stable.
(c) Block induction de�nes a bijection from Bl( bGjbb) onto Bl(Gjb):
(d) Suppose bB 2 Bl( bGjbb): Then any defect group of bB is one for bBG:

Furthermore, bB is of maximal defect in Bl( bG) if and only if bBG is of maximal
defect in Bl(Gjb):
(e) If bB 2 Bl( bGjbb); then induction de�nes height-preserving bijections

from Irr( bB) onto Irr( bBG) and from IBr( bB) onto IBr( bBG): Moreover, if � 2
Irr( bB) and ' 2 IBr( bB); then it holds that d�' = d�G'G :

(f) Given bB 2 Bl( bGjbb) and � 2 Irr(b); it holds that
Irr( bBGj�) = f�G : � 2 Irr( bBjb�)g;

where b� is the unique character in Irr(bb) such that b�N = �:

Let now B be an arbitrary block in Bl(Gjb): Then, using Theorem A,
we can show that there exist a nucleus ( bN;bb) for b; a subgroup G0 of G
containing bN as a normal subgroup and a block B0 2 Bl(G0jbb) of maximal
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defect in Bl(G0) such that the character theory of B "is similar" to that of
B0:

Theorem B. Let N C G; where G is p-solvable and let B and b be
blocks of G and N; respectively, such that B covers b: Then there exist a
nucleus ( bN;bb) for b; a subgroup G0 of G containing bN as a normal subgroup
and a block B0 of G0 of maximal defect such that the following statements
hold.
(a) G0 \N = bN:
(b) B0 covers bb:
(c) B0G is de�ned and equals B:
(d) Every defect group of B0 is one for B:
(e) Induction de�nes height-preserving bijections from Irr(B0) onto Irr(B)

and from IBr(B0) onto IBr(B): Furthermore, if � 2 Irr(B0) and ' 2 IBr(B0);
then it holds that d�' = d�G'G :

2. The nucleus of a block

Throughout the remainder of this paper we �x a p-solvable group G,
where p is a prime number. We denote by P the set of all pairs (H; b); where
H is a subgroup of G and b is a block of H: Then G acts by conjugation on P
by (H; b)g = (Hg; bg): Now given a block B of G; we letNB the set of all those
pairs (H; b) in P such that H C G; b is of maximal defect and B covers b:
It is clear that (h1i ; bh1i) 2 NB, where bh1i is the unique block of the identity
subgroup h1i : Also, notice that NB is closed under the conjugation action
of G: Next, for pairs (H; b) and (H 0; b0) in NB; we write (H; b) � (H 0; b0); if
H � H 0 and b0 covers b: This clearly de�nes a partial order on NB:

Lemma 2.1. Let B be a block of G: Then there is a unique conjugacy
class of maximal pairs in NB:

Proof. Suppose (M1; b1) and (M2; b2) are maximal pairs in NB: Since,
clearly, any G-conjugate of a maximal pair is also maximal, it su¢ ces to
show that (M1; b1) and (M2; b2) are conjugate in G:
Since both M1 and M2 are normal in G, then so is M1M2: Now choose a

block b ofM1M2 covered by B and covering b1: Next, as B covers both b and
b2; it follows that b covers some G-conjugate of b2: There is, thus, no loss in
assuming that b covers b2:
Let D be a defect group of B: It follows by [4, Theorem 5.5.16(ii)] that

D \M1 and D \M2 are Sylow p-subgroups of M1 and M2; respectively. We
claim that D \ (M1M2) is a Sylow p-subgroup of M1M2:
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We have

j(DM1)M2jp =
jDM1jpjM2jp
j(DM1) \M2jp

=
jDjjM1jpjM2jp

jD \M1jj(DM1) \M2jp
=

jDjjM2jp
j(DM1) \M2jp

:

Now, sinceD\M2 � (DM1)\M2 �M2; andD\M2 is a Sylow p-subgroup of
M2; we must have j(DM1)\M2jp = jM2jp. It follows that j(DM1)M2jp = jDj:
On the other hand,

j(DM1)M2jp = jD(M1M2)jp =
jDjjM1M2jp
jD \ (M1M2)j

:

Hence jD \ (M1M2)j = jM1M2jp; which proves our claim.
In view of [4, Theorem 5.5.16(ii)], we conclude that (M1M2; b) 2 NB: By

the maximality of (M1; b1) and (M2; b2); we are then forced to have (M1; b1) =
(M1M2; b) = (M2; b2); which clearly completes the proof of the lemma. �
Lemma 2.2. Let B be a block of G and choose a maximal pair (M; b)

in NB: If b is invariant in G; then (M; b) = (G;B):

Proof. Suppose, on the contrary, that M < G: Let L=M be a chief factor
of G; and observe that since G is p-solvable, L=M is either a p-group or a
p0-group. (See [2, p. 5].)
Suppose L=M is a p-group. By Corollary 5.5.6 in [4], there is a unique

block b0 of L covering b: Since B covers b; then b0 must be covered by B: Now
let P and R be defect groups of b and b0; respectively. Since L stabilizes b; we
have that jRj = jP jjL :M jp by [4, Theorem 5.5.16(i)]. It follows that R is a
Sylow p-subgroup of L as P is a Sylow p-subgroup of M: Then (L; b0) 2 NB;
which clearly contradicts the maximality of (M; b): Hence L=M must be a
p0-group.
Choose a block b0 of L covered by B and covering b: If P is a defect

group of b; then P is contained in some defect group R of b0 by [4, Theorem
5.5.16(ii)]. Next, since P is a Sylow p-subgroup ofM and L=M is a p0-group,
then P must be a Sylow p-subgroup of L: This forces R = P: Therefore
(L; b0) 2 NB; contradicting the choice of (M; b): This clearly ends the proof
of the lemma. �
Let B be a block of G: A nucleus for B is any pair (K;A) 2 P de�ned

inductively as follows. If B is of maximal defect, we let (K;A) = (G;B):
Now if B is not of maximal defect, choose a maximal pair (M; b) in NB; and
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note that M < G: Let T be the inertial group of b in G; and let B0 be the
Fong-Reynolds correspondent of B over b: Since M < G; Lemma 2.2 implies
that T < G. By the inductive hypothesis, a nucleus for B0 is well de�ned.
Take (K;A) to be any nucleus of B0:

Next, we record the following couple of facts about nuclei for future use.

Corollary 2.3. Let B be a block of G: Then
(a) The set of nuclei of B consists of a single G-conjugacy class of pairs.
(b) If (K;A) is a nucleus for B; then A is of maximal defect.
(c) If (H; �) 2 NB; then there exists a nucleus (K;A) of B such that

H � K and � is covered by A:

Proof. We proceed by induction on jGj: Suppose �rst thatB is of maximal
defect. Then the unique nucleus of B is (G;B); and there is nothing to prove.
Assume now that B is not of maximal defect.
By choosing a maximal pair (M; b) in NB; we have M < G: Then, in

light of Lemma 2.2, the inertial group T of b is a proper subgroup of G:
Let B0 be the Fong-Reynolds correspondent of B over b: Then the inductive
hypothesis ensures that the set of nuclei of B0 consists of a single T -conjugacy
class of pairs. Next, by Lemma 2.1, any other maximal pair in NB is of the
form (M; bg) for some g 2 G: Then the block B0g of T g is the Fong-Reynolds
correspondent of B over bg, and by the construction of the nucleus of a block,
it follows that f(K;A)g : (K;A) is a nucleus for B0g is precisely the set of
nuclei of B0g: This takes care of (a).
For (b), suppose (K;A) is a nucleus for B: Then there exists a maximal

pair (M; b) in NB such that (K;A) is a nucleus for the Fong-Reynolds cor-
respondent B0 of B over b: Since B0 is a block of the inertial group T of b
in G and T < G; the inductive hypothesis guarantees that A is of maximal
defect.
Finally, we prove (c). Suppose that (H; �) 2 NB: Then there exists

a maximal pair (M; b) in NB such that (H; �) � (M; b): It follows that
(H; �) 2 NB0 ; where B0 is the Fong-Reynolds correspondent of B over b: By
the inductive hypothesis, there is a nucleus (K;A) for B0 such that H � K
and � is covered by A: Since (K;A) is a nucleus for B; part (c) follows. �
Our next result establishes some connections between a block and its

nuclei. Toward that end, the following easy and quite general lemma is
needed.

5



Lemma 2.4. Let L be a subgroup of an arbitrary �nite group H: Suppose
B and B0 are blocks of H and L; respectively, such that induction de�nes
bijections from Irr(B0) onto Irr(B) and from IBr(B0) onto IBr(B): Then
d�' = d�H'H for � 2 Irr(B0) and ' 2 IBr(B0):

Proof. Let � 2 Irr(B0): Then

(�H)0 = (�0)H = (
X

'2IBr(B0)

d�'')
H =

X
'2IBr(B0)

d�''
H ;

where (�H)0 (resp. �0) is the restriction of �H (resp. �) to the set of p-regular
elements of H (resp. L): It follows that d�H'H = d�' for every ' 2 IBr(B0);
as needed to be shown. �
Theorem 2.5. Let B be a block of G with nucleus (K;A): Then
(a) AG is de�ned and equals B:
(b) A and B have a common defect group.
(c) Induction de�nes height-preserving bijections of Irr(A) onto Irr(B)

and of IBr(A) onto IBr(B): Consequently, d�' = d�G'G for all � 2 Irr(A)
and all ' 2 IBr(A):
Proof. We proceed by induction on jGj: Suppose �rst thatB is of maximal

defect. Then A = B and, in this case, all assertions are immediate. We may
now assume that B is not of maximal defect. Then there is a maximal pair
(M; b) in NB such that if T is the inertial group of b in G and B0 is the
Fong-Reynolds correspondent of B over b; then (K;A) is a nucleus for B0:
Since T < G; the inductive hypothesis guarantees that all three assertions
hold with B0 in place of B:
By [4, Theorem 5.5.10(i)], we have that B0G is de�ned and equals B:

Since AT is de�ned and equals B0; it follows by Lemma 5.3.4 in [4] that AG

is de�ned and equals B: This proves (a). Next, the blocks A and B0 have a
common defect group. Also, by [4, Theorem 5.5.10(iv)], any defect group of
B0 is one for B: Part (b) is then immediate.
For (c), the inductive hypothesis ensures that the map � 7�! �T induces a

height-preserving bijection from Irr(A) onto Irr(B0): Then, using [4, Theorem
5.5.10(ii)] and [5, Theorem 9.14(d)], we conclude that the correspondence
� 7�! �G de�nes a height-preserving bijection from Irr(A) onto Irr(B): The
proof of the analogous statement for IBr(A) and IBr(B) is similar. Finally,
the last assertion of (c) is immediate from Lemma 2.4. �
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We have accumulated enough information to be able to describe the nu-
clei of a block of a p-nilpotent group. Suppose, then, that G is p-nilpotent
and let B 2 Bl(G): Choose a block � of Op0(G) covered by B: Next, let J
be the inertial group of � in G; and let eB 2 Bl(J) be the Fong-Reynolds
correspondent of B over �: We shall see that (J; eB) is a nucleus for B:
Since Op0(J) = Op0(G) and J stabilizes �; then [5, Theorem 10.20] says

that eB is the unique block of J covering �; and that the Sylow p-subgroups
of J are precisely the defect groups of eB: In particular, we can then write
J = DOp0(G) for some defect group D of eB:
Next, since (Op0(G); �) 2 NB; then in view of Corollary 2.3(c), there is

a nucleus (K;A) for B such that Op0(G) � K and A covers �: Let P be a
Sylow p-subgroup of K: Then K = POp0(G); and by Corollary 2.3(b), we
have that P is a defect group for A:
We argue now that K � J: It is clear that K \ J is the inertial group of

� in K: Now, let eA be the Fong-Reynolds correspondent of A over �: Then,
by [4, Theorem 5.5.10(iv)], there is k 2 K such that P k is a defect group foreA: Since P kOp0(G) � K \J � K = POp0(G); and

��P k�� = jP j ; it follows that
K \ J = K: This clearly proves that K � J; as claimed.
Since P is a defect group for A; then, by Theorem 2.5(b), we have that P

is a defect group for B. Next, recall that D is a defect group for eB: Then D
is a defect group for B by [4, Theorem 5.5.10(iv)]. Therefore, P and D are
conjugate in G; and consequently jJ j = jDj jOp0(G)j = jP j jOp0(G)j = jKj :
Now, as K � J; we conclude that K = J: Since A covers �; and eB is the
unique block of J covering �; it follows that A = eB: Thus (J; eB) is a nucleus
for B; as needed.

3. Nuclei and normal subgroups

We begin this section by �xing some notation. Let H be a �nite group
and let N be a normal subgroup of H: Let b be a block of N and suppose
� 2 Irr(N): The set of irreducible characters of H lying over � is denoted
by Irr(Hj�). Also, we write Bl(Hjb) for the set of blocks of H that cover b:
Next, suppose that � 2 Irr(b) and B 2 Bl(Hjb): We denote by Irr(Bj�) the
intersection Irr(B) \ Irr(Hj�):
In order to prove Theorem A, we need a couple of preliminary lemmas.

Lemma 3.1. Let N C H; where H is an arbitrary �nite group. Let B
and b be blocks of H and N; respectively, such that B covers b:
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(a) Suppose b is H-stable of maximal defect and B is weakly regular
(relative to N): Then B has a Sylow p-subgroup of H as a defect group.
(b) Suppose � 2 Irr(b) and let B0 be the Fong-Reynolds correspondent

of B over b: Then character induction de�nes a bijection of Irr(B0j�) onto
Irr(Bj�):
Proof. Part (a) follows immediately from [4, Theorem 5.5.16(i)]. Next,

in view of [4, Theorem 5.5.10(ii)], induction de�nes an injective map from
Irr(B0j�) into Irr(Bj�): Now suppose � 2 Irr(Bj�): Then there is a unique
character � 2 Irr(B0) such that �H = �: Since � lies over �; then � lies over
�h for some h 2 H: Also, as b is the unique block of N covered by B0; notice
that �h 2 Irr(b): It follows that bh = b; as � 2 Irr(b): Therefore h lies in the
inertial group T of b in H; and hence � must lie over �: This clearly completes
the proof of (b). �
Lemma 3.2. Let M � N be normal subgroups of a �nite group H: Let

� be a block of M with inertial group I in H, and set J = I \ N: Suppose
B 2 Bl(Hj�) and b 2 Bl(N j�); and let B0 2 Bl(Ij�) and b0 2 Bl(J j�) be the
Fong-Reynolds correspondents of B and b; respectively. Then the following
statements hold.
(a) Suppose � 2 Irr(�); � 2 Irr(Ij�) and � 2 Irr(J j�): Then �H 2 Irr(H)

and �N 2 Irr(N): Furthermore, J C I; and � lies over � if and only if �H

lies over �N :
(b) B covers b if and only if B0 covers b0:
(c) Suppose B covers b and let � 2 Irr(b0): Then �N 2 Irr(b) and

Irr(Bj�N) = f�H : � 2 Irr(B0j�)g:
Proof. Let I0 be the inertial group of � in H and let J0 = I0 \N: Then

I0 � I; J0 � J; J0 C I0 and J C I: Next, let �0 and � 0 be the unique
characters in Irr(I0j�) and Irr(J0j�); respectively, such that �0I = � and
� 0
J = � : (See [1, Theorem 6.11].) Then, by Lemma 2.6 in [3], we have that �

lies over � if and only if �0 lies over � 0: Next, by Theorem 6.11 in [1], we have
�0

H 2 Irr(Hj�) and � 0N 2 Irr(N j�): Moreover, by [3, Lemma 2.6], again, it
holds that �0

H lies over � 0N if and only if �0 lies over � 0: Since �
H = �0

H

and �N = � 0
N ; the proof of (a) is complete. Next, we prove (b).

Since both B0 and b0 cover �; we can choose � 2 Irr(�); � 2 Irr(B0j�)
and � 2 Irr(b0j�): By part (a), �H 2 Irr(H), �N 2 Irr(N); and � lies over �
if and only if �H lies over �N : Also, in light of [4, Theorem 5.5.10(ii)], note
that �H 2 Irr(B) and �N 2 Irr(b):
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Suppose B0 covers b0: Then � can be chosen to lie over � : Therefore, �H

lies over �N ; and hence B covers b: Conversely, suppose B covers b: Then,
there exists a character � 2 Irr(Bj�N): Since �N lies over �; then so does �:
It follows by Lemma 3.1(b) that there is � 2 Irr(B0j�) such that �H = �: We
conclude, then, by (a), that � lies over � : Hence B0 covers b0: We have thus
established (b). Finally, we prove (c).
Assume B covers b and let � 2 Irr(b0): We know that �N 2 Irr(b): Now

suppose � 2 Irr(B0j�): Then �H 2 Irr(B): Moreover, by choosing a character
� 2 Irr(�) under � ; it follows by (a) that �H 2 Irr(Bj�N): Next, assume
� 2 Irr(Bj�N): Then, as in the preceeding paragraph, � = �H for some
character � 2 Irr(B0j�): This proves (c) and concludes the proof of the lemma.
�
We are now ready to prove Theorem A.

Proof of Theorem A. Let T be the inertial group of b in G: Suppose �rst
that b is of maximal defect. Then (N; b) is the unique nucleus for b: In this
case, we let ( bN;bb) = (N; b) and bG = T: Now assertions (a) and (b) are
clearly satis�ed, and (c) is direct from [4, Theorem 5.5.10(i)]. Next, supposebB 2 Bl( bGjbb): Then, by Theorem 5.5.10(iv) in [4], any defect group for bB is
one for bBG: It follows by [4, Theorem 5.5.16(i)] that bBG is weakly regular
relative to N if and only if bB is weakly regular (relative to N); and if such
is the case, Lemma 3.1(a) tells us that bB has a Sylow p-subgroup of bG as
a defect group. This completes the proof of (d). Next, by [4, Theorem
5.5.10(ii)] and [5, Theorem 9.14(d)], character induction de�nes a height-
preserving bijection of Irr( bB) onto Irr( bBG): A similar argument establishes
the analogous statement for IBr( bB) and IBr( bBG): Now, by Lemma 2.4, it
holds that d�' = d�G'G for all � 2 Irr( bB) and all ' 2 IBr( bB): The proof of
(e) is then complete. Finally if � 2 Irr(b); then b� = � (as bb = b); and part (f)
follows from Lemma 3.1(b). We have thus settled the case, in which b is of
maximal defect. We can assume, therefore, that b is not of maximal defect,
and we proceed by induction on jN j:
Choose a maximal pair (M;�) in Nb: Since M is uniquely determined by

b and b is T -stable, note that T normalizes M: Let I be the inertial group of
� in T and J = I\N (the inertial group of � in N): Next, let b0 be the Fong-
Reynolds correspondent of b over �: Then b0 is a block of J; and as N C G;
note that J C I: Now, since b is not of maximal defect, we have J < N by
Lemma 2.2. Then, by the inductive hypothesis, there exist a nucleus ( bN;bb)
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for b0 and a subgroup bG of I containing bN as a normal subgroup such that
assertions (a)-(f) all hold with I; J and b0 in place of G; N and b:
Now, by de�nition, ( bN;bb) is a nucleus for b; and we need to establish

statements (a)-(f) for G; N and b: First, note that (b) is clearly satis�ed.
Assertion (a) also holds as bG\N = bG\ I \N = bG\ J = bN; where the last
equality holds by the inductive hypothesis. Our next task is to prove (c).
We have that block induction de�nes a bijection � from Bl( bGjbb) onto

Bl(Ijb0): Next, we claim that induction also de�nes a bijection from Bl(Ijb0)
onto Bl(T jb):
Recall that I is the inertial group of � in T: Then, Theorem 5.5.10(i)

of [4] tells us that block induction de�nes a bijection � from Bl(Ij�) onto
Bl(T j�): Since both b and b0 cover �; it is clear that Bl(T jb) � Bl(T j�) and
Bl(Ijb0) � Bl(Ij�): Then, in view of Lemma 3.2(b), it follows that � maps
Bl(Ijb0) onto Bl(T jb): This clearly proves our claim.
Next, we have that T is the inertial group of b in G: Then, owing to

[4, Theorem 5.5.10(i)], once more, block induction gives us a bijection �
from Bl(T jb) onto Bl(Gjb): Now let � be the composite ���: Then � is a
bijection from Bl( bGjbb) onto Bl(Gjb): Furthermore, by Lemma 5.3.4 in [4], �
is just block induction. This proves (c).
Now let bB 2 Bl( bGjbb): By the inductive hypothesis, any defect group D

of bB is one for bBI : Next, since bBI is the Fong-Reynolds correspondent of bBT

over � and bBT is the Fong-Reynolds correspondent of bBG over b; we have,
by Theorem 5.5.10(iv) in [4] that D is a defect group for bBG: In particular,
we conclude that the bijection � preserves block defects. It follows, then,
that bB is of maximal defect in Bl( bGjbb) if and only if bBG is of maximal defect
in Bl(Gjb): Next, since bb is bG-stable of maximal defect, we have, in light of
Lemma 3.1(a) and [4, Theorem 5.5.16(i)], that bB is of maximal defect in
Bl( bGjbb) if and only if bB is of maximal defect in Bl( bG): Therefore, bB is of
maximal defect in Bl( bG) if and only if bBG is of maximal defect in Bl(Gjb):
We have, thus, completed the proof of (d). Next, we take care of (e).
By the inductive hypothesis, character induction de�nes a height-preserving

bijection of Irr( bB) onto Irr( bBI):Next, by [4, Theorem 5.5.10(ii)] and [5, Theo-
rem 9.14(d)], induction also de�nes height-preserving bijections from Irr( bBI)

onto Irr( bBT ) and from Irr( bBT ) onto Irr( bBG): It follows that character in-
duction yields a height-preserving bijection of Irr( bB) onto Irr( bBG): A similar
argument proves the parallel statement for IBr( bB) and IBr( bBG): Then, in
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light of Lemma 2.4, we conclude that d�' = d�G'G for any � 2 Irr( bB) and
any ' 2 IBr( bB): This takes care of assertion (e). Finally, we prove (f).
We have b�J 2 Irr(b0), and by the inductive hypothesis,

Irr( bBI jb�J) = f�I : � 2 Irr( bBjb�)g:
Next, recall that the block bBT covers b: Then, in light of Lemma 3.2(c), we
have

Irr( bBT j�) = f�T : � 2 Irr( bBI jb�J)g = f�T : � 2 Irr( bBjb�)g:
Next, since bBT is the Fong-Reynolds correspondent of bBG over b; Lemma
3.1(b) implies that Irr( bBGj�) = f G :  2 Irr( bBT j�)g: It follows that
Irr( bBGj�) = f�G : � 2 Irr( bBjb�)g: This proves (f), and completes the proof of
the theorem. �
Next, we prove Theorem B.

Proof of Theorem B. Choose a nucleus ( bN;bb) for b and a subgroup bG of G
as in Theorem A. Now by Theorem A(c), there is a unique block bB 2 Bl( bGjbb)
such that bBG = B: Since ( bN;bb) 2 N bB; Corollary 2.3(c) tells us that there
exists a nucleus (G0; B0) for bB such that bN � G0 and B0 covers bb: Observe
that the block B0 is of maximal defect and that bN C G0; as bG normalizesbN:
Since bG\N = bN by Theorem A(a) and bN � G0 \N � bG\N; assertion

(a) follows. Next, part (b) is clear.
We have that B0

bG is de�ned and equals bB by Theorem 2.5(a). Now, asbBG = B; Lemma 5.3.4 of [4] implies that B0G is de�ned and equals B: This
is (c). Next, statement (d) follows by Theorem 2.5(b) and Theorem A(d).
Finally, assertion (e) is a consequence of Theorem 2.5(c) and Theorem A(e).
This �nishes the proof of Theorem B. �
It is natural to seek connections between the nuclei of a block and the

Harris-Knörr correspondence. Our �nal result of this section o¤ers a connec-
tion in that direction. In order to prove this result, we need the following
general fact about the Harris-Knörr correspondence.

Lemma 3.3. Let H � K be normal subgroups of the arbitrary (�nite)
group �; and let �; b and B be blocks of H; K and �; respectively, such that
B and b cover �: Let Q be a defect group of �, and let �0 2 Bl(NH(Q)) be the
Brauer correspondent of �: If B0 2 Bl(N�(Q)j�0) (resp. b0 2 Bl(NK(Q)j�0))
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is the Harris-Knörr correspondent of B (resp. b); then B covers b if and
only if B0 covers b0:

Proof. First, assume that B covers b: Since b0 covers �0 and �0 has defect
group Q; then by [5, Theorem 9.26], we can choose a defect group P of b0

such that P \ NH(Q) = Q: Also, in view of [5, Theorem 9.28], note that
P is a defect group of b. Now, by [5, Theorem 9.26] again, as � has defect
group Q, there exists x 2 K such that P x \H = Q: Since Q � P \H and
jP \Hj = jP x \Hj ; it follows that P \ H = Q: Then, as H C �; we have
N�(P ) � N�(Q):
Let eb 2 Bl(NK(P )) be the Brauer correspondent of b; and let eB 2

Bl(N�(P )jeb) be the Harris-Knörr correspondent of B: Since NK(P ) � NK(Q);
and eb has defect group P; [4, Theorem 5.3.8] says that ebNK(Q) is de�ned and
has defect group P: Then, as ebK is de�ned and equals b; we conclude by [4,
Lemma 5.3.4] that (ebNK(Q))K is de�ned and equals b:
Now both b0 and ebNK(Q) are blocks of NK(Q) having P as a defect group.

Since (b0)K = b = (ebNK(Q))K ; it follows by [4, Theorem 5.3.8] that ebNK(Q) = b0:

Consequently, aseb has defect group P andNNK(Q)(P ) = NK(P ); the blockeb is
the Brauer correspondent of b0 in NNK(Q)(P ): Next, since NN�(Q)(P ) = N�(P )
and eB 2 Bl(N�(P )jeb); then [5, Theorem 9.28] implies that eBN�(Q) is de�ned
and covers b0: Thus, in particular, the block eBN�(Q) covers �0: Now, by [5,
Theorem 9.28] again, ( eBN�(Q))� is de�ned and covers �: Next, in view of [4,
Lemma 5.3.4], we have ( eBN�(Q))� = eB� = B: Since B0 2 Bl(N�(Q)j�0) is the
Harris-Knörr correspondent of B; we are forced to have eBN�(Q) = B0: We
conclude, then, that B0 covers b0:
Now, assume that B0 covers b0: Our goal is to show that B covers b:

First, recall that eb is the Brauer correspondent of b0 in NNK(Q)(P ): Let now
B0 2 Bl(N�(P )jeb) be the Harris-Knörr correspondent of B0 2 Bl(N�(Q)jb0)
(recall that NN�(Q)(P ) = N�(P )): Since (B0)

N�(Q) = B0 and (B0)� = B; then
by [4, Lemma 5.3.4], (B0)� is de�ned and equals B: Now, as B0 covers eb;
then [5, Theorem 9.28] tells us that B covers b; as needed to be shown. �
Theorem 3.4. Let B 2 Bl(G) and suppose (H; �) 2 NB: Let Q be a

defect group of � and let �0 2 Bl(NH(Q)) be the Brauer correspondent of
�: Also, let B0 2 Bl(NG(Q)j�0) be the Harris-Knörr correspondent of B: If
(K;A) is any nucleus of B with (H; �) � (K;A); then (NK(Q); A0) is a
nucleus of B0; where A0 2 Bl(NK(Q)j�0) is the Harris-Knörr correspondent
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of A:

Proof. First, we prove by induction on jGj that there exists a nucleus
(J; C) of B with (H; �) � (J; C) such that (NJ(Q); C 0) is a nucleus of B0;
where C 0 2 Bl(NJ(Q)j�0) is the Harris-Knörr correspondent of C:
Choose a maximal pair (M; b) in NB with (H; �) � (M; b); and let b0 2

Bl(NM(Q)j�0) be the Harris-Knörr correspondent of b: Since B covers b; note,
by Lemma 3.3, that B0 covers b0: Next, in view of [5, Theorem 9.28], the
blocks b and b0 have a common defect group. Now, as NM(Q) � M and b
is of maximal defect, then b0 is of maximal defect. We conclude, then, that
the pair (NM(Q); b0) lies in NB0 : Now, we claim that, in fact, (NM(Q); b0) is
maximal in NB0 :
Suppose, on the contrary, that (NM(Q); b0) is not maximal in NB0 : Then,

there is (U; b0) 2 NB0 with (NM(Q); b0) � (U; b0) and jNM(Q)j < jU j : Now
write L = HU: Then,

NL(Q) = L \ NG(Q) = HU \ NG(Q) = UNH(Q) = U;

where the last equality holds since NH(Q) is contained in U: Next, as Q is a
Sylow p-subgroup of the normal subgroup H of G; we have G = HNG(Q) by
the Frattini argument. Since U C NG(Q); it follows that L is normal in G:
Also, as M = HNM(Q) and NM(Q) � U; we have that M � L:
Choose a Sylow p-subgroup P of U: As Q C U; we have Q � P: Also,

note that P is a defect group for b0: Now, since

jLjp =
jHjp jU jp
jH \ U jp

=
jHjp jU jp

jH \ NL(Q)jp
=
jHjp jU jp
jNH(Q)jp

= jU jp ;

we see that P is a Sylow p-subgroup of L: Also, as b0 covers b0 and b0 covers
�0; we observe that b0 covers �

0: Then, by [5, Theorem 9.28], (b0)L is a block
of L covering � and having P as a defect group. Furthermore, since B0

covers b0; we have that B covers (b0)L by Lemma 3.3. We conclude, then,
that (L; (b0)L) 2 NB: Next, since b0 covers b0; then, again by Lemma 3.3,
the block (b0)L covers b: Now, by the maximality of the pair (M; b); we are
forced to have L = M: Then U = NL(Q) = NM(Q); which contradicts our
assumption that NM(Q) is proper in U:We have thus proved that (NM(Q); b0)
is maximal in NB0 ; as claimed.
Next, let S be the inertial group of b0 in NG(Q); and write T = HS: Our

task now is to show that T is the inertial group of b in G: First, if t 2 T;

13



then t = hs for some h 2 H and s 2 S: Now,

bt = bhs = bs = ((b0)M)s = ((b0)s)M = (b0)M = b;

where the second equality holds, since h 2 H � M: This shows that T
stabilizes b: It remains to show that, in fact, T is the full stabilizer of b
in G: Let then g 2 G with bg = b: We can write g = h0n; where h0 2 H
and n 2 NG(Q): Hence bn = b: Therefore, in particular, b covers the block
�n 2 Bl(H): It follows that �n = �m for some m 2 M: Furthermore, as
M = HNM(Q); we may assume that m 2 NM(Q): Now nm�1 2 NG(Q); and
so (�0)nm

�1
is a block of NH(Q) having Q as a defect group (recall that Q is

a defect group of �0): Moreover, we have

((�0)nm
�1
)H = ((�0)H)nm

�1
= �nm

�1
= �:

Since �0 is the Brauer correspondent of � in NH(Q); we are forced to have
(�0)nm

�1
= �0: Now, the block (b0)nm

�1
of NM(Q) covers �

0 and

((b0)nm
�1
)M = ((b0)M)nm

�1
= bnm

�1
= bm

�1
= b:

It follows, by [5, Theorem 9.28], that (b0)nm
�1
= b0: Then, as m 2 NM(Q); we

get (b0)n = (b0)m = b0: Therefore n 2 S; and hence g = h0n 2 HS = T: This
proves that T is the inertial group of b in G; as needed to be shown.
Next,

NT (Q) = T \ NG(Q) = HS \ NG(Q) = SNH(Q) = S;

where the last equality holds, since NH(Q) � S:
Suppose �rst that T = G: Then S = NG(Q); and by Lemma 2.2, we

conclude that B and B0 are both of maximal defect. Therefore, (G;B) (resp.
(NG(Q); B

0)) is the unique nucleus for B (resp. B0). In this case, (J; C) is
precisely (G;B).
Assume now that T < G: Since T = HS; notice that S < NG(Q): LetbB 2 Bl(S) be the Fong-Reynolds correspondent of B0 over b0: Then bB covers

�0, and hence, by [5, Theorem 9.28], ( bB)T is de�ned and covers �: Also, in
view of Lemma 3.3, note that ( bB)T covers b: Next, we have ( bB)NG(Q) = B0 and
(B0)G = B: It follows by [4, Lemma 5.3.4] that ( bB)G is de�ned and equals
B: Then, by [4, Lemma 5.3.4] again, we conclude that (( bB)T )G is de�ned
and equals B: It follows that ( bB)T is the Fong-Reynolds correspondent of B
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over b: Now by the inductive hypothesis, there is a nucleus (J; C) of ( bB)T
with (H; �) � (J; C) and such that (NJ(Q); C 0) is a nucleus of bB; where
C 0 2 Bl(NJ(Q)j�0) is the Harris-Knörr correspondent of C: Since, by the
de�nition of nuclei, (J; C) (resp. (NJ(Q); C 0)) is a nucleus of B (resp. B0),
we are clearly done in this case.
Now to complete the proof of the theorem, we let (K;A) be an arbitrary

nucleus of B such that (H; �) � (K;A). We know that B has a nucleus
(J; C) with (H; �) � (J; C) such that B0 has nucleus (NJ(Q); C 0); where C 0 2
Bl(NJ(Q)j�0) is the Harris-Knörr correspondent of C: Then, by Corollary
2.3(a), (K;A) = (J; C)x for some x 2 G: Furthermore, as G = HNG(Q) and
H � J; we may assume that x 2 NG(Q): Now C covers both blocks � and
�x

�1
of H: It follows that �x

�1
= �y for some y 2 J: Since J = HNJ(Q); we

may assume that y 2 NJ(Q): Now yx 2 NG(Q); and so (�0)yx is a block of
NH(Q) with defect group Q: Moreover,

((�0)yx)H = ((�0)H)yx = �yx = �:

Then, we must have (�0)yx = �0: Now, since y 2 NJ(Q); C 0 2 Bl(NJ(Q)j�0)
and Jyx = Jx = K; we get (C 0)x = (C 0)yx 2 Bl(NK(Q)j�0): Also,

((C 0)x)K = ((C 0)x)J
x

= ((C 0)J)x = Cx = A:

Therefore, (C 0)x = A0; the Harris-Knörr correspondent of A: Finally, in view
of Corollary 2.3(a), since x 2 NG(Q) and (NJ(Q); C 0) is a nucleus of B0; we
conclude that (NK(Q); A0) = (NJ(Q); C

0)x is a nucleus of B0: The proof of
the theorem is now complete. �
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