THE NUCLEUS OF A BLOCK OF A P-SOLVABLE GROUP
A. LARADJI!

Abstract

Let G be a finite p-solvable group. For a given p-block B of GG, we define
a canonical pair (K, A), refered to as a nucleus for B, where K is a subgroup
of G and A is a block of K of maximal defect, defined uniquely by B up to G-
conjugacy. The irreducible characters (ordinary or modular) associated with B
are closely related to those associated with A. Also, not surprisingly, (K, A) is
just (G, B) in case B is of maximal defect.

Given a normal subgroup N of G and a block b of N, we show that there
exist a nucleus (N, b) for b and a subgroup G of G containing N as a normal
subgroup such that the blocks of GG covering b behave quite analogously to those
of G covering b.

1. Introduction

Fix a prime p and let G be a finite group. Next, let BI(G) be the set of p-
blocks of GG. Recall that a block B € BI(G) is said to be of maximal defect if it
has a Sylow p-subgroup of G as a defect group. Since the principal block of G
is of maximal defect, then it is clear that a block B of GG is of maximal defect if
and only if B is of maximal defect in BI(G). It is well known that, in general,
a block is not of maximal defect, and in some situations blocks of maximal
defect are more amenable to proving the validity of certain statements about
blocks.

Assume now that G is p-solvable and let B be a block of G. In this paper,
we associate with B a canonical pair (K, A), where K is a subgroup of G
and A is a block of K of maximal defect, defined uniquely by B up to G-
conjugacy such that AY is defined and equals B and any Sylow p-subgroup
of K is a defect group for B. As might be expected, (K, A) is just (G, B) in
case B is of maximal defect. Any such pair (K, A) is said to be a nucleus for
B, and we refer to A as a nucleus block for B. (We should mention that we
have borrowed the term nucleus from [6], where G. Navarro constructed, in
a somewhat similar manner, the (normal) nucleus of an irreducible character
of a p-solvable group.)
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If A is a nucleus block for B, then the irreducible characters (ordinary or
modular) associated with B are closely related to those associated with A.
In fact, character induction defines height-preserving bijections from Irr(A)
onto Irr(B) and from IBr(A) onto IBr(B), where, as is customary, Irr(A)
(resp. IBr(A)) is the set of ordinary (resp. p-Brauer) irreducible characters
belonging to the block A.

We continue to assume that G is p-solvable. Let now N be a normal
subgroup of G and b a block of N. We denote by BI(G|b) the set of blocks of
G that cover b. A block B of G covering b is said to be of maximal defect in
BI(G|b) if the defect of B is greatest among the defects of all the members of
BI(G|b). Next, given B € BI(G|b) and p € Irr(b), we write Irr(B|u) for the set
of all characters in Irr(B) that lie over p. The first of our main results shows
that there exist a nucleus (]/\\7 ,/b\) for b and a subgroup Gof G containing N as

a normal subgroup such that the blocks in B1(G |6) behave quite analogously
to those in BI(G|b).

Theorem A. Let N < G, where G is p-solvable and let b be a block of
N. Then there exist a nucleus (N ) for b and a subgroup G of G containing
N as a normal subgroup such that the following statements hold.

(a) GANN = N.

(b) b is G-stable.

(¢) Block induction defines a bijection from Bl(G|b) onto BI(G|b).

(d) Suppose B € BI(G[b). Then any defect group of B is one for BC.
Furthermore, B is of mazximal defect in Bl(G ) if and only if BS is of maximal
defect in Bl(G|b)

(e) If - B e Bl(G|b) then induction defines height-preserving bijections
from Irr(B) onto Irr(BG) and from IBr(B) onto IBr(BG) Moreover, if 0 €
Irr(é) and ¢ € IBr(B ) then it holds that dp, = dyc ¢

(f) Given B € Bl(@\/b\) and p € Trr(b), it holds that

Irr(B%|p) = {6 : 6 € Irr(B|f)},
where [ is the unique character in Irr(g) such that i™ = p.

Let now B be an arbitrary block in BI(G|b). Then, using Theorem A,
we can show that there exist a nucleus (V, b) for b, a subgroup Go of G
containing N as a normal subgroup and a block B, € Bl(Go|b) of maximal



defect in BI(Gp) such that the character theory of B "is similar" to that of
By.

Theorem B. Let N < G, where G is p-solvable and let B and b be
blocks of G and N, respectively, such that B covers b. Then there exist a
nucleus (N,b) for b, a subgroup Gy of G containing N as a normal subgroup
and a block By of Gy of maximal defect such that the following statements
hold.

(a) G() NN = N

(b) Bo covers b.

(c) Bo® is defined and equals B.

(d) Every defect group of By is one for B.

(e) Induction defines height-preserving bijections from Irr(By) onto Irr(B)
and from IBr(By) onto IBr(B). Furthermore, if 6 € Irr(By) and ¢ € 1Br(By),
then it holds that dg, = dgc ¢

2. The nucleus of a block

Throughout the remainder of this paper we fix a p-solvable group G,
where p is a prime number. We denote by P the set of all pairs (H,b), where
H is a subgroup of G and b is a block of H. Then G acts by conjugation on P
by (H,b)? = (HY,1%). Now given a block B of G, we let Nz the set of all those
pairs (H,b) in P such that H <1 G, b is of maximal defect and B covers b.
It is clear that ((1) b)) € N, where by is the unique block of the identity
subgroup (1) . Also, notice that Nz is closed under the conjugation action
of G. Next, for pairs (H,b) and (H',V') in Ng, we write (H,b) < (H',V), if
H C H' and ¥/ covers b. This clearly defines a partial order on Ng.

Lemma 2.1. Let B be a block of G. Then there is a unique conjugacy
class of mazximal pairs in Np.

Proof. Suppose (Mi,b;) and (Ms,by) are maximal pairs in Np. Since,
clearly, any G-conjugate of a maximal pair is also maximal, it suffices to
show that (M, by) and (Ma, by) are conjugate in G.

Since both M; and M, are normal in G, then so is M;M,. Now choose a
block b of M;Ms; covered by B and covering b;. Next, as B covers both b and
bs, it follows that b covers some G-conjugate of by. There is, thus, no loss in
assuming that b covers bs.

Let D be a defect group of B. It follows by [4, Theorem 5.5.16(ii)] that
DN My and D N M,y are Sylow p-subgroups of M; and M,, respectively. We
claim that D N (M;Ms) is a Sylow p-subgroup of Mj M.
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We have

| DMy p| Malp | D|| M || M|, _ | DI[My)y '
|((DMy) N My, — [DNM|[(DM;) 0 M|, — |[(DMy) N My,

[(DMy) M|, =

Now, since DN My C (DM;)NMy C My, and DN M, is a Sylow p-subgroup of
M, we must have |(DM;)NMs|, = |Msl,. It follows that [(DM;)M,|, = |D|.
On the other hand,

| DI| My M),
DM,)Ms|, = |D(M Ms)|, = —F—F—.
|( 1) 2|p | ( 1 2)’17 |Dﬂ(M1M2>’
Hence |D N (M Ms)| = | My Ms|,, which proves our claim.
In view of [4, Theorem 5.5.16(ii)], we conclude that (M;M,,b) € Ng. By
the maximality of (M7, by) and (Ms, by), we are then forced to have (M, by) =
(M1 My, b) = (Ms, by), which clearly completes the proof of the lemma. [

Lemma 2.2. Let B be a block of G and choose a maximal pair (M,b)
in Np. If b is invariant in G, then (M,b) = (G, B).

Proof. Suppose, on the contrary, that M < G. Let L/M be a chief factor
of G, and observe that since G is p-solvable, L/M is either a p-group or a
p/-group. (See [2, p. 5].)

Suppose L/M is a p-group. By Corollary 5.5.6 in [4], there is a unique
block O’ of L covering b. Since B covers b, then b’ must be covered by B. Now
let P and R be defect groups of b and ¥/, respectively. Since L stabilizes b, we
have that |R| = |P||L : M|, by [4, Theorem 5.5.16(i)]. It follows that R is a
Sylow p-subgroup of L as P is a Sylow p-subgroup of M. Then (L,V') € Np,
which clearly contradicts the maximality of (M,b). Hence L/M must be a
p’-group.

Choose a block b of L covered by B and covering b. If P is a defect
group of b, then P is contained in some defect group R of ¥’ by [4, Theorem
5.5.16(ii)]. Next, since P is a Sylow p-subgroup of M and L/M is a p/-group,
then P must be a Sylow p-subgroup of L. This forces R = P. Therefore
(L,bV') € Np, contradicting the choice of (M, b). This clearly ends the proof
of the lemma. []

Let B be a block of G. A nucleus for B is any pair (K, A) € P defined
inductively as follows. If B is of maximal defect, we let (K, A) = (G, B).
Now if B is not of maximal defect, choose a maximal pair (M, b) in Nz, and
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note that M < G. Let T be the inertial group of b in G, and let B’ be the
Fong-Reynolds correspondent of B over b. Since M < GG, Lemma 2.2 implies
that T' < G. By the inductive hypothesis, a nucleus for B’ is well defined.
Take (K, A) to be any nucleus of B'.

Next, we record the following couple of facts about nuclei for future use.

Corollary 2.3. Let B be a block of G. Then

(a) The set of nuclei of B consists of a single G-congugacy class of pairs.

(b) If (K, A) is a nucleus for B, then A is of mazimal defect.

(c¢) If (H,B) € N, then there exists a nucleus (K, A) of B such that
H C K and (3 is covered by A.

Proof. We proceed by induction on |G|. Suppose first that B is of maximal
defect. Then the unique nucleus of B is (G, B), and there is nothing to prove.
Assume now that B is not of maximal defect.

By choosing a maximal pair (M,b) in Nz, we have M < G. Then, in
light of Lemma 2.2, the inertial group 7' of b is a proper subgroup of G.
Let B’ be the Fong-Reynolds correspondent of B over b. Then the inductive
hypothesis ensures that the set of nuclei of B’ consists of a single T-conjugacy
class of pairs. Next, by Lemma 2.1, any other maximal pair in Np is of the
form (M, 9) for some g € G. Then the block B' of TY is the Fong-Reynolds
correspondent of B over b7, and by the construction of the nucleus of a block,
it follows that {(K,A)? : (K, A) is a nucleus for B’} is precisely the set of
nuclei of B". This takes care of (a).

For (b), suppose (K, A) is a nucleus for B. Then there exists a maximal
pair (M,b) in Np such that (K, A) is a nucleus for the Fong-Reynolds cor-
respondent B’ of B over b. Since B’ is a block of the inertial group 7" of b
in G and T' < G, the inductive hypothesis guarantees that A is of maximal
defect.

Finally, we prove (c). Suppose that (H,[() € Np. Then there exists
a maximal pair (M,b) in Ny such that (H,5) < (M,b). It follows that
(H,f) € Np/, where B’ is the Fong-Reynolds correspondent of B over b. By
the inductive hypothesis, there is a nucleus (K, A) for B’ such that H C K
and [ is covered by A. Since (K, A) is a nucleus for B, part (c) follows. [J

Our next result establishes some connections between a block and its
nuclei. Toward that end, the following easy and quite general lemma is
needed.



Lemma 2.4. Let L be a subgroup of an arbitrary finite group H. Suppose
B and B’ are blocks of H and L, respectively, such that induction defines
bijections from Irr(B') onto Irr(B) and from 1Br(B’) onto 1Br(B). Then
dop = dgu u for 6 € Irr(B') and ¢ € IBr(B').

Proof. Let 6 € Irr(B’). Then

(HH)O = (HO)H = ( Z d9§0(70)H = Z d&p(pH?

©€IBr(B’) ©€IBr(B)

where (67)° (resp. 6°) is the restriction of 8 (resp. 6) to the set of p-regular
elements of H (resp. L). It follows that dyu u = dy, for every ¢ € IBr(B'),
as needed to be shown. [

Theorem 2.5. Let B be a block of G with nucleus (K, A). Then

(a) AY is defined and equals B.

(b) A and B have a common defect group.

(¢) Induction defines height-preserving bijections of Irr(A) onto Irr(B)
and of 1Br(A) onto IBr(B). Consequently, dp, = dgc,c for all § € Irr(A)
and all ¢ € IBr(A).

Proof. We proceed by induction on |G|. Suppose first that B is of maximal
defect. Then A = B and, in this case, all assertions are immediate. We may
now assume that B is not of maximal defect. Then there is a maximal pair
(M,b) in Np such that if T is the inertial group of b in G and B’ is the
Fong-Reynolds correspondent of B over b, then (K, A) is a nucleus for B'.
Since T' < G, the inductive hypothesis guarantees that all three assertions
hold with B’ in place of B.

By [4, Theorem 5.5.10(i)], we have that B'“ is defined and equals B.
Since AT is defined and equals B’, it follows by Lemma 5.3.4 in [4] that A
is defined and equals B. This proves (a). Next, the blocks A and B’ have a
common defect group. Also, by [4, Theorem 5.5.10(iv)|, any defect group of
B’ is one for B. Part (b) is then immediate.

For (c), the inductive hypothesis ensures that the map & — ¢7 induces a
height-preserving bijection from Irr(A) onto Irr(B’). Then, using [4, Theorem
5.5.10(ii)] and [5, Theorem 9.14(d)], we conclude that the correspondence
¢ — €Y defines a height-preserving bijection from Irr(A) onto Irr(B). The
proof of the analogous statement for IBr(A) and IBr(B) is similar. Finally,
the last assertion of (c) is immediate from Lemma 2.4. [



We have accumulated enough information to be able to describe the nu-
clei of a block of a p-nilpotent group. Suppose, then, that G is p-nilpotent
and let B € Bl(G). Choose a block 3 of O, (G) covered by B. Next, let J
be the inertial group of 5 in G, and let B € BI(J) be the Fong-Reynolds
correspondent of B over 3. We shall see that (J, B) is a nucleus for B.

Since O, (J) = Oy (G) and J stabilizes 3, then [5, Theorem 10.20] says
that B is the unique block of J covering 3, and that the Sylow p-subgroups
of J are precisely the defect groups of B. In particular, we can then write
J = DO,/ (G) for some defect group D of B.

Next, since (O, (G), ) € N, then in view of Corollary 2.3(c), there is
a nucleus (K, A) for B such that O, (G) C K and A covers (. Let P be a
Sylow p-subgroup of K. Then K = PO,(G), and by Corollary 2.3(b), we
have that P is a defect group for A.

We argue now that K C J. It is clear that K N J is the inertial group of
B in K. Now, let A be the Fong-Reynolds correspondent of A over 3. Then,
by [4, Theorem 5.5.10(iv)], there is k € K such that P* is a defect group for
A. Since P*0y(G) C KNJ C K = PO, (G), and | P¥| = |P|, it follows that
K N J = K. This clearly proves that K C J, as claimed.

Since P is a defect group for A, then, by Theorem 2.5(b), we have that P
is a defect group for B. Next, recall that D is a defect group for B. Then D
is a defect group for B by [4, Theorem 5.5.10(iv)]. Therefore, P and D are
conjugate in G, and consequently |J| = |D||Oy(G)| = |P||0,(G)| = |K].
Now, as K C J, we conclude that K = J. Since A covers 3, and B is the
unique block of J covering 3, it follows that A = B. Thus (J, B) is a nucleus
for B, as needed.

3. Nuclei and normal subgroups

We begin this section by fixing some notation. Let H be a finite group
and let N be a normal subgroup of H. Let b be a block of N and suppose
p € Irr(N). The set of irreducible characters of H lying over u is denoted
by Irr(H|p). Also, we write BI(H |b) for the set of blocks of H that cover b.
Next, suppose that p € Irr(b) and B € BI(H|b). We denote by Irr(B|u) the
intersection Irr(B) N Irr(H |p).

In order to prove Theorem A, we need a couple of preliminary lemmas.

Lemma 3.1. Let N < H, where H is an arbitrary finite group. Let B
and b be blocks of H and N, respectively, such that B covers b.



(a) Suppose b is H-stable of maximal defect and B is weakly regular
(relative to N). Then B has a Sylow p-subgroup of H as a defect group.

(b) Suppose 1 € Irr(b) and let B' be the Fong-Reynolds correspondent
of B over b. Then character induction defines a bijection of Irr(B'|u) onto
Irr(Blp).

Proof. Part (a) follows immediately from [4, Theorem 5.5.16(i)]. Next,
in view of [4, Theorem 5.5.10(ii)], induction defines an injective map from
Irr(B'|p) into Irr(B|p). Now suppose x € Irr(B|u). Then there is a unique
character § € Irr(B’) such that # = x. Since x lies over y, then 6 lies over
u for some h € H. Also, as b is the unique block of N covered by B’, notice
that " € Trr(b). It follows that 0" = b, as p € Irr(b). Therefore h lies in the
inertial group 7" of b in H, and hence 6 must lie over p. This clearly completes
the proof of (b). O

Lemma 3.2. Let M C N be normal subgroups of a finite group H. Let
B be a block of M with inertial group I in H, and set J =1 N N. Suppose
B € BI(H|5) and b € BI(N|pB), and let B" € BI(I|8) and b' € BI(J|5) be the
Fong-Reynolds correspondents of B and b, respectively. Then the following
statements hold.

(a) Suppose v € Trr(B), x € Irr(I|v) and 7 € Irr(J|v). Then x € Irr(H)
and ™ € Trr(N). Furthermore, J < I, and x lies over T if and only if x"

lies over ™.

(b) B covers b if and only if B’ covers b'.
(c) Suppose B covers b and let 7 € Irr(V). Then 7™ € Trr(b) and
Irr(B|V) = {x" : x € Irr(B'|7)}.

Proof. Let Iy be the inertial group of v in H and let Jy = Iy N N. Then
Iy €I, Jy C J, Jy < Iy and J < I. Next, let x, and 7¢ be the unique
characters in Irr(/y|v) and Irr(Jy|v), respectively, such that x,’ = y and
707 = 7. (See [1, Theorem 6.11].) Then, by Lemma 2.6 in [3], we have that
lies over 7 if and only if x, lies over 7¢. Next, by Theorem 6.11 in [1], we have
Yol € Irr(H|v) and 7oV € Irr(N|v). Moreover, by [3, Lemma 2.6], again, it
holds that y, lies over 7¢" if and only if y, lies over 7¢. Since Y = y,?
and 7 = 74", the proof of (a) is complete. Next, we prove (b).

Since both B’ and b’ cover /3, we can choose v € Irr(3), x € Irr(B'|v)
and 7 € Irr(¥|v). By part (a), ¥ € Irr(H), 7 € Irr(N), and y lies over 7
if and only if ! lies over 7VV. Also, in light of [4, Theorem 5.5.10(ii)], note
that x € Irr(B) and 7V € Trr(b).



Suppose B’ covers b'. Then x can be chosen to lie over 7. Therefore, x!!
lies over 7V, and hence B covers b. Conversely, suppose B covers b. Then,
there exists a character £ € Irr(B|7Y). Since 7V lies over v, then so does .
It follows by Lemma 3.1(b) that there is ¢ € Irr(B'|v) such that ¢* = ¢ We
conclude, then, by (a), that ¢ lies over 7. Hence B’ covers /. We have thus
established (b). Finally, we prove (c).

Assume B covers b and let 7 € Irr(d'). We know that 7% € Irr(b). Now
suppose x € Irr(B’|7). Then x* € Irr(B). Moreover, by choosing a character
v € TIrr(B) under 7, it follows by (a) that Y € Irr(B|7Y). Next, assume
¢ € Trr(B|mY). Then, as in the preceeding paragraph, ¢ = ¢ for some
character ¢ € Irr(B’|7). This proves (c¢) and concludes the proof of the lemma.

O
We are now ready to prove Theorem A.

Proof of Theorem A. Let T be the inertial group of b in G. Suppose first
that b is of maximal defect. Then (N, b) is the unique nucleus for b. In this
case, we let (N b) = (N,b) and G = T. Now assertions (a) and (b) are
clearly satisfied, and (c) is direct from [4, Theorem 5.5.10(i)]. Next, suppose
B € BI(G ]3) Then, by Theorem 5.5.10(iv) in [4], any defect group for B is
one for BC. It follows by [4, Theorem 5.5.16(i)] that B¢ is weakly regular
relative to N if and only if B is weakly regular (relative to N), and if such
is the case, Lemma 3.1(a) tells us that B has a Sylow p-subgroup of G as
a defect group. This completes the proof of (d). Next, by [4, Theorem
5.5.10(ii)] and [5, Theorem 9.14(d)|, character induction defines a height-
preserving bijection of Irr(B) onto Irr(BY). A similar argument establishes
the analogous statement for IBr(é) and IBr(EG). Now, by Lemma 2.4, it
holds that dy, = dyc e for all § € Irr(B) and all ¢ € IBr(B). The proof of
() is then complete. Finally if s € Irr(b), then 7i = p (as b = b), and part (f)
follows from Lemma 3.1(b). We have thus settled the case, in which b is of
maximal defect. We can assume, therefore, that b is not of maximal defect,
and we proceed by induction on |N|.

Choose a maximal pair (M, ) in N,. Since M is uniquely determined by
b and b is T-stable, note that T" normalizes M. Let I be the inertial group of
finT and J = INN (the inertial group of 5 in V). Next, let &’ be the Fong-
Reynolds correspondent of b over 5. Then ¢’ is a block of J, and as N < G,
note that J <1 I. Now, since b is not of maximal defect, we have J < N by
Lemma 2.2. Then, by the inductive hypothesis, there exist a nucleus (N ,b)



for ¥’ and a subgroup G of I containing N as a normal subgroup such that
assertions (a)-(f) all hold with I, J and ¥’ in place of G, N and b.

Now, by definition, (]\Af ,/5) is a nucleus for b, and we need to establish
statements (a)-(f) for G, N and b. First, note that (b) is clearly satisfied.
Assertion (a) also holds as GNN = GNINN =GNJ =N, where the last
equality holds by the inductive hypothesis. Our next task is to prove (c).

We have that block induction defines a bijection T' from BI(G[b) onto
BI(Z]0'). Next, we claim that induction also defines a bijection from Bl(Z|V)
onto BI(T'|b).

Recall that I is the inertial group of 5 in T. Then, Theorem 5.5.10(i)
of [4] tells us that block induction defines a bijection A from BI(/|5) onto
BI(T'|3). Since both b and ¥’ cover f3, it is clear that BI(T'|b) C BI(T'|3) and
BI(Z]0') C BI(Z|8). Then, in view of Lemma 3.2(b), it follows that A maps
BI(I|b") onto BI(T'|b). This clearly proves our claim.

Next, we have that T is the inertial group of b in G. Then, owing to
[4, Theorem 5.5.10(i)], once more, block induction gives us a bijection ©
from BI(T'|b) onto BI(G|b). Now let A be the composite 'AG. Then A is a
bijection from BL(G[b) onto BI(G|b). Furthermore, by Lemma 5.3.4 in [4], A
is just block induction. This proves (c).

Now let Be BI(G |b) By the inductive hypothesis, any defect group D
of B is one for B. Next, since B! is the Fong-Reynolds correspondent of BT
over 3 and BT is the Fong-Reynolds correspondent of B¢ over b, we have,
by Theorem 5.5.10(iv) in [4] that D is a defect group for BC. In particular,
we conclude that the bijection A preserves block defects. It follows, then,
that B is of maximal defect in BI(G/[b) if and only if BC is of maximal defect
in BI(G|b). Next, since b is G-stable of maximal defect, we have, in light of
Lemma 3.1(a) and [4, Theorem 5.5.16(i)], that B is of maximal defect in
BI(G \b) if and only if B is of maximal defect in BI(G) Therefore, B is of
maximal defect in BI(G) if and only if BY is of maximal defect in BI(G|b).
We have, thus, completed the proof of (d). Next, we take care of (e).

By the inductive hypothesis, character induction defines a height-preserving
bijection of Irr(B) onto Irr(B'). Next, by [4, Theorem 5.5.10(ii)] and [5, Theo-
rem 9.14(d)], induction also defines height-preserving bijections from Irr(B’)
onto Irr(BT) and from Irr(B7) onto Irr(BY). It follows that character in-
duction yields a height-preserving bijection of Irr(B) onto Irr(BY). A similar
argument proves the parallel statement for IBr(B) and IBr(B%). Then, in
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light of Lemma 2.4, we conclude that dy, = dyc,c for any 6 € Irr(g) and

any ¢ € IBr(E ). This takes care of assertion (e). Finally, we prove (f).
We have 7i” € Irr(¥), and by the inductive hypothesis,

Ire(B!|i7) = {67 : 0 € Irr(B|fi)}.

Next, recall that the block B” covers b. Then, in light of Lemma 3.2(c), we
have N N R
Irr(B |p) = {x" : x € Iee(B'|a”)} = {6 : 0 € Tex(B|n)}.

Next, since BT is the Fong-Reynolds correspondent of BS over b, Lemma
3.1(b) implies that Irr(BC|u) = {¢¢ : o € Ire(B”|u)}. Tt follows that
Irr(§G|,u) ={0°:0¢ Irr(f?ﬁl)} This proves (f), and completes the proof of
the theorem. [J

Next, we prove Theorem B.

Proof of Theorem B. Choose a nucleus (]/\\7 ,Z) for b and a subgroup G of G
as in Theorem A. Now by Theorem A(c), there is a unique block B € Bl(@fb\)
such that B¢ = B. Since (A b) € N, Corollary 2.3(c) tells us that there
exists a nucleus (G, By) for B such that N C Gy and B, covers b. Observe
that the block By is of maximal defect and that N < Gy, as G normalizes
N.

Since GN N = N by Theorem A(a) and N C GoN N C G N N, assertion
(a) follows. Next, part (b) is clear.

We have that BOa is defined and equals B by Theorem 2.5(a). Now, as
B¢ = B, Lemma 5.3.4 of [4] implies that By® is defined and equals B. This
is (c). Next, statement (d) follows by Theorem 2.5(b) and Theorem A(d).
Finally, assertion (e) is a consequence of Theorem 2.5(c) and Theorem A(e).
This finishes the proof of Theorem B. [

It is natural to seek connections between the nuclei of a block and the
Harris-Knorr correspondence. Our final result of this section offers a connec-
tion in that direction. In order to prove this result, we need the following
general fact about the Harris-Knorr correspondence.

Lemma 3.3. Let H C K be normal subgroups of the arbitrary (finite)
group I', and let B, b and B be blocks of H, K and T", respectively, such that
B and b cover B. Let Q be a defect group of 3, and let 3’ € BI(Ny(Q)) be the
Brauer correspondent of (. If B' € BI(Np(Q)|3") (resp. V € BINg(Q)|5))
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is the Harris-Knorr correspondent of B (resp. b), then B covers b if and
only if B' covers V.

Proof. First, assume that B covers b. Since b’ covers 3 and ' has defect
group @, then by [5, Theorem 9.26], we can choose a defect group P of ¥/
such that P N Ng(Q) = Q. Also, in view of [5, Theorem 9.28], note that
P is a defect group of b. Now, by [5, Theorem 9.26] again, as [ has defect
group (), there exists x € K such that P*N H = (). Since ) € PN H and
|PNH| = |P*NH|, it follows that PN H = Q. Then, as H < I', we have
Np(P) € Nr(Q). ~

Let b € BI(Ng(P)) be the Brauer correspondent of b, and let B €
BI(Np(P)[b) be the Harris-Knérr correspondent of B. Since N (P) € Ng(Q),
and b has defect group P, [4, Theorem 5.3.8] says that Nx(Q) is defined and
has defect group P. Then, as bX is defined and equals b, we conclude by [4,
Lemma 5.3.4] that (DNx @)K 5 defined and equals b.

Now both &' and 5N%(@ are blocks of Ny (Q) having P as a defect group.
Since ()X = b = (BNx@)K it follows by [4, Theorem 5.3.8] that bN<(@ = ¢/,
Consequently, as b has defect group P and Ny (@ (P) =Ng(P), the block b is
the Brauer correspondent of 0 in Ny, (o) (P). Next, since Ny (g)(P) = Np(P)
and B € BI(Np(P)|b), then [5, Theorem 9.28] implies that BNr(@ is defined
and covers b'. Thus, in particular, the block BNt (@) covers A'. Now, by [5,
Theorem 9.28] again, (ENF(Q))F is defined and covers . Next, in view of [4,
Lemma 5.3.4], we have (BNr@)I' = BT = B. Since B’ € BI(Np(Q)|3') is the
Harris-Knorr correspondent of B, we are forced to have BNr@ = B’ We
conclude, then, that B’ covers b'.

Now, assume that B’ covers b'. Our goal is to show that B covers b.
First, recall that b is the Brauer correspondent of b’ in Ny (@) (P). Let now

By € BI(Np(P)|b) be the Harris-Knorr correspondent of B” € BI(Np(Q)[V)
(recall that Nxp.(g)(P) = Np(P)). Since (By)N(@ = B’ and (B')' = B, then
by [4, Lemma 5.3.4], (Bo)" is defined and equals B. Now, as By covers b,
then [5, Theorem 9.28] tells us that B covers b, as needed to be shown. [J

Theorem 3.4. Let B € BI(G) and suppose (H,(3) € Np. Let Q be a
defect group of B and let ' € BI(Ny(Q)) be the Brauer correspondent of
S. Also, let B' € BI(Ng(Q)|S') be the Harris-Knérr correspondent of B. If
(K, A) is any nucleus of B with (H,B) < (K, A), then (Ng(Q),A’) is a
nucleus of B', where A’ € BI(Ng(Q)|3') is the Harris-Kndrr correspondent
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of A.

Proof. First, we prove by induction on |G| that there exists a nucleus
(J,C) of B with (H,3) < (J,C) such that (N;(Q),C") is a nucleus of B’,
where C’ € BI(N;(Q)|3) is the Harris-Knorr correspondent of C.

Choose a maximal pair (M,b) in N with (H, ) < (M,b), and let i €
BI(N/(Q)|8') be the Harris-Knorr correspondent of b. Since B covers b, note,

by Lemma 3.3, that B’ covers V/. Next, in view of [5, Theorem 9.28], the
blocks b and b have a common defect group. Now, as Ny (Q) C M and b
is of maximal defect, then b is of maximal defect. We conclude, then, that
the pair (N/(Q), V') lies in N Now, we claim that, in fact, (N (Q), V) is
maximal in Np.

Suppose, on the contrary, that (N;/(Q), ') is not maximal in Np,. Then,
there is (U, by) € Np with (Ny(Q),0) < (U, by) and [Ny (Q)] < |U|. Now
write L = HU. Then,

N(Q) = LNNea(Q) = HUNNg(Q) = UNH(Q) =T,

where the last equality holds since Ny (Q) is contained in U. Next, as @ is a
Sylow p-subgroup of the normal subgroup H of G, we have G = HNg(Q) by
the Frattini argument. Since U < Ng(Q), it follows that L is normal in G.
Also, as M = HN(Q) and N, (Q) C U, we have that M C L.

Choose a Sylow p-subgroup P of U. As ) < U, we have Q C P. Also,
note that P is a defect group for by. Now, since

PN L . N
P T HAD,  HONQ),  Na(@)

== Ul

p

D )

we see that P is a Sylow p-subgroup of L. Also, as by covers b’ and b covers
3, we observe that by covers 3. Then, by [5, Theorem 9.28], (b)” is a block
of L covering § and having P as a defect group. Furthermore, since B’
covers by, we have that B covers (by)” by Lemma 3.3. We conclude, then,
that (L, (by)L) € Np. Next, since by covers b', then, again by Lemma 3.3,
the block (bg)% covers b. Now, by the maximality of the pair (M,b), we are
forced to have L = M. Then U = N.(Q) = Ny(Q), which contradicts our
assumption that N/ (Q) is proper in U. We have thus proved that (N, (Q), )
is maximal in N/, as claimed.

Next, let S be the inertial group of &’ in Ng(Q), and write 7' = HS. Our
task now is to show that 7" is the inertial group of b in G. First, if t € T
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then t = hs for some h € H and s € S. Now,
bt — bhs — b = ((b/)M)s — ((b/)s)M — (b/)M _ b,

where the second equality holds, since h € H C M. This shows that T
stabilizes b. It remains to show that, in fact, T is the full stabilizer of b
in G. Let then g € G with b9 = b. We can write ¢ = h'n, where b € H
and n € Ng(Q). Hence 0™ = b. Therefore, in particular, b covers the block
p" € BI(H). It follows that 8" = ™ for some m € M. Furthermore, as
M = HNp(Q), we may assume that m € Nj/(Q). Now nm™! € Ng(Q), and
so (8)" " is a block of N (Q) having Q as a defect group (recall that Q is
a defect group of 3"). Moreover, we have

-1

(B HH = () = g =

Since 3’ is the Brauer correspondent of 3 in Ng(Q), we are forced to have
(8"~ = B'. Now, the block (0)"™ " of Ny/(Q) covers 3" and

(@)™

It follows, by [5, Theorem 9.28], that ()" " = b/. Then, as m € N;(Q), we
get (b')" = (V)™ = V. Therefore n € S, and hence g = h'n € HS = T. This
proves that 7' is the inertial group of b in GG, as needed to be shown.

Next,

1 1 1

Y= ()M =T = =0,

Nr(Q) = TN NG(Q) = HS N N(Q) = SN#(Q) = S,

where the last equality holds, since Ny (Q) C S.

Suppose first that 7" = G. Then S = Ng(Q), and by Lemma 2.2, we
conclude that B and B’ are both of maximal defect. Therefore, (G, B) (resp.
(Ne(Q), B')) is the unique nucleus for B (resp. B’). In this case, (J,C) is
precisely (G, B).

Assume now that 7' < G. Since T' = HS, notice that S < Ng(Q). Let
Be BI(S) be the Fong-Reynolds correspondent of B’ over i'. Then B covers
', and hence, by [5, Theorem 9.28], (B)7 is defined and covers 3. Also, in
view of Lemma 3.3, note that (B)7 covers b. Next, we have (B)N¢(@ = B’ and
(B')¢ = B. It follows by [4, Lemma 5.3.4] that (B)C is defined and equals
B. Then, by [4, Lemma 5.3.4] again, we conclude that ((B)7)¢ is defined

and equals B. It follows that (E)T is the Fong-Reynolds correspondent of B
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over b. Now by the inductive hypothesis, there is a nucleus (J,C) of (LA?)T

with (H,B) < (J,C) and such that (N,(Q),C") is a nucleus of B, where
C' € BI(N;(Q)|3) is the Harris-Knorr correspondent of C. Since, by the

definition of nuclei, (J,C) (resp. (N,(@),C")) is a nucleus of B (resp. B'),
we are clearly done in this case.

Now to complete the proof of the theorem, we let (K, A) be an arbitrary
nucleus of B such that (H,3) < (K,A). We know that B has a nucleus
(J,C) with (H, B) < (J,C) such that B’ has nucleus (N;(Q),C"), where C’ €
BI(N;(Q)|3") is the Harris-Knorr correspondent of C. Then, by Corollary
2.3(a), (K, A) = (J,C)" for some x € G. Furthermore, as G = HN¢(Q) and
H C J, we may assume that © € Ng(Q). Now C' covers both blocks § and
B3°" of H. It follows that 8% = (Y for some y € .J. Since J = HN;(Q), we
may assume that y € N;(Q). Now yz € Ng(Q), and so ()" is a block of
Ny (Q) with defect group ). Moreover,

((B))" = ((B)")" =B = B.

Then, we must have (3')¥* = f'. Now, since y € N;(Q), C" € BI(N;(Q)|3")
and J¥* = J* = K, we get (C")* = (C")¥* € BI(Nk(Q)|5'). Also,

(CHmE = (™) = ((C")) = C" = A.

Therefore, (C")* = A’, the Harris-Knorr correspondent of A. Finally, in view
of Corollary 2.3(a), since z € Ng(Q) and (N,(Q),C") is a nucleus of B’, we
conclude that (Ng(Q),A’) = (N;(Q),C")" is a nucleus of B’. The proof of
the theorem is now complete. []
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