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Abstract. The notion of F -Yang-Mills connections gives a generalization of Yang-

Mills connections, p-Yang-Mills connections and exponential Yang-Mills connections.

Here, F is a strictly increasing C2-function. In this paper, we study an instability

for F -Yang-Mills connections on principal fiber bundles over irreducible symmetric

R-spaces. In classical Yang-Mills theory, Simons showed that the non-existence theo-

rem for non-flat, weakly stable Yang-Mills connections over the standard sphere with

dimension more than four. Recently, a Simons type instability theorem for F -Yang-

Mills connections over the standard sphere was given by Baba-Shintani. The purpose

of this paper is to prove that the converse of this theorem does not hold in general.

In fact, we give a concrete example of F -Yang-Mills instable, irreducible symmetric

R-spaces except for the standard sphere. For this, we first give a sufficient condition

for an irreducible symmetric R-space to be F -Yang-Mills instable. Next, by classi-

fying the irreducible symmetric R-spaces satisfying this condition, we find that the

standard sphere and the Cayley projective plane are only such irreducible symmetric

R-spaces. In particular, the Cayley projective plane is F -Yang-Mills instable.

1. Introduction

In this paper, we will consider F -Yang-Mills connections, which are known as a gen-

eralization of Yang-Mills connections, p-Yang-Mills connections ([4]) and exponential

Yang-Mills connections ([14]). Here, F is a strictly increasing C2-function defined on the

interval [0, T ), 0 < T ≤ ∞. An F -Yang-Mills connection is defined by a critical point

of the F -Yang-Mills functional defined on the space of connections for a principal fiber

bundle over a Riemannian manifold. The study of such connections has progressed by

extending the results on the usual Yang-Mills connections such as instability theorems

(Simons [17], Kobayashi-Ohnita-Takeuchi [13]) and some types of vanishing theorems

(Bourguignon-Lawson [3], Kobayashi-Ohnita-Takeuchi [13])．
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Now, we explain the study of the instability for F -Yang-Mills connections. We first

recall the instability theorem for Yang-Mills connections over standard spheres due to

Simons ([17]).

Theorem 1.1 ([17], see also [3] for the proof). For n > 4, any non-flat, Yang-Mills

connection over the standard sphere Sn is instable.

In other words, this result gives the non-existence theorem for non-flat, weakly stable

Yang-Mills connections over the standard sphere Sn with n > 4. On the other hand,

self-dual connections and anti-self-dual connections provide us weakly stable Yang-Mills

connections over the 4-sphere S4. Bourguignon-Lawson [3, Theorem B] proved that in

the case when the structure group is a specific unitary group, any weakly stable Yang-

Mills connection over S4 is either self-dual or anti-self-dual.

After Simons, Baba-Shintani ([1]) gave a Simons type instability theorem for F -

Yang-Mills connections on the standard sphere Sn. In the process, they introduced the

notion of a degree for the differential F ′ (Definition 3.1), which we write dF ′ . Roughly

speaking, dF ′ represents the rate of increase of the ratio of F ′ and F ′′. They also

clarified that the finiteness of dF ′ is necessary for deriving the Simons type instability

theorem for F -Yang-Mills connections. Then, Theorem 1.1 is naturally generalized as

follows.

Theorem 1.2 ([1, Corollary 4.12]). For n > 4dF ′ + 4, any non-flat, F -Yang-Mills

connection over Sn is instable.

Our motivation for studying F -Yang-Mills connections and their instabilities comes

from the topology of closed Riemannian manifolds. A characteristic class of a principal

fiber bundle P represents elements in the cohomology groups H2k(M) for the base space

M of P by means of the curvatures of connections. Kobayashi-Ohnita-Takeuchi ([13,

(2.17) Theorem]) proved that if any non-flat, Yang-Mills connection on P is instable

for any principal fiber bundle P over a compact Riemannian manifold M , then the

second Betti number of M vanishes. Indeed, by representing the first Chern class

of a principal U(1)-bundle in terms of the curvature of a Yang-Mills connection, the

instability of the Yang-Mills connection plays an important role in their proof. We

expect to obtain similar results for the topological vanishing theorem by extending the

class of connections from Yang-Mills connections to F -Yang-Mills connections. It is

a fundamental problem to characterize the standard sphere in terms of appropriate

F -Yang-Mills connections.
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Our concern is to study a connected, closed Riemannian manifold M such that for

every principal fiber bundle over M , any non-flat F -Yang-Mills connection over M is

instable. We call this property the F -Yang-Mills instability (Definition 3.2), which is

a generalization of the Yang-Mills instability due to Kobayashi-Ohnita-Takeuchi ([13,

p. 165]). By Theorem 1.2, the standard sphere Sn is F -Yang-Mills instable if dF ′ <

(n− 4)/4. We will classify F -Yang-Mills instability Riemannian manifolds. In the case

when F (t) = t, Kobayashi-Ohnita-Takeuchi gave an example of a Yang-Mills instable

Riemannian manifold which is not the standard sphere by studying the Yang-Mills

instability of isotropy irreducible Riemannian symmetric spaces of compact type ([13,

(7.11) Theorem]). In fact, they gave a sufficient condition for M to be Yang-Mills

instable ([13, (7.10) Theorem]) and classified such M ([13, (7.11) Theorem]).

For further progress, we will study a generalization of the results in [13] from Yang-

Mills connections to F -Yang-Mills connections. After Kobayashi-Ohnita-Takeuchi, an

extension of [13, (7.10) Theorem] was studied by Kawagoe [11] for p-Yang-Mills connec-

tions, and by Shintani [16] for F -Yang-Mills connections. However, in both extensions,

the result corresponding to Theorem [13, (7.11) Theorem] is an open problem.

In this paper, we find an irreducible symmetric R-space which is F -Yang-Mills insta-

ble. For this, we first give an sufficient condition for an irreducible symmetric R-space

to be F -Yang-Mills instable (Theorem 4.2). Here, we note that an irreducible symmet-

ric R-space is a kind of a (not necessarily isotropy irreducible) Riemannian symmetric

space of compact type and has a nice geometrical characterization as explained later.

Based on the classification of irreducible symmetric R-spaces, we obtain the following

theorem in terms of Theorem 4.2 and the characterization.

Theorem 1.3 (Corollary 4.15). Let F : [0, T ) → R be a strictly increasing C2-function

with 0 ≤ dF ′ < 1/6. Then, the Cayley projective plane F4/Spin(9) is F -Yang-Mills

instable.

We emphasize that the irreducible symmetric R-spaces satisfying the sufficient con-

dition given in Theorem 4.2 are only the standard sphere as in Theorem 1.2 and the

Cayley projective plane (Theorem 4.14). On the other hand, we can verify that the

other irreducible symmetric R-spaces do not satisfy the sufficient condition by using

Lemma 4.3.

The organization of this paper is as follows: In Section 2, we review the basics of

F -Yang-Mills connections, which are related to the present paper. We recall the defi-

nition of the F -Yang-Mills functional (Definition 2.1) and its Euler-Lagrange equation
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(Corollary 2.2). Furthermore, we give the second variation formula for the functional

(Theorem 2.3). We also recall the notions of F -harmonic forms (Definition 2.2) and

their indices (Definition 2.4), which were introduced in [1]. In Section 3, we study the

instability of F -Yang-Mills connections over submanifolds. In Subsection 3.1, we follow

the method given in [1] for the determination of the instability of F -Yang-Mills connec-

tions over submanifolds of Euclidean spaces. Our argument is based on Proposition 3.3.

The inequality (3.4) in this proposition gives a sufficient condition for an F -Yang-Mills

connection to be instable, which yields Theorem 1.2 (Corollary 3.4). Motivated by

Theorem 1.2, we introduce the notion of F -Yang-Mills instability for connected, closed

Riemannian manifolds (Definition 3.2). In Subsection 3.2, we study the F -Yang-Mills

instability of minimal submanifoldsM of the standard sphere S. The above method can

be applied to this study. We give a sufficient condition for M to be an F -Yang-Mills

instable (Theorem 3.7), which gives a reformulation of [16]. Our result is an exten-

sion of Kobayashi-Ohnita-Takeuchi’s one [13, (6.9) Theorem] and Kawagoe’s one [11,

Corollary 6.2] to an F -Yang-Mills version. Here, we note that our sufficient condition

(3.11) in Theorem 3.7 is described by not only intrinsic curvatures of M , but also the

extrinsic curvature γ of M ⊂ S defined in Definition 3.3. However, it is difficult to

determine the exact value of γ in general. In Section 4, we utilize a nice geometrical

characterization of irreducible symmetric R-spaces to overcome this difficulty. We first

review Takeuchi-Kobayashi’s result ([20]), which states that any irreducible symmetric

R-space can be immersed into a specified standard sphere as a minimal submanifold.

Next, we apply Theorem 3.7 to irreducible symmetric R-spaces M (Theorem 4.2). We

observe that Theorem 4.2 is an extension of [13, (7.10) Theorem] and [11, Corollary

6.2] to F -Yang-Mills version in the case when M is isotropy irreducible (Example 4.1).

Using a similar argument, it can be verified that Theorem 4.2 coincides with [16, The-

orem 25]. Based on the fact that any irreducible symmetric R-space can be realized

as an orbit of the isotropy representation of some Riemannian symmetric space L/K

of noncompact type, we can give a formula for determining γ for each orbit of this

representation (Proposition 4.8). This formula is derived by means of the polarity of

the isotropy representation ([5]) and the restricted root system of L/K. Finally, based

on the classification due to Kobayashi-Nagano [12], we determine whether each irre-

ducible symmetric R-spaces satisfies the sufficient condition given in Theorem 4.2 or

not (Theorem 4.14). As a corollary of Theorem 4.14, we have Theorem 1.3 (Corollary

4.15). We give a brief review of the restricted root system of L/K in Appendix A.
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2. Preliminaries

2.1. Principal fiber bundles and connections. Let M be an n-dimensional, con-

nected, closed Riemannian manifold and G be a compact Lie group with Lie algebra g.

Let π : P →M be a principal fiber bundle over M with structure group G. We denote

by r : P × G → P , (g, p) 7→ r(g, p) = rg(p) the right action of G on P . We write the

adjoint representation of G as Ad : G → GL(g). A g-valued differential 1-form A on

P is called a connection or a connection 1-form, if it satisfies the following two condi-

tions: (1) A is of type Ad, i.e., r∗gA = Ad(g−1)A holds for all g ∈ G; (2) A(X∗) = X

for all X ∈ g, where X∗ denotes the fundamental vector field on P associated with

X. A g-valued differential k-form ω on P is said to be horizontal if for any p ∈ P ,

ωp(X1, . . . , Xk) = 0 holds whenever at least one of the tangent vectors Xi ∈ TpP is ver-

tical (dπp(Xi) = 0). We denote by Ωk
Ad,hor(P, g) the vector space of horizontal g-valued

k-forms of type Ad on P . For any two connections A,A′, the difference A − A′ is in

Ω1
Ad,hor(P, g). Conversely, it is verified that A + α gives another connection on P for

all α ∈ Ω1
Ad,hor(P, g) ([7, Proposition 5.13.2, 1]). Hence the set CP of connections on P

becomes an affine space over the vector space Ω1
Ad,hor(P, g). The kernel of a connection

A determines a horizontal, right-invariant distribution on P , which we write H. We

denote by πH : TP → H the natural projection. The curvature 2-form RA of A is

defined by RA(X1, X2) = dA(πH(X1), πH(X2)) for tangent vectors X1, X2 of P . Then

RA is an element of Ω2
Ad,hor(P, g). It is known that the distribution H is integrable if

and only if RA vanishes. A connection is said to be flat, if its curvature 2-form vanishes.

We make use of a different description of connections on P . Denote by gP = P ×Ad g

the adjoint bundle of P , that is, the associated vector bundle of P with Ad : G →
GL(g). It follows from [7, Theorem 5.13.4] that Ωk

Ad,hor(P, g) is canonically isomorphic

with the vector space Ωk(gP ) = Γ(ΛkT ∗M ⊗ gP ) of k-forms on M with values in gP .

Any connection on P corresponds to a connection on gP , i.e., a covariant derivative

∇ : Γ(gP ) → Ω1(gP ). We also write its curvature 2-form as R∇. It is shown that the

curvature R∇ of ∇ on gP is in Ω2(gP ) (cf. [7, Proposition 5.13.2, 2]). In what follows,

we identify CP with the set of connections on gP , which is an affine space over the

vector space Ω1(gP ).

We give a fiber metric on gP which is compatible with connections on gP . Such

a fiber metric is induced from an Ad(G)-invariant inner product 〈·, ·〉 on g (cf. [7,

Proposition 5.9.7]). In addition, 〈·, ·〉 also induces a pointwise inner product on the

vector space Ωk(gP ), which is denoted by the same symbol 〈·, ·〉. We set ‖φ‖2 = 〈φ, φ〉
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for φ ∈ Ωk(gP ). Here, we write 〈φ, ψ〉 (φ, ψ ∈ Ωk(gP )) by means of their components.

We take an orthonormal basis (e1, . . . , en) of the tangent space TxM (x ∈ M) and

denote by (θ1, . . . , θn) its dual basis. If we write

φ =
1

k!

∑
i1,...,ik

φei1 ,...,eik
θi1 ∧ · · · ∧ θik , ψ =

1

k!

∑
i1,...,ik

ψei1 ,...,eik
θi1 ∧ · · · ∧ θik ,

then we obtain

〈φ, ψ〉 = 1

k!

∑
i1,...,ik

〈φei1 ,...,eik
, ψei1 ,...,eik

〉 .

By integrating the pointwise inner product over M , we get an inner product on Ωk(gP )

as follows:

(φ, ψ) =

∫
M

〈φ, ψ〉dv, φ, ψ ∈ Ωk(gP ) ,

where dv denotes the Riemannian volume form on M .

For any connection ∇ on gP , the covariant exterior derivative d∇ : Ωk(gP ) →
Ωk+1(gP ) is defined in the natural manner (cf. [7, Definition 5.12.3]). Then it is well-

known that the curvature 2-form R∇ satisfies d∇R∇ = 0, which is called the Bianchi

identity. In general, d∇ ◦ d∇ does not vanish. It is verified that if ∇ is flat, then

d∇ ◦ d∇ = 0 holds. This is an alternative interpretation of flat connections. We denote

by δ∇ the formal adjoint operator of d∇, that is, δ∇ : Ωk(gP ) → Ωk−1(gP ) is defined by

(d∇ψ, φ) = (ψ, δ∇φ) for ψ ∈ Ωk−1(gP ) and φ ∈ Ωk(gP ). Hodge-Laplacian is defined by

∆∇ = δ∇ ◦ d∇ + d∇ ◦ δ∇, which gives a differential operator on Ωk(gP ). A gP -valued

form φ is called a harmonic form, if ∆∇φ = 0 holds. It is verified that ∆∇φ = 0 is

equivalent to d∇φ = 0 and δ∇φ = 0.

A Yang-Mills connection ∇ is defined as a critical point of the Yang-Mills functional

YM : CP → R; ∇ 7→ 1

2

∫
M

‖R∇‖2dv .

It is shown that its Euler-Lagrange equation is give by δ∇R∇ = 0. This equation is

called the Yang-Mills equation. The Bianchi identity and the Yang-Mills equation imply

that the curvature 2-form of any Yang-Mills connection becomes a harmonic form.

2.2. F -Yang-Mills connections and the first variational formula. In this sub-

section, we first recall the notion of F -Yang-Mills connections, which is an extension

of Yang-Mills connections (Definition 2.1). Second, we recall the notion of F -harmonic

forms (Definition 2.2). This notion is an extension of harmonic forms.

Let 0 < T ≤ ∞ and F : [0, T ) → R be a strictly increasing C2-function.



F -YANG-MILLS INSTABILITY OF IRREDUCIBLE SYMMETRIC R-SPACE 7

Definition 2.1. The F -Yang-Mills functional YM F : CP → R is defined by

YM F (∇) =

∫
M

F (
1

2
‖R∇‖2)dv .

A connection ∇ on gP is called an F -Yang-Mills connection, if ∇ is a critical point of

YM F . Then, its curvature 2-form is also called the F -Yang-Mills field of ∇.

For example, if we take F (t) = t, then the corresponding F -Yang-Mills functional

coincides with the usual Yang-Mills functional YM . Furthermore, we recall two types

of F -Yang-Mills connections as follows.

Example 2.1. (1) Let p ≥ 2. If we put Fp(t) = (1/p)(2t)p/2, then the Fp-Yang-Mills

functional coincides with the p-Yang-Mills functional (cf. [4]). A critical point of the

p-Yang-Mills functional is called a p-Yang-Mills connection. It is clear that, for p = 2, a

2-Yang-Mills connection is the usual Yang-Mills one. (2) If we put Fe(t) = et, then the

Fe-Yang-Mills functional coincides with the exponential Yang-Mills functional (cf. [14]).

A critical point of the exponential Yang-Mills functional is called an exponential Yang-

Mills connection.

F -Yang-Mills connections are obtained by solving the Euler-Lagrange equation for

YM F . Here, we recall its first variation formula as follows.

Proposition 2.1 ([6, Lemma 3.1], [10, (11)]). Let ∇t (|t| < ε) be a C∞-curve in CP

with ∇0 = ∇. If we put

α =
d

dt

∣∣∣∣
t=0

∇t ∈ Ω1(gP ) ,

then we have
d

dt

∣∣∣∣
t=0

YM F (∇t) =

∫
M

〈δ∇(F ′(
1

2
‖R∇‖2)R∇), α〉dv .

From this proposition, we get:

Corollary 2.2. A connection ∇ is an F -Yang-Mills connection if and only if ∇ satisfies

δ∇(F ′(
1

2
‖R∇‖2)R∇) = 0 . (2.1)

We call the equation (2.1) the F -Yang-Mills equation. Clearly, if we take F (t) = t,

then (2.1) becomes the usual Yang-Mills equation.

Motivated by the F -Yang-Mills equation, Baba-Shintani ([1]) introduced the notion

of F -harmonic forms for gP -valued forms as follows.
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Definition 2.2 ([1, Definition 3.5]). A gP -valued form φ is said to be F -harmonic, if φ

satisfies the following two equations:

d∇φ = 0 , δ∇(F ′(
1

2
‖φ‖2)φ) = 0 . (2.2)

For simplicity, φ is said to be p-harmonic, if φ is Fp-harmonic, where the function Fp is

defined in Example 2.1, (1). Then the corresponding second equation (2.2) is rewritten

as δ∇(‖φ‖p−2φ) = 0.

We note that the curvature 2-form R∇ of an F -Yang-Mills connection ∇ is F -

harmonic.

2.3. Instability and the second variational formula. We first recall the notion of

a weak stability of an F -Yang-Mills connection.

Definition 2.3. An F -Yang-Mills connection∇ is said to be weakly stable, if the following

inequality holds for any α ∈ Ω1(gP ):

d2

dt2

∣∣∣∣
t=0

YM F (∇t) ≥ 0 , α =
d

dt

∣∣∣∣
t=0

∇t .

An F -Yang-Mills connection is said to be instable, if it is not weakly stable.

For the study of the instability of F -Yang-Mills connections, we give the second

variational formula for the F -Yang-Mills functional. For the preparation, we recall

the definition of the (first order) Weitzenböck curvature R∇ : Ω1(gP ) → Ω1(gP ) for a

connection ∇ as follows:

R∇(α) =
∑
i,j

[R∇
ji, αj]θ

i , α ∈ Ω1(gP ) ,

where α and R∇ are locally expressed as

α =
∑
j

αjθ
j , R∇ =

1

2

∑
j,i

R∇
jiθ

j ∧ θi .

We set

[· ∧ ·] : Ω1(gP )× Ω1(gP ) → Ω2(gP ) ; [α ∧ β]X,Y = [αX , βY ]− [αY , βX ] .

By the adjoint invariance of 〈·, ·〉, we have:

〈R∇(α), α〉 = 〈[α ∧ α], R∇〉, α ∈ Ω1(gP ) .

In order to describe the second variational formula for the F -Yang-Mills functional,

we recall the definition of the index form for an F -harmonic 2-form as follows.
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Definition 2.4 ([1, Definition 3.8]). The index form of an F -harmonic 2-form φ ∈ Ω2(gP )

is defined by

Iφ(α) =

∫
M

F ′′(
1

2
‖φ‖2)〈d∇α, φ〉2dv+

∫
M

F ′(
1

2
‖φ‖2)

{
〈R∇(α), α〉+ ‖d∇α‖2

}
dv , (2.3)

for any α ∈ Ω1(gP ).

Then we have the second variational formula as follows.

Theorem 2.3 ([1, Proposition 3.7]). Let ∇ be an F -Yang-Mills connection and ∇t

(|t| < ε) be a C∞-curve in CP with ∇0 = ∇. Then we have:

d2

dt2

∣∣∣∣
t=0

YM F (∇t) = IR∇(α) ,

where α =
d

dt

∣∣∣∣
t=0

∇t.

An alternative expression of the second variation formula is found in [10, (20)]. The

difference between them is the integrand of the second term of Iφ(α) defined in (2.3)

with φ = R∇. Our formula is more appropriate to determine the instability of an

F -Yang-Mills connection.

For the curvature 2-form R∇ ∈ Ω2(gP ) of a weakly stable F -Yang-Mills connection

∇, Theorem 2.3 yields IR∇(α) ≥ 0 for any α ∈ Ω1(gP ).

By using the second variational formula, we can verify that any flat connection is

weakly stable. Indeed, if ∇ is a flat connection, then we have 〈R∇(α), α〉 = 0, from

which, for any α ∈ Ω1(gP ), we obtain

d2

dt2

∣∣∣∣
t=0

YM F (∇t) =

∫
M

F ′(0)‖d∇α‖2 ≥ 0 ,

where ∇t is a C∞-curve in CP with ∇0 = ∇ and α = (d/dt)|t=0∇t.

3. Instability of F -Yang-Mills connections over submanifolds

In this section, we study the instability of F -Yang-Mills connections over submani-

folds. In Subsection 3.1, we review the result of [1] for the instability of an F -Yang-Mills

connection over a connected, closed Riemannian manifold isometrically immersed in a

Euclidean space. We briefly give the derivation of the Simons type instability theorem

stated in Theorem 1.2 (Corollary 3.4). Then, motivated by this corollary, we introduce

the notion of an F -Yang-Mills instability for a connected, closed Riemannian manifold

(Definition 3.2). This notion is a natural extension of the Yang-Mills instability due
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to Kobayashi-Ohnita-Takeuchi ([13]). In Subsection 3.2, we rewrite the result of [16]

in terms of our notion of the F -Yang-Mills instability (Theorem 3.7). This theorem

is a natural extension of Kobayashi-Ohnita-Takeuchi’s result [13, (6.9) Theorem] to an

F -Yang-Mills version.

3.1. Submanifolds of Euclidean spaces. Let M be an n-dimensional, connected,

closed Riemannian manifold and P be a principal fiber bundle over M with structure

group G. Suppose that M is isometrically immersed in an N -dimensional Euclidean

space (RN , 〈·, ·〉) with n < N . We shall make use of the following convention on the

ranges of indices:

1 ≤ A,B,C ≤ N , 1 ≤ i, j, k, l,m ≤ n , n+ 1 ≤ µ ≤ N .

Let (e1, . . . , en) be an orthonormal basis of the tangent space TxM (x ∈ M). We

denote by T⊥
x M the normal space of the submanifold M ⊂ RN and by h the second

fundamental form of M ⊂ RN . Let (en+1, . . . , eN) be an orthonormal basis of T⊥
x M .

Let hµij denote the component of h(ei, ej) =
∑

µ h
µ
ijeµ. We denote by H =

∑
i h(ei, ei)

the mean curvature vector of M ⊂ RN . We set Hµ = 〈
∑

i h(ei, ei), eµ〉 =
∑

i h
µ
ii.

Let (E1, . . . , EN) denote the canonical basis of RN . We denote by VA the tangent

component of EA with respect to the orthogonal decomposition RN = TxM ⊕ T⊥
x M .

For φ ∈ Ω2(gP ), ιVA
φ gives an element of Ω1(gP ), where ι denotes the interior product

of M .

The following lemma is fundamental in our argument.

Lemma 3.1. Let ∇ be an F -Yang-Mills connection and φ = R∇ denote the curvature

2-form of ∇. If the inequality ∑
A

Iφ(ιVA
φ) < 0 (3.1)

holds, then ∇ is instable.

Proof. We prove this lemma by contraposition. For a weakly stable F -Yang-Mills con-

nection ∇, we have Iφ(ιVA
φ) ≥ 0 for each A, from which

∑
A Iφ(ιVA

φ) ≥ 0 holds. □

Our concern is to find a sufficient condition for the inequality (3.1). For this, we shall

calculate the summation
∑

A Iφ(ιVA
φ). Let (θ1, . . . , θn) be the dual basis of (e1, . . . , en).

Kobayashi-Ohnita-Takeuchi ([13, (4.36)]) introduced R(φ, φ) and Ric(φ, φ) for φ ∈
Ω2(gP ) as follows: If we write φ = (1/2)

∑
i,j φijθ

i ∧ θj, then

R(φ, φ) =
∑
i,j,k,l

Rijkl〈φij, φkl〉 , Ric(φ, φ) =
∑
i,j,k,l

Rikδjl〈φij, φkl〉 ,
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where Rijkl and Rik are the components of the Riemann curvature R and the Ricci

curvature Ric on M , respectively, that is, R(ek, el)ej =
∑

iR
i
jklei =

∑
iRijklei and

Rik =
∑

lRlkli. By the definition, R(φ, φ) and Ric(φ, φ) are independent of the choice

of (e1, . . . , en). They ([13, (4.36)]) also introduced H(φ, φ) by

H(φ, φ) =
∑
i,j,k,l

∑
µ

Hµhµikδjl〈φij, φkl〉 .

In addition, for the study of the instability of F -Yang-Mills connections, we make use

of the following quantity ([1, Definition 4.2]):

h1(φ, φ) =
∑
µ

hµ1(φ, φ)eµ , hµ1(φ, φ) =
∑
i,j,k,l

hµikδjl〈φij, φkl〉 .

It is verified that H(φ, φ) and h1(φ, φ) are independent of the choice of (e1, . . . , en)

and (en+1, . . . , eN). Furthermore, for each µ, the component hµ1(φ, φ) of h1(φ, φ) is also

independent of the choice of (e1, . . . , en). Here, we note that the original definition of

R(φ, φ), Ric(φ, φ) and H(φ, φ) are defined by means of the inner product (·, ·) instead
of 〈·, ·〉.

Under the above setting, we have the following proposition.

Proposition 3.2 ([1, Theorem 4.3]). For any F -harmonic 2-form φ ∈ Ω2(gP ), we

have:∑
A

Iφ(ιVA
φ) =

∫
M

F ′′(
1

2
‖φ‖2)〈h1(φ, φ),h1(φ, φ)〉dv

+

∫
M

F ′(
1

2
‖φ‖2) {H(φ, φ)− 2Ric(φ, φ) +R(φ, φ)} dv . (3.2)

In order to evaluate the relation between F ′(‖φ‖2/2) and F ′′(‖φ‖2/2) in (3.2), Baba-

Shintani ([1]) introduced the notion of a degree for F ′ as follows.

Definition 3.1 ([1, Definition 4.2]). Let 0 < T ≤ ∞ and F : [0, T ) → R be a strictly

increasing C2-function defined on [0, T ). The degree of F ′ is defined by

dF ′ = sup
0<t<T

tF ′′(t)

F ′(t)
,

which may take infinite values.

For example, if we take F (t) = t, then we have dF ′ = 0. For the functions Fp (p ≥ 2)

and Fe defined in Example 2.1, we have dF ′
p
= (p− 2)/2 and dF ′

e
= ∞.
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Following to the argument in [1, Subsection 4.2], we set B(φ, φ) for φ ∈ Ω2(gP ) as

follows:

B(φ, φ) = dF ′〈h1(φ, φ),h1(φ, φ)〉+
‖φ‖2

2
{H(φ, φ)− 2Ric(φ, φ) +R(φ, φ)} . (3.3)

Then, Proposition 3.2 yields the following result.

Proposition 3.3 ([1, Theorem 4.10]). Let M be a connected, closed Riemannian man-

ifold isometrically immersed in RN . Assume that the degree dF ′ is finite. Then, for any

non-zero F -harmonic form φ ∈ Ω2(gP ), if the inequality

B(φ, φ) < 0 (3.4)

holds, then
∑

A Iφ(ιVA
φ) < 0 holds.

In the case whenM is the n-dimensional standard sphere Sn(r) = {x ∈ Rn+1 | ‖x‖ =

r} of radius r about the origin, we have B(φ, φ) = (1/r2)(4dF ′ + 4 − n)‖φ‖4. Hence,

Proposition 3.3 and Lemma 3.1 imply the following corollary.

Corollary 3.4 ([1, Corollary 4.12]). If the inequality

n > 4dF ′ + 4 (3.5)

holds, then any non-flat, F -Yang-Mils connection over Sn(r) is instable.

This corollary is an extension of the instability theorems of Yang-Mills connections

(Simons [17]) and p-Yang-Mills connections (Chen-Zhou [4, Corollary 4.2]). On the

other hand, we can find some observations of the instability of F -Yang-Mills connections

with dF ′ = ∞ (for example, see [1, Propositions 4.13 and 4.14]).

As shown in Corollary 3.4, the inequality (3.5) is independent of the choice of non-

flat, F -Yang-Mills connections over the standard sphere Sn(r). Motivated by such a

property of Sn(r), we introduce the following notion.

Definition 3.2. A connected, closed Riemannian manifold M is said to be F -Yang-

Mills instable, if for any principal fiber bundle P over M , any non-flat, F -Yang-Mills

connection on gP over M is instable. For simplicity, M is said to be p-Yang-Mills

instable, if M is Fp-Yang-Mills instable, where the function Fp is defined in Example

2.1, (1).

This notion is an extension of the Yang-Mills instability in the sense of Kobayashi-

Ohnita-Takeuchi ([13, p. 165]). Corollary 3.4 means that Sn(r) satisfying (3.5) is F -

Yang-Mills instable. Our concern is the converse of Corollary 3.4, namely, whether
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an F -Yang-Mills instable, connected, closed Riemannian manifold is isomorphic to the

standard sphere in some way. The aim of this paper is to give F -Yang-Mills instable,

connected, closed Riemannian manifolds except for the standard sphere.

3.2. Minimal submanifolds of standard spheres. In this subsection, we give a

sufficient condition for a connected, closed minimal submanifold of the standard sphere

to be F -Yang-Mills instable.

Let M be a connected, closed Riemannian manifold isometrically immersed in RN .

Suppose that M is a minimal submanifold of SN−1(r). For any F -harmonic form

φ ∈ Ω2(gP ), we will rewrite the inequality (3.4) by means of some kinds of curvatures

of M . For this purpose, we first evaluate R(φ, φ) and Ric(φ, φ) by means of [13, (6.9)

Theorem]. Let σ be the Riemann curvature operator ofM and ρ be the Ricci curvature

operator of M . Here, for each x ∈ M , the two operators σx : Λ2(TxM) → Λ2(TxM)

and ρx : TxM → TxM are given as follows:

〈σx(X ∧ Y ), Z ∧W 〉 = 〈R(X,Y )W,Z〉 , 〈ρx(X), Y 〉 = Ric(X,Y ) ,

where the inner product 〈·, ·〉 on Λ2(TxM) is 〈X ∧ Y, Z ∧ W 〉 = 〈X,Z〉〈Y,W 〉 −
〈X,W 〉〈Y, Z〉 for tangent vectors X,Y, Z,W ofM . Then we have 〈σx(X∧Y ), Z∧W 〉 =
〈X ∧ Y, σx(Z ∧W )〉 and 〈ρx(X), Y 〉 = 〈X, ρx(Y )〉, so that σx and ρx are diagonaliz-

able over R. We denote by sx the maximum eigenvalue of σx and by cx the minimum

eigenvalue of ρx. We set

s = sup
x∈M

sx , c = inf
x∈M

cx .

Then the following lemma holds.

Lemma 3.5 ([13, (6.7), (6.8)]). For any φ ∈ Ω2(gP ), we have R(φ, φ) ≤ 4s‖φ‖2 and

Ric(φ, φ) ≥ 2c‖φ‖2.

Next, we calculate H(φ, φ) by means of the minimality of M ⊂ SN−1(r). Let

(e1, . . . , en) be an orthonormal basis of TxM (x ∈ M) and (en+1, . . . , eN−1, eN) be an

orthonormal basis of the normal space T⊥
x M in RN such that eN is inward normal to

SN−1(r). Then we have hNij = (1/r)δij, from which HN = n/r holds. In addition, by

the minimality of M in SN−1(r), we have Hµ = 0 for µ = n + 1, . . . , N − 1. Hence we

obtain

H(φ, φ) =
∑
i,j,k,l

n

r2
δikδjl〈φij, φkl〉 =

2n

r2
‖φ‖2 . (3.6)
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We will evaluate

〈h1(φ, φ),h1(φ, φ)〉 =
N−1∑

µ=n+1

|hµ1(φ, φ)|2 + |hN1 (φ, φ)|2 , (3.7)

by means of the principal curvatures of M ⊂ SN−1(r). Let h̃ denote the second fun-

damental form of M ⊂ SN−1(r) and Ãξ denote the shape operator of M ⊂ SN−1(r)

associated to ξ ∈ T̃⊥
x M . The relation 〈h̃(X,Y ), ξ〉 = 〈Ãξ(X), Y 〉 holds for X,Y ∈ TxM

and ξ ∈ T̃⊥
x M . In order to calculate the first term of the right hand side of (3.7), we

introduce the following nonnegative constant γ.

Definition 3.3. We set

γ = sup
x∈M

γx , γx = sup{‖Ãξ‖ | ξ ∈ T̃⊥
x M, ‖ξ‖ = 1} ,

where ‖Ãξ‖ denotes the spectral norm of Ãξ.

By the definition, for each ξ ∈ T̃⊥
x M with ‖ξ‖ = 1, the following inequality holds:

|λξ,i| ≤ ‖Ãξ‖ ≤ γ , 1 ≤ i ≤ n , (3.8)

where λξ,1, . . . , λξ,n are the eigenvalues of Ãξ. Then we have the following lemma.

Lemma 3.6. For any φ ∈ Ω2(gP ), we have:

〈h1(φ, φ),h1(φ, φ)〉 ≤ 4

{
(N − n− 1)γ2 +

1

r2

}
‖φ‖4 .

Proof. A direct calculation shows

hN1 (φ, φ) =
∑
i,j,k,l

1

r
δikδjl〈φij, φkl〉 =

2

r
‖φ‖2 . (3.9)

For each µ = n + 1, . . . , N − 1, we take an orthonormal basis (u
(µ)
1 , . . . , u

(µ)
n ) of TxM

which diagonalizes Ãeµ , namely, Ãeµu
(µ)
i = λeµ,iu

(µ)
i , where λeµ,i’s are the eigenvalues

of Ãξ. Then we get 〈h̃(u(µ)i , u
(µ)
k ), eµ〉 = λeµ,iδik. As mentioned before, hµ1(φ, φ) is

independent of the choice of orthonormal bases of TxM . Hence hµ1(φ, φ) is calculated

by means of (u
(µ)
1 , . . . , u

(µ)
n ) as follows:

hµ1(φ, φ) =
∑
i,j,k,l

〈h̃(u(µ)i , u
(µ)
k ), eµ〉〈u(µ)j , u

(µ)
l 〉〈φ

u
(µ)
i ,u

(µ)
j
, φ

u
(µ)
k ,u

(µ)
l
〉

=
∑
i,j

λeµ,i〈φu
(µ)
i ,u

(µ)
j
, φ

u
(µ)
i ,u

(µ)
j
〉 .
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In addition, by (3.8), we obtain

|hµ1(φ, φ)| ≤ γ
∑
i,j

〈φ
u
(µ)
i ,u

(µ)
j
, φ

u
(µ)
i ,u

(µ)
j
〉 = 2γ‖φ‖2 . (3.10)

Substituting (3.9) and (3.10) into (3.7), we have the assertion. □

From the above argument, we obtain the following theorem, which is a reformulation

of [16, Theorem 25] in terms of the notion of the F -Yang-Mills instability.

Theorem 3.7. Let M be an n-dimensional, connected, closed, immersed minimal sub-

manifold of SN−1(r). Suppose that dF ′ is nonnegative. Then, if the inequality

4dF ′

{
(N − n− 1)γ2 +

1

r2

}
+
n

r2
− 2c+ 2s < 0 (3.11)

holds, then we have
∑

A Iφ(ιVA
φ) < 0 holds for all non-zero F -harmonic form φ ∈

Ω2(gP ). In particular, (3.11) implies that M is F -Yang-Mills instable.

Proof. It follows from Lemma 3.5 and (3.6) that the following inequality holds:

H(φ, φ)− 2Ric(φ, φ) +R(φ, φ) ≤ 2
( n
r2

− 2c+ 2s
)
‖φ‖2 .

We also have:

dF ′〈h1(φ, φ),h1(φ, φ)〉 ≤ 4dF ′

{
(N − n− 1)γ2 +

1

r2

}
‖φ‖4 .

Here, we have used that dF ′ is nonnegative. Substituting the above two inequalities

into (3.3), we get:

B(φ, φ) ≤
[
4dF ′

{
(N − n− 1)γ2 +

1

r2

}
+
n

r2
− 2c+ 2s

]
‖φ‖4 ,

from which the assumption (3.11) yields B(φ, φ) < 0. Thus, by Proposition 3.3, we

have the assertion. □

Our concern is to find an connected, closed, minimal submanifold satisfying (3.11).

In fact, we give such a submanifold in the next section.

Theorem 3.7 is an extension of Kobayashi-Ohnita-Takeuchi’s result [13, (6.9) Theo-

rem] for harmonic forms to F -harmonic forms. Applying Theorem 3.7 to the function

F = Fp defined in Example 2.1, (1), the inequality (3.11) is rewritten as follows:

2(p− 2)

{
(N − n− 1)γ2 +

1

r2

}
+
n

r2
− 2c+ 2s < 0 . (3.12)

This inequality gives a sufficient condition for a connected, closed, minimal submanifold

of SN−1(r) to be p-Yang-Mills instable. We find an alternative formula for this due to
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Kawagoe [11, Theorem 6.1]. There is a slight difference between them in the definition

of γ. When our concern in the upper bound on p for (3.12), our result gives a refinement

of [11, Theorem 6.1].

4. Instability of F -Yang-Mills connections over irreducible symmetric

R-spaces

In this section, we give an irreducible symmetric R-space which is F -Yang-Mills in-

stable in the sense of Definition 3.2. In Subsection 4.1, we first recall the basics of

the canonical imbedding f of an irreducible symmetric R-space M . Due to Takeuchi-

Kobayashi ([20]), the image f(M) becomes a minimal submanifold of a specified stan-

dard sphere (Proposition 4.1). Next, we rewrite (3.11) as (4.2) by applying Theorem

3.7 to irreducible symmetric R-spaces (Theorem 4.1). In Subsection 4.2, we classify

irreducible symmetric R-spaces satisfying (4.2) (Theorem 4.14). Then we find that the

Cayley projective plane is F -Yang-Mills instable (Corollary 4.15), which gives our proof

of Theorem 1.3 stated in Introduction.

4.1. A sufficient condition for the F -Yang-Mills instability. Let L be a con-

nected, semisimple Lie group with trivial center and U be a parabolic subgroup of L.

The homogeneous space M = L/U is called an R-space. Let l and u be the Lie alge-

bras of L and U , respectively. Then there exists a hyperbolic element J of l (that is,

ad(J) ∈ End(l) is diagonalizable over R) satisfying u =
∑

λ≥0 l
λ, where the summation

ranges over all the nonnegative eigenvalues λ of ad(J) and lλ(⊂ l) denotes the eigenspace

of ad(J) associated to λ. It is shown that there exists a maximal compact subgroup

K of L such that J is orthogonal to the Lie algebra k of K with respect to the Killing

form (·, ·)l of l. Then the homogeneous space L/K becomes a Riemannian symmetric

space of noncompact type in a natural manner. We have the Cartan decomposition of

l associated to k, which we write l = k ⊕ p. Here, p is the orthogonal complement of k

in l with respect to (·, ·)l. In particular, J is in p. We denote by AdL : L → GL(l) the

adjoint representation of L. Since we have AdL(k)p ⊂ p for all k ∈ K, AdL induces the

adjoint representation of K on p, which we write Ad : K → GL(p). This representation

is orthogonal with respect to the inner product defined by the restriction of (·, ·)l to
p× p. Geometrically, the space p is canonically isomorphic to the tangent space at the

origin eK of L/K. Under this identification, Ad is equivalent to the isotropy represen-

tation of L/K. It is known that K acts transitively on M (cf. [20, Proposition 2.1]), so

that M is expressed as M = K/KJ , where KJ = {k ∈ K | Ad(k)J = J}. In particular,
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M is compact. From this expression, we have the K-equivariant map from M = K/KJ

to p as follows:

f(kKJ) = Ad(k)J (k ∈ K) .

This map f is called the canonical imbedding of M . Then M is diffeomorphic to the

Ad(K)-orbit through J , which we write Ad(K)J . Now, M is called a symmetric R-

space, if M = K/KJ becomes a symmetric space. A symmetric R-space M = L/U is

said to be irreducible, if L is simple. The classification of symmetric R-spaces reduces to

irreducible ones, which was classified by Kobayashi-Nagano (see [12, p. 895 for classical

cases, p. 906 for exceptional cases]. We also find a complete list in [15, p. 41]). From

the classification, we observe that an irreducible symmetric R-space is not necessarily

isotropy irreducible.

Following to Takeuchi-Kobayashi ([20]), we give a K-invariant Riemannian metric

on M = K/KJ as follows: Since −(·, ·)l gives an positive definite inner product on k,

the Lie algebra kJ of KJ has the orthogonal complement in k with respect to this inner

product, which we write m = (kJ)
⊥. Under the canonical identification of m with ToM

(o = eKJ), the adjoint action of KJ on m is equivalent to the isotropy representation

of KJ on ToM . Furthermore, by means of this identification, the restriction of −(·, ·)l
to m × m gives a KJ -invariant inner product on ToM , which induces a K-invariant

Riemannian metric on M = K/KJ in a natural manner. Then it is shown that the

canonical imbedding f :M → p is isometric. We write the Riemannian metric onM as

the same symbol 〈·, ·〉 if there is no confusion. In addition, Kobayashi-Takeuchi proved

the following proposition.

Proposition 4.1 ([20, Theorem 4.2]). Let M be an irreducible symmetric R-space. We

set n = dim(M) and N = dim(p). Let S = SN−1(
√
2n) denote the hypersphere of radius

√
2n centered at the origin in p. Then, the image f(M) of the canonical imbedding is

a minimal submanifold of S.

By this proposition it makes sense to determine whether irreducible symmetric R-

spaces satisfy the inequality (3.11) stated in Theorem 3.7. By means of Proposition

4.1, Theorem 3.7 is rewritten as follows.

Theorem 4.2. Let M = K/KJ be an irreducible symmetric R-space associated with a

Riemannian symmetric space L/K of noncompact type. We set

BJ = 4dF ′

{
(N − n− 1)γ2 +

1

2n

}
+

1

2
− 2c+ 2s . (4.1)
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Suppose that dF ′ is nonnegative. If the inequality

BJ < 0 (4.2)

holds, then M is F -Yang-Mills instable.

Example 4.1. We give some observations. (1) If we take F (t) = t, then dF ′ = 0 holds,

so that the inequality (4.2) is rewritten as

1

2
− 2c+ 2s < 0 . (4.3)

In the case when M is isotropy irreducible, Ohnita [15, Theorem 7] proved that the

canonical imbedding is equivalent to the first standard imbedding in the sense of Taka-

hashi [18]. Then, the inequality (4.3) coincides with the inequality stated in [13, (7.10)

Theorem]. This means that our inequality (4.2) is an extension of [13, (7.10) Theorem]

to an F -Yang-Mills version. We note that the inequality (4.3) is described by means of

intrinsic curvatures of M only.

(2) If we take F = Fp (p ≥ 2) defined in Example 2.1, (1), then the inequality (4.2)

is rewritten as

2(p− 2)

{
(N − n− 1)γ2 +

1

r2

}
+

1

2
− 2c+ 2s < 0 .

In the case when M is isotropy irreducible, we find an alternative formula for this due

to Kawagoe [11, Corollary 6.2]. The difference between them is the same as explained

as before. However, [11] did not exhibit concrete examples satisfying the inequality

stated in [11, Corollary 6.2].

Under the setting of Theorem 4.2, the first term of the definition (4.1) of BJ is

nonnegative. The following lemma shows that (4.3) gives a necessary condition for an

irreducible symmetric R-space to satisfy (4.2).

Lemma 4.3. Fix an irreducible symmetric R-space M = K/KJ . Let Fi (i = 1, 2) be a

strictly increasing C2-function with 0 ≤ dF ′
i
< ∞. We use the symbol BJ,Fi

instead of

BJ in order to emphasize the dependence on Fi. Then, dF ′
1
≤ dF ′

2
yields BJ,F1 ≤ BJ,F2.

In particular, BJ,F2 < 0 yields BJ,F1 < 0.

Kobayashi-Ohnita-Takeuchi [13, (7.11) Theorem] classified isotropy irreducible Rie-

mannian symmetric spaces of compact type satisfying (4.3). This implies that the only

isotropy irreducible, irreducible symmetric R-spaces satisfying (4.3) are Sn (n > 4) and

F4/Spin(9). Thus, we will determine whether Sn (n > 4), F4/Spin(9) and irreducible
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symmetric R-spaces which are not isotropy irreducible satisfy the inequality (4.2). For

this purpose, we need to determine the value of the constant BJ for these spaces.

4.2. Determination of the sufficient condition. Let M = K/KJ be an irreducible

symmetric R-space and f :M → p denote the canonical imbedding. The determination

of the constant BJ is reduced to those of the constants N , n, c, s and γ. Here, the

dimensions of isotropy irreducible Riemannian symmetric spaces are well-known (cf. [8,

Table V]), so that we can easily obtain the values of N and n from the isotropy irre-

ducible decomposition of M . In what follows, we focus our attention on the calculation

of c, s and γ.

4.2.1. Determination of the constants c and s. The Ricci curvatures of irreducible sym-

metric R-spacesM are determined by Takeuchi ([19, Section 3]). In fact, he determined

the Einstein constants of each factor for the locally isometric decomposition of M .

From his result we immediately obtain the value of c. On the other hand, Kobayashi-

Ohnita-Takeuchi ([13, Table, p. 187]) showed the positive eigenvalues of the Riemann

curvature operator for isotropy irreducible Riemannian symmetric spaces with respect

to the normal homogeneous Riemannian metric 〈·, ·〉′. In particular, they determined

the maximum eigenvalue s′ of the Riemann curvature operator of M with respect to

〈·, ·〉′. We note that if there exists ν > 0 satisfying (·, ·)k = ν(·, ·)l on k× k, then we have

s = νs′. Hence, by applying their result to our setting, we can obtain the value of s for

each irreducible symmetric R-space with respect to 〈·, ·〉.

Lemma 4.4. In the case when M = Sn, we have c = (n− 1)/2n and s = 1/2n.

Proof. Since Sn is Einstein, c is equal to its Einstein constant. From [19, p. 309] we get

c = (n − 1)/2n. On the other hand, by [13, Table, p. 187], we get s′ = 1/2(n − 1) for

Sn = SO(n+ 1)/SO(n). In addition, by (·, ·)k = ((n− 1)/n)(·, ·)l on k× k, we have:

s =
n− 1

n
· 1

2(n− 1)
=

1

2n
.

Thus we have complete the proof. □

Example 4.2. The standard sphere M = K/KJ = Sn is an irreducible symmetric R-

space associated with the Riemannian symmetric space L/K = SO(1, n+1)/SO(n+1)

of noncompact type. Then we have N = n+1, from which we need not to determine γ

in order to obtain BJ . In addition, by Lemma 4.4, we have BJ = (−n+ 4dF ′ + 4)/2n.

It follows from Theorem 4.2 that Sn is F -Yang-Mills instable if n > 4dF ′ + 4. This

inequality coincides with (3.5) given in Corollary 3.4.
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The following lemma is shown by a similar way to Lemma 4.4. We omit the details

for its proof.

Lemma 4.5. In the case when M = F4/Spin(9), we have c = 3/8 and s = 1/12.

Proposition 4.6. Let M be an irreducible symmetric R-spaces which is not isotropy

irreducible. Then, M does not satisfy the inequality (4.2).

Proof. By the assumption of this propositionM is locally isometric to S1×M ′ for some

compact connected Einstein symmetric space M ′ or to Sp−1 × Sq−1 for some p, q with

p ≤ q. In the former case, we have c = 0, from which the following holds:

1

2
− 2c+ 2s =

1

2
+ 2s > 0 .

In the latter case, we have c = (p − 2)/2(p + q − 2) (cf. [19, p. 309, (8)]) and s =

1/2(p+ q − 2) (cf. [13, Table, p. 187]). Hence we have

1

2
− 2c+ 2s =

q − p+ 4

2(p+ q − 2)
> 0 .

From the above argument M does not satisfy (4.3). From this, the assertion holds. □

The rest task is to obtain the upper bound of dF ′ for M = F4/Spin(9) to satisfy

the inequality (4.2). For this, we need to obtain the value of γ for the submanifold

f(M) ⊂ S.

4.2.2. Determination of the constants γ and BJ for F4/Spin(9). We first give a method

to determine the value of γ for a general irreducible symmetric R-space which is realized

as the orbit through J ∈ p under the adjoint representation Ad : K → GL(p). We note

that Ad is a polar representation (cf. [5]). Indeed, any maximal abelian subspace of

p gives a section of Ad (cf. [2, Theorem 3.2.13]). This fact enable us to construct a

method to determine the constant γ. Namely, our method is based on restricted root

system theory associated to L/K with respect to a maximal abelian subspace of p (see,

Appendix A for a brief review of restricted root systems). As shown later in Proposition

4.8, we will derive a formula for γ by means of the restricted root system.

Let a be a maximal abelian subspace of p, and a∗ denote its dual space. We denote

by Σ(⊂ a∗ − {0}) the restricted root system of L/K with respect to a. Without loss

of generalities, we may assume that J is an element of a, since Ad(k)a (k ∈ K) gives

another maximal abelian subspace of p and the following relation holds:

p =
⋃
k∈K

Ad(k)a .
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We describe the restricted root space decomposition of k and p for Σ as follows: We set

k0 = {X ∈ k | [H,X] = 0, H ∈ a} and, for each λ ∈ Σ,

kλ = {X ∈ k | [H, [H,X]] = λ(H)2X, H ∈ a} ,

pλ = {X ∈ p | [H, [H,X]] = λ(H)2X, H ∈ a} .

Then we have

k = k0 ⊕
∑
λ∈Σ+

kλ , p = a⊕
∑
λ∈Σ+

pλ,

where Σ+ is the set of positive restricted roots of Σ with respect to some ordering.

From the above, the tangent space TJ(Ad(K)J) of the orbit Ad(K)J is decomposed

into

TJ(Ad(K)J) = [k, J ] =
∑

λ∈Σ+;λ(J )̸=0

pλ .

We also have:

T̃⊥
J (Ad(K)J) = (J⊥ ∩ a)⊕

∑
λ∈Σ+;λ(J)=0

pλ ,

where J⊥ ∩ a = {X ∈ a | 〈J,X〉 = 0}. We set pJ = {X ∈ p | [X, J ] = 0} and

lJ = kJ ⊕ pJ = {X ∈ l | [X, J ] = 0}. Then lJ is a subalgebra of l and (lJ , kJ) gives an

orthogonal symmetric Lie algebra. Since a gives a section of Ad(KJ)-action on pJ , we

get:

pJ =
⋃

k∈KJ

Ad(k)a .

This implies that T̃⊥
J (Ad(K)J) has the following expression:

T̃⊥
J (Ad(K)H) =

⋃
k∈KJ

Ad(k)(J⊥ ∩ a) .

Hence, for any normal vector ξ ∈ T̃⊥
J (Ad(K)J), there exists k ∈ KJ satisfying Ad(k)ξ ∈

J⊥ ∩ a, from which we have Ãξ = Ad(k)−1ÃAd(k)ξAd(k). This means that the principal

curvatures of Ãξ coincides with those of ÃAd(k)ξ (including their multiplicities). For

λ ∈ Σ+ with λ(J) 6= 0 and ξ ∈ J⊥ ∩ a, we get the following (cf. [2, Example 3.4]):

Ãξ|pλ = − λ(ξ)

λ(J)
idpλ .

From the above argument, we conclude:
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Lemma 4.7. For any normal vector ξ ∈ T̃⊥
J (Ad(K)J), there exists k ∈ KJ with

Ad(k)ξ ∈ H⊥ ∩ a and the spectrum norm ‖Ãξ‖ is expressed as follows:

‖Ãξ‖ = max

{∣∣∣∣−λ(Ad(k)ξ)λ(J)

∣∣∣∣ ∣∣∣∣ λ ∈ Σ+, λ(J) 6= 0

}
.

By this lemma, we give our formula for determining γ = γJ as follows.

Proposition 4.8. Under the above setting, we obtain:

γ = max

{∣∣∣∣− λ(ξ)

λ(J)

∣∣∣∣ ∣∣∣∣ λ ∈ Σ+, λ(J) 6= 0, ξ ∈ J⊥ ∩ a, ‖ξ‖ = 1

}
.

Next, we describe {λ ∈ Σ+ | λ(J) 6= 0} and J⊥∩a by means of a fundamental system

of Σ as a root system. Let Λ = {λ1, . . . , λr} (r = rank(Σ)) be the fundamental system

of Σ associated with Σ+ and {H1, . . . , Hr}(⊂ a) denote the dual basis of Λ. We write

the highest root of Σ associated with Λ as λ̃. For a general element J of a, if λ̃(J) = 1

holds, then the R-space K/KJ becomes a symmetric R-space. This implies that, if we

express λ̃ as

λ̃ = m1λ1 + · · ·+mrλr (m1, . . . ,mr ∈ Z>0) ,

then, for some i with mi = 1 (if there exists), K/KHi is a symmetric R-space. Con-

versely, any irreducible symmetric R-space is constructed in such a way. Hence, without

loss of generalities, we may choose J = H i with mi = 1. From this, we can obtain

{λ ∈ Σ+ | λ(J) 6= 0} by using the following lemma.

Lemma 4.9. Let J = H i with mi = 1, and λ ∈ Σ+ be a positive restricted root. We

write λ = l1λ1+ · · ·+ lrλr for some l1, . . . , lr ∈ Z≥0. Then, λ is in {λ ∈ Σ+ | λ(J) 6= 0}
if and only if li = 1 holds.

Proof. This lemma immediately from λ(J) = li ≤ mi = 1. □

Corollary 4.10. Let J = H i with mi = 1. For any λ ∈ Σ+ with λ(J) 6= 0, we have

λ(J) = 1.

For each λ ∈ Σ, we define the restricted root vector Hλ ∈ a as follows:

λ(H) = 〈Hλ, H〉 , H ∈ a .

It is shown that {Hλ | λ ∈ Λ} gives a basis of a. Then, we have the following lemma.
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Lemma 4.11. Let J = H i. Then J⊥ ∩ a has the following description:

J⊥ ∩ a =

{
r∑

k=1, k ̸=i

ξkHλk

∣∣∣∣∣ ξk ∈ R, 1 ≤ k ≤ r, k 6= i

}
.

Furthermore, by means of {H1, . . . , Hr}, ξ =
∑r

k=1, k ̸=i ξkHλk
is expressed as follows:

ξ =
r∑

l=1

ξ̃lH
l, ξ̃l =

r∑
k=1, k ̸=i

ξk〈Hλl
, Hλk

〉 .

Proof. Let ξ =
∑r

k=1 ξkHλk
∈ a. If we denote by C the Cartan matrix of Σ as a root

system, that is,

C = (Ckl)1≤k,l≤r =

(
2〈Hλl

, Hλk
〉

〈Hλl
, Hλl

〉

)
1≤k,l≤r

,

then we have

〈J, ξ〉 =
r∑

k,l=1

ξk
2〈Hλl

, Hλk
〉

〈Hλl
, Hλl

〉
(tC−1)li =

r∑
k=1

ξk

(
r∑

l=1

tCkl(
tC−1)li

)
=

r∑
k=1

ξkδki = ξi .

From this, we have the assertion. □

We are ready to determine the constant γ for M = F4/Spin(9).

Lemma 4.12. In the case when M = F4/Spin(9), we have γ = 1/4
√
6.

Proof. We give a realization of M = F4/Spin(9) as an orbit of the isotropy repre-

sentation of the Riemannian symmetric space L/K = E−26
6 /F4 of noncompact type.

The restricted root system Σ of L/K is of type A2. If Λ = {λ1, λ2} is a funda-

mental system of Σ, then the highest root λ̃ of Σ associated with Λ is expressed by

λ̃ = λ1 + λ2. Then we have K/KJ = F4/Spin(9) with J = H1. From Lemma 4.9, we

get {λ ∈ Σ+ | λ(J) 6= 0} = {λ1, λ1 + λ2}. Here, it is shown that, for any λ ∈ Σ+, the

length ‖Hλ‖ is given as follows (see, Appendix A for the proof):

‖Hλ‖ =
1

2
√
6
. (4.4)

In addition, since the angle between Hλ1 and Hλ2 is equal to 2π/3, we have:

(〈Hλk
, Hλl

〉)1≤k,l≤2 =

(
1/24 −1/48

−1/48 1/24

)
.

By Lemma 4.11, any vector ξ = ξ2Hλ2 ∈ J⊥ ∩ a is rewritten as ξ = ξ̃1H
1 + ξ̃2H

2 with

ξ̃1 = −ξ2/48 and ξ̃2 = ξ2/24. Then we obtain ‖ξ‖ = (1/2
√
6)|ξ2| and∣∣∣∣−λ1(ξ/‖ξ‖)λ1(J)

∣∣∣∣ = |ξ̃1|
‖ξ‖

=
1

4
√
6
,

∣∣∣∣−(λ1 + λ2)(ξ/‖ξ‖)
(λ1 + λ2)(J)

∣∣∣∣ = |ξ̃1 + ξ̃2|
‖ξ‖

=
1

4
√
6
.
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Thus, we have the assertion from Proposition 4.8. □

We obtain the constant BJ for M = F4/Spin(9) by means Lemmas 4.5 and 4.12.

Namely, we have the following proposition.

Proposition 4.13. In the case when M = F4/Spin(9), we have BJ =
dF ′

2
− 1

12
.

From the above argument, we conclude:

Theorem 4.14. The standard sphere Sn with 0 ≤ dF ′ < (n− 4)/4 and the Cayley pro-

jective space F4/Spin(9) with 0 ≤ dF ′ < 1/6 satisfy the inequality (4.2). Furthermore,

they are the only irreducible symmetric R-spaces satisfying this inequality.

From Theorems 4.2 and 4.14 we get the following corollary.

Corollary 4.15 (Theorem 1.3). Let F : [0, T ) → R be a strictly increasing C2-function

with 0 ≤ dF ′ < 1/6. Then, the Cayley projective plane F4/Spin(9) is F -Yang-Mills

instable.

Example 4.3. Applying Corollary 4.15 to the function F = Fp defined in Example 2.1,

(1), the Cayley projective plane F4/Spin(9) is p-Yang-Mills instable for 2 ≤ p < 2+1/3.

Appendix A. Riemannian symmetric spaces of noncompact type and

their restricted root systems

Let L/K be a Riemannian symmetric space of noncompact type. Here, K is a

maximal compact subgroup of L. Then there exists an involution of L satisfying Lθ
0 ⊂

K ⊂ Lθ, where Lθ denotes the fixed-point subgroup of θ in L, and Lθ
0 denotes the its

identity component. We write the Lie algebras of L and K as l and k, respectively.

The differentiation of θ at the identity element in L gives a Cartan involution of l,

which we write the same symbol θ. Then we have k = lθ. Let l = k⊕ p be the Cartan

decomposition of l associated with k, where p = l−θ. Let a be a maximal abelian

subspace of p and Σ denote the restricted root system of L/K with respect to a. The

restriction of the Killing form of l to a × a gives a positive definite inner product on

a, which we write 〈·, ·〉. For λ ∈ Σ, we denote by Hλ ∈ a the restricted root vector of

λ, that is, λ(H) = 〈Hλ, H〉 for H ∈ a. Under the above setting, we give a method to

determine the length ‖Hλ‖ =
√

〈Hλ, Hλ〉 of Hλ (λ ∈ Σ) and prove the equality (4.4).

We first describe Σ by means of the root system of the complexification lC of l. Let

h be a Cartan subalgebra of l containing a. Then h is θ-invariant, from which we have
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h = (h ∩ k)⊕ a. We define the real vector space hR by hR =
√
−1(h ∩ k)⊕ a(⊂ hC). It

is shown the the restriction of the Killing form of lC to hR × hR gives a positive definite

inner product on hR, which we write the same symbol 〈·, ·〉 if there is no confusion.

We denote by Σ̃(⊂ h∗R − {0}) the root system of lC with respect to hC. If we put

Σ̃0 = {α ∈ Σ̃ | α(H) = 0 , H ∈ a}, then the following relation holds:

Σ =
{
α|a

∣∣∣α ∈ Σ̃− Σ̃0

}
.

Next, we give a formula to obtain the length ‖Hλ‖ of λ ∈ Σ by means of the lengths

of root vectors for Σ̃. Here, the root vector Hα ∈ hR for α ∈ Σ̃ is defined by

α(H) = 〈Hα, H〉 , H ∈ hR,

which is well-defined since α takes real-valued on hR. We set σ = −θC|hR , which gives

a permutation on Σ̃. We have σ(Hα) = Hσ(α) for α ∈ Σ̃. For any λ ∈ Σ there exists

α ∈ Σ̃ − Σ̃0 satisfying λ = α|a. Then the vector Hλ for λ ∈ Σ coincides with the

a-component of Hα ∈ hR. Namely, we have Hλ = (1/2)(Hα + Hσ(α)), from which we

get the following lemma.

Lemma A.1. Let λ ∈ Σ and α ∈ Σ̃− Σ̃0 with λ = α|a. Then we have:

‖Hλ‖2 =
1

2

{
〈Hα, Hα〉+ 〈Hα, Hσ(α)〉

}
. (A.1)

The following relation is useful to determine Hσ(α) in (A.1):

Hζ+η = Hζ +Hη (ζ, η ∈ Σ̃ , ζ + η ∈ Σ̃) . (A.2)

We are ready to prove (4.4).

Proof of (4.4). Let L/K = E−26
6 /F4. We write the root system of lC = eC6 as Σ̃ = E6.

We can determine the action of σ on Σ̃ in terms of Satake diagram ([8, p. 532, TABLE

VI]). Indeed, there exists a fundamental system Λ̃ = {α1, . . . , α6} of Σ̃ such that, for

each i = 1, . . . , 6, σ(αi) is given by

σ(α1) = α1 + α2 + 2α3 + 2α4 + α5 , σ(α6) = α2 + α3 + 2α4 + 2α5 + α6 ,

and σ(αi) = −αi (i = 2, 3, 4, 5). We note that α1 is normal to αj (j = 2, 4, 5, 6). The

length ‖Hλ‖ (λ ∈ Σ = A2) is independent of the choice of λ. It is sufficient to show the

length of ‖Hλ1‖ with λ1 = α1|a is equal to 1/2
√
6. From Lemma A.1 and (A.2), we get:

‖Hλ1‖2 = 〈Hα1 , Hα1〉+ 〈Hα1 , Hα3〉 =
1

24
.
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Here, in the last equality, we have used the result of Yokota ([21, p. 82]) for the length

of the root vector Hαi
(i = 1, 3). Hence we have completed the proof. □
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