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Abstract. It is well-known that a knot is Fox n-colorable for a
prime n if and only if the knot group admits a surjective homomor-
phism to the dihedral group of degree n. However, this is not the
case for links with two or more components. In this paper, we in-
troduce a two-tone coloring on a link diagram, and give a condition
for links so that the link groups admit surjective representations
to the dihedral groups. In particular, it is shown that the link
group of any link with at least 3 components admits a surjective
homomorphism to the dihedral group of arbitrary degree.

1. Introduction

One of the most well-known invariants of knots in 3-space must be
the Fox’s 3-colorablity. (See Remark 1 for the definition of the Fox
n-coloring.) In general, it is known that a knot is Fox n-colorable
for a prime n ≥ 3 if and only if the knot group admits a surjective
homomorphism to the dihedral group Dn of degree n. For instance,
it is stated in [3, Chap. VI, Exercises, 6, pp.92–93]. However, this
is not the case for links with two or more components. In fact, some
examples are given in [6] for D3-coloring, which is the coloring by the
symmetric group of degree three. For example, by the results in [6,
Theorem 1.2], the link group of the torus link T (2, q) admits a surjective
homomorphism to D3 if q ≡ 0 (mod 4). On the other hand, T (2, q) is
Fox 3-colorable if and only if q ≡ 0 (mod 3).

We remark that, although there are numerous papers studying the
Fox colorings (cf. [10, 2]), it seems that the relationship between the
Fox colorings on links with two or more components and the surjective
homomorphisms of the link groups to the dihedral groups has not been
discussed, as far as the authors know.  
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In this paper, we introduce a two-tone coloring on a link diagram, and
give a condition for links which guarantees that the link groups admit
surjective homomorphisms to the dihedral groups. In particular, we
show that the link group of any link with at least 3 components admits
a surjective homomorphism to the dihedral group of arbitrary degree.

Remark 1. Recall that a Fox n-coloring on a link diagram D is defined
as a map Γ : {arcs of D} → {0, 1, . . . , n − 1}, satisfying 2Γ(x) ≡
Γ(y) + Γ(z) (mod n) at each crossing of D with the over arc x and
the under arcs y and z. It is well-known that, for n ≥ 3, a link is
Fox n-colorable, i.e., a diagram of the link admits a non-trivial Fox n-
coloring (a coloring with at least two colors), if and only if det(L) = 0
or (n, det(L)) 6= 1, where det(L) denotes the determinant of the link.
See [7, Proposition 2.1] for example. Also a condition for knot groups
to admit a surjective homomorphism to the dihedral groups in terms of
the homology of the double branched covering is known. See [1, 14.8]
for example.

To state our results, we prepare some notations. Let Dn be the
dihedral group of degree n. It is well-known that Dn has the following
presentation with e the identity element:

Dn =
⟨
a, b | a2 = bn = (ab)2 = e

⟩
.

Note that any element in Dn is represented as axby (x = 0, 1 and
0 ≤ y ≤ n− 1). Thus, by setting ai := abi (0 ≤ i ≤ n− 1) and bj := bj

(1 ≤ j ≤ n − 1), we see that Dn = {e, a0, a1, . . . , an−1, b1, . . . , bn−1}
as a set. In geometric viewpoint, the ai’s represent reflections and bj’s
represent rotations as the symmetries of a regular polygon (n-gon).

In the following, let L be an oriented link in the 3-sphere S3 with a
link diagram D. We call a map Γ : {arcs on D} → Dn a Dn-coloring
on D if it satisfies Γ(x)Γ(z) = Γ(y)Γ(x) (respectively, Γ(z)Γ(x) =
Γ(x)Γ(y)) in Dn at each positive (resp. negative) crossing on D, where
x denotes the over arc, y and z the under arcs at the crossing supposing
y is the under arc before passing through the crossing and z is the other.
(See Figure 1.)
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Figure 1. Positive and negative crossings
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Remark 2. The Dn-colorings and the Fox n-colorings are related in
terms of representations of link groups to Dn as follows. For a link
diagram D with c crossings of a link L, set g1, . . . , gc the Wirtinger
generators of the link group GL, i.e., GL = π1(S

3 − L). Then a
Dn-coloring on D corresponds to a map {g1, . . . , gc} → Dn which ex-
tends to a homomorphism of GL to Dn. When a Dn-coloring sends
gk’s to ai’s (reflections, 0 ≤ i ≤ n − 1) in Dn, it induces a map
{arcs of D} → {0, 1, . . . , n − 1}, which gives a Fox n-coloring. Note
that even if a link admits a nontrivial Fox n-coloring, it may not induce
a surjective homomorphism from GL toDn. See the example illustrated
in Figure 2. In this case, the image of the Wirtinger generators by the
homomorphism induced by the Fox 4-coloring is the set {a0, a2} ⊂ D4,
but the elements a0 and a2 do not generate D4. Thus the induced
homomorphism is not surjective.

0 0

2

2

Figure 2. Fox 4-colorable link

The following is our key definition.

Definition 1. Let Γ be a Dn-coloring on a link diagram D of an ori-
ented link L. We say that Γ is two-tone if Im(Γ) does not contain the
trivial element, i.e. e 6∈ Im(Γ), and Im(Γ) ∩ {a0, . . . , an−1} 6= ∅ and
Im(Γ) ∩ {b1, . . . , bn−1} 6= ∅, that is, the coloring uses colors from both
{ai} and {bj}. We say that a link is two-tone Dn-colorable if, with some
orientation, it has a diagram D admitting a two-tone Dn-coloring.

Note that two-tone Dn-colorability is independent of the choice of
orientations for links.

An example of a two-toneDn-colorable link is the pretzel link P (6, 6, 6)
which admits a two-tone Dm-coloring if m ≥ 4. See Figure 3 for the
case where m ≥ 8.

Now the following are our main results. Here D∞ denotes the group
presented by 〈a, b | a2 = (ab)2 = e〉, and a two-tone D∞-coloring for a
link is defined in the same way as above.
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Figure 3. A two-tone Dm-coloring on P (6, 6, 6) for m ≥ 8

Theorem 1.1. For a 2-component link L = ℓ1 ∪ ℓ2, the following are
equivalent.

(i) lk(ℓ1, ℓ2) is even.
(ii) L is two-tone Dn-colorable for some odd n ≥ 3.
(iii) L is two-tone D∞-colorable.
(iv) The link group GL admits a surjective homomorphism to Dn for

every n ≥ 3.
(v) The link group GL admits a surjective homomorphism to D∞.

Remark 3. By considering the natural embedding of Dn into D2n, we
see that the condition (ii) in Theorem 1.1 is equivalent to that L admits
a two-tone Dn-coloring for some even n ≥ 3 that assigns bi with i 6= n/2
to some arcs. We also remark that (iii) in Theorem 1.1 does not imply
that L is two-tone Dn-colorable for every odd n ≥ 3. Actually even if
there is a two-tone D∞-coloring on a diagram of a link L, the coloring
may not give a two-tone Dn-coloring for some n, but a Fox n-coloring
on a sub-diagram of L. For example, pretzel links of type (m, 2,m, 2)
with odd m admit a two-tone D∞-coloring on a diagram, but no two-
tone Dm-colorings.

On the other hand, for 2-component links with odd linking numbers,
we have the following.

Theorem 1.2. Let L = ℓ1 ∪ ℓ2 be a 2-component link with lk(ℓ1, ℓ2)
odd. Then the following hold.

(i) The link L admits no two-tone Dn-colorings for any odd n ≥ 3.
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(ii) If the link group GL admits a surjective homomorphism to Dn

for n ≥ 3, then the homomorphism is induced from a Fox n-
coloring on ℓ1, ℓ2 or L, i.e., the homomorphism sends a merid-
ional element in GL to the trivial element or a reflection in
Dn.

For the links with at least 3 components, interestingly, the following
holds.

Theorem 1.3. Let L be a link with at least 3 components. Then the
link group GL admits a surjective homomorphism to Dn for every n ≥
3.

We remark that even if the link group GL admits a surjective homo-
morphism to Dn for every n ≥ 3, the link L may not be two-tone
Dn-colorable for every n ≥ 3. For example, pretzel links of type
(2m, 2m, 2m) with odd m admit no two-tone Dm-colorings.

As a corollary of the theorems, we have the following.

Corollary 1.4. If a link L is two-tone Dm-colorable for some odd m,
then GL admits a surjective homomorphism to Dn for every n ≥ 3.
If GL admits a surjective homomorphism to Dn for some n, then L
contains a two-tone Dn-colorable sub-link or a Fox n-colorable sub-link.

On the other hand, even if a link L is known to be two-tone Dn-
colorable for some n, finding a two-tone Dn-coloring on a given diagram
of L, or, finding a surjective homomorphism of GL to Dn, is a tedious
task in general. The next proposition and its proof give a simple way
to find a two-tone Dn-coloring on some link diagrams for any n ≥ 3.

Proposition 1.5. Suppose that there exists a trivial component ℓ0 of a
link L and that lk(ℓ0, ℓ) is even for every component ℓ ⊂ L− ℓ0. Then
any diagram of L admits a two-tone Dn-coloring for every odd n ≥ 3
which assigns the arcs on ℓ0 to ai’s and the other arcs to bj’s.

2. Properties of Dn-coloring

In this section, we study some properties of Dn-colorings, and give
lemmas which will be used in the remaining sections. In the following,
we set An := {ai} and Bn := {bj} for Dn.

Lemma 2.1. Let Γ be a Dn-coloring on a diagram D of an oriented
link L in S3. At a crossing on D, x denotes the over arc, and y and z
the under arcs at the crossing supposing that y (resp. z) is the under
arc before (resp. after) passing through the crossing. Then the following
hold.
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(1) Γ(y) and Γ(z) are both in An or both in Bn.
(2) If Γ(x) ∈ Bn and Γ(y) ∈ Bn, then Γ(z) = Γ(y).
(3) If Γ(x) = ai and Γ(y) = ai′, then Γ(z) = ak and k ≡ 2i′ − i

(mod n).
(4) If Γ(x) = ai and Γ(y) = bj, then Γ(z) = bk and k ≡ n − j

(mod n).
(5) If Γ(x) = bj and Γ(y) = aj, then Γ(z) = ak and k ≡ i + 2j

(resp. k ≡ i− 2j ) (mod n) if the crossing is a positive (resp.
negative) crossing.

Proof. By definition of a Dn-coloring, Γ(y) and Γ(z) are conjugate in
Dn, and from this, (1) holds. We give a proof of the case (4) when the
crossing is a positive crossing. The others (2), (3), (5) are proved in
the same way. Suppose that Γ(x) = ai and Γ(y) = bj. By definition of
a Dn-coloring, we have the following.

Γ(z) = (ai)
−1bjai = bn−ia−1bjabi

= abi+j−nabi = bn−i−j+i = bn−j = bn−j

Thus Γ(z) = bk and k ≡ n− j (mod n) holds. □
Remark 4. Note that (1) in the lemma implies that all the strands on
a diagram of a particular component must be colored by ai’s or by
bj’s for a given Dn-coloring. Also note that the tone of the colors for
a particular component is independent of the choice of a diagram: If
all the strands on a diagram for a particular component are colored
by bj’s by a Dn-coloring, then all the strands for the component are
also colored by bj’s on any diagram by the Dn-coloring obtained by
performing Reidemeister moves. We will use these facts in the rest of
the paper repeatedly.

Lemma 2.2. Let Γ be a Dn-coloring on a diagram D of an oriented
link L in S3. Let x, y, z, w be either the arcs depicted in Figure 4 (left),
or the arcs depicted in Figure 4 (right). If Γ(x) = ai and Γ(y) = bj,
then Γ(z) = ak with k ≡ i− 2j (mod n) and Γ(w) = bl with l ≡ n− j
(mod n).

x y

z w

x y

z w

Figure 4. A positive full twist (left). A negative full
twist (right)
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Proof. We only give a proof for the positive full twist case. A proof
for the other case is similar. In that case, by Lemma 2.1(4), Γ(w) = bl
with l ≡ n − j (mod n) since Γ(x) = ai and Γ(y) = bj. Then, by
Lemma 2.1(5), Γ(z) = ak and k ≡ i+ 2(n− j) ≡ i− 2j (mod n) since
Γ(w) = bl with l ≡ n− j (mod n) and Γ(x) = ai. □

3. Two-tone colorings and surjective homomorphisms to
D∞

In this section, we give a key proposition to prove the theorems.
In the following, let lk(L,L′) denote the (total) linking number of

oriented links L,L′, i.e., lk(L,L′) =
∑

ℓ⊂L,ℓ′⊂L′ lk(ℓ, ℓ′). The linking
number is calculated for the link with arbitrarily chosen orientations.
Note that the parity of such a linking number is independent of the
choice of orientations.

Proposition 3.1. Suppose that a link L contains a component ℓ0 with
lk(ℓ0, L

′) even and det(L′) 6= 0, where L′ = L − ℓ0. Then L admits
a two-tone D∞-coloring that induces a surjective homomorphism from
GL to D∞.

Proof. Let p : X → S3 −L′ be the double covering on the total linking
number with L′, and p̄ : M → S3 the double branched covering. Let
K̃ = K1 ∪K2 denote the inverse image p−1(ℓ0) ⊂ X; because lk(ℓ0, L

′)
is even, K̃ is a 2-component link in X (or in M). We shall construct
a surjective group homomorphism π1(M − K̃) → Z and extend the
composition π1(X − K̃) → π1(M − K̃) → Z to obtain a D∞-coloring.
Taking a regular neighborhood N of K̃, we consider the Mayer-

Vietoris exact sequence for M = N ∪ (M − K̃):

H2(M) → H1(N−K̃) → H1(N)⊕H1(M−K̃) → H1(M) → H0(N−K̃)

is exact. The rightmost map is zero as usual and the leftmost one is
also zero because det(L′) 6= 0 (hence |H1(M)| = | det(L′)| < ∞); by
the Poincaré duality H2(M) ∼= H1(M ;Z) = 0. Thus, we obtain a short
exact sequence

0 → H1(N − K̃) → H1(N)⊕H1(M − K̃) → H1(M) → 0.

Take a meridional disc D1 ⊂ M of K1 and let D2 denote φ(D1), where
φ : M → M is the nontrivial covering transformation of the branched
covering p̄ : M → S3; the covering transformation group is Z2 =
{idM , φ}. We denote D1∪D2 by D̃. Because the kernel of the surjective
homomorphism H1(N−K̃) → H1(N) is the image of the injective map
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H1(∂D̃) → H1(N − K̃), the short exact sequence above shows that

(1) 0 → H1(∂D̃) → H1(M − K̃) → H1(M) → 0

is also exact. We should remark that the involution φ induces automor-
phisms φ∗ on the homology groups in (1). Since the homomorphisms
in (1) are induced by the inclusions, (1) is compatible with φ∗; i.e., the
maps are Z2-equivariant.

Let x ∈ H1(∂D1) be a generator and set y = φ∗(x) ∈ H1(∂D2). We
use the same symbols x, y for their images in H1(∂D) or H1(M − K̃).
We take the quotient of (1) by the φ∗-invariant part of H1(∂D̃) to
obtain an exact sequence

0 → H1(∂D̃)/(x+ y) → H1(M − K̃)/(x+ y) → H1(M) → 0.

Since H1(∂D̃)/(x + y) ∼= Z and |H1(M)| < ∞, the rank of H1(M −
K̃)/(x+ y) equals 1, i.e., (H1(M − K̃)/(x+ y))/Tor(H1(M − K̃)/(x+
y)) ∼= Z. Hence there exists a surjective homomorphism f : H1(M −
K̃)/(x+ y) → Z, which satisfies f ◦ φ∗ = −f . Let f̄ : π1(X − K̃) → Z
denote the composition

π1(X − K̃) → π1(M − K̃) → H1(M − K̃) → H1(M − K̃)/(x+ y) → Z.

Let m ∈ GL be a meridian of a component of L′. Identifying 〈b〉 ⊂
D∞ with Z, we define f̃ : GL → D∞ by

f̃(g) =

{
f̄(g) (g ∈ π1(X − K̃)),

af̄(m−1g) (g 6∈ π1(X − K̃)).

Since a2 = e, f̃ is well-defined as a map. Furthermore, we have
f̄(mgm−1) = f ◦φ∗(g) = f(g)−1 = f̄(g)−1 ∈ D∞ for g ∈ π1(X−K̃). By

this equality, we can easily check that f̃ is a group homomorphism. Be-
cause f̄ is surjective and f̃(m) = a, the homomorphism f̃ : GL → D∞
is surjective. □

The following is an immediate corollary of the proposition above,
since any knot has an odd determinant.

Corollary 3.2. Let L = ℓ1 ∪ ℓ2 be a 2-component link. If lk(ℓ1, ℓ2) is
even, then L admits a two-tone D∞-coloring that induces a surjective
homomorphism from GL to D∞. □

4. Proof of theorems

In this section, we give proofs of the theorems stated in Introduction.
To prove the theorems, we prepare the following two lemma.



TWO-TONE COLORINGS AND DIHEDRAL REPRESENTATIONS 9

Lemma 4.1. If a 2-component link L = ℓ1∪ℓ2 is two-tone Dn-colorable
for some odd n ≥ 3, then lk(ℓ1, ℓ2) is even.

Proof. Take a two-toneDn-coloring γ on a diagram of L for some n ≥ 3.
Since γ is two-tone, one component of L is colored by ai’s, and the other
by bj’s. Let ℓb be the component of L such that each arc in a diagram
of ℓb is colored by bj’s by Γ. This ℓb is well-defined for Γ independent
of the choice of a diagram. See Remark 4.

We can easily see that L admits a diagram as depicted in Figure 5,
where Db is a sub-diagram corresponding to ℓb, Da is the remaining
sub-diagram, and each box between Da and Db contains a vertical full
twist (Figure 5 (right)). For this Da ∪Db, we consider the arcs β and
β′ which are connected in Db as in Figure 5 (left).

Da Db
β

β′

Figure 5. The diagram of L

Since β and β′ are connected inDb, we see Γ(β) = Γ(β′) by Lemma 2.1(1).
On the other hand, letting N be the number of the boxes (full twists)
which ℓb runs through, if Γ(β) = Γ(β′), then N has to be even. This is
shown by applying Lemma 2.2 repeatedly for each box (full twist) to-
gether with n is odd. The number N is congruent to lk(ℓa, ℓb) modulo
2, and so the lemma holds. □
Remark 5. The lemma above can be extended as follows. If L is two-
tone Dn-colorable for some odd n ≥ 3, then the sublink Lb of L con-
sisting of those components which are colored by bj’s satisfies that, for
every component ℓ ⊂ Lb, lk(ℓ, L− Lb) is even.

Lemma 4.2. Let L = ℓ1 ∪ ℓ2 be a 2-component link. If det(L) = 0,
then lk(ℓ1, ℓ2) is even.

Proof. Let D be a diagram of L. Since det(L) = 0, there exists a Fox
4-coloring Γ on D which induces a surjective group homomorphism to
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D4. By definition of Fox colorings, if Γ(x) equals a0 or a2 (resp. a1 or
a3) for an arc x belonging to ℓi (i = 1, 2), it holds for any arc x of ℓi.
Then, we may assume

Γ({arcs of ℓ1}) ⊂ {a1, a3} and Γ({arcs of ℓ2}) ⊂ {a0, a2}.

For a crossing point of D, let x be the over arc and y, z the under arcs.
Again, by definition of Fox colorings, we find that Γ(y) = Γ(z) holds if
and only if x and y belong to the same component. In particular, the
colors of the under arcs at the crossing are changed if x belongs to ℓ1
and y to ℓ2. This implies that D has an even number of such crossings,
and hence the linking number lk(ℓ1, ℓ2) is even. □

Proof of Theorem 1.1. Let L = ℓ1 ∪ ℓ2 a 2-component link. We show
that all the following are equivalent.

(i) lk(ℓ1, ℓ2) is even.
(ii) L is two-tone Dn-colorable for some odd n ≥ 3.
(iii) L is two-tone D∞-colorable.
(iv) The link group GL admits a surjective homomorphism to Dn

for every n ≥ 3.
(v) The link group GL admits a surjective homomorphism to D∞.

We see that (i)⇒(iii) follows from Corollary 3.2 and (ii)⇒(i) follows
from Lemma 4.1.

(iii)⇒(ii): Suppose that L is two-tone D∞-colorable, that is, a diagram
of L admits a two-tone D∞-coloring. Since there is a surjection from
D∞ to Dn for every n ≥ 3 defined by a ∈ D∞ 7→ a ∈ Dn and b ∈
D∞ 7→ b ∈ Dn, this implies that the diagram of L admits a Dn-coloring
for every n. By taking odd n sufficiently large, the Dn-coloring uses
at least two colors from ai’s. Furthermore, by retaking n to satisfy
(n, det(L)) = 1, (n, det(ℓ1)) = 1, and (n, det(ℓ2)) = 1 if necessary, the
coloring cannot come from Fox n-colorings on L, ℓ1, or ℓ2. Thus the
coloring has to be two-tone, and so, L is two-tone Dn-colorable for
some odd n ≥ 3.

We also see that (i)⇒(v) follows from Corollary 3.2.

(v)⇒(iv): By the surjection from D∞ to Dn for every n ≥ 3 defined as
above, if the link group GL admits a surjective homomorphism to D∞,
then the link group GL admits a surjective homomorphism to Dn for
every n ≥ 3.

(iv)⇒(i) or (ii): Suppose that the link group GL admits a surjective ho-
momorphism to Dn for every n ≥ 3. Such a surjective homomorphism
induces a Dn-coloring on a diagram of L for n ≥ 3 by considering the
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Wirtinger generators for the diagram. If det(L) = 0, then lk(ℓ1, ℓ2) is
even by Lemma 4.2, and so (i) holds. If det(L) 6= 0, then for some odd
n which is coprime to det(L), det(ℓ1), det(ℓ2), the Dn-coloring does not
come from a Fox n-coloring, and so, it has to be two-tone. This implies
(ii). □

Proof of Theorem 1.2. Let L = ℓ1 ∪ ℓ2 be a 2-component link with
lk(ℓ1, ℓ2) is odd.
(i) Then L admits no two-tone Dn-colorings for any n ≥ 3 by Theo-
rem 1.1 (by the contraposition of (ii)⇒(i)).
(ii) By (i), if the link group GL admits a surjective homomorphism to
Dn for n ≥ 3, then it is not induced from two-tone Dn-colorings. That
is, the homomorphism must send Wirtinger generators to either the
trivial element and reflections in Dn or the trivial element and rotations
inDn. However, the latter cannot be surjective, and so, it is impossible.
Therefore the homomorphism sends Wirtinger generators to either the
trivial element and reflections in Dn. Such a homomorphism is induced
from a Fox n-coloring on ℓ1, ℓ2 or L. □

Proof of Theorem 1.3. Let L be a link with at least 3 components. We
show that GL admits a surjective homomorphism to Dn.

Consider sub-links of 2 components in L. If some of them, say L′ =
ℓ′1∪ℓ′2, satisfies that lk(ℓ

′
1, ℓ

′
2) is even, then by Theorem 1.2, GL′ admits

a surjective homomorphism to Dn and L′ is two-tone Dn-colorable for
n. It follows that GL admits a surjective homomorphism to Dn via a
surjection GL → GL′ and L is two-tone Dn-colorable.

Suppose that for all the 2 component sub-links of L, the linking
numbers of the two components are odd. Then, by Lemma 4.2, no
such links have the determinant 0. Since L has at least 3 components,
we can consider a sub-link of L with 3 components, say L′ = ℓ1∪ℓ2∪ℓ3.
For this link, lk(ℓ1, ℓ2∪ ℓ3) is even and det(ℓ2∪ ℓ3) 6= 0 holds. Then, by
Proposition 3.1, GL′ admits a surjective homomorphism to D∞ and so
a surjective homomorphism to Dn for every n ≥ 3. This implies that
GL admits a surjective homomorphism to Dn for every n ≥ 3. □

Proof of Corollary 1.4. Suppose that L is two-tone Dm-colorable for
some odd m ≥ 3. If L is a link with 2 components, then GL admits a
homomorphism to Dn for every n ≥ 3 by Theorem 1.2 ((ii)⇒(iv)). If
L has at least 3 components, then GL admits a homomorphism to Dn

for every n ≥ 3 by Theorem 1.3.
Suppose that GL admits a surjective homomorphism to Dn for n ≥ 3.

Then there is a Dn-coloring on a diagram of L. See Remark 2. If the
coloring uses two-tone colors, then L contains a two-tone Dn-colorable
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sub-link. Otherwise, since the homomorphism is surjective, the coloring
comes from a nontrivial Fox n-coloring on a diagram of a sub-link of L
as in the proof of Theorem 1.2. □

Remark 6. For the proof of Lemma 4.2, it is pointed out by the anony-
mous referee that the lemma is a direct consequence of the following
two well-known formulas for Alexander polynomial ∆L:

• ∆L(1, 1) = ±lk(ℓ1, ℓ2) for a link L = ℓ1 ∪ ℓ2 ([11])
• det(L) = 2|∆L(−1,−1)| ([5, Theorem 1]).

(The second formula is a generalization of the Fox formula and a special
case of the Mayberry-Murasugi formula [8], whose simple proof is given
by Porti [9].) Moreover, the two formulas imply the stronger conclusion
that lk(ℓ1, ℓ2) ≡ 0 (mod 2) if and only if det(L) ≡ 0 (mod 4).

5. Finding two-tone colorings

Proof of Proposition 1.5. Suppose that there exists a trivial component
ℓ0 of a link L and, for every component ℓ ⊂ L−ℓ0, lk(ℓ0, ℓ) is even. If a
diagram of a link L admits a two-tone Dn-coloring for every odd n ≥ 3
which assigns the arcs on ℓ0 to ai’s and the other arcs to bj’s, then so
does any diagram of L. Thus, to prove the proposition, it suffices to
show that a particular diagram of L admits such a Dn-coloring.

Now we take a diagram D of L depicted in Figure 6. In the figure, D0

is a sub-diagram corresponding to ℓ0, which is a trivial knot diagram,
and each box between D0 and the remaining sub-diagram Db contains
a vertical full twist (see Figure 5 (right)).

➤

➤

➤

➤

➤

➤
➤
➤

➤

➤

➤

➤

α

D0

Db

Figure 6. The diagram D. Each box in the center con-
tains a full twist
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Consider the arc α in the figure, take an arc βi from each component
of L − ℓ0, and assign a0 to α and b1 to βi’s. Let us show that this
assignment induces a two-tone Dn-coloring.

For the arc βi, let ℓ be the component of L− ℓ0 containing βi. Since
lk(ℓ0, ℓ) is even for every component ℓ ⊂ L − ℓ0, due to Lemma 2.2,
the assigning βi to b1 induces a Dn-coloring on ℓ. In the same way, we
can find a Dn-coloring on L− ℓ0.

Note that, on the sub-diagram corresponding to each component of
L− ℓ0, an arc in the lower right of a box in the center is colored by b1
or bn−1. In particular, when the arc in the lower right is colored by b1,
then the arc in the upper right is colored in bn−1, and vice versa.

Thus, by Lemma 2.2, for each component of L − ℓ0, the number of
the boxes in the center with the arc in the lower right colored by b1 is
equal to the number of those with the arc colored in bn−1.

Let m be the half of the linking number lk(ℓ0, L − ℓ0). (Note that
lk(ℓ0, L − ℓ0) must be even, since lk(ℓ0, ℓ) is even for each component
ℓ of L− ℓ0.) Then the number of the boxes in the center with the arc
in the lower right colored by b1 is m and the number of those with the
arc colored in bn−1 is also m.

Again by Lemma 2.2, assigning α to a0 induces assigning the arc
in the upper left of the top box in center to a0−2(m·1+m·(−1)) = a0.
This implies that the assignment induces a Dn-coloring on the whole
diagram. By construction, the Dn-coloring is obviously two-tone.

Thus any diagram of L admits a two-tone Dn-coloring for every odd
n ≥ 3 which assigns the arcs on ℓ0 to ai’s and the other arcs to bj’s. □
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Appendix A. Appendix

The following was given by the anonymous referee for unifying and
generalizing some of the arguments and results. The basic idea behind
the approach is essentially identical with that of the proof of the key
Proposition 3.1. However, it is quite different from the approach in the
other parts.

Recognized as before, a Dn-coloring (n ∈ Z≥2 ∪ {∞}) of a link dia-
gram D representing a link L is nothing other than a homomorphism,
γ, from the link group GL := π1(S

3 − L) to the dihedral group

Dn = 〈a, b | a2, bn, (ab)2〉 ∼= 〈b | bn〉⋊ 〈a | a2〉,
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that maps every meridian to a nontrivial element. Let ν : Dn → 〈a | a2〉
be the natural epimorphism. Then the coloring γ corresponds to a Fox
coloring or a two-tone coloring according to whether (i) νγ maps every
meridian to the generator a or (ii) νγ maps some meridian to a and
some meridian to the trivial element.

Study of dihedral representations, more generally metableian repre-
sentations, of link groups has a long history. In particular, a natural
and useful viewpoint can be found in Hartley’s article ([4]). The proof
of the key Proposition 3.1 fits this viewpoint. On the other hand,
for Lemma 4.1 and Proposition 1.5, which are intimately related with
Proposition 3.1, the author give diagrammatic proofs, which have al-
most no relation with the proof of Proposition 3.1. Here, the following
present unified proofs and generalizations of these results.

Homological proof of a generalization of Lemma 4.1 given in Remark 5.
By the assumption of the lemma, GL admits a two-toneDn-representation
γ : GL → Dn. Let La and Lb be the sublink of L consisting of the com-
ponents whose meridians are mapped by νγ to a or 1, respectively.
Since γ maps the meridians of La to order 2 elements, it descends to a
homomorphism, which we continue to denote by γ, from the quotient of
GL by the normal closure of the squares of meridians of La. The latter
group is the orbifold fundamental group of the orbifold, O, with un-
derlying space S3−Lb with singular set La of index 2. The double cov-
ering of O associated with the homomorphism νγ : πorb

1 (O) → 〈a | a2〉
is the manifold M − L̃b where M is the double branched covering of
S3 branched over La and L̃b is the inverse image of Lb in M . The
fundamental group π1(M − L̃b) is identified with the index 2 subgroup
ker(νγ) of πorb

1 (O), and the homomorphism γ : πorb
1 (O) → Dn restricts

to an abelian representation γ̃ : π1(M − L̃b) → 〈b | bn〉 < Dn.
Now suppose to the contrary that there is a component ℓ of Lb with

lk(ℓ, La) odd. Then the inverse image ℓ̃ of ℓ in M − L̃b is connected.
Thus any two meridians of ℓ, regarded as elements of π1(M − L̃b),
are conjugate in π1(M − L̃b), and so their images by γ, which are
equal to the images by the abelian homomorphism γ̃, are identical in
〈b | bn〉 < Dn. However, this is impossible, because for a meridian µℓ of
ℓ and for a meridian µa of a component of La, we have γ(µaµℓµ

−1
a ) =

γ(µℓ)
−1 6= γ(µℓ), though µaµℓµ

−1
a is also a meridian of ℓ. (Here the

inequality follows from the assumption that n ≥ 3 is odd.) □

Though the above proof is lengthy, it ties up with the proof of Propo-
sition 3.1 and it leads to a simple proof of the following generalization
of Proposition 1.5.
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Proposition A.1. Let L = L0 ∪ L1 be a link in S3 satisfying the
following conditions.

(1) det(L0) = 1.
(2) L1 is non-empty, and every component of L1 has an even linking

number with L0.

Then there is a two-tone epimorphism from GL to D∞ for which La =
L0 and Lb = L1, where La and Lb are the sublinks of L as in the
“homological proof”.

Proof. Let M be the double branched covering of S3 branched along
L0 and L̃1 the inverse image of L1 in M . The assumptions imply that
H1(M − L̃1) is a free abelian group with basis {µi, µ

′
i | 1 ≤ i ≤ r} such

that the homomorphism τ induced by the covering translation switches
µi with µ′

i for each i. (Here r is the number of components of L2, µi and
µ′
i are meridians of the components of L̃1 that are mapped to the i-th

component of L2.) LetQ be the semi-direct product ofH1(M−L̃1) with
the order 2 cyclic group 〈a | a2〉, where the action of the latter group
on the first group is given by τ . Then Q is a quotient of the link group
GL. (In fact it is a quotient of the orbifold fundamental group of the
orbifold O with underlying space S3−L1 with singular set L0 of index
2, as defined in the homological proof of Lemma 4.1.) The proposition
now follows from the fact that there is an epimorphism from Q to D∞
defined by a 7→ a, µi 7→ b and µ′

i = τ(µi) = aµia
−1 7→ b−1. □

The above proof and that of Lemma 4.1 work for links in a Z-
homology 3-sphere. Moreover, the same argument also imply the fol-
lowing further generalization.

Proposition A.2. Let L = L0 ∪ L1 be a link in a Z/2Z-homology
3-sphere S, and n ≥ 2 an integer, satisfying the following conditions.

(1) The double branched covering M of S branched over L0 is a
Z/nZ-homology 3-sphere.

(2) L1 is non-empty, and every component of L1 has the trivial mod
2 linking number with L0.

Then there is a two-tone epimorphism from GL to Dn for which La =
L0 and Lb = L1, where La and Lb are the sublinks of L as in the
“homological proof”.

In fact, the assumption that L is a link in a Z/2Z-homology 3-sphere
implies that there is a unique double branched covering branched along
L, and the two conditions imply that H1(M − L̃1;Z/nZ) is the free
Z/nZ-module that has a base consisting of meridians {µi, µ

′
i | 1 ≤ i ≤
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r}, such that the homomorphism τ induced by the covering translation
switches µi with µ′

i for each i.

There are possible future problems (also given by the anonymous
referee): It would be nice if one could give a unified diagrammatic
proof to all of the results in the paper, including the key Proposition 3.1
and the results in the appendix. If successful, then it might bring our
mathematical community a new deep insight into the link diagrams.

Also the results in this paper might give a hint to the following
natural question:

Question. For n = 1 or 2, the “greatest common quotient” of the
n-component link groups is the free abelian group Zn. For n ≥ 3, is
there a non-abelian group G bigger than Zn (i.e., a non-commutative
group with abelianization Zn), for which every n-component link group
admits a (canonical) epimorphism onto G?

If such a group G exists, then by considering the G-coverings of link
complements, one may be able to construct a link invariant stronger
than the Alexander invariants, which are defined by using Zn-coverings.
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