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Abstract

We define compatibility between Jacobi structures and pseudo-
Riemannian cometrics on Jacobi algebroids. This notion is a gener-
alization of the compatibility between Poisson structures and pseudo-
Riemannian cometrics on manifolds, which was defined by Boucetta
[?]. We show that the compatibility with a cometric is “preserved”
by the Poissonization of a Jacobi structure. Furthermore, we prove
that for a contact pseudo-metric structure on a manifold, satisfying
the compatibility condition is equivalent to being a Sasakian pseudo-
metric structure.

Keywords: Poisson manifold; Jacobi manifold; Lie algebroid; Jacobi
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1 Introduction

Jacobi manifolds were introduced by Lichnerowicz and Kirillov independently
as a generalization of Poisson manifolds. A Jacobi manifold is also a gen-
eralization of a contact manifold. The Poissonization of a Jacobi structure
on a manifold M is an operation which gives a Poisson structure on the
manifold M x R. The obtained Poisson structure on M x R is also called
the Poissonization of a given Jacobi structure on M. It is known that the
Poissonization gives a one-to-one correspondence between Jacobi structures
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on a manifold M and homogeneous Poisson structures on M x R. In par-
ticular, for a contact manifold, the Poissonization is an equivalent operation
to the symplectization of a given contact manifold. The Poissonization plays
a central role in the study of Jacobi manifolds since Poisson manifolds are
less complicated in various aspects than Jacobi manifolds. Notice that the
Poissonization extends to a Jacobi structure on a Jacobi algebroid, which is
a generalization of a Jacobi structure on a manifold.

In this paper, we call a non-degenarate (resp. positive definite) fiber met-
ric g on a vector bundle A a pseudo-Riemannian (resp. Riemannian) metric
on A. Boucetta [?] defined compatibility between Poisson structures and
pseudo-Riemannian cometrics on manifolds, i.e., pseudo-Riemannian met-
rics on the cotangent bundle, by using an affine connection on the cotangent
bundle. He showed that if a non-degenerate Poisson structure has a com-
patible cometric, the corresponding symplectic form is a Kéhler form. Due
to this result, a Poisson structure with a compatible cometric is considered
as a generalization of a Kahler structure. The compatibility between Pois-
son structures and cometrics have been extensively studied. For instance,
the case for the Lie-Poisson structure on the dual space of a Lie algebra is
studied in [?] [7].

In this paper, we define compatibility between a Jacobi structure m and
a pseudo-Riemannian cometric g* on a Jacobi algebroid (A, ¢). This notion
is a generalization of the compatibility between a Poisson structure and a
pseudo-Riemannian cometric on a manifold.

DEFINITION 1.1. Let (A, ¢g) be a Jacobi algebroid over M, 7 a 2-section
on (A, ¢g) and ¢g* a pseudo-Riemannian metric on A*. The pair (7, ¢*) is said
to be compatible on (A, ¢g) if

(DF*m)(8,7) = ~5((Xo @ m)(8,7,0) + (Xo © )(3, )
+ 9" (. B)n((g") " (Xo), )
- g*(Oé, 7)W<<g*>b_1(X0>7 5))7

where D™% is the Levi-Civita connection of g* on the skew algebroid Az 4
induced by 7 and X := —7¥¢g in I'(A).

Compatibility between a Jacobi structure (A, E') and a pseudo-Riemannian
metric g on a manifold M was already defined in [?]. However that is differ-
ent from the definition in this paper. In their definition, the compatibility of



(A, E, g) is defined by using the cotangent bundle 7% M with a skew algebroid
structure associated with a Jacobi structure (A, F') and pseudo-Riemannian
metric g. Meanwhile, applying our definition to the case on a manifold, the
compatibility of ((A, E), g*), where g* is a pseudo-Riemannian cometric on
M, is described by using the Whitney sum 7"°M @& R :=T*M & (M x R) of
the cotangent bundle and the trivial line bundle with the standard Lie and
Jacobi algebroid structure.

In [?], the authors generalized compatibility between a Jacobi structure
(A, E) and a pseudo-Riemannian metric g on a manifold M to that on an ar-

bitrary Lie algebroid (A, pa, [, -]a). Compare their definition with Definition
27

DEFINITION 1.2 ([?]). Let A = (A, pa, [, -]a) be a skew algebroid over M,
A a 2-section on A, E a section on A and ¢ a pseudo-Riemannian metric on
A. Set g*(a, B) := (¢ Ha), B) for any a and 3 in I'(A*). The triple (A, E, g)
is said to be compatible on A if

(DaA)(B,7) = 5(E® A)(B,7,0) + (@ A)(,0,5)

+ g% (e, BIN((g") 1 (E), )
— " (e, V)A((g")H(E), B)),

where D is the Levi-Civita connection of g* on the skew algebroid (A*, p(s, k),
['7 ]?Af))) Here p(A,E)(a) = pA<AﬁOé + <C¥, E)) and [(X?ﬁ]?A,E) = [avﬁ]A +
<C¥, E)(ﬁfﬁ - ﬁ) - <B7E>(£:‘f4a - Oé) - A(Oé,ﬁ)(g(E, E)ng - gbAﬁng)) for
any o and ( in ['(A*).

In [?], the authors proved that a locally conformal symplectic structure
equipped with a compatible Riemannian metric becomes a locally conformal
Kahler structure. Furthermore, they also proved that a contact structure n
in Q'(M) equipped with a compatible Riemannian metric becomes a 1/2-
Kenmotsu structure. However, the 1-form 7 of a 1/2-Kenmotsu structure is
a closed form while a contact structure 7 satisfies dn # 0. Hence it implies
that a contact structure does not have compatible Riemannian metrics in the
sense of [?] [?].

We propose another definition of compatibility between Jacobi structures
and pseudo-Riemannian metrics. In terms of the Poissonization of a Jacobi
structure, it is more natural to consider our definition than theirs. In fact,
we show that the compatibility with a cometric is “preserved” under the
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Poissonization of a Jacobi structure. Furthermore, we prove that for a contact
pseudo-metric structure on a manifold, satisfying the compatibility condition
is equivalent to being a Sasakian pseudo-metric structure. Therefore, a Jacobi
structure with a compatible cometric is considered as a generalization of a
Sasakian structure.

This paper is organized as follows. In Section 2, we review the definitions
of several notions such as Lie algebroids, Poisson structures, Jacobi alge-
broids and Jacobi structures. In addition, we explain the Poissonization of a
Jacobi structure. In Section 3, we recall the compatibility between Poisson
structures and pseudo-Riemannian cometrics defined by Boucetta [?]. Af-
ter that, as a generalization of that notion, we define compatibility between
Jacobi structures and pseudo-Riemannian cometrics on Jacobi algebroids.
We show that the compatibility with a cometric is “preserved” under the
Poissonization of a Jacobi structure. At the end, we state that a Sasakian
pseudo-metric structure is regarded as a special case of a Jacobi structure
with a compatible cometric.

2 Preliminaries

In this section, we recall the definitions and properties of Lie algebroids,
Poisson structures, Jacobi algebroids and Jacobi structures. See [?] for details
on Jacobi algebroids and Jacobi structures.

2.1 Lie algebroids and Poisson structures

A skew algebroid over a manifold M is a vector bundle A — M equipped
with a skew symmetric R-bilinear map [-,]4 : T'(A) x T'(A) — T'(A), called
the bracket, and a bundle map py : A — T M over M, called the anchor,
satisfying the following condition: for any X,Y in I'(A) and f in C*(M),

(X, fY]a = fIX,Y]a+ (pa(X)f)Y,

where we denote the map I'(A) — I'(T'M) = X(M) induced by the anchor,
the same symbol p4. A Lie algebroid over a manifold M is a skew algebroid
(A, [, ]a, pa) such that the bracket satisfies the Jacobi identity, i.e., |-, ]4 is
a Lie bracket on I'(A). For any Lie algebroid (A, [-,]4, pa) over M, it follows
that for any X and Y in I'(A),

pa([X,Y]a) = [pa(X), pa(Y)],
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where the bracket on the right hand side is the usual Lie bracket on X(M).

EXAMPLE 2.1. For any manifold M, the tangent bundle (T'M, |-, -],idras)
is a Lie algebroid over M, where [-, -] is the usual Lie bracket on the vector
fields X(M) =T(T'M).

Let (A, [, ]a, pa) be a skew algebroid over M. The Schouten bracket on
['(A*A) is defined similarly to the Schouten bracket [-,:] on the multivector
fields X*(M). That is, the Schouten bracket [-,-]4 : T(A*A) x T'(A'A) —
[(A*1=1A) is defined as the unique extension of the bracket [-,-]4 on I'(A)
such that

[f7 g]A = Oa
(X, fla = pa(X)f;
[X,Y]4 is the bracket on I'(A);
[D1, Dy A Ds)a = [Dy, Daa A Dy + (=1) V% Dy A [Dy, D) a;
[D1, Da]a = —(—1) D=0 [Dy D]y
for any f,g in C>*(M), X,Y in I'(A), D; in I'(A*“A). The differential of the
skew algebroid A is an operator da : T'(AFA*) — ['(A*1A*) defined by for
any w in I'(A*A*) and Xy, ..., X in ['(4),
k

(@40 (Xor - Xe) = S (1) palX) (@Ko -, Xy X))

i=0

+ Z(-l)erjw([X“Xj]A,XO’ ce ;X’h Ce ,Xj, . 7XI<:>

i<j
(1)

If (A,[-,-]a,pa) is a Lie algebroid, d4 = 0 holds. For any X in T'(A), the
Lie derivative L4 : T(AFA*) — T'(A*A*) is defined by the Cartan formula
L4 = datx +i1xdy and L4 are extended on T'(A*A) in the same way as the
usual Lie derivative Ly respectively. Then it follows that £4D = [X, D]a
for any D in T'(A*A). We call a ds-closed 2-cosection w, i.e., dqw = 0,
a presymplectic structure on (A, [, -]a,pa). A presymplectic structure w is
called a symplectic structure if w is non-degenerate.

REMARK 2.2. In the definition of the Schouten bracket, some authors use
a condition

(D1, Da]a = (—=1)"2[Dy, D1]a (2)
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for any D; in T'(A% A) instead of the condition [Dy, Dy]s = —(—1)(@~Dia2=1)
[DZa Dl]A-

EXAMPLE 2.3. Let A be a vector bundle over a manifold M and set
A®R:= A® (M x R). Then the sections I'(A*(A @ R)) and ['(AF(A B R)*)
can be identified with ['(A*A) x ['(A*1A) and T'(AFA*) x T(A*1A4*) as
follows:

<P7 Q)((alv f1)7 SRR (Oék, fk))
:Pa1>---7 +Z z+1f1 Oél,...,ééi,...,Oék), (3)

(a75)((X17f1>’ ) (Xkafk:))
:Oé(Xl,..., +Z Z+1f1 Xl,...,Xi7...,X]€) (4)

for any (P, Q) in T(A*A) x T'(A*1A), (a, B) in T(AFA*) x T(A*1A%), (ay, fi)
in ['(A*) x C*°(M) and (X, f;) in T'(A) x C°(M). Moreover under the

identifications, the exterior products are given by

(P, Q) A (P2, @2) = (PLA Py, QuA P+ (—1)" LA Q2),
(a1, B1) A (ag, Ba) = (1 Aag, B A ag + (=1)" ay A Ba)
for any (P;, Q;) in [(A%A)xT' (A%t A) and (o, 8;) in T(A% A*) x (A%~ A*).
Now, assume that A is a skew (resp. Lie) algebroid over M. Then (A &

R, [, -] asr, pa © pry) is also a skew (resp. Lie) algebroid over M, where the
bracket [-, -] agr is defined by

(X, 1), (Y 9)]aer = ([X, Y]a, pa(X)g — pa(Y)f) ()

and the map pr; : A@® R — A is the canonical projection to the first factor.
In this case, the differential dagr of the skew (resp. Lie) algebroid A & R
and the Schouten bracket [, -]agr are given by
dagr (e, B) = (dac, —=dap),
(P, Q1) (Po, Q2)lawm = ([Pr, Pala, (=1)"[Pr, Qo]a — [Q1, P2l a)

for any (a, 8) in T(AFA*) x T(AF1A4%) and (P, Q,) in T(A*A) x D(AF14).



A Poisson structure on a skew (resp. Lie) algebroid A over a manifold
M is a 2-section 7 in T'(A%A) satisfying [r, 7|4 = 0. For any 2-section 7 in
['(A%A), we define a skew-symmetric bilinear bracket [-, ], on I'(A*) by for
any &,n in I['(A*),

[57 n]TF = ‘Cﬁﬁgn - E?ﬁng - dA <7Tﬂ§7 77)7 (6>

where a bundle map 7 : A* — A over M is defined by (7*¢,n) = w(&,n).
Then a triple (A%, [, |, px), Where p; := pa o 7, is a skew algebroid. We
denote (A*, [, ], pr) by AL and the differential of A* by d,. Then d,D =
[, D] 4 holds for any D in I'(A*A). Moreover it follows that

Lim mla€n, ) = (b€, mhla — 7E . (7)

2
In the case that (A, [, ], pa) is a Lie algebroid, a skew algebroid A* is a Lie
algebroid if and only if 7 is Poisson.

It is well known that there exists a one-to-one correspondence between
symplectic structures and non-degenerate Poisson structures on a skew al-
gebroid (A, [, ]a,pa). In fact, for a non-degenerate Poisson structure ,
a 2-cosection w, characterized by w” = —(7*)~! is symplectic, where for
any 2-cosection €2, a bundle map €° : A — A* over M is defined by
(PX,Y):=Q(X,Y) for any X and Y in ['(A).

2.2 Jacobi algebroids and Jacobi structures

A pair (A, ¢o) is a Jacobi algebroid over a manifold M if A = (A, [, |4, pa)
is a Lie algebroid over M and ¢q in I'(A*) is d4-closed, that is, da¢g = 0.

EXAMPLE 2.4. For any Lie algebroid A over M, we set ¢ := 0. Then
(A, @) is a Jacobi algebroid. We call ¢g the trivial Jacobi algebroid structure
on A. Therefore any Lie algebroid is a Jacobi algebroid.

EXAMPLE 2.5. For a Lie algebroid A & R in Example 7?7, We set ¢ :=
(0,1)in"(A*@®R) =T'(A*) x C®°(M). Then (AR, ¢y) is a Jacobi algebroid.

For a Jacobi algebroid (A, ¢y), there is the ¢g-Schouten bracket [-,-]a 4,
on I'(A*A) given by

[Dl, DQ}A7¢O = [Dl, DQ]A + (Cbl - 1)D1 A L¢OD2
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— (=1)"* (a2 = 1)ty D1 AD;  (8)
for any D; in I'(A% A), where [-, -] 4 is the Schouten bracket of the Lie algebroid
A. The ¢o-differential d4 4, and the ¢y-Lie derivative E’;(’djo are defined by

dA7¢0w = dAw—l—gbo/\w, ;C;’(% = LXOdA,QSO“—dA,(;SOOLX
for any w in I'(A*A*) and X in T'(A).
We notice that
(dAﬂng)(Xo, . ,Xk)
_Z H_lp ¢)0 ) (Xo,...,X7...,Xk)

+Z D) (X5, Xilas Xoy - Xay o Xy X0

1<J
for any w in T'(A*A*) and X; in I'(A), and that
LYPw = LEw + (o, X )w

for any w in I'(A*A*) and X in I'(A). Here pa o, (X)f = pa(X)f + (¢o, X) f
for any X in I'(A) and f in C°(M). We call a dy4 4,-closed 2-cosection w,
ie., dagw =0, a ¢o-presymplectic structure on (A, ¢g). A ¢o-presymplectic
structure w is called a ¢g-symplectic structure if w is non-degenerate.

REMARK 2.6. In the case using the condition (??) in the definition of the
Schouten bracket [, -] 4, the ¢o-Schouten bracket [-, -] 4.4, is given by
[Dl, DQ]A,¢O = [Dl, DQ]A + (—1)“1+1(a1 - 1)D1 A L¢OD2
— (CLQ - 1)L¢0D1 VAN D2
instead of (?77?).

EXAMPLE 2.7. We consider a Jacobi algebroid (A, ¢g) over M, where A :=
TM®R and ¢g := (0,1) in QY(M) x C>®(M). Then any w in Q*(M) x Q1 (M)
can be written as w = («, 8) (o € Q*(M), 8 € QY(M)). Since

dagow = dryer, o) (@, B) = (do, o — dp),

w is (0, 1)-presymplectic on (TM @ R, (0,1)) if and only if w = (dB, 5) (5 €
Q'(M)). Moreover setting dim M = 2n+1, we see that a (0, 1)-presymplectic
strucutre w is non-degenerate if and only if 8 A (df)" # 0, that is, 5 is a
contact structure on M. Therefore a (0, 1)-symplectic structure on (T'M &
R, (0,1)) is just a contact structure on M.
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A Jacobi structure on a Jacobi algebroid (A, ¢) is a 2-section 7 in T'(A2A)
satisfying the condition

[T, 7] 4.6 = 0. (9)

For any 2-section 7 on (A, ¢p), we define a skew-symmetric bilinear bracket
-, -] 00 ['(A*) by for any &, n in I'(A*),

(€ 1lmgo = Loig™n — L€ — da gy (T, m). (10)

Then a triple (A%, [, ]r.40, Px), Where p, := p4 o 7 is a skew algebroid.
Moreover it follows that

1

5[7T77T]A,¢o(§ﬂ77 ) = [ mn)a — 7THE M) rgo- (11)

Then A; ;= (A" [, |0, Px) is a Lie algebroid over M if and only if 7
is Jacobi. Furthermore, in the case that 7 is Jacobi, a pair (A;%,Xo) is a
Jacobi algebroid over M, where X, := —7*¢ in I'(A). We call it the Jacobi

algebroid induced by a Jacobi structure m on (A, ¢p).

ExAMPLE 2.8 (Poisson structures). For any Lie algebroid A equipped
with the trivial Jacobi algebroid structure 0, it follows that [-,-]4a0 = [, ]a.
Hence Jacobi structures on (A,0) are just Poisson structures on A. In this
case, the Lie algebroid A7 ; induced by a Jacobi structure m on (A, 0) coin-
cides with the Lie algebroid A? induced by a Poisson structure m on A.

EXAMPLE 2.9. Let A be a Lie algebroid over M, A a 2-section on A and
E a section on A satisfying

[A,A]A:2E/\A, [E,A}AIO.

Then a pair (A, E) in T(A?A)&T(A) 2 T(A?(A®R)) is a Jacobi structure on
a Jacobi algebroid (A®R, (0,1)), i.e., it satisfies [(A, E), (A, E)]agr,0,1) = 0.
When (A, E) is a Jacobi structure on (T'M @ R, (0,1)), we call it a Jacobi
structure on M and a triple (M, A, E') a Jacobi manifold. 1f 7 is a Poisson
structure on A, Then (7, 0) is a Jacobi structure on (A @ R, (0,1)).

It is well known that there exists a one-to-one correspondence between
¢o-symplectic structures on (A, ¢g) and non-degenerate Jacobi structures on
(A, ¢p). In fact, for a non-degenerate Jacobi structure = on (A, ¢p), a 2-
cosection w, characterized by w’ = —(7*)~! is @o-symplectic on (4, @o). In
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particular, there exists a one-to-one correspondence between contact struc-
tures on M and non-degenerate Jacobi structures on M. If n is contact on
M, then (A, E) is Jacobi on M, where

A, B) = (dn) (")), (") H(B)) (o, B € QH(M)),
E =&

Here 7° : X(M) — Q'Y(M) is a linear isomorphism given by
W (X) = wxdn+ (0, X)n (X € X(M))

and £ in X(M) is the Reeb vector field of 7.

Let (A, ¢) be a Jacobi algebroid over M. We set A := A x R. Then
A is a vector bundle over M x R. The sections I'(A) can be identified with
the set of time-dependent sections of A. Here a time-dependent section on A
means a section on A with a parameter ¢, where t is a coordinate of R. Under
this identiﬁcation, we can define two Lie algebroid structures (|-, ]A A pﬂo) and

([, ]A , %) on A, where for any X and Y in I'(A),

-~ ~do i -~ ~ Yy -~ ~ 0X
(X,Y], =e ([X,Y]A+(¢0,X> <§_Y>_<¢O’Y> <W_X)>

(12)
PO = e (a0 + (00 D03 ) (13)
RIT o= (. P+ (00 00— (0, 1) 2 (1)
PR(R) = pa(X) + (60, K)o (15

Conversely, for a Lie algebroid A over M and a section ¢y on A, if the triple
(Al 0 %) (resp. (AL 13, 55)) defined by (72) and (27) (resp. (77)
and (77)) is a Lie algebroid over M x R, then (A, ¢g) is a Jacobi algebroid
over M, i.e., dapy = 0. A vector bundle A equipped with the Lie algebroid

structure ([-, -]Aio,ﬁio) (resp. ([, -Tzo,ﬁio)) is denoted by fi@o (resp. 121(;0) Let
~ — —~ ¢ J— ~ ~

d% (resp. d?) and LA ’ (r~esp. EA%) loe the differential of AJ (resp. 14~¢_)0)
and the Lie derivative on Ago (resp. A;O), respectively. Then for any f in
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C=(M x R) and ¢ in I'(A), the following formulas hold [?]:

Q% f = et (dAf+ %%) , d%g=et (dmgfé + o A %) . (16)
dYf=daf + g—{%, dRd = dad+ o A %. (17)

Let (A, ¢o) be a Jacobi algebroid over M, 7 a 2-section on A and set
7= e 'r in T'(A?A). Then the following holds:

[ﬁ7 NTiO = 6_2t[7T7 W]A#b()‘ (18>

Therefore a 2-section m on A is a Jacobi structure on a Jacobi algebroid
(A, ¢o) over M if and only if 7 in ['(A2A) is a Poisson structure on a Lie
algebroid fl;o over M x R. The Poisson structure 7 on fl;o is called the
Poissonization of .

In the case of (A,¢9) = (TM @& R, (0,1)), the Lie algebroid [1;0 is iso-
morphic to the standard Lie algebroid T (M x R) over M x R. Then the

e~

Poissonization (A, E) of a Jacobi structure (A, E) on (TM @R, (0, 1)) corre-
sponds to a Poisson structure IT := e~ (A + % AE) on T(M x R). This is
just the Poissonizaion of a Jacobi structure on M.

3 Compatibility between Jacobi structures and
pseudo-Riemannian cometrics on Jacobi al-
gebroids

3.1 Compatibility between 2-sections and pseudo-Riemannian
cometrics on Lie algebroids
We call a non-degenarate (resp. positive definite) fiber metric g on a vector
bundle A a pseudo-Riemannian (resp. Riemannian) metric on A. An affine
connection on a skew algebroid (A, [-,-]a,pa) over M is an R-bilinear map
V :T(A) x I'(A) — I'(A) satisfying for any f € C*°(M) and X,Y € I'(A),
VixY = fVxY,
VxfY = fVxY + (pa(X)f)Y.
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For any pseudo-Riemannian metric g on A, there exists a unique affine
connection V on (A, [, |4, pa) which is torsion-free and compatible with g,
i.e., it satisfies

VxY — VyX = [X,Y]a, (torsion-free)
pa(X)(g(Y,2)) = g(VxY,Z)+ g(Y,VxZ) (the compatibility with g)

for any X,Y and Z € I'(A). The unique affine connection V on (A, [-, |4, pa)
is called the Levi-Civita connection of g. As in the case of the usual Levi-
Civita connection on a Riemannian manifold, the Levi-Civita connection V
of gon (A, [-,-]a, pa) is characterized by the Koszul formula:

29(VxY, Z) =pa(X)(9(Y, Z)) + pa(Y)(9(X, 2)) — pa(Z)(9(X,Y))
- g([Y, Z}AvX) - g([X, Z]A>Y) + g([X, Y]Aa Z)'

DEFINITION 3.1. Let (A, [, |4, pa) be a skew algebroid over M, 7 a 2-
section on A and g* a pseudo-Riemannian metric on A* (¢* is called a pseudo-
Riemannian cometric on A). The pair (7, g*) is said to be compatible on A
if

D™r =0,
ie.,
(m*a)(n(8,7)) = n(D3B,7) + m(B, D7)
for any «, 8 and vy € I'(A*), where D7 is the Levi-Civita connection of ¢g* on
the skew algebroid AZ.

Proposition 3.2. (A, [, ], pa), ™ and ¢g* are same in Definition ?7. If
the pair (, g*) is compatible, then [7, 7|4 = 0.

This proposition implies that a 2-section 7 on a skew algebroid A with a
compatible cometric is always a Poisson structure on A.

Definition 7?7 is a natural extension of the following definition of the
compatibility between a Poisson structure on a manifold and a cometric in

[7].

DEFINITION 3.3 ([?]). Let (M, ) be a Poisson manifold and ¢* a pseudo-
Riemannian metric on 7M. The pair (7, g*) is said to be compatible on M
if

D™ =0,
where D7 is the Levi-Civita connection of g* on the Lie algebroid (T*M),.
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REMARK 3.4. If (7, g*) is compatible on M and 7 is non-degenerate, then
the corresponding symplectic form w to 7 is a Kéahler form. Hence a Poisson
structure with a compatible cometric is considered as a generalization of a
Kahler structure.

3.2 Compatibility between 2-sections and pseudo-Riemannian
cometrics on Jacobi algebroids

In this subsection, we shall define compatibility between 2-sections and pseudo-
Riemannian cometrics on Jacobi algebroids and investigate their properties.
Although Ait Amrane and Zeglaoui [?][?] defined compatibility of Jacobi
structures and pseudo-Riemannian metrics on manifolds, their definition is
different from the following one.

DEFINITION 3.5. Let (A, ¢g) be a Jacobi algebroid over M, 7 a 2-section
on (A, ¢g) and ¢g* a pseudo-Riemannian metric on A*. The pair (7, ¢*) is said
to be compatible on (A, ¢g) if

(DESm)(B,7) = —=((Xo ® m)(B,7,0) + (Xo ® 7)(7, v, §)

2
+g* (e, B)m((g") " (X0),7)
— g (@, ) ((g") " (Xo), B)),

where D™% is the Levi-Civita connection of ¢g* on the skew algebroid A% 4
induced by 7.

REMARK 3.6. If ¢g = 0, the above definition is equivalent to the compat-
ibility of (7, ¢*) on a Lie algebroid A (See Definition ?7?).

The following proposition is the analogy of Proposition??; that is, a 2-
section 7 on a Jacobi algebroid (A, ¢y) with a compatible cometric on (A, ¢y)
is always a Jacobi structure on (A4, ¢y).

Proposition 3.7. Let (A, ¢p) be a Jacobi algebroid over M, m a 2-section
on A and ¢g* a pseudo-Riemannian metric on A*. If a pair (7, g*) is compatible
n (A, ¢o), then [m, 7|44, = 0.

Proof. By the definition (??) of ¢o-Schouten bracket [-,]4 4, on I'(A*A),
we have

(7,7 age = [T, T4+ T ALggT + Lpm AT
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=d, 7+ 27Tﬁ¢0 AT
=d,m —2Xy A T. (19)

By the fact that for any o and § in I'(A*),
[Oé, B]ﬂ'@o - [Oé, ﬁ]w + <X07 Oé>6 - <X07 B>Oé - 7T(Oé, ﬂ)ébo
and the property that D™% is torsion-free, we obtain for any o, 3 and v in
['(A%),
(dem) (e B7) = ) (DR®m)(8,7) +3(Xo Am)(e, B.7),
Cycl(e,8,7)

where chd (0,8,7) N€ANS the sum of the cyclic permutations of «, 5 and ~.
Therefore by (?7), we compute for any a, 8 and 7 in I'(A*),

[71', W]Aﬂﬁo(aa ﬁv 7) = (dﬂﬂ - 2X0 A 7T)(OZ, 57 ’7)
= > (Drm)(B,7) + (Xo Am)(a, B,7)

Cycl (a,8,7)

= Z ((Dg’¢oﬂ)(ﬁ,7) + %((Xo @ m)(B,7, @)

Cycl (a,8,7)

+(Xo@m)(y, @, 8) + g (@, B)m((g") " (Xo), 7)

~ g anr((g") " (Xo), 5))) |

Since (7, g*) is compatible on (A, ¢g), the consequence holds. ]

The compatibility with a cometric is “preserved” by the Poissonization.
To be precise, the following theorem holds.

Theorem 3.8. Let (A, ¢g) be a Jacobi algebroid over M, m € T'(A%2A) a
Jacobi structure on (A, ¢g) and g* a pseudo-Riemannian metric on A*. For
the Poissonization 7 := e~*r € I['(A2A) of 7 and a pseudo-Riemannian metric
§* :=e'g* on A*, a pair (7, g*) is compatible on (A, ¢,) if and only if (7, g*)
is compatible on /1;0.

14



Proof. It is easy to confirm that the Levi-Civita connection D of §* on
(A5); = (A" [ 177, p2°), where

&, B2 = AR 3 — LA%a — d% (#a, B)  (Ya, B € (A7),  (20)

pe = py o, (21)

can be written explicitly as follows: for any & and § in [(A*),

D&B = e_t <D27¢OB + <X07d> <% - %B) + %<X07B>d

ot

- ég%a,m(g*)b-l(xo)) )

For any &, 5 and 7 in T'(A*),

+(Xo, @) (%—fﬂ) + (Xo, a)m (37 g)) :

7(Daf,7) = e (ﬂpg’%é, ) + (Xo, @) (%,ﬁ



It thus follows that

L X Byr(@3) + 27 Bl (X0, )
3 X0 A)x(3,0) + 39 (@ (B (0 ) )

—g" (@A) (") (X0). B)) )

By regarding I'(A*) as the set of curves in T'(A*), it follows that the compat-
ibility of (7, g*) is equivalent to the compatibility of (7, g*). O

3.3 Contact pseudo-metric structures and Sasakian pseudo-
metric structures

In this subsection, we prove that for a contact pseudo-metric structure on
a manifold, satisfying the compatibility condition is equivalent to being a
Sasakian pseudo-metric structure. This means that a Jacobi structure with
a compatible cometric is considered as a generalization of a Sasakian pseudo-
metric structure. Before that, we recall the definitions of almost contact
manifolds and Sasakian pseudo-metric manifolds in short. See [?] for details.

An almost contact structure on a (2n + 1)-dimensional manifold M is a
triple (¢,&,7n) of a (1,1)-tensor field ¢ on M, a vector field £ on M and a
1-form 1 on M satisfying

For an almost contact structure (¢, &, 1) on M?*" 1 define an almost complex
structure J on M x R by

d d
J(X+fﬁ) =¢X+f€—<n,X>E
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for any X € X(M x R) tangent to M and f € C*(M x R), where ¢ is the
standard coordinate on R. An almost contact structure (¢,&,n) on M is
called normal if this almost complex structure J on M x R is integrable.

A quadruple (¢, &,7,g) of an almost contact structure (¢, &, n) on M27+!
and a pseudo-Riemannian metric g with signature (p,q) on M is called an
almost contact pseudo-metric structure on M if

(0 X1, 0Xo) = g( X1, Xa) — en(X1)n(Xz)

for any Xy, Xo € X(M), where ¢ := (—1)9. Furthermore, if 1 is a contact
form and it satisfies for any X, Xy € X(M)

g(¢X1> XQ) = (dn)(le XZ)v

then (¢,&,n, g) is called a contact pseudo-metric structure on M. In partic-
ular, a contact pseudo-metric structure (¢, &, n, g) is called a contact metric
structure if g is a Riemannian metric.

A normal contact pseudo-metric structure is called a Sasakian pseudo-
metric structure. In particular, we call a normal contact metric structure a
Sasakian structure simply. It is known that an almost contact pseudo-metric

structure (¢,&,n,g) on M is a Sasakian pseudo-metric structure if and only
if

1 1
(Vx,0)Xs = —§Q(X17X2)§ + §5<TI,X2>X1
for any X, Xs € X(M). Moreover, for a Sasakian pseudo-metric structure
(¢,€,m,9) on M, ,
fo = §€¢X7 ‘Cfg =0

hold for any X € X(M).

REMARK 3.9. In contact geometry, a wedge product (e AB) (X1, ..., Xki1)
for any o in QF(M), 8 in QY(M) and X; in X(M) fori =1,...,k+1is often
defined as Z sgnaa(Xa(l), ce ,Xg(k))ﬂ(Xa(k+1), R >Xa(k+l)) multiplied
by m However, in this paper, we adopt that multiplied by ﬁ, which is
often used in the context of Lie algebroid theory. These differences cause the
various formulas to change slightly. See [?] for the differences.

O'ESk-_H

Theorem 3.10. Let (M, ¢,&,m,g) be a contact pseudo-metric manifold
and (A, E) the Jacobi structure given by the contact form en on M. Let G
be a pseudo-Riemannian metric on 7'M & R defined by

G((Xy, [), (Xa, h)) == g(X1, Xo) +efh
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and G* the dual metric of G on T*M & R with respect to (A, E). Then the
pair ((A, E), G*) is compatible on (T'M & R, (0,1)) if and only if (¢,&, 1, g9)
is a Sasakian pseudo-metric structure on M.

Proof. From a direct calculation, the condition that ((A, E), G*) is com-
patible on (TM @ R, (0, 1)) is described as follows:

1 1
€g ((VX1¢)X2 + §Q(X1, X5)€ — 55‘3(77, X2>X1,X3)
1 1
+ hgg (VX1§ — §€¢X1,X3) — §€h3(£§g)(X1,X2) =0

for any X1, Xo, X3 € X(M) and any hg, hy € C°(M).
The condition above is actually equivalent to that (¢, &, n, g) is a Sasakian
pseudo-metric structure on M. Il

Because of Theorem 7?7, a Jacobi structure with a compatible cometric is
considered as a generalization of a Sasakian pseudo-metric structure.

From Theorem ?7, the condition that ((A, E'), G*) is compatible on ("M &
R, (0,1)) is equivalent to that the pair (e 'r, e *G*) is compatible on the Lie
algebroid T'(M x R), where 7 € ['(A*(TM @ R)) is the Jacobi structure on
TM @R corresponding to (A, E). The following well known fact is recovered
from this observation and Theorem 77 immediately.

Corollary 3.11. A quadruple (¢, &, 7, g) is a Sasakian structure on M if
and only if (d(e'n), J,e'@) is a Kédhler structure on M x R.
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