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Abstract

We define compatibility between Jacobi structures and pseudo-
Riemannian cometrics on Jacobi algebroids. This notion is a gener-
alization of the compatibility between Poisson structures and pseudo-
Riemannian cometrics on manifolds, which was defined by Boucetta
[?]. We show that the compatibility with a cometric is “preserved”
by the Poissonization of a Jacobi structure. Furthermore, we prove
that for a contact pseudo-metric structure on a manifold, satisfying
the compatibility condition is equivalent to being a Sasakian pseudo-
metric structure.
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1 Introduction

Jacobi manifolds were introduced by Lichnerowicz and Kirillov independently
as a generalization of Poisson manifolds. A Jacobi manifold is also a gen-
eralization of a contact manifold. The Poissonization of a Jacobi structure
on a manifold M is an operation which gives a Poisson structure on the
manifold M × R. The obtained Poisson structure on M × R is also called
the Poissonization of a given Jacobi structure on M . It is known that the
Poissonization gives a one-to-one correspondence between Jacobi structures
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on a manifold M and homogeneous Poisson structures on M × R. In par-
ticular, for a contact manifold, the Poissonization is an equivalent operation
to the symplectization of a given contact manifold. The Poissonization plays
a central role in the study of Jacobi manifolds since Poisson manifolds are
less complicated in various aspects than Jacobi manifolds. Notice that the
Poissonization extends to a Jacobi structure on a Jacobi algebroid, which is
a generalization of a Jacobi structure on a manifold.

In this paper, we call a non-degenarate (resp. positive definite) fiber met-
ric g on a vector bundle A a pseudo-Riemannian (resp. Riemannian) metric
on A. Boucetta [?] defined compatibility between Poisson structures and
pseudo-Riemannian cometrics on manifolds, i.e., pseudo-Riemannian met-
rics on the cotangent bundle, by using an affine connection on the cotangent
bundle. He showed that if a non-degenerate Poisson structure has a com-
patible cometric, the corresponding symplectic form is a Kähler form. Due
to this result, a Poisson structure with a compatible cometric is considered
as a generalization of a Kähler structure. The compatibility between Pois-
son structures and cometrics have been extensively studied. For instance,
the case for the Lie-Poisson structure on the dual space of a Lie algebra is
studied in [?] [?].

In this paper, we define compatibility between a Jacobi structure π and
a pseudo-Riemannian cometric g∗ on a Jacobi algebroid (A, ϕ0). This notion
is a generalization of the compatibility between a Poisson structure and a
pseudo-Riemannian cometric on a manifold.

Definition 1.1. Let (A, ϕ0) be a Jacobi algebroid over M , π a 2-section
on (A, ϕ0) and g∗ a pseudo-Riemannian metric on A∗. The pair (π, g∗) is said
to be compatible on (A, ϕ0) if

(Dπ,ϕ0
α π)(β, γ) = −1

2
((X0 ⊗ π)(β, γ, α) + (X0 ⊗ π)(γ, α, β)

+ g∗(α, β)π((g∗)♭−1(X0), γ)

− g∗(α, γ)π((g∗)♭−1(X0), β)),

where Dπ,ϕ0 is the Levi-Civita connection of g∗ on the skew algebroid A∗
π,ϕ0

induced by π and X0 := −π♯ϕ0 in Γ(A).

Compatibility between a Jacobi structure (Λ, E) and a pseudo-Riemannian
metric g on a manifold M was already defined in [?]. However that is differ-
ent from the definition in this paper. In their definition, the compatibility of
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(Λ, E, g) is defined by using the cotangent bundle T ∗M with a skew algebroid
structure associated with a Jacobi structure (Λ, E) and pseudo-Riemannian
metric g. Meanwhile, applying our definition to the case on a manifold, the
compatibility of ((Λ, E), g∗), where g∗ is a pseudo-Riemannian cometric on
M , is described by using the Whitney sum T ∗M ⊕R := T ∗M ⊕ (M ×R) of
the cotangent bundle and the trivial line bundle with the standard Lie and
Jacobi algebroid structure.

In [?], the authors generalized compatibility between a Jacobi structure
(Λ, E) and a pseudo-Riemannian metric g on a manifold M to that on an ar-
bitrary Lie algebroid (A, ρA, [·, ·]A). Compare their definition with Definition
??.

Definition 1.2 ([?]). Let A = (A, ρA, [·, ·]A) be a skew algebroid over M ,
Λ a 2-section on A, E a section on A and g a pseudo-Riemannian metric on
A. Set g∗(α, β) := ⟨g♭−1(α), β⟩ for any α and β in Γ(A∗). The triple (Λ, E, g)
is said to be compatible on A if

(DαΛ)(β, γ) =
1

2
((E ⊗ Λ)(β, γ, α) + (E ⊗ Λ)(γ, α, β)

+ g∗(α, β)Λ((g∗)♭−1(E), γ)

− g∗(α, γ)Λ((g∗)♭−1(E), β)),

where D is the Levi-Civita connection of g∗ on the skew algebroid (A∗, ρ(Λ,E),
[·, ·]g(Λ,E)). Here ρ(Λ,E)(α) := ρA(Λ

♯α + ⟨α,E⟩) and [α, β]g(Λ,E) := [α, β]Λ +

⟨α,E⟩(LA
∗ β − β) − ⟨β,E⟩(LA

E α− α) − Λ(α, β)(g(E,E)g♭E − g♭Λ♯g♭E)) for
any α and β in Γ(A∗).

In [?], the authors proved that a locally conformal symplectic structure
equipped with a compatible Riemannian metric becomes a locally conformal
Kähler structure. Furthermore, they also proved that a contact structure η
in Ω1(M) equipped with a compatible Riemannian metric becomes a 1/2-
Kenmotsu structure. However, the 1-form η of a 1/2-Kenmotsu structure is
a closed form while a contact structure η satisfies dη ̸= 0. Hence it implies
that a contact structure does not have compatible Riemannian metrics in the
sense of [?] [?].

We propose another definition of compatibility between Jacobi structures
and pseudo-Riemannian metrics. In terms of the Poissonization of a Jacobi
structure, it is more natural to consider our definition than theirs. In fact,
we show that the compatibility with a cometric is “preserved” under the
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Poissonization of a Jacobi structure. Furthermore, we prove that for a contact
pseudo-metric structure on a manifold, satisfying the compatibility condition
is equivalent to being a Sasakian pseudo-metric structure. Therefore, a Jacobi
structure with a compatible cometric is considered as a generalization of a
Sasakian structure.

This paper is organized as follows. In Section 2, we review the definitions
of several notions such as Lie algebroids, Poisson structures, Jacobi alge-
broids and Jacobi structures. In addition, we explain the Poissonization of a
Jacobi structure. In Section 3, we recall the compatibility between Poisson
structures and pseudo-Riemannian cometrics defined by Boucetta [?]. Af-
ter that, as a generalization of that notion, we define compatibility between
Jacobi structures and pseudo-Riemannian cometrics on Jacobi algebroids.
We show that the compatibility with a cometric is “preserved” under the
Poissonization of a Jacobi structure. At the end, we state that a Sasakian
pseudo-metric structure is regarded as a special case of a Jacobi structure
with a compatible cometric.

2 Preliminaries

In this section, we recall the definitions and properties of Lie algebroids,
Poisson structures, Jacobi algebroids and Jacobi structures. See [?] for details
on Jacobi algebroids and Jacobi structures.

2.1 Lie algebroids and Poisson structures

A skew algebroid over a manifold M is a vector bundle A → M equipped
with a skew symmetric R-bilinear map [·, ·]A : Γ(A) × Γ(A) → Γ(A), called
the bracket, and a bundle map ρA : A → TM over M , called the anchor,
satisfying the following condition: for any X,Y in Γ(A) and f in C∞(M),

[X, fY ]A = f [X,Y ]A + (ρA(X)f)Y,

where we denote the map Γ(A) → Γ(TM) = X(M) induced by the anchor,
the same symbol ρA. A Lie algebroid over a manifold M is a skew algebroid
(A, [·, ·]A, ρA) such that the bracket satisfies the Jacobi identity, i.e., [·, ·]A is
a Lie bracket on Γ(A). For any Lie algebroid (A, [·, ·]A, ρA) over M , it follows
that for any X and Y in Γ(A),

ρA([X,Y ]A) = [ρA(X), ρA(Y )],
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where the bracket on the right hand side is the usual Lie bracket on X(M).

Example 2.1. For any manifold M , the tangent bundle (TM, [·, ·], idTM)
is a Lie algebroid over M , where [·, ·] is the usual Lie bracket on the vector
fields X(M) = Γ(TM).

Let (A, [·, ·]A, ρA) be a skew algebroid over M . The Schouten bracket on
Γ(Λ∗A) is defined similarly to the Schouten bracket [·, ·] on the multivector
fields X∗(M). That is, the Schouten bracket [·, ·]A : Γ(ΛkA) × Γ(ΛlA) →
Γ(Λk+l−1A) is defined as the unique extension of the bracket [·, ·]A on Γ(A)
such that

[f, g]A = 0;

[X, f ]A = ρA(X)f ;

[X,Y ]A is the bracket on Γ(A);

[D1, D2 ∧D3]A = [D1, D2]A ∧D3 + (−1)(a1+1)a2D2 ∧ [D1, D3]A;

[D1, D2]A = −(−1)(a1−1)(a2−1)[D2, D1]A

for any f, g in C∞(M), X,Y in Γ(A), Di in Γ(ΛaiA). The differential of the
skew algebroid A is an operator dA : Γ(ΛkA∗) → Γ(Λk+1A∗) defined by for
any ω in Γ(ΛkA∗) and X0, . . . , Xk in Γ(A),

(dAω)(X0, . . . , Xk) =
k∑

i=0

(−1)iρA(Xi)(ω(X0, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj]A, X0, . . . , X̂i, . . . , X̂j, . . . , Xk).

(1)

If (A, [·, ·]A, ρA) is a Lie algebroid, d2A = 0 holds. For any X in Γ(A), the
Lie derivative LA

X : Γ(ΛkA∗) → Γ(ΛkA∗) is defined by the Cartan formula
LA

X := dAιX + ιXdA and LA
X are extended on Γ(Λ∗A) in the same way as the

usual Lie derivative LX respectively. Then it follows that LA
XD = [X,D]A

for any D in Γ(Λ∗A). We call a dA-closed 2-cosection ω, i.e., dAω = 0,
a presymplectic structure on (A, [·, ·]A, ρA). A presymplectic structure ω is
called a symplectic structure if ω is non-degenerate.

Remark 2.2. In the definition of the Schouten bracket, some authors use
a condition

[D1, D2]A = (−1)a1a2 [D2, D1]A (2)
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for any Di in Γ(ΛaiA) instead of the condition [D1, D2]A = −(−1)(a1−1)(a2−1)

[D2, D1]A.

Example 2.3. Let A be a vector bundle over a manifold M and set
A⊕R := A⊕ (M ×R). Then the sections Γ(Λk(A⊕R)) and Γ(Λk(A⊕R)∗)
can be identified with Γ(ΛkA) × Γ(Λk−1A) and Γ(ΛkA∗) × Γ(Λk−1A∗) as
follows:

(P,Q)((α1, f1), . . . , (αk, fk))

= P (α1, . . . , αk) +
∑
i

(−1)i+1fiQ(α1, . . . , α̂i, . . . , αk), (3)

(α, β)((X1, f1), . . . , (Xk, fk))

= α(X1, . . . , Xk) +
∑
i

(−1)i+1fiβ(X1, . . . , X̂i, . . . , Xk) (4)

for any (P,Q) in Γ(ΛkA)×Γ(Λk−1A), (α, β) in Γ(ΛkA∗)×Γ(Λk−1A∗), (αi, fi)
in Γ(A∗) × C∞(M) and (Xi, fi) in Γ(A) × C∞(M). Moreover under the
identifications, the exterior products are given by

(P1, Q1) ∧ (P2, Q2) = (P1 ∧ P2, Q1 ∧ P2 + (−1)a1P1 ∧Q2),

(α1, β1) ∧ (α2, β2) = (α1 ∧ α2, β1 ∧ α2 + (−1)a1α1 ∧ β2)

for any (Pi, Qi) in Γ(ΛaiA)×Γ(Λai−1A) and (αi, βi) in Γ(ΛaiA∗)×Γ(Λai−1A∗).
Now, assume that A is a skew (resp. Lie) algebroid over M . Then (A ⊕
R, [·, ·]A⊕R, ρA ◦ pr1) is also a skew (resp. Lie) algebroid over M , where the
bracket [·, ·]A⊕R is defined by

[(X, f), (Y, g)]A⊕R := ([X,Y ]A, ρA(X)g − ρA(Y )f) (5)

and the map pr1 : A⊕ R → A is the canonical projection to the first factor.
In this case, the differential dA⊕R of the skew (resp. Lie) algebroid A ⊕ R
and the Schouten bracket [·, ·]A⊕R are given by

dA⊕R(α, β) = (dAα,−dAβ),

[(P1, Q1), (P2, Q2)]A⊕R = ([P1, P2]A, (−1)k+1[P1, Q2]A − [Q1, P2]A)

for any (α, β) in Γ(ΛkA∗)× Γ(Λk−1A∗) and (Pi, Qi) in Γ(ΛkA)× Γ(Λk−1A).
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A Poisson structure on a skew (resp. Lie) algebroid A over a manifold
M is a 2-section π in Γ(Λ2A) satisfying [π, π]A = 0. For any 2-section π in
Γ(Λ2A), we define a skew-symmetric bilinear bracket [·, ·]π on Γ(A∗) by for
any ξ, η in Γ(A∗),

[ξ, η]π := LA
π♯ξη − LA

π♯ηξ − dA⟨π♯ξ, η⟩, (6)

where a bundle map π♯ : A∗ → A over M is defined by ⟨π♯ξ, η⟩ := π(ξ, η).
Then a triple (A∗, [·, ·]π, ρπ), where ρπ := ρA ◦ π♯, is a skew algebroid. We
denote (A∗, [·, ·]π, ρπ) by A∗

π and the differential of A∗
π by dπ. Then dπD =

[π,D]A holds for any D in Γ(Λ∗A). Moreover it follows that

1

2
[π, π]A(ξ, η, ·) = [π♯ξ, π♯η]A − π♯[ξ, η]π. (7)

In the case that (A, [·, ·]A, ρA) is a Lie algebroid, a skew algebroid A∗
π is a Lie

algebroid if and only if π is Poisson.
It is well known that there exists a one-to-one correspondence between

symplectic structures and non-degenerate Poisson structures on a skew al-
gebroid (A, [·, ·]A, ρA). In fact, for a non-degenerate Poisson structure π,
a 2-cosection ωπ characterized by ω♭

π = −(π♯)−1 is symplectic, where for
any 2-cosection Ω, a bundle map Ω♭ : A → A∗ over M is defined by
⟨Ω♭X,Y ⟩ := Ω(X,Y ) for any X and Y in Γ(A).

2.2 Jacobi algebroids and Jacobi structures

A pair (A, ϕ0) is a Jacobi algebroid over a manifold M if A = (A, [·, ·]A, ρA)
is a Lie algebroid over M and ϕ0 in Γ(A∗) is dA-closed, that is, dAϕ0 = 0.

Example 2.4. For any Lie algebroid A over M , we set ϕ0 := 0. Then
(A, ϕ0) is a Jacobi algebroid. We call ϕ0 the trivial Jacobi algebroid structure
on A. Therefore any Lie algebroid is a Jacobi algebroid.

Example 2.5. For a Lie algebroid A ⊕ R in Example ??, We set ϕ0 :=
(0, 1) in Γ(A∗⊕R) = Γ(A∗)×C∞(M). Then (A⊕R, ϕ0) is a Jacobi algebroid.

For a Jacobi algebroid (A, ϕ0), there is the ϕ0-Schouten bracket [·, ·]A,ϕ0

on Γ(Λ∗A) given by

[D1, D2]A,ϕ0 := [D1, D2]A + (a1 − 1)D1 ∧ ιϕ0D2
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− (−1)a1+1(a2 − 1)ιϕ0D1 ∧D2 (8)

for anyDi in Γ(ΛaiA), where [·, ·]A is the Schouten bracket of the Lie algebroid
A. The ϕ0-differential dA,ϕ0 and the ϕ0-Lie derivative LA,ϕ0

X are defined by

dA,ϕ0ω := dAω + ϕ0 ∧ ω, LA,ϕ0

X := ιX ◦ dA,ϕ0 + dA,ϕ0 ◦ ιX
for any ω in Γ(Λ∗A∗) and X in Γ(A).

We notice that

(dA,ϕ0ω)(X0, . . . , Xk)

=
∑
i

(−1)i+1ρA,ϕ0(Xi)ω(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj]A, X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

for any ω in Γ(ΛkA∗) and Xi in Γ(A), and that

LA,ϕ0

X ω = LA
Xω + ⟨ϕ0, X⟩ω

for any ω in Γ(Λ∗A∗) and X in Γ(A). Here ρA,ϕ0(X)f := ρA(X)f + ⟨ϕ0, X⟩f
for any X in Γ(A) and f in C∞(M). We call a dA,ϕ0-closed 2-cosection ω,
i.e., dA,ϕ0ω = 0, a ϕ0-presymplectic structure on (A, ϕ0). A ϕ0-presymplectic
structure ω is called a ϕ0-symplectic structure if ω is non-degenerate.

Remark 2.6. In the case using the condition (??) in the definition of the
Schouten bracket [·, ·]A, the ϕ0-Schouten bracket [·, ·]A,ϕ0 is given by

[D1, D2]A,ϕ0 := [D1, D2]A + (−1)a1+1(a1 − 1)D1 ∧ ιϕ0D2

− (a2 − 1)ιϕ0D1 ∧D2

instead of (??).

Example 2.7. We consider a Jacobi algebroid (A, ϕ0) overM , where A :=
TM⊕R and ϕ0 := (0, 1) in Ω1(M)×C∞(M). Then any ω in Ω2(M)×Ω1(M)
can be written as ω = (α, β) (α ∈ Ω2(M), β ∈ Ω1(M)). Since

dA,ϕ0ω = dTM⊕R,(0,1)(α, β) = (dα, α− dβ),

ω is (0, 1)-presymplectic on (TM ⊕ R, (0, 1)) if and only if ω = (dβ, β) (β ∈
Ω1(M)). Moreover setting dimM = 2n+1, we see that a (0, 1)-presymplectic
strucutre ω is non-degenerate if and only if β ∧ (dβ)n ̸= 0, that is, β is a
contact structure on M . Therefore a (0, 1)-symplectic structure on (TM ⊕
R, (0, 1)) is just a contact structure on M .
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A Jacobi structure on a Jacobi algebroid (A, ϕ0) is a 2-section π in Γ(Λ2A)
satisfying the condition

[π, π]A,ϕ0 = 0. (9)

For any 2-section π on (A, ϕ0), we define a skew-symmetric bilinear bracket
[·, ·]π,ϕ0 on Γ(A∗) by for any ξ, η in Γ(A∗),

[ξ, η]π,ϕ0 := LA,ϕ0

π♯ξ
η − LA,ϕ0

π♯η
ξ − dA,ϕ0⟨π♯ξ, η⟩. (10)

Then a triple (A∗, [·, ·]π,ϕ0 , ρπ), where ρπ := ρA ◦ π♯, is a skew algebroid.
Moreover it follows that

1

2
[π, π]A,ϕ0(ξ, η, ·) = [π♯ξ, π♯η]A − π♯[ξ, η]π,ϕ0 . (11)

Then A∗
π,ϕ0

:= (A∗, [·, ·]π,ϕ0 , ρπ) is a Lie algebroid over M if and only if π
is Jacobi. Furthermore, in the case that π is Jacobi, a pair (A∗

π,ϕ0
, X0) is a

Jacobi algebroid over M , where X0 := −π♯ϕ0 in Γ(A). We call it the Jacobi
algebroid induced by a Jacobi structure π on (A, ϕ0).

Example 2.8 (Poisson structures). For any Lie algebroid A equipped
with the trivial Jacobi algebroid structure 0, it follows that [·, ·]A,0 = [·, ·]A.
Hence Jacobi structures on (A, 0) are just Poisson structures on A. In this
case, the Lie algebroid A∗

π,0 induced by a Jacobi structure π on (A, 0) coin-
cides with the Lie algebroid A∗

π induced by a Poisson structure π on A.

Example 2.9. Let A be a Lie algebroid over M , Λ a 2-section on A and
E a section on A satisfying

[Λ,Λ]A = 2E ∧ Λ, [E,Λ]A = 0.

Then a pair (Λ, E) in Γ(Λ2A)⊕Γ(A) ∼= Γ(Λ2(A⊕R)) is a Jacobi structure on
a Jacobi algebroid (A⊕R, (0, 1)), i.e., it satisfies [(Λ, E), (Λ, E)]A⊕R,(0,1) = 0.
When (Λ, E) is a Jacobi structure on (TM ⊕ R, (0, 1)), we call it a Jacobi
structure on M and a triple (M,Λ, E) a Jacobi manifold. If π is a Poisson
structure on A, Then (π, 0) is a Jacobi structure on (A⊕ R, (0, 1)).

It is well known that there exists a one-to-one correspondence between
ϕ0-symplectic structures on (A, ϕ0) and non-degenerate Jacobi structures on
(A, ϕ0). In fact, for a non-degenerate Jacobi structure π on (A, ϕ0), a 2-
cosection ωπ characterized by ω♭

π = −(π♯)−1 is ϕ0-symplectic on (A, ϕ0). In
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particular, there exists a one-to-one correspondence between contact struc-
tures on M and non-degenerate Jacobi structures on M . If η is contact on
M , then (Λ, E) is Jacobi on M , where

Λ(α, β) := (dη)((η♭)−1(α), (η♭)−1(β)) (α, β ∈ Ω1(M)),

E := ξ.

Here η♭ : X(M) → Ω1(M) is a linear isomorphism given by

η♭(X) := ιXdη + ⟨η,X⟩η (X ∈ X(M))

and ξ in X(M) is the Reeb vector field of η.
Let (A, ϕ0) be a Jacobi algebroid over M . We set Ã := A × R. Then

Ã is a vector bundle over M × R. The sections Γ(Ã) can be identified with
the set of time-dependent sections of A. Here a time-dependent section on A
means a section on A with a parameter t, where t is a coordinate of R. Under
this identification, we can define two Lie algebroid structures ([·, ·̂]

ϕ0

A , ρ̂ϕ0

A ) and

([·, ·̄]ϕ0

A , ρ̄ϕ0

A ) on Ã, where for any X̃ and Ỹ in Γ(Ã),

[X̃, Ỹ ]̂
ϕ0

A := e−t

(
[X̃, Ỹ ]A + ⟨ϕ0, X̃⟩

(
∂Ỹ

∂t
− Ỹ

)
− ⟨ϕ0, Ỹ ⟩

(
∂X̃

∂t
− X̃

))
,

(12)

ρ̂ϕ0

A (X̃) := e−t

(
ρA(X̃) + ⟨ϕ0, X̃⟩ ∂

∂t

)
, (13)

[X̃, Ỹ ]̄
ϕ0

A := [X̃, Ỹ ]A + ⟨ϕ0, X̃⟩∂Ỹ
∂t

− ⟨ϕ0, Ỹ ⟩∂X̃
∂t

, (14)

ρ̄ϕ0

A (X̃) := ρA(X̃) + ⟨ϕ0, X̃⟩ ∂
∂t

. (15)

Conversely, for a Lie algebroid A over M and a section ϕ0 on A, if the triple

(Ã, [·, ·̂]
ϕ0

A , ρ̂ϕ0

A ) (resp. (Ã, [·, ·̄]ϕ0

A , ρ̄ϕ0

A )) defined by (??) and (??) (resp. (??)
and (??)) is a Lie algebroid over M × R, then (A, ϕ0) is a Jacobi algebroid
over M , i.e., dAϕ0 = 0. A vector bundle Ã equipped with the Lie algebroid

structure ([·, ·̂]
ϕ0

A , ρ̂ϕ0

A ) (resp. ([·, ·̄]ϕ0

A , ρ̄ϕ0

A )) is denoted by Ã∧
ϕ0

(resp. Ã−
ϕ0
). Let

d̂ϕ0

A (resp. d̄ϕ0

A ) and L̂A
ϕ0

(resp. LA
ϕ0
) be the differential of Ã∧

ϕ0
(resp. Ã−

ϕ0
)

and the Lie derivative on Ã∧
ϕ0

(resp. Ã−
ϕ0
), respectively. Then for any f̃ in
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C∞(M × R) and ϕ̃ in Γ(Ã), the following formulas hold [?]:

d̂ϕ0

A f̃ = e−t

(
dAf̃ +

∂f̃

∂t
ϕ0

)
, d̂ϕ0

A ϕ̃ = e−t

(
dA,ϕ0ϕ̃+ ϕ0 ∧

∂ϕ̃

∂t

)
; (16)

d̄ϕ0

A f̃ = dAf̃ +
∂f̃

∂t
ϕ0, d̄ϕ0

A ϕ̃ = dAϕ̃+ ϕ0 ∧
∂ϕ̃

∂t
. (17)

Let (A, ϕ0) be a Jacobi algebroid over M , π a 2-section on A and set
π̃ := e−tπ in Γ(Λ2Ã). Then the following holds:

[π̃, π̃]̄
ϕ0

A = e−2t[π, π]A,ϕ0 . (18)

Therefore a 2-section π on A is a Jacobi structure on a Jacobi algebroid
(A, ϕ0) over M if and only if π̃ in Γ(Λ2Ã) is a Poisson structure on a Lie
algebroid Ã−

ϕ0
over M × R. The Poisson structure π̃ on Ã−

ϕ0
is called the

Poissonization of π.
In the case of (A, ϕ0) = (TM ⊕ R, (0, 1)), the Lie algebroid Ã−

ϕ0
is iso-

morphic to the standard Lie algebroid T (M × R) over M × R. Then the

Poissonization (̃Λ, E) of a Jacobi structure (Λ, E) on (TM ⊕R, (0, 1)) corre-
sponds to a Poisson structure Π := e−t

(
Λ + ∂

∂t
∧ E

)
on T (M × R). This is

just the Poissonizaion of a Jacobi structure on M .

3 Compatibility between Jacobi structures and

pseudo-Riemannian cometrics on Jacobi al-

gebroids

3.1 Compatibility between 2-sections and pseudo-Riemannian
cometrics on Lie algebroids

We call a non-degenarate (resp. positive definite) fiber metric g on a vector
bundle A a pseudo-Riemannian (resp. Riemannian) metric on A. An affine
connection on a skew algebroid (A, [·, ·]A, ρA) over M is an R-bilinear map
∇ : Γ(A)× Γ(A) → Γ(A) satisfying for any f ∈ C∞(M) and X,Y ∈ Γ(A),

∇fXY = f∇XY,

∇XfY = f∇XY + (ρA(X)f)Y.
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For any pseudo-Riemannian metric g on A, there exists a unique affine
connection ∇ on (A, [·, ·]A, ρA) which is torsion-free and compatible with g,
i.e., it satisfies

∇XY −∇YX = [X,Y ]A, (torsion-free)

ρA(X)(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) (the compatibility with g)

for any X,Y and Z ∈ Γ(A). The unique affine connection ∇ on (A, [·, ·]A, ρA)
is called the Levi-Civita connection of g. As in the case of the usual Levi-
Civita connection on a Riemannian manifold, the Levi-Civita connection ∇
of g on (A, [·, ·]A, ρA) is characterized by the Koszul formula:

2g(∇XY, Z) =ρA(X)(g(Y, Z)) + ρA(Y )(g(X,Z))− ρA(Z)(g(X,Y ))

− g([Y, Z]A, X)− g([X,Z]A, Y ) + g([X,Y ]A, Z).

Definition 3.1. Let (A, [·, ·]A, ρA) be a skew algebroid over M , π a 2-
section on A and g∗ a pseudo-Riemannian metric on A∗ (g∗ is called a pseudo-
Riemannian cometric on A). The pair (π, g∗) is said to be compatible on A
if

Dππ = 0,

i.e.,
(π♯α)(π(β, γ)) = π(Dπ

αβ, γ) + π(β,Dπ
αγ)

for any α, β and γ ∈ Γ(A∗), where Dπ is the Levi-Civita connection of g∗ on
the skew algebroid A∗

π.

Proposition 3.2. (A, [·, ·]A, ρA), π and g∗ are same in Definition ??. If
the pair (π, g∗) is compatible, then [π, π]A = 0.

This proposition implies that a 2-section π on a skew algebroid A with a
compatible cometric is always a Poisson structure on A.

Definition ?? is a natural extension of the following definition of the
compatibility between a Poisson structure on a manifold and a cometric in
[?].

Definition 3.3 ([?]). Let (M,π) be a Poisson manifold and g∗ a pseudo-
Riemannian metric on T ∗M . The pair (π, g∗) is said to be compatible on M
if

Dππ = 0,

where Dπ is the Levi-Civita connection of g∗ on the Lie algebroid (T ∗M)π.

12



Remark 3.4. If (π, g∗) is compatible on M and π is non-degenerate, then
the corresponding symplectic form ω to π is a Kähler form. Hence a Poisson
structure with a compatible cometric is considered as a generalization of a
Kähler structure.

3.2 Compatibility between 2-sections and pseudo-Riemannian
cometrics on Jacobi algebroids

In this subsection, we shall define compatibility between 2-sections and pseudo-
Riemannian cometrics on Jacobi algebroids and investigate their properties.
Although Aı̈t Amrane and Zeglaoui [?][?] defined compatibility of Jacobi
structures and pseudo-Riemannian metrics on manifolds, their definition is
different from the following one.

Definition 3.5. Let (A, ϕ0) be a Jacobi algebroid over M , π a 2-section
on (A, ϕ0) and g∗ a pseudo-Riemannian metric on A∗. The pair (π, g∗) is said
to be compatible on (A, ϕ0) if

(Dπ,ϕ0
α π)(β, γ) = −1

2
((X0 ⊗ π)(β, γ, α) + (X0 ⊗ π)(γ, α, β)

+ g∗(α, β)π((g∗)♭−1(X0), γ)

− g∗(α, γ)π((g∗)♭−1(X0), β)),

where Dπ,ϕ0 is the Levi-Civita connection of g∗ on the skew algebroid A∗
π,ϕ0

induced by π.

Remark 3.6. If ϕ0 = 0, the above definition is equivalent to the compat-
ibility of (π, g∗) on a Lie algebroid A (See Definition ??).

The following proposition is the analogy of Proposition??; that is, a 2-
section π on a Jacobi algebroid (A, ϕ0) with a compatible cometric on (A, ϕ0)
is always a Jacobi structure on (A, ϕ0).

Proposition 3.7. Let (A, ϕ0) be a Jacobi algebroid over M , π a 2-section
on A and g∗ a pseudo-Riemannian metric on A∗. If a pair (π, g∗) is compatible
on (A, ϕ0), then [π, π]A,ϕ0 = 0.

Proof. By the definition (??) of ϕ0-Schouten bracket [·, ·]A,ϕ0 on Γ(Λ∗A),
we have

[π, π]A,ϕ0 = [π, π]A + π ∧ ιϕ0π + ιϕ0π ∧ π

13



= dππ + 2π♯ϕ0 ∧ π

= dππ − 2X0 ∧ π. (19)

By the fact that for any α and β in Γ(A∗),

[α, β]π,ϕ0 = [α, β]π + ⟨X0, α⟩β − ⟨X0, β⟩α− π(α, β)ϕ0

and the property that Dπ,ϕ0 is torsion-free, we obtain for any α, β and γ in
Γ(A∗),

(dππ)(α, β, γ) =
∑

Cycl (α,β,γ)

(Dπ,ϕ0
α π)(β, γ) + 3(X0 ∧ π)(α, β, γ),

where
∑

Cycl (α,β,γ) means the sum of the cyclic permutations of α, β and γ.

Therefore by (??), we compute for any α, β and γ in Γ(A∗),

[π, π]A,ϕ0(α, β, γ) = (dππ − 2X0 ∧ π)(α, β, γ)

=
∑

Cycl (α,β,γ)

(Dπ,ϕ0
α π)(β, γ) + (X0 ∧ π)(α, β, γ)

=
∑

Cycl (α,β,γ)

(
(Dπ,ϕ0

α π)(β, γ) +
1

2
((X0 ⊗ π)(β, γ, α)

+ (X0 ⊗ π)(γ, α, β) + g∗(α, β)π((g∗)♭−1(X0), γ)

− g∗(α, γ)π((g∗)♭−1(X0), β))

)
.

Since (π, g∗) is compatible on (A, ϕ0), the consequence holds.

The compatibility with a cometric is “preserved” by the Poissonization.
To be precise, the following theorem holds.

Theorem 3.8. Let (A, ϕ0) be a Jacobi algebroid over M , π ∈ Γ(Λ2A) a
Jacobi structure on (A, ϕ0) and g∗ a pseudo-Riemannian metric on A∗. For
the Poissonization π̃ := e−tπ ∈ Γ(Λ2Ã) of π and a pseudo-Riemannian metric
g̃∗ := e−tg∗ on Ã∗, a pair (π, g∗) is compatible on (A, ϕ0) if and only if (π̃, g̃∗)
is compatible on Ã−

ϕ0
.

14



Proof. It is easy to confirm that the Levi-Civita connection D̃ of g̃∗ on

(Ã−
ϕ0
)∗π̃ = (Ã∗, [·, ·̄]ϕ0

π̃ , ρ̄ϕ0

π̃ ), where

[α̃, β̃ ]̄
ϕ0

π̃ := LA
ϕ0

π̃α̃ β̃ − LA
ϕ0

π̃β̃ α̃− d̄ϕ0

A ⟨π̃♯α̃, β̃⟩ (∀α̃, β̃ ∈ Γ(Ã∗)), (20)

ρ̄ϕ0

π̃ := ρ̄ϕ0

A ◦ π̃♯, (21)

can be written explicitly as follows: for any α̃ and β̃ in Γ(Ã∗),

D̃α̃β̃ = e−t

(
Dπ,ϕ0

α̃ β̃ + ⟨X0, α̃⟩

(
∂β̃

∂t
− 1

2
β̃

)
+

1

2
⟨X0, β̃⟩α̃

− 1

2
g∗(α̃, β̃)(g∗)♭−1(X0)

)
. (22)

For any α̃, β̃ and γ̃ in Γ(Ã∗),

(D̃π̃)(α̃, β̃, γ̃) = (D̃α̃π̃)(β̃, γ̃)

= ρ̄ϕ0

π̃ (α̃)(π̃(β̃, γ̃))− π̃(D̃α̃β̃, γ̃)− π̃(β̃, D̃α̃γ̃).

Here by using (??) and (??), we have

ρ̄ϕ0

π̃ (α̃)(π̃(β̃, γ̃)) = e−2t

(
ρπ(α̃)(π(β̃, γ̃))− ⟨X0, α̃⟩π(β̃, γ̃)

+⟨X0, α̃⟩π

(
∂β̃

∂t
, γ̃

)
+ ⟨X0, α̃⟩π

(
β̃,

∂γ̃

∂t

))
,

π̃(D̃α̃β̃, γ̃) = e−2t

(
π(Dπ,ϕ0

α̃ β̃, γ̃) + ⟨X0, α̃⟩π

(
∂β̃

∂t
, γ̃

)
− 1

2
⟨X0, α̃⟩π(β̃, γ̃) +

1

2
⟨X0, β̃⟩π(α̃, γ̃)

−1

2
g∗(α̃, β̃)π((g∗)♭−1(X0), γ̃)

)
,

π̃(β̃, D̃α̃γ̃) = e−2t

(
π(β̃, Dπ,ϕ0

α̃ γ̃) + ⟨X0, α̃⟩π
(
β̃,

∂γ̃

∂t

)
− 1

2
⟨X0, α̃⟩π(β̃, γ̃) +

1

2
⟨X0, γ̃⟩π(β̃, α̃)
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−1

2
g∗(α̃, γ̃)π(β̃, (g∗)♭−1(X0))

)
.

It thus follows that

(D̃π̃)(α̃, β̃, γ̃) = e−2t
(
ρπ(α̃)(π(β̃, γ̃))− π(Dπ,ϕ0

α̃ β̃, γ̃)− π(β̃, Dπ,ϕ0

α̃ γ̃)

− 1

2
⟨X0, β̃⟩π(α̃, γ̃) +

1

2
g∗(α̃, β̃)π((g∗)♭−1(X0), γ̃)

−1

2
⟨X0, γ̃⟩π(β̃, α̃) +

1

2
g∗(α̃, γ̃)π(β̃, (g∗)♭−1(X0))

)
= e−2t

(
(Dπ,ϕ0

α̃ π)(β̃, γ̃) +
1

2

(
(X0 ⊗ π)(β̃, γ̃, α̃)

+ (X0 ⊗ π)(γ̃, α̃, β̃) + g∗(α̃, β̃)π((g∗)♭−1(X0), γ̃)

−g∗(α̃, γ̃)π((g∗)♭−1(X0), β̃)
))

.

By regarding Γ(Ã∗) as the set of curves in Γ(A∗), it follows that the compat-
ibility of (π, g∗) is equivalent to the compatibility of (π̃, g̃∗).

3.3 Contact pseudo-metric structures and Sasakian pseudo-
metric structures

In this subsection, we prove that for a contact pseudo-metric structure on
a manifold, satisfying the compatibility condition is equivalent to being a
Sasakian pseudo-metric structure. This means that a Jacobi structure with
a compatible cometric is considered as a generalization of a Sasakian pseudo-
metric structure. Before that, we recall the definitions of almost contact
manifolds and Sasakian pseudo-metric manifolds in short. See [?] for details.

An almost contact structure on a (2n + 1)-dimensional manifold M is a
triple (ϕ, ξ, η) of a (1, 1)-tensor field ϕ on M , a vector field ξ on M and a
1-form η on M satisfying

ϕ2 = −id + η ⊗ ξ, ⟨η, ξ⟩ = 1.

For an almost contact structure (ϕ, ξ, η) on M2n+1, define an almost complex
structure J on M × R by

J

(
X + f

d

dt

)
= ϕX + fξ − ⟨η,X⟩ d

dt
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for any X ∈ X(M × R) tangent to M and f ∈ C∞(M × R), where t is the
standard coordinate on R. An almost contact structure (ϕ, ξ, η) on M is
called normal if this almost complex structure J on M × R is integrable.

A quadruple (ϕ, ξ, η, g) of an almost contact structure (ϕ, ξ, η) on M2n+1

and a pseudo-Riemannian metric g with signature (p, q) on M is called an
almost contact pseudo-metric structure on M if

g(ϕX1, ϕX2) = g(X1, X2)− εη(X1)η(X2)

for any X1, X2 ∈ X(M), where ε := (−1)q. Furthermore, if η is a contact
form and it satisfies for any X1, X2 ∈ X(M)

g(ϕX1, X2) = (dη)(X1, X2),

then (ϕ, ξ, η, g) is called a contact pseudo-metric structure on M . In partic-
ular, a contact pseudo-metric structure (ϕ, ξ, η, g) is called a contact metric
structure if g is a Riemannian metric.

A normal contact pseudo-metric structure is called a Sasakian pseudo-
metric structure. In particular, we call a normal contact metric structure a
Sasakian structure simply. It is known that an almost contact pseudo-metric
structure (ϕ, ξ, η, g) on M is a Sasakian pseudo-metric structure if and only
if

(∇X1ϕ)X2 = −1

2
g(X1, X2)ξ +

1

2
ε⟨η,X2⟩X1

for any X1, X2 ∈ X(M). Moreover, for a Sasakian pseudo-metric structure
(ϕ, ξ, η, g) on M ,

∇Xξ =
1

2
εϕX, Lξg = 0

hold for any X ∈ X(M).

Remark 3.9. In contact geometry, a wedge product (α∧β)(X1, . . . , Xk+l)
for any α in Ωk(M), β in Ωl(M) and Xi in X (M) for i = 1, . . . , k+ l is often
defined as

∑
σ∈Sk+l

sgnσα(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . , Xσ(k+l)) multiplied

by 1
(k+l)!

. However, in this paper, we adopt that multiplied by 1
k!l!

, which is
often used in the context of Lie algebroid theory. These differences cause the
various formulas to change slightly. See [?] for the differences.

Theorem 3.10. Let (M,ϕ, ξ, η, g) be a contact pseudo-metric manifold
and (Λ, E) the Jacobi structure given by the contact form εη on M . Let G
be a pseudo-Riemannian metric on TM ⊕ R defined by

G((X1, f), (X2, h)) := g(X1, X2) + εfh
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and G∗ the dual metric of G on T ∗M ⊕ R with respect to (Λ, E). Then the
pair ((Λ, E), G∗) is compatible on (TM ⊕ R, (0, 1)) if and only if (ϕ, ξ, η, g)
is a Sasakian pseudo-metric structure on M .

Proof. From a direct calculation, the condition that ((Λ, E), G∗) is com-
patible on (TM ⊕ R, (0, 1)) is described as follows:

εg

(
(∇X1ϕ)X2 +

1

2
g(X1, X2)ξ −

1

2
ε⟨η,X2⟩X1, X3

)
+ h2g

(
∇X1ξ −

1

2
εϕX1, X3

)
− 1

2
εh3(Lξg)(X1, X2) = 0

for any X1, X2, X3 ∈ X(M) and any h2, h3 ∈ C∞(M).
The condition above is actually equivalent to that (ϕ, ξ, η, g) is a Sasakian

pseudo-metric structure on M .

Because of Theorem ??, a Jacobi structure with a compatible cometric is
considered as a generalization of a Sasakian pseudo-metric structure.

From Theorem ??, the condition that ((Λ, E), G∗) is compatible on (TM⊕
R, (0, 1)) is equivalent to that the pair (e−tπ, e−tG∗) is compatible on the Lie
algebroid T (M × R), where π ∈ Γ(Λ2(TM ⊕ R)) is the Jacobi structure on
TM ⊕R corresponding to (Λ, E). The following well known fact is recovered
from this observation and Theorem ?? immediately.

Corollary 3.11. A quadruple (ϕ, ξ, η, g) is a Sasakian structure on M if
and only if (d(etη), J, etG) is a Kähler structure on M × R.
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