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Abstract. We establish the Lp-Lq-boundedness of subelliptic pseudo-differential
operators on a compact Lie group G. Effectively, we deal with the Lp-Lq-bounds
for operators in the sub-Riemmanian setting because the subelliptic classes are
associated to a Hörmander sub-Laplacian. The Riemannian case associated with
the Laplacian is also included as a special case. Then, applications to the Lp-Lq-
boundedness of pseudo-differential operators in the Hörmander classes on G are
given in the complete range 0 ≤ δ ≤ ρ ≤ 1, δ < 1. This also gives the Lp-Lq-
bounds in the Riemannian setting, because the later classes are associated with the
Laplacian on G. In both cases, in the Riemannian and the sub-Riemannian settings,
necessary and sufficient conditions for the Lp-Lq-boundedness of operators are also
analysed.
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1. Introduction

This paper is mainly concerned with the Lp-Lq boundedness of pseudo-differential
operators associated with the global Hörmander symbol classes on compact Lie groups
for the range 1 < p, q <∞.Our analysis also includes estimates for pseudo-differential
operators associated with subelliptic symbol classes.

The relevance of the boundedness of Fourier multipliers and pseudo-differential
operators has been highlighted by Stein and Hörmander. These kinds of estimates
naturally arise in the study of some evolution equations. For instance, one can
see [29, 46]. Till now, there have been extensive activities dealing with the Lp-Lq

boundedness for spectral multipliers and Fourier multipliers on compact Lie groups,
we cite [3, 4, 7, 8, 12, 32, 33, 40] for a non-exhaustive list of references.

To the best of our knowledge, there has been no activity to pursue the Lp-Lq esti-
mates of non-invariant operators, in particular, pseudo-differential operators on com-
pact Lie groups. In the classical Euclidean setting, Hörmander established the Lp-Lq

estimates of pseudo-differential operators associated with the so-called “Hörmander
symbol classes” Sm

ρ,δ(Rn×Rn) on Rn with m ∈ R and 0 ≤ δ < ρ ≤ 1. It is well-known
that any Lp-Lq bounded Fourier multiplier is nontrivial only if p ≤ q (see [30]).
Therefore, it is natural to assume the condition p ≤ q when dealing with pseudo-
differential operators. Later on, Álvarez and Hounie [5] extended Hörmander’s result
to the range 0 ≤ δ < 1 and 0 < ρ ≤ 1 without the restriction δ < ρ. In a recent
work by the first and last two authors [11], we have provided sufficient and necessary
conditions for the Lp-Lq boundedness of pseudo-differential operators associated with

global Hörmander symbol classes Sm
ρ,δ(G × Ĝ), m ∈ R, 0 ≤ δ ≤ ρ ≤ 1 and δ ̸= 1, on

a graded Lie group G, where Ĝ denotes the unitary dual of G.
In this work, we focus on pseudo-differential operators associated with the global

Hörmander symbol classes encoded with the Riemannian and sub-Riemannian struc-
ture of compact Lie groups. One of the main differences between the approach devel-
oped in [11], based on the analysis of hypoelliptic operators on those groups, is the use
of the structure of the dilations of the group, while the approach of this paper will be
based on the submarkovian properties of the semigroup e−tL, t > 0, of a Hörmander
sub-Laplacian L =

∑k
j=1X

2
j , where one exploits the geometric properties induced by

the Hörmander system of vector fields {Xj : 1 ≤ j ≤ n} on a compact Lie group G.
On a compact Lie group G, in the monograph [41], Turunen and the last author

introduced a global notion of the Hörmander symbol classes on G. According to this
terminology, and observing that any continuous linear operator A acting on C∞(G)
has a right convolution kernel RA = RA(x, y) ∈ D ′(G × G), namely, a distribution
that describes the action of the operator by the group convolution ∗ as follows

Af(x) = (f ∗RA(x, ·))(x), (1.1)

the global symbol of A, is the matrix-valued function defined on G× Ĝ, defined via

σA(x, ξ) = R̂A(x, ξ), (x, [ξ]) ∈ G× Ĝ. (1.2)
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Here, ·̂ denotes the matrix-valued group Fourier transform on G. By classifying these
matrix-valued symbols by the behaviour of their derivatives (and of their differences),

the last author and Turunen [41] introduced the symbols classes Sm
ρ,δ(G×Ĝ), allowing

the complete range 0 ≤ δ ≤ ρ ≤ 1, and providing a new description of the Hörmander
classes Sm

ρ,δ(T
∗G) (as defined in [28] with the local notion of the principal symbol,

defined on the cotangent-bundle T ∗M of a compact manifold) when additionally,
0 ≤ δ < ρ ≤ 1, and ρ > 1− δ.

On the other hand, it was observed by the first and the last author in [7], that the

symbols classes Sm
ρ,δ(G× Ĝ), are associated to the Riemannian structure of the group

G, in the sense that the growth of the derivatives of symbols is classified according
in terms of the spectrum of the Laplacian LG = −

∑n
j=1X

2
j , n = dim(G). Then, in

generalising this idea, in [7] the subelliptic Hörmander classes Sm,L
ρ,δ (G×Ĝ), were intro-

duced with the derivatives (and differences) of symbols compared with respect to the

growth of the eigenvalues of a fixed Hörmander sub-Laplacian L = −
∑k

j=1X
2
j , where

k < n. We observe that the pseudo-differential calculus associated to the “subellip-

tic” classes Sm,L
ρ,δ (G × Ĝ), is more singular than the one associated to the “elliptic”

classes Sm
ρ,δ(G× Ĝ). Indeed, singularities of the kernels of the “subelliptic” classes are

classified in terms of the Hausdorff dimension Q, associated with the control distance
associated with the sub-Laplacian L. In the next subsection we present the Lp − Lq

regularity properties of the subelliptic Hörmander classes Sm,L
ρ,δ (G× Ĝ).

We finally observe that for the case p = q, namely, the problem regarding the Lp-
boundedness of pseudo-differential operators, Fefferman in [20] has established a sharp
criterion of continuity for the operator in the Hörmander classes Sm

ρ,δ(Rn×Rn) on the
Euclidean space. Then Fefferman’s criterion has been extended for several pseudo-
differential calculi including the Weyl-Hörmander calculus [14], the Hörmander classes

Sm
ρ,δ(G × Ĝ) associated to the Laplacian [15], also extended in the sub-Riemannian

setting, namely, for the Hörmander classes Sm,L
ρ,δ (G× Ĝ) associated to a Hörmander

sub-Laplacian [7], and finally for the Hörmander classes on graded Lie groups in
[9]. In order to give a general perspective about this problem, here we are mainly
concerned with the case p < q.

Notably, when dealing with the Lp-Lq-boundedness of operators with symbols in

the classes Sm,L
ρ,δ (G×Ĝ), one has to analyse separately the cases: (i) 1 < p ≤ q ≤ 2, (ii)

1 < p ≤ 2 ≤ q < ∞, and (iii) 2 ≤ p ≤ q < ∞. Here for the case 1 < p ≤ 2 ≤ q < ∞
we provide necessary and sufficient conditions.

1.1. Main results. The following theorem presents the result that establishes a suf-
ficient condition and in some cases also a necessary condition, for the Lp-Lq bound-
edness of subelliptic pseudo-differential operators on compact Lie groups.

Theorem 1.1. Let 1 < p, q <∞, and 0 ≤ δ < ρ ≤ 1. Let G be a compact Lie group,
and let Q be its Hausdorff dimension with respect to the control distance associated
with a Hörmander sub-Laplacian L. Then, the following statements hold.

• Let 1 < p ≤ 2 ≤ q <∞. Every pseudo-differential operator A ∈ Ψm,L
ρ,δ (G× Ĝ)

admits a bounded extension from Lp(G) into Lq(G), that is

∀f ∈ C∞(G), ∥Af∥Lq(G) ≤ C∥f∥Lp(G) (1.3)
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holds, if and only if,

m ≤ −Q
(
1

p
− 1

q

)
. (1.4)

• Every pseudo-differential operator A ∈ Ψm,L
ρ,δ (G× Ĝ) admits a bounded exten-

sion from Lp(G) into Lq(G), that is (1.3) holds, in the following cases:
(i) if 1 < p ≤ q ≤ 2 and

m ≤ −Q
(
1

p
− 1

q
+ (1− ρ)

(
1

q
− 1

2

))
. (1.5)

(ii) if 2 ≤ p ≤ q <∞ and

m ≤ −Q
(
1

p
− 1

q
+ (1− ρ)

(
1

2
− 1

p

))
. (1.6)

Remark 1.2. The order conditions in (1.4), (1.5) and (1.6) can be written in a sim-
plified way for 1 < p, q <∞ as follows:

m ≤ −Q
(
1

p
− 1

q
+ (1− ρ)max

{
1

2
− 1

p
,
1

q
− 1

2
, 0

})
, (1.7)

where Q is the Hausdorff dimension of G with respect to the control distance associ-
ated to the sub-Laplacian L.

Remark 1.3. If G = Rn, although this is not a compact Lie group, the order condition
in (1.7) is sharp for Fourier multipliers, see Hörmander [29, Page 163].

Remark 1.4. When a system of vector fields X = {Xj} provides an orthonormal
basis of the Lie algebra (endowed, up to a constant factor, with its unique bi-invariant
Riemannian metric), the Hörmander condition is trivially satisfied, the sub-Laplacian

associated to the system X coincides with the Laplacian and the classes Sm,L
ρ,δ (G× Ĝ)

agree with the “elliptic classes” Sm
ρ,δ(G×Ĝ) of the last author with Turunen [41]. The

following corollary provides the Lp − Lq-regularity properties for the elliptic classes.

Corollary 1.5. Let 1 < p, q <∞, and 0 ≤ δ < ρ ≤ 1. Let G be a compact Lie group
of dimension n. Then, the following statements hold.

• Let 1 < p ≤ 2 ≤ q < ∞. Every pseudo-differential operator A ∈ Ψm
ρ,δ(G× Ĝ)

admits a bounded extension from Lp(G) into Lq(G), that is

∀f ∈ C∞(G), ∥Af∥Lq(G) ≤ C∥f∥Lp(G) (1.8)

holds, if and only if,

m ≤ −n
(
1

p
− 1

q

)
. (1.9)

• Every pseudo-differential operator A ∈ Ψm
ρ,δ(G × Ĝ) admits a bounded exten-

sion from Lp(G) into Lq(G), that is (1.8) holds, in the following cases:
(i) if 1 < p ≤ q ≤ 2 and

m ≤ −n
(
1

p
− 1

q
+ (1− ρ)

(
1

q
− 1

2

))
. (1.10)
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(ii) if 2 ≤ p ≤ q <∞ and

m ≤ −n
(
1

p
− 1

q
+ (1− ρ)

(
1

2
− 1

p

))
. (1.11)

This paper is organised as follows. In Section 2 we present the preliminaries of this
paper related to submarkovian semigroups, and the subelliptic pseudo-differential
calculus introduced in [7]. Subsequently, the Lp−Lq-boundedness of these subelliptic
classes is analysed in Section 3. Then, in Section 4 we provide explicit examples of
our criterion about the Lp-Lq-boundedness of pseudo-differential operators in the case
of the sphere S3 ∼= SU(2) and on SU(3).

2. Preliminaries

2.1. Symmetric submarkovian semigroups. We briefly recall some classical facts
concerning symmetric submarkovian semigroups on L2 := L2(X,µ). Here (X,µ) is a
σ-finite measure space. For the definitions and results mentioned in this sub-section
we follow [13, Section II.5], [13, Example II.5.1] (see Remark 2.1 below) and [13,
Theorem II.3.1, Page 14] (see Theorem 2.2 below).

Let A be an operator with domain Dom(A) ⊂ L2. We recall that
−A is the generator of a symmetric semigroup Tt := e−tA on L2 such that

∥e−tA∥L2→L2 ≤ eαt

if and only if A is self-adjoint, Dom(A) is a dense subspace of L2, and

(Af, f) ≥ −α∥f∥L2 .

Let Q be a symmetric bilinear form defined on a subspace D ⊂ L2. One says that
Q is positive if Q(f, f) ≥ 0, and closed if for every sequence (fn)n∈N ⊂ D, such that
fn → f in L2, and

lim
n,m→∞

Q(fn − fm, fn − fm) = 0,

one has that f ∈ D and that Q(fn − f, fn − f) → 0. One says that Q is closable if it
admits a closed extension.

If A is a symmetric operator with a dense domain Dom(A) ⊂ L2, then one may
associate with it the symmetric bilinear form QA(f, g) := Q(Af, g). If in addition QA

is positive, it is closable and its minimal closure QA is associated to a self-adjoint
operator A which is an extension of A. More precisely, A is the smallest self-adjoint
extension of A, called the Friedrichs extension of A.We shall not distinguish between
A and A.

Recall that a semigroup Tt on L2 is called submarkovian if f ∈ L2, 0 ≤ f ≤ 1,
implies that 0 ≤ Ttf ≤ 1. Such a semigroup acts on the Lp-spaces and ∥Tt∥Lp→Lp ≤ 1.
Symmetric submarkovian semi-groups on L2 may be characterised through prop-

erties of the associated symmetric bilinear form. A positive symmetric bilinear form
Q defined on D ⊂ L2, is said to be a Dirichlet form, if for all g ∈ D, and for all
f ∈ D, such that |f | ≤ |g|, and |f(x) − f(y)| ≤ |g(x) − g(y)|, one has that f ∈ D,
and Q(f, f) ≤ Q(g, g).
If Tt = e−tA is a symmetric submarkovian semigroup on L2, the associated bilinear

form Q(f, g) := (A1/2f, A1/2g), f, g ∈ Dom(A1/2), is a closed Dirichlet form with
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dense domain in L2. Conversely, given a closed Dirichlet bilinear form Q, with dense
domain D in L2, there exists a unique symmetric submarkovian semigroup on L2,
such that Tt = e−tA and Q(f, g) := (A1/2f, A1/2g), f, g ∈ Dom(A1/2).

Remark 2.1. We note that submarkovian semigroups arise naturally in the setting of
compact manifolds. Indeed, if M is a compact manifold with a volume form dx, and
L2(M) = L2(M,dx), consider a family of vector fields

X = {X1, X2, · · · , Xk}, k ≤ n := dim(M).

If every Xj is skew-adjoint on L
2(M), namely, if

∀f, g ∈ C∞(M), ∫
M
Xi(f)gdx = − ∫

M
fXi(g)dx,

then we can associate with ∆X := −
∑k

i=1X
2
i , its Friedrichs extension, which we still

denote by ∆X . Then, the semigroup

Tt := e−t∆X : L2(M) → L2(M)

is a contraction semigroup. With respect to the Dirichlet form

Q(f, g) = (∆Xf, g), f, g ∈ C∞(M),

the semigroup Tt := e−t∆X is a submarkovian semigroup.

The following theorem will be fundamental for our further analysis.

Theorem 2.2. Let Tt = e−tA be a submarkovian semigroup. Assume that Tt is
equicontinuous on L1(X,µ) and on L∞(X,µ). Suppose that there exists α > 0 and
1 < p < q ≤ ∞ such that

∥f∥Lq(X,µ) ≤ C∥Aα/2f∥Lp(X,µ). (2.1)

Then, with Q defined by the identity α = Q(1/p − 1/q), the following semigroup
estimate holds

∃C > 0, ∀f ∈ L1(X,µ), ∥Ttf∥L∞(X,µ) ≤ Ct−
Q
2 ∥f∥L∞(X,µ). (2.2)

2.2. Pseudo-differential operators via localisations. Now we present the pre-
liminaries of the Hörmander theory of pseudo-differential operators on compact man-
ifolds used in this work. The setting of compact Lie groups appears as an essential
case of manifolds with symmetries. We refer to Hörmander [28] for details.

Let U be an open subset of Rn. We say that the symbol a ∈ C∞(T ∗U), T ∗U =
U × Rn, belongs to the Hörmander class

Sm
ρ,δ(T

∗U), 0 ⩽ ρ, δ ⩽ 1,

if for every compact subset K ⊂ U the symbol inequalities

|∂βx∂αξ a(x, ξ)| ⩽ Cα,β,K(1 + |ξ|)m−ρ|α|+δ|β|,

hold true uniformly in x ∈ K for all ξ ∈ Rn. A continuous linear operator A :
C∞

0 (U) → C∞(U) is a pseudo-differential operator of order m and of (ρ, δ)-type, if
there exists a symbol a ∈ Sm

ρ,δ(T
∗U) such that A is the Kohn-Nirenberg quantisation

of the symbol a, namely, if

Af(x) = ∫
Rn

e2πix·ξa(x, ξ)(FRnf)(ξ)dξ,
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for all f ∈ C∞
0 (U), where

(FRnf)(ξ) := ∫
U
e−i2πx·ξf(x)dx

is the Euclidean Fourier transform of f at ξ ∈ Rn.

Now, we extend this notion to smooth manifolds as follows. Given a smooth closed
manifold M, A : C∞

0 (M) → C∞(M) is a pseudo-differential operator of order m and
of (ρ, δ)-type, with ρ ⩾ 1− δ, and 0 ≤ δ < ρ ≤ 1, if for every local coordinate system
ω :Mω ⊂M → Uω ⊂ Rn, and for every ϕ, ψ ∈ C∞

0 (Uω), the operator

Tu := ψ(ω−1)∗Aω∗(ϕu), u ∈ C∞(Uω),
1

is a standard pseudo-differential operator with symbol aT ∈ Sm
ρ,δ(T

∗Uω). In this case
we write A ∈ Ψm

ρ,δ(M, loc).

2.3. Positive sub-Laplacians and global pseudo-differential operators. Let
G be a compact Lie group with Lie algebra g ≃ TeG, where e is the neutral element
of G, and let

X = {X1, · · · , Xk} ⊂ g

be a system of C∞-vector fields. For all multi-index,

I = (i1, · · · , iω) ∈ {1, 2, · · · , k}ω

of length ω ⩾ 1, we denote by

XI := [Xi1 , [Xi2 , · · · [Xiω−1 , Xiω ] · · · ]]
a commutator of length ω, where XI := Xi when ω = 1 and I = (i). The system X
satisfies the Hörmander condition of step κ if

g = span{XI : |I| ≤ κ}.
Given a system X = {X1, · · · , Xk} satisfying the Hörmander condition, the oper-

ator defined as

L ≡ LX := −(X2
1 + · · ·+X2

k),

is called the subelliptic Laplacian associated with the system X, or simply the sub-
Laplacian associated to X. The subellipticity of L follows from the validity of the
estimate, (see Hörmander [27] and Rothschild and Stein [38])

∥u∥Hs(G) ⩽ C(∥Lu∥L2(G) + ∥u∥L2(G)), (2.3)

with s = 2/κ, while the Sobolev space Hs of order s is defined by the norm

∥u∥Hs(G) := ∥(1−∆)
s
2u∥L2(G).

Here, ∆ is the negative Laplace-Beltrami operator on G.
Let us now introduce the Hausdorff dimension associated with the sub-Laplacian

L. For all x ∈ G, let Hω
xG be the linear subspace of TxG generated by the Xi’s and

by the Lie brackets

[Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], · · · , [Xj1 , [Xj2 , [Xj3 , · · · , Xjω ]]],

1As usually, ω∗ and (ω−1)∗ are the pullbacks, induced by the maps ω and ω−1 respectively.
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where ω ⩽ κ. Then, Hörmander’s condition says that Hκ
xG = TxG, x ∈ G, and we

have that

H1
xG ⊂ H2

xG ⊂ H3
xG ⊂ · · · ⊂ Hκ−1

x G ⊂ Hκ
xG = TxG, x ∈ G.

The dimension of every Hω
xG is constant in x ∈ G, so we set dimHωG := dimHω

xG,
for all x ∈ G. The Hausdorff dimension can be defined as, see [35],

Q :=
κ∑

i=1

i(dimH iG− dimH i−1G). (2.4)

Let A be a continuous linear operator from C∞(G) into D ′(G), and let Ĝ be the
unitary dual of G. There exists a matrix-valued function

a : G× Ĝ→ ∪ℓ∈NCℓ×ℓ, (2.5)

that we call the matrix symbol of A, such that a(x, ξ) := a(x, [ξ]) ∈ Cdξ×dξ for every

[ξ] ∈ Ĝ, with ξ : G→ Hom(Hξ), Hξ
∼= Cdξ , and such that

Af(x) =
∑
[ξ]∈Ĝ

dξTr[ξ(x)a(x, ξ)f̂(ξ)], ∀f ∈ C∞(G). (2.6)

We have denoted by

f̂(ξ) ≡ (Ff)(ξ) := ∫
G
f(x)ξ(x)∗dx ∈ Cdξ×dξ , [ξ] ∈ Ĝ,

the group Fourier transform of f at ξ where the matrix representation of ξ is induced
by an orthonormal basis of the representation space Hξ. Correspondingly, one denotes
the inverse Fourier transform of g(ξ) ∈ Cdξ×dξ as

(F−1g)(x) :=
∑
[ξ]∈Ĝ

dξTr(ξ(x)g(ξ)), x ∈ G.

Note that the matrix-valued function a in (2.5) satisfying (2.6) is unique, and satisfies
the identity

a(x, ξ) = ξ(x)∗(Aξ)(x), Aξ := (Aξij)
dξ
i,j=1, [ξ] ∈ Ĝ.

We will use the notation A = Op(a) to indicate that a := σA(x, ξ) is the (unique)
matrix-valued symbol associated with A.

As defined in [45], a difference operator Qξ : D ′(Ĝ) → D ′(Ĝ) of order k ∈ N is
defined via

Qξf̂(ξ) = q̂f(ξ), [ξ] ∈ Ĝ, (2.7)

for some function q ∈ C∞(G) vanishing of order k at x = e. We denote by diffk(Ĝ)
the set of the difference operators of order k. The associated difference operator to q
is denoted by ∆q ≡ Qξ. A system of difference operators (see [45])

∆α
ξ := ∆α1

q(1)
· · ·∆αi

q(i)
, α = (αj)1⩽j⩽i, (2.8)

with i ≥ n, is called an admissible family, if

rank{∇q(j)(e) : 1 ⩽ j ⩽ i} = dim(G), and ∆q(j) ∈ diff1(Ĝ). (2.9)
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An admissible family is said to be strongly admissible if, we also have the property
i⋂

j=1

{x ∈ G : q(j)(x) = 0} = {e}. (2.10)

Remark 2.3. We observe that matrix components of unitary irreducible represen-
tations induce difference operators of arbitrary order. Let us illustrate this fact as
follows. If ξ1, ξ2, · · · , ξk, are fixed irreducible and unitary representations of the group
G, which does not necessarily belong to the same equivalence class, then the matrix
coefficients

ξℓ(g)− Idξℓ = [ξℓ(g)ij − δij]
dξℓ
i,j=1, g ∈ G, 1 ≤ ℓ ≤ k, (2.11)

define the smooth functions qℓij(g) := ξℓ(g)ij−δij, g ∈ G, and then define the difference
operators

Dξℓ,ij := F (ξℓ(g)ij − δij)F
−1. (2.12)

Then, by fixing k ≥ dim(G) of these unitary representations with the property that
its corresponding family of difference operators is admissible one can define higher-
order difference operators of this kind. Indeed, let us fix a unitary representation ξℓ.

We omit the index ℓ. Then, for any given multi-index α ∈ N
d2ξℓ
0 , with |α| =

∑dξℓ
i,j=1 αij,

we write
Dα := Dα11

11 · · ·D
αdξℓ

dξℓ
dξℓdξℓ

for a difference operator of order |α|.

The difference operators endow the unitary dual Ĝ with a difference structure.
Indeed, the following Leibniz formula holds true (see [43] for details). We refer to
Definition 2.5 for the description via the group Fourier transform of the matrix-valued

distributions in the class D ′(G× Ĝ).

Proposition 2.4 (Leibniz rule for difference operators). Let G be a compact Lie

group and let Dα, α ∈ Ndξℓ
0 , be the family of difference operators defined in (2.12).

Then, the following Leibniz rule

Dα(a1a2)(x0, ξ) =
∑

|γ|,|ε|⩽|α|⩽|γ|+|ε|

Cε,γ(Dγa1)(x0, ξ)(Dεa2)(x0, ξ), x0 ∈ G,

holds for all a1, a2 ∈ D ′(G× Ĝ), where the summation is taken over all ε, γ such that
|ε|, |δ| ≤ |α| ≤ |γ|+ |ε|.

Now, we will introduce the Hörmander classes of matrix-symbols defined in [41].
We identify every Y ∈ g with the differential operator ∂Y : C∞(G) → D ′(G) defined
by

∂Y f(x) = (Yxf)(x) =
d

dt
f(x exp(tY ))|t=0.

If {X1, · · · , Xn} is a basis of the Lie algebra g, we use the standard multi-index
notation

∂αX = Xα
x = ∂α1

X1
· · · ∂αn

Xn
.

By using this property, together with the following notation for the so-called elliptic
weight

⟨ξ⟩ := (1 + λ[ξ])
1/2, [ξ] ∈ Ĝ,
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we can finally give the definition of global symbol classes. Here, λ[ξ], [ξ] ∈ Ĝ, denotes
the corresponding eigenvalue of the positive Laplacian (in a bijective manner) indexed

by an equivalence class [ξ] ∈ Ĝ.

Definition 2.5. Let 0 ⩽ δ, ρ ⩽ 1. Let

σ : G× Ĝ→
⋃
[ξ]∈Ĝ

Cdξ×dξ ,

be a matrix-valued function such that for any [ξ] ∈ Ĝ, σ(·, [ξ]) is smooth, and such
that, for any element x ∈ G there is a distribution kx ∈ D ′(G), of C∞-class in x,

satisfying that σ(x, ξ) = k̂x(ξ), [ξ] ∈ Ĝ. The collection of all matrix-valued symbols

σ = σ(x, ξ) satisfying these properties will be denoted by D ′(G× Ĝ).

We say that σ ∈ S m
ρ,δ(G) if, for all β and γ multi-indices and for all (x, [ξ]) ∈ G×Ĝ,

the following inequalities

∥∂βX∆
γ
ξσ(x, ξ)∥op ⩽ Cα,β⟨ξ⟩m−ρ|γ|+δ|β|, (2.13)

hold, where ∥ · ∥op denotes the ℓ2 → ℓ2 operator norm

∥σ(x, ξ)∥op = sup{∥σ(x, ξ)v∥ℓ2 : v ∈ Cdξ , ∥v∥ℓ2 = 1}. (2.14)

For σA ∈ S m
ρ,δ(G) we will write A ∈ Ψm

ρ,δ(G) ≡ Op(S m
ρ,δ(G)).

The global Hörmander classes on compact Lie groups describe the Hörmander
classes defined by local coordinate systems. We present the corresponding statement
as follows.

Theorem 2.6 (Equivalence of classes, [41, 43]). Let A : C∞(G) → D ′(G) be a
continuous linear operator and let us consider 0 ≤ δ < ρ ≤ 1, with ρ ≥ 1− δ. Then,
A ∈ Ψm

ρ,δ(G, loc), if and only if σA ∈ S m
ρ,δ(G), consequently

Op(S m
ρ,δ(G)) = Ψm

ρ,δ(G, loc), 0 ⩽ δ < ρ ⩽ 1, ρ ⩾ 1− δ. (2.15)

2.4. Subelliptic Hörmander classes on compact Lie groups. In order to define
the subelliptic Hörmander classes, we will use a suitable basis of the Lie algebra arising
from Taylor expansions. We explain the choice of this basis by means of the following
lemma (see [7, Section 3.1]).

Lemma 2.7. Let G be a compact Lie group of dimension n. Let D = {∆q(j)}1⩽j⩽n

be a strongly admissible collection of difference operators (for the definition see (2.9)
and (2.10)). Then there exists a basis XD = {X1,D, · · · , Xn,D} of g such that

Xj,Dq(k)(·−1)(e) = δjk.

Moreover, by using the multi-index notation

∂
(β)
X = ∂β1

X1,D
· · · ∂βn

Xn,D
,

for any β ∈ Nn
0 , where

∂Xi,D
f(x) =

d

dt
f(x exp(tXi,D))|t=0, f ∈ C∞(G),



Lp-Lq ESTIMATES FOR PSEUDO-DIFFERENTIAL OPERATORS 11

and denoting by

Rf
x,N(y) = f(xy)−

∑
|α|<N

qα1

(1)(y
−1) · · · qαn

(n)(y
−1)∂

(α)
X f(x)

the Taylor remainder, we have that

|Rf
x,N(y)| ⩽ C|y|N max

|α|⩽N
∥∂(α)X f∥L∞(G),

where the constant C > 0 is dependent on N, G and D (but not on f ∈ C∞(G)). In

addition we have that ∂
(β)
X |x1=xR

f
x1,N

= R
∂
(β)
X f

x,N , and

|∂(β)X |y1=yR
f
x,N(y1)| ⩽ C|y|N−|β| max

|α|⩽N−|β|
∥∂(α+β)

X f∥L∞(G),

provided that |β| ⩽ N.

Denoting by ∆α
ξ := ∆α1

q(1)
· · ·∆αn

q(n)
, we can introduce the subelliptic Hörmander class

of symbols of order m ∈ R and of type (ρ, δ). We will use the notation M̂ to indicate

the matrix symbol of M := (1 + L) 1
2 . Also, for every [ξ] ∈ Ĝ and s ∈ R, we define

the subellliptic matrix weight,

M̂(ξ)s := diag[(1 + νii(ξ)
2)

s
2 ]1⩽i⩽dξ ,

where L̂(ξ) =: diag[νii(ξ)
2]1⩽i⩽dξ is the symbol of the sub-Laplacian L at [ξ], as the

symbol of the operator Ms := (1 + L) s
2 .

Definition 2.8 (Subelliptic Hörmander classes). Let G be a compact Lie group and
let 0 ⩽ δ, ρ ⩽ 1. Let us consider a sub-Laplacian L = −(X2

1 + · · ·+X2
k) on G, where

the system of vector fields X = {Xi}ki=1 satisfies the Hörmander condition of step κ.

We say that σ ∈ Sm,L
ρ,δ (G× Ĝ), if for all r ∈ R, α, β ∈ Nn

0 ,

pα,β,ρ,δ,m,r(a) := sup
(x,[ξ])∈G×Ĝ

∥M̂(ξ)(ρ|α|−δ|β|−m−r)∂
(β)
X ∆α

ξ a(x, ξ)M̂(ξ)r∥op <∞. (2.16)

where ∥ · ∥op is as in (2.14).

By following the usual nomenclature, we define:

Op(Sm,L
ρ,δ (G× Ĝ)) := {A : C∞(G) → D ′(G) : σA ≡ Â(x, ξ) ∈ Sm,L

ρ,δ (G× Ĝ)},
with

Af(x) =
∑
[ξ]∈Ĝ

dξTr(ξ(x)Â(x, ξ)f̂(ξ)), f ∈ C∞(G), x ∈ G.

The decay properties of subelliptic symbols are summarized in the following lemma
(see [7, Chapter 4]), where we present a necessary (but not a sufficient) condition in

order that the matrix-symbol a := a(x, ξ) belongs to the class Sm,L
ρ,δ (G× Ĝ).

Lemma 2.9. Let G be a compact Lie group and let 0 ⩽ δ, ρ ⩽ 1. If a ∈ Sm,L
ρ,δ (G× Ĝ),

then for every α, β ∈ Nn
0 , there exists Cα,β > 0 satisfying the estimates

∥∂(β)X ∆α
ξ a(x, ξ)∥op ⩽ Cα,β sup

1⩽i⩽dξ

(1 + νii(ξ)
2)

m−ρ|α|+δ|β|
2 ,

uniformly in (x, [ξ]) ∈ G× Ĝ.
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In the next theorem we describe the fundamental properties of the subelliptic
calculus [7], like compositions, adjoints, and boundedness properties.

Theorem 2.10. Let 0 ⩽ δ < ρ ⩽ 1, and let Ψm,L
ρ,δ := Op(Sm,L

ρ,δ (G × Ĝ)), for every
m ∈ R. Then,

- The mapping A 7→ A∗ : Ψm,L
ρ,δ → Ψm,L

ρ,δ is a continuous linear mapping be-
tween Fréchet spaces and the symbol of A∗, σA∗(x, ξ) satisfies the asymptotic
expansion,

Â∗(x, ξ) ∼
∞∑

|α|=0

∆α
ξ ∂

(α)
X (Â(x, ξ)∗).

This means that, for every N ∈ N, and for all ℓ ∈ N,

∆αℓ
ξ ∂

(β)
X

Â∗(x, ξ)−
∑
|α|⩽N

∆α
ξ ∂

(α)
X (Â(x, ξ)∗)

 ∈ S
m−(ρ−δ)(N+1)−ρℓ+δ|β|,L
ρ,δ (G× Ĝ),

where |αℓ| = ℓ.

- The mapping (A1, A2) 7→ A1◦A2 : Ψ
m1,L
ρ,δ ×Ψm2,L

ρ,δ → Ψm1+m2,L
ρ,δ is a continuous

bilinear mapping between Fréchet spaces, and the symbol of A = A1 ◦ A2 is
given by the asymptotic formula

σA(x, ξ) ∼
∞∑

|α|=0

(∆α
ξ Â1(x, ξ))(∂

(α)
X Â2(x, ξ)),

which, in particular, means that, for every N ∈ N, and for all ℓ ∈ N,

∆αℓ
ξ ∂

(β)
X

σA(x, ξ)− ∑
|α|⩽N

(∆α
ξ Â1(x, ξ))(∂

(α)
X Â2(x, ξ))


∈ S

m1+m2−(ρ−δ)(N+1)−ρℓ+δ|β|,L
ρ,δ (G× Ĝ),

for all αℓ ∈ Nn
0 with |αℓ| = ℓ.

- For 0 ⩽ δ < ρ ⩽ 1, (or for 0 ≤ δ ≤ ρ ≤ 1, δ < 1/κ) let us consider a

continuous linear operator A : C∞(G) → D ′(G) with symbol σ ∈ S0,L
ρ,δ (G×Ĝ).

Then A extends to a bounded operator from L2(G) to L2(G).

Finally, we present the following result about the Lp-boundedness of the subelliptic
classes for the sub-Laplacian L, see [7, Section 6].

Theorem 2.11. Let G be a compact Lie group and let us denote by Q the Hausdorff
dimension of G associated to the control distance associated to the sub-Laplacian L =
LX , where X = {X1, · · · , Xk} is a system of vector fields satisfying the Hörmander
condition of order κ. For 0 ⩽ δ < ρ ⩽ 1, let us consider a continuous linear operator

A : C∞(G) → D ′(G) with symbol σ ∈ S−m,L
ρ,δ (G × Ĝ), m ⩾ 0. Then A extends to a

bounded operator on Lp(G) provided that

m ⩾ mp := Q(1− ρ)

∣∣∣∣1p − 1

2

∣∣∣∣ .
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2.5. Lp-Lq-boundedness for Bessel potentials. Here we discuss the sharpness
of the Hardy-Littlewood-Sobolev inequality, in this case, formulated in terms of the
Lp-Lq-boundedness of Bessel potentials.

Lemma 2.12. Let 1 < p, q < ∞. Let G be a compact Lie group of the Hausdorff
dimension Q associated to the control distance associated to the sub-Laplacian L =
−
∑

1≤i≤kX
2
i . Then, the Bessel operator Ba = (1+L)−a

2 , admits a bounded extension
from Lp(G) into Lq(G), that is, the estimate

∥Baf∥Lq ≤ C∥f∥Lp (2.17)

holds, if and only if, 1 < p < q <∞ and

a ≥ Q

(
1

p
− 1

q

)
. (2.18)

Proof. The sufficiency of the condition (2.18) on a for the Lp-Lq-boundedness of Ba

is exactly the Hardy-Littlewood-Sobolev inequality, see e.g. [13]. On the other hand,
assume that

Ba : L
p(G) → Lq(G)

is bounded.
Using the subelliptic functional calculus in [7, Section 8], we have that

√
L ∈

Ψ1,L
1,0 (G×Ĝ) is a pseudo-differential operator of first order. Since

√
L is not invertible,

let
√
L−1

be the inverse of
√
L on the orthogonal complement of its kernel, i.e. if P0

is the L2-orthogonal projection on Ker(
√
L), then

√
L

−1√
L =

√
L
√
L

−1
= I − P0, ∀f ∈ Ker(

√
L),

√
L

−1
f := 0.

This operator agrees with the operator f(L), defined by the spectral calculus where

f(t) = t−1, and that
√
L−1 ∈ Ψ−1,L

1,0 (G×Ĝ) is a consequence of the functional calculus
in [7, Section 8].

Let us consider the operator L−a
2 := (

√
L−1

G )a ∈ Ψ−a,L
1,0 (G × Ĝ) defined by the

spectral calculus if a > 0. In the case where a < 0, L−a
2 ∈ Ψ

|a|,L
1,0 (G× Ĝ). In view of

the inclusion of the powers L−a to the subelliptic calculus, note that

L−a
2 = L−a

2B−aBa = TBa,

where
T = L−a

2B−a = L−a
2 (1 + L)

a
2 ∈ Ψ0

1,0(G× Ĝ)

is a subelliptic pseudo-differential operator of order zero (see [7, Theorem 8.20]).
Then T : Lq(G) → Lq(G) is bounded and from the Lp-Lq boundedness of Ba we
deduce the Lp-Lq-boundedness of L−a

2 = TBa. Note that we have the validity of the
estimate

∥L−a
2 f∥Lq ≤ C∥f∥Lp . (2.19)

In other words, we have that the inequality

∥f∥Lq ≤ C∥L
a
2 f∥Lp , (2.20)

is valid with C > 0, independent of f ∈ Lq(G). Define the semigroup

Tt = e−tL, t > 0,
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and consider the heat kernel ht defined by Ttf = f ∗ pt. Note that (see [13, Lemma
VIII.2.5, Page 110])

sup
t>0

∥ht∥L1 ≲ 1.

In consequence we have that

sup
t>0

∥Ttf∥L1(G) = sup
t>0

∥f ∗ ht∥L1(G) ≤ sup
t>0

∥ht∥L1(G)∥f∥L1(G) ≲ ∥f∥L1(G). (2.21)

In a similar way

sup
t>0

∥Ttf∥L∞(G) = sup
t>0

∥f ∗ ht∥L∞(G) ≤ sup
t>0

∥ht∥L1(G)∥f∥L∞(G) ≲ ∥f∥L∞(G). (2.22)

In view of (2.21) and (2.22) we have that the semigroup Tt is equicontinuous on
L1 and on L∞. Moreover, in view of Remark 2.1, with X = {X1, X2, · · · , Xk}, the
semigroup Tt = e∆X = e−tL is a submarkovian semigroup. Then, in view of (2.20),
by applying Theorem 2.2, with Q̃ defined by

a = Q̃

(
1

p
− 1

q

)
, (2.23)

we have the estimate

∥e−tL∥L1→L∞ ≤ CQ̃t
−Q̃/2. (2.24)

Note that if

Q′ := inf{Q̃ : Tt satisfies (2.24) for all t : 0 < t < 1},

then Q′ ≤ Q̃,

∥e−tL∥L1→L∞ ≤ CQ′t−Q′/2 ≤ CQ̃t
−Q̃/2, 0 < t < 1.

However, by the sharpness of the heat kernel estimates is very well known that the
infimum Q′ agrees with the Hausdorff dimension Q of the group associated to the
control distance associated to the sub-Laplacian L (see [13, Chapter VIII]), that is
Q′ = Q. Since Q̃ ≥ Q, in view of (2.23) we have proved that

a ≥ Q

(
1

p
− 1

q

)
, (2.25)

as desired. □

3. Lp-Lq-boundedness of pseudo-differential operators

3.1. Lp-Lq-boundedness of pseudo-differential operators I. The following re-
sult presents the necessary and sufficient criteria for a pseudo-differential operator to
be bounded from Lp(G) into Lq(G) for the range 1 < p ≤ 2 ≤ q <∞.

Theorem 3.1. Let 1 < p ≤ 2 ≤ q < ∞ and m ∈ R. Let G be a compact Lie group,
and let Q be its Hausdorff dimension with respect to the control distance associated
to a Hörmander sub-Laplacian L. Let 0 ≤ δ < ρ ≤ 1. Then, every pseudo-differential

operator A ∈ Ψm,L
ρ,δ (G × Ĝ) with 0 ≤ δ < ρ ≤ 1 admits a bounded extension from

Lp(G) into Lq(G), that is

∀f ∈ C∞
0 (G), ∥Af∥Lq ≤ C∥f∥Lp (3.1)
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holds, if and only if,

m ≤ −Q
(
1

p
− 1

q

)
. (3.2)

Proof. Assume that m > −Q
(

1
p
− 1

q

)
. We are going to show that there exists A ∈

Ψm,L
ρ,δ (G× Ĝ) which is not bounded from Lp(G) into Lq(G). We consider

A = B−m = (1 + L)
m
2 ∈ Ψm,L

1,0 (G× Ĝ) ⊂ Ψm,L
ρ,δ (G× Ĝ).

Since

−m < Q

(
1

p
− 1

q

)
,

from Lemma 2.12, we have that A = B−m is not bounded from Lp(G) into Lq(G).
So, we have proved the necessity of the order condition (3.2). Now, in order to prove
the reverse statement, we consider m satisfying (3.2) and m1 and m2 satisfying the
conditions

m = m1 +m2, m1 ≤ −Q(1/p− 1/2), m2 ≤ −Q(1/2− 1/q). (3.3)

If A ∈ Ψm,L
ρ,δ (G× Ĝ), we factorise A as follows,

A = B−m2A0B−m1 , A0 = Bm2ABm1 .

Note that A0 ∈ Ψ0,L
ρ,δ (G× Ĝ). The Calderón-Vaillancourt theorem (Theorem 2.10(iii))

implies that A0 is bounded from L2(G) into L2(G). On the other hand, from Lemma
2.12 we have that Bm2 : L2(G) → Lq(G), and Bm1 : Lp(G) → L2(G), are bounded
operators. In consequence, we have proved that A admits a bounded extension from
Lp(G) into Lq(G). The proof is complete. □

3.2. Lp-Lq-boundedness of pseudo-differential operators II. In this subsection,
we consider the Lp−Lq boundedness of pseudo-differential operators on compact Lie
groups for a wider range of indices p and q. Our main result of this section is the
following theorem.

Theorem 3.2. Let 1 < p ≤ q < ∞,m ∈ R, and let 0 ≤ δ < ρ ≤ 1. Let G be a
compact Lie group, and let Q be its Hausdorff dimension with respect to the control
distance associated to a Hörmander sub-Laplacian L. Then, every pseudo-differential

operator A ∈ Ψm,L
ρ,δ (G× Ĝ) admits a bounded extension from Lp(G) into Lq(G), that

is
∀f ∈ C∞

0 (G), ∥Af∥Lq ≤ C∥f∥Lp (3.4)

holds in the following cases:

(i) if 1 < p ≤ q ≤ 2 and

m ≤ −Q
(
1

p
− 1

q
+ (1− ρ)

(
1

q
− 1

2

))
. (3.5)

(ii) if 2 ≤ p ≤ q <∞ and

m ≤ −Q
(
1

p
− 1

q
+ (1− ρ)

(
1

2
− 1

p

))
; (3.6)
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Proof. (i) Let us consider p, q andm satisfying the conditions given in (i). Choose

m′ = −Q
(

1
p
− 1

q

)
and this implies that the subelliptic Bessel potential B−m′

is bounded from Lp(G) to Lq(G) as a consequence of Lemma 2.12. For A ∈
Ψm,L

ρ,δ (G× Ĝ), we decompose it as follows:

A = (ABm′)B−m′ .

Now, we note that operator ABm′ ∈ Ψm−m′,L
ρ,δ (G× Ĝ) with m−m′ satisfying

m − m′ ≤ −Q(1 − ρ)
(

1
q
− 1

2

)
. Then, Theorem 2.11 shows that ABm′ is

bounded operator from Lq(G) into Lq(G). Therefore, we conclude that the
operator A has a bounded extension from Lp(G) into Lq(G).

(ii) To prove this part we follow the same strategy as in Part (i). We factorise

the operator A ∈ Ψm,L
ρ,δ (G× Ĝ) in the following manner:

A = B−m′(Bm′A),

where m′ = −Q(1
p
− 1

q
). Again, it follows from Lemma 2.12 that the operator

B−m′ is a bounded from Lp(G) into Lq(G). On the other hand, the operator

Bm′A ∈ Ψm−m′,L
ρ,δ (G × Ĝ) with m − m′ ≤ −Q(1 − ρ)

(
1
2
− 1

p

)
, which, as

a consequence of Theorem 2.11, yields that the operator B−m′A is bounded
from Lp(G) into Lp(G). Hence, we conclude that the operator A has a bounded
extension from Lp(G) into Lq(G).

This completes the proof of this theorem. □

4. Lp-Lq-boundedness of pseudo-differential operators on S3 and on
SU(3)

We will present an explicit form of our main Theorem 1.1 on the sphere SU(2) ∼= S3

and on SU(3). By abuse of notation, we will use the same symbol to denote an element
of the Lie algebra and the vector field on the group obtained by left translation.

4.1. Lp-Lq-boundedness of pseudo-differential operators on S3. Let us con-
sider the left-invariant first-order differential operators ∂+, ∂−, ∂0 : C∞(SU(2)) →
C∞(SU(2)), called creation, annihilation, and neutral operators respectively, (see
Definition 11.5.10 of [41]) and let us define

X1 = − i

2
(∂− + ∂+), X2 =

1

2
(∂− − ∂+), X3 = −i∂0,

whereX3 = [X1, X2], based on the commutation relations [∂0, ∂+] = ∂+, [∂−, ∂0] = ∂−,
and [∂+, ∂−] = 2∂0. The system X = {X1, X2} satisfies the Hörmander condition of
step κ = 2, and the Hausdorff dimension defined by the control distance associated to
the sub-Laplacian L1 = −X2

1 −X2
2 is Q = 4. In a similar way, we can define the sub-

Laplacian L2 = −X2
2 −X2

3 associated to the system of vector fields X ′ = {X2, X3},
which also satisfies the Hörmander condition of step κ = 2. In the following corollary
we describe the Lp-Lq-boundedness of subelliptic pseudo-differential operators on

SU(2) ∼= S3. In this case we observe that one can identify ŜU(2) ∼= 1
2
N0, see [41] for

details.
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Corollary 4.1. Let 1 < p, q <∞, and 0 ≤ δ < ρ ≤ 1. Let us consider the Hörmander
sub-Laplacian L = −X2

1 −X2
2 . Then, the following statements hold.

• Let 1 < p ≤ 2 ≤ q <∞. Every pseudo-differential operator

A ∈ Ψm,L
ρ,δ (SU(2)× 1

2
N0)

admits a bounded extension from Lp(SU(2)) into Lq(SU(2)), that is

∀f ∈ C∞(SU(2)), ∥Af∥Lq(SU(2)) ≤ C∥f∥Lp(SU(2)) (4.1)

holds, if and only if,

m ≤ −4

(
1

p
− 1

q

)
. (4.2)

• Every pseudo-differential operator A ∈ Ψm,L
ρ,δ (SU(2)× 1

2
N0) admits a bounded

extension from Lp(SU(2)) into Lq(SU(2)), that is (4.1) holds, in the following
cases:
(i) if 1 < p ≤ q ≤ 2 and

m ≤ −4

(
1

p
− 1

q
+ (1− ρ)

(
1

q
− 1

2

))
. (4.3)

(ii) if 2 ≤ p ≤ q <∞ and

m ≤ −4

(
1

p
− 1

q
+ (1− ρ)

(
1

2
− 1

p

))
. (4.4)

4.2. Lp-Lq-boundedness of pseudo-differential operators on SU(3). The spe-
cial unitary group of 3× 3 complex matrices is defined by

SU(3) = {g ∈ GL(3,C) : gg∗ = I3 ≡ (δij)1⩽i,j⩽3, det(g) = 1},
and its Lie algebra is given by

su(3) = {g ∈ GL(3,C) : g + g∗ = 0, Tr(g) = 0}.
The inner product is defined by a multiple of the Killing form on su(3) given by
B(X, Y ) = −1

2
Tr[XY ]. The torus

TSU(3) = {diag[eiθ1 , eiθ2 , eiθ3 ] : θ1 + θ2 + θ3 = 0, θi ∈ R}
is a maximal torus of SU(3), and its Lie algebra is given by

tsu(3) = {diag[iθ1, iθ2, iθ3] : θ1 + θ2 + θ3 = 0, θi ∈ R}.
The following vectors

T1 = diag[−i, i, 0], T2 = diag[−i/
√
3,−i/

√
3, 2i/

√
3]

provide a basis for tsu(3). Completing this basis with the following vectors

X1 =

 0 1 0
−1 0 0
0 0 0

 , X2 =

0 i 0
i 0 0
0 0 0

 ,

X3 =

0 0 0
0 0 1
0 −1 0

 , X4 =

0 0 0
0 0 −i
0 −i 0

 ,



18 D. CARDONA, J. DELGADO, V. KUMAR, AND M. RUZHANSKY

X5 =

 0 0 1
0 0 0
−1 0 0

 , X6 =

0 0 i
0 0 0
i 0 0

 ,

we obtain the Gell-Mann system, which forms an orthonormal basis of su(3). The sys-
tem of vector fields X = {X1, X2, X3, X4, X5, X6} satisfies the Hörmander condition
of step κ = 2, (see [7, Section 11]). Indeed, this can be deduced if we write

X7 = −[X1, X2] =

−2i 0 0
0 2i 0
0 0 0

 ,

X8 = −[X3, X4] =

0 0 0
0 2i 0
0 0 −2i


from TABLE 1. Observe that the Hausdorff dimension associated to the control dis-

Table 1. Commutators in SU(3)

X1 X2 X3 X4 X5 X6 X7 X8

X1 0 −X7 X5 −X6 −X3 X4 4X2 2X2

X2 X7 0 X6 X5 −X4 −X3 −4X1 −2X1

X3 −X5 −X6 0 −X8 X1 X2 2X4 4X4

X4 X6 −X5 X8 0 X2 −X1 −2X3 −4X3

X5 X3 X4 −X1 −X2 0 X8 −X7 2X6 −2X6

X6 −X4 X3 −X2 X1 X7 −X8 0 −2X5 2X5

X7 −4X2 4X1 −2X4 2X3 −2X6 2X5 0 0
X8 2X2 2X1 −4X4 4X3 2X6 −2X5 0 0

tance associated to the sub-Laplacian

L = −X2
1 −X2

2 −X2
3 −X2

4 −X2
5 −X2

6 ,

can be computed from (2.4) as follows.

Q : = dim(H1G) + 2(dimH2G− dimH1G) = 6 + 2(8− 6) = 10.

In the following Corollary we describe the Lp-Lq-boundedness of subelliptic pseudo-

differential operators on SU(3). In this case we observe that one can identify ŜU(3) ∼=
{D(p, q) : p, q ∈ N0}, where D(p, q) in physical terms, p is the number of quarks
and q is the number of antiquarks. The construction of the unitary representations

D(p, q) can be found in [24]. We keep in this case the standard notation ŜU(3) by
simplicity.

Corollary 4.2. Let 1 < p, q <∞, and 0 ≤ δ < ρ ≤ 1. Let us consider the Hörmander
sub-Laplacian L = −X2

1 −X2
2 −X2

3 −X2
4 −X2

5 −X2
6 . Then, the following statements

hold.

• Let 1 < p ≤ 2 ≤ q <∞. Every pseudo-differential operator

A ∈ Ψm,L
ρ,δ (SU(3)× ŜU(3))
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admits a bounded extension from Lp(SU(3)) into Lq(SU(3)), that is

∀f ∈ C∞(SU(3)), ∥Af∥Lq(SU(3)) ≤ C∥f∥Lp(SU(3)) (4.5)

holds, if and only if,

m ≤ −10

(
1

p
− 1

q

)
. (4.6)

• Every pseudo-differential operator A ∈ Ψm,L
ρ,δ (SU(3)×ŜU(3)) admits a bounded

extension from Lp(SU(3)) into Lq(SU(3)), that is (4.5) holds, in the following
cases:
(i) if 1 < p ≤ q ≤ 2 and

m ≤ −10

(
1

p
− 1

q
+ (1− ρ)

(
1

q
− 1

2

))
. (4.7)

(ii) if 2 ≤ p ≤ q <∞ and

m ≤ −10

(
1

p
− 1

q
+ (1− ρ)

(
1

2
− 1

p

))
. (4.8)
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