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Abstract. A 2k-move is a local deformation on a knot diagram
adding or removing 2k half-twists, where k is a positive integer. We
show that if two virtual knots are related by a finite sequence of 2k-
moves, then their odd writhes are congruent modulo 2k. Moreover,
we provide a necessary and sufficient condition for two virtual knots
to have the same congruence class of odd writhes modulo 2k.

1. Introduction

Let k be a positive integer. A 2k-move on a knot diagram is a local
deformation adding or removing 2k half-twists as shown in Figure 1.1.
A 2-move is equivalent to a crossing change; that is, a 2-move is real-
ized by a crossing change, and vice versa. In this sense a 2k-move can
be considered as a generalization of a crossing change. The 2k-moves
form an important family of local moves in classical knot theory. In
fact, they have been well studied by means of many invariants of classi-
cal knots and links in the 3-sphere; for example, Alexander polynomi-
als [15], Jones, HOMFLYPT and Kauffman polynomials [21], Burnside
groups [5, 6], Milnor invariants [18] and quandles [10].

2k

2k half-twists

Figure 1.1. A 2k-move

This paper studies 2k-moves in the setting of virtual knots, which
are a generalization of classical knots discovered by Kauffman [12].
Roughly speaking, a virtual knot is an equivalence class of generalized
knot diagrams called virtual knot diagrams under seven types of local
deformations. We say that two virtual knots are related by a 2k-move
if a diagram of one is a result of a 2k-move on a diagram of the other.

For a virtual knot K, Kauffman [13] introduced an integer-valued
invariant J(K) called the odd writhe. Satoh and Taniguchi [22] gener-
alized it to a sequence of integer-valued invariants Jn(K) of K called
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the n-writhes (n ∈ Z \ {0}). This sequence {Jn(K)}n 6=0 gives rise to a
polynomial invariant PK(t) of K known as the affine index polynomial
due to Kauffman [14] as follows:

PK(t) =
∑
n6=0

J−n(K)(tn − 1),

which is essentially equivalent to the writhe polynomial due to Cheng
and Gao [4]. Refer to [3] for a good survey of virtual knot invariants
derived from chord index, including the invariants J(K), Jn(K) and
PK(t).

Recently, Jeong, Choi and Kim [11] established a necessary condition
for two virtual knots to be equivalent under 2k-moves using their affine
index polynomials as follows:

Theorem 1.1 ([11, Theorem 2.3]). If two virtual knots K and K ′

are related by a finite sequence of 2k-moves, then PK(t) and PK′(t) are
congruent modulo k; that is, Jn(K) and Jn(K

′) are congruent modulo k
for any nonzero integer n.

Examining their proof of this theorem given in [11], we can find
another necessary condition in terms of odd writhes, which states that if
two virtual knots K and K ′ are related by a finite sequence of 2k-moves,
then J(K) and J(K ′) are congruent modulo 2k (Proposition 2.2).

A Ξ-move on a virtual knot diagram is a local deformation exchang-
ing the positions of c1 and c3 of three consecutive real crossings c1, c2
and c3 as shown in Figure 1.2, where we omit the over/under infor-
mation of every crossing ci (i = 1, 2, 3). The Ξ-move arises naturally
as a diagrammatic characterization of virtual knots having the same
odd writhe. In fact, Satoh and Taniguchi [22] showed the following
theorem.

Ξ
c1

c2

c3

c3

c2

c1

Figure 1.2. A Ξ-move

Theorem 1.2 ([22, Theorem 1.7]). For two virtual knots K and K ′,
the following are equivalent:

(i) J(K) and J(K ′) are equal.
(ii) K and K ′ are related by a finite sequence of Ξ-moves.

Inspired by this theorem, we use Ξ-moves together with 2k-moves
to characterize virtual knots having the same congruence class of odd
writhes modulo 2k. The following theorem is our main result.
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Theorem 1.3. For two virtual knots K and K ′, the following are
equivalent:

(i) J(K) and J(K ′) are congruent modulo 2k.
(ii) K and K ′ are related by a finite sequence of 2k-moves and

Ξ-moves.

In [1, Proposition 25], Carter, Kamada and Saito proved that not
every virtual knot can be unknotted by crossing changes, although the
crossing change is an unknotting operation for classical knots. Refer
also to [9, 23]. This fact justifies the notion of flat virtual knots. A flat
virtual knot [12], also known as a virtual string [23], is an equivalence
class of virtual knots up to crossing changes. Equivalently, a flat virtual
knot is represented by a virtual knot diagram with all the real crossings
replaced by flat crossings, where a flat crossing is a transverse double
point with no over/under information.

In [2, Lemma 2.2], Cheng showed that the odd writhe for any virtual
knot takes values in even integers. Hence any virtual knot K and the
trivial one O satisfy J(K) ≡ J(O) ≡ 0 (mod 2). By Theorem 1.3
for k = 1, the two knots K and O are related by a finite sequence of
2-moves and Ξ-moves. In other words, we have the following corollary.

Corollary 1.4. Any flat virtual knot can be deformed into the trivial
knot by a finite sequence of flat Ξ-moves; that is, the flat Ξ-move is
an unknotting operation for flat virtual knots. Here, a flat Ξ-move is a
Ξ-move with all the real crossings replaced by flat ones. �

For two virtual knots K and K ′ that are related by a finite sequence
of 2k-moves, we denote by d2k(K,K ′) the minimal number of 2k-moves
needed to deform a diagram of K into that of K ′. In particular, when
K ′ = O is the trivial knot, we set u2k(K) = d2k(K,O).

In [11], Jeong, Choi and Kim provided a lower bound for d2k(K,K ′)
using the coefficients of the affine index polynomials of K and K ′ (that
is, the n-writhes of K and K ′), and demonstrated that their lower
bound for u2k(K) is sharp for some virtual knots K. However, they
did not make it clear whether for a pair of nontrivial virtual knots K
and K ′, the lower bound for d2k(K,K ′) is sharp. We answer this by
proving the following theorem.

Theorem 1.5. Let p be a positive integer. For any virtual knot K,
there is a virtual knot K ′ with d2k(K,K ′) = p.

Moreover we have the following theorem.

Theorem 1.6. For any positive integer p, there are infinitely many
virtual knots K with u2k(K) = p.

The rest of this paper is organized as follows. In Section 2, we review
the definitions of a virtual knot, a Gauss diagram, the n-writhe and
the odd writhe, and prove the invariance of the modulo 2k reduction
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of the odd writhe under 2k-moves. Section 3 is devoted to the proof
of Theorem 1.3. Our main tool is the notion of shell-pairs, which are
certain pairs of chords of a Gauss diagram introduced in [17]. Finally,
in Section 4, we prove Theorems 1.5 and 1.6 using Jeong-Choi-Kim’s
lower bound for d2k of virtual knots.

2. Odd writhes and 2k-moves

We begin this section by recalling the definitions of virtual knots and
Gauss diagrams from [8, 12]. A virtual knot diagram is the image of an
immersion of an oriented circle into the plane whose singularities are
only transverse double points. Such double points consist of positive,
negative and virtual crossings as shown in Figure 2.1. A positive/neg-
ative crossing is also called a real crossing.

positive negative virtual

Figure 2.1. Types of double points

Two virtual knot diagrams are said to be equivalent if they are re-
lated by a finite sequence of generalized Reidemeister moves I–VII as
shown in Figure 2.2. A virtual knot is the equivalence class of a virtual
knot diagram. In particular, a classical knot in the 3-sphere can be
considered as a virtual knot diagram with no virtual crossings, called
a classical knot diagram, up to the moves I, II and III. In [8, The-
orem 1.B], Goussarov, Polyak and Viro proved that two equivalent
classical knot diagrams are related by a finite sequence of moves I, II,
and III; that is, the set of virtual knots contains that of classical knots.
In this sense, virtual knots are a generalization of classical knots.

A Gauss diagram is an oriented circle equipped with a finite num-
ber of signed and oriented chords whose endpoints lie disjointly on the
circle. In figures the underlying circle and chords of a Gauss diagram
will be drawn with thick and thin lines, respectively. Gauss diagrams
provide an alternative way of representing virtual knots. For a vir-
tual knot diagram D with n real crossings (and some or no virtual
crossings), the Gauss diagram GD associated with D is constructed as
follows. It consists of a circle and n chords connecting the preimage
of each real crossing of D. Each chord of GD has the sign of the cor-
responding real crossing of D, and it is oriented from the overcrossing
to the undercrossing. For a virtual knot K, a Gauss diagram of K is
defined to be a Gauss diagram associated with a virtual knot diagram
of K.

A motivation of introducing virtual knot theory comes from the re-
alization of Gauss diagrams. In fact, the construction above defines
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I I II III

IV V VI

VII

Figure 2.2. Generalized Reidemeister moves I–VII

a surjective map from virtual knot diagrams onto Gauss diagrams,
although not every Gauss diagram can be realized by a classical knot
diagram. Moreover, this map induces a bijection between the set of vir-
tual knots and that of Gauss diagrams modulo Reidemeister moves I,
II and III defined in the Gauss diagram level as shown in Figure 2.3 [8,
Theorem 1.A]. Refer also to [12, Section 3.2]. Therefore a virtual knot
can be regarded as the equivalence class of a Gauss diagram.

I
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III
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Figure 2.3. Reidemeister moves I, II and III on Gauss
diagrams (ε = ±1)

We will use two deformations on Gauss diagrams as shown in Fig-
ure 2.4 as well as the Reidemeister moves I, II and III. These deforma-
tions are the counterparts of a 2k-move and a Ξ-move for Gauss dia-
grams. More precisely, a 2k-move on a Gauss diagram adds or removes
2k chords with the same sign ε whose initial and terminal endpoints
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2k

2k chords

ε ε ε ε
Ξε1 ε2 ε3 ε1 ε2 ε3

P1 P2 P3 P3 P2 P1

Figure 2.4. A 2k-move and a Ξ-move on Gauss diagrams

appear alternately. Let P1, P2 and P3 be three consecutive endpoints
of chords of a Gauss diagram. A Ξ-move exchanges the positions of P1

and P3, preserving the signs ε1, ε2, ε3 and orientations of the chords.
In the right of the figure, a pair of dots • marks the two endpoints P1

and P3 exchanged by a Ξ-move.
Now we define the n-writhe and the odd writhe of a virtual knot K

using Gauss diagrams. For a Gauss diagram G of K, let γ be a chord of
G. If γ has a sign ε, then we assign ε and −ε to the terminal and initial
endpoints of γ, respectively. The endpoints of γ divide the underlying
circle of G into two oriented arcs. Let α be the arc running from the
initial endpoint of γ to the terminal one; see Figure 2.5. The index of
γ, ind(γ), is the sum of the signs of all the endpoints of chords on α.

γ ε α

ε

−ε

Figure 2.5. A chord γ with sign ε and its specified arc α

For an integer n, we denote by Jn(G) the sum of the signs of all the
chords with index n. In [22, Lemma 2.3], Satoh and Taniguchi proved
that Jn(G) is an invariant of the virtual knot K for any n 6= 0; that
is, it is independent of the choice of G. This invariant is called the
n-writhe of K and denoted by Jn(K). The odd writhe J(K) of K due
to Kauffman [13] can be defined by

J(K) =
∑
n∈Z

J2n−1(K).

Refer to [3, 13, 22] for more details.
The following lemma given in [11] reveals the behavior of Jn(G) of a

Gauss diagram G under a 2k-move on G, and Theorem 1.1 follows from
this lemma immediately. We use this lemma to prove the invariance of
the modulo 2k reduction of the odd writhe under 2k-moves.
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Lemma 2.1 ([11, Lemma 2.2]). If two Gauss diagrams G and G′ are
related by a single 2k-move, then there is a unique integer n such that
Jn(G)− Jn(G

′) = εk, J−n(G)− J−n(G
′) = εk and Jm(G) = Jm(G

′)

for some ε = ±1 and any integer m 6= ±n.

Proposition 2.2. If two virtual knots K and K ′ are related by a finite
sequence of 2k-moves, then J(K) and J(K ′) are congruent modulo 2k.

Proof. Assume that K and K ′ are related by a single 2k-move, and
let G and G′ be Gauss diagrams of K and K ′, respectively. Then G
and G′ are related by a finite sequence of a single 2k-move and several
Reidemeister moves. By Lemma 2.1 and [22, Lemma 2.3], there is a
unique integer n such that
Jn(G)− Jn(G

′) = εk, J−n(G)− J−n(G
′) = εk and Jm(G) = Jm(G

′)

for some ε = ±1 and any integer m 6= ±n. Therefore the difference
J(K)− J(K ′) equals 2εk for n odd and 0 for n even. �

In [7], Fox introduced the notion of congruence classes modulo (n, q)
of classical knots for nonnegative integers n and q, and asked whether
the set of congruence classes of a classical knot determines the knot
type. More precisely, his question is: if two classical knots are congru-
ent modulo (n, q) for all n ≥ 1 and q ≥ 0, then are they the same type?
It is known [7, 16, 20] that the Alexander and Jones polynomials of
classical knots provide information about their congruence classes. For
example, in [16, Corollary 2.4], Lackenby proved that if two classical
knots are congruent modulo (n, 2) for all n ≥ 1, then they have the
same Jones polynomial.

The notion of Fox’s congruence classes can be extended to virtual
knots by a diagrammatic way as shown in [16, Figure 1]. We can see
that if two virtual knots are related by a finite sequence of 2k-moves,
then they are congruent modulo (k, 2). Therefore it would be interest-
ing to know whether the set of 2k-move equivalence classes of a vir-
tual knot determines the knot type. As a consequence of Theorem 1.2
and Proposition 2.2, we show the following proposition related to this
question, which states that the set of 2k-move equivalence classes of a
virtual knot K determines the Ξ-move equivalence class of K.

Proposition 2.3. If two virtual knots K and K ′ are related by a finite
sequence of 2k-moves for all k ≥ 1, then J(K) and J(K ′) are equal.
Equivalently, if two virtual knots are related by a finite sequence of
2k-moves for all k ≥ 1, then they are related by a finite sequence of
Ξ-moves.

Proof. By assuming that K and K ′ have different odd writhes, there
is a positive integer k such that J(K) 6≡ J(K ′) (mod 2k). By Proposi-
tion 2.2, this contradicts that K and K ′ are related by a finite sequence
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of 2k-moves for all k ≥ 1. Thus we have J(K) = J(K ′). Equiva-
lently by Theorem 1.2, K and K ′ are related by a finite sequence of
Ξ-moves. �

3. Proof of Theorem 1.3

In our proof of Theorem 1.3, the main tool is the notion of a shell-
pair, which is a certain pair of chords of a Gauss diagram developed
in [17] for classifying 2-component virtual links up to Ξ-moves. It is
defined as follows.

Let P1, P2 and P3 be three consecutive endpoints of chords of a Gauss
diagram G. We say that a chord of G is a shell if it connects P1 and
P3; see the left of Figure 3.1. Note that the orientation of a shell can
be reversed by a Ξ-move exchanging the positions of P1 and P3. A
positive shell-pair (or negative shell-pair) consists of a pair of positive
shells (or negative shells) whose four endpoints are consecutive; see the
right of the figure, where we omit the orientations of shells.

ε

P1 P2 P3 positive negative

Figure 3.1. A shell and a positive/negative shell-pair

We prepare three results (Lemmas 3.1, 3.2 and Proposition 3.3) to
give the proof of Theorem 1.3. The first and second results are used to
prove the third one.

The following lemma was shown in [17, 22].

Lemma 3.1 ([17, Lemmas 4.1 and 4.2], [22, Fig. 13]). Let G, G′ and
G′′ be Gauss diagrams.

(i) If G′ is obtained from G by a local deformation exchanging the
positions of a shell-pair and an endpoint of a chord in G, which
preserves the orientations of the chords, as shown in the top of
Figure 3.2, then G and G′ are related by a finite sequence of
Ξ-moves and Reidemeister moves.

(ii) If G′′ is obtained from G by a local deformation adding or re-
moving two consecutive shell-pairs with opposite signs as shown
in the bottom of Figure 3.2, then G and G′′ are related by a
finite sequence of Ξ-moves and Reidemeister moves.

Lemma 3.2. Let G and G′ be Gauss diagrams, and k a positive integer.
If G′ is obtained from G by a local deformation adding or removing k
consecutive shell-pairs with the same sign ε as shown in Figure 3.3,
then G and G′ are related by a finite sequence of 2k-moves, Ξ-moves
and Reidemeister moves.
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ε ε ε ε

ε ε −ε −ε

Figure 3.2. Local deformations in Lemma 3.1

ε ε ε ε

k shell-pairs

Figure 3.3. Adding or removing k consecutive shell-pairs

Proof. We only prove the result for k = 2. The other cases are shown
similarly.

Assume that G′ is obtained from G by adding two consecutive shell-
pairs with sign ε. The proof follows from Figure 3.4, which gives a
sequence of Gauss diagrams

G = G0, G1, . . . , G6 = G′

such that for each i = 1, 2, . . . , 6, Gi is obtained from Gi−1 by a combi-
nation of 4-moves, Ξ-moves and Reidemeister moves. More precisely,
we obtain G1 from G0 = G by a Reidemeister move I adding a positive
chord, G2 from G1 by a 4-move adding four chords with sign ε, and G3

from G2 by a Ξ-move exchanging the positions of the two endpoints
with dots •. By Lemma 3.1(i), we can move the resulting shell-pair,
preserving the orientations of the chords, to get G4 from G3. After
deforming G4 into G5 by a Ξ-move, we finally obtain G6 = G′ by two
Ξ-moves reversing the orientations of shells and a Reidemeister move I
removing a positive chord. �

For an integer a, let G(a) be the Gauss diagram in Figure 3.5; that
is, it consists of |a| shell-pairs with sign ε, where ε = 1 for a > 0 and
ε = −1 for a < 0. In particular, G(0) is the Gauss diagram with no
chords. Denote by K(a) the virtual knot represented by G(a). We
remark that K(a) satisfies J(K(a)) = 2a.

We give a normal form of an equivalence class of virtual knots under
2k-moves and Ξ-moves as follows:

Proposition 3.3. Any virtual knot K is related to K(a) for some
a ∈ Z with 0 ≤ a < k by a finite sequence of 2k-moves and Ξ-moves.

Proof. By [22, Proposition 7.2], any Gauss diagram G of K can be
deformed into G(a) for some a ∈ Z by a finite sequence of Ξ-moves
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G = G0 G1 G2

G3 G4

G5 G6 = G′

I 4

Ξ Lem. 3.1

Ξ Ξ, I

ε
ε
ε
ε

ε ε

ε
ε

ε ε ε
ε

ε ε ε ε ε ε ε ε

Figure 3.4. Proof of Lemma 3.2 for k = 2

ε ε ε ε

|a| shell-pairs

Figure 3.5. The Gauss diagram G(a)

and Reidemeister moves. If a satisfies 0 ≤ a < k, then we have the
conclusion.

For k ≤ a, there is a unique positive integer p with 0 ≤ a− pk < k.
Lemma 3.2 allows us to add pk consecutive negative shell-pairs to G(a).
From the resulting Gauss diagram, we can remove pk pairs of shell-pairs
with opposite signs by Lemma 3.1(ii) in order to obtain G(a−pk). Thus
G is related to G(a − pk) by a finite sequence of 2k-moves, Ξ-moves
and Reidemeister moves.

In the case a < 0, let q be the positive integer with 0 ≤ a+ qk < k.
Using Lemmas 3.1(ii) and 3.2, we add qk consecutive positive shell-
pairs to G(a), and then remove qk pairs of shell-pairs with opposite
signs. Finally G is related to G(a + qk) by a finite sequence of 2k-
moves, Ξ-moves and Reidemeister moves. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. (i)⇒(ii): By Proposition 3.3, K and K ′ are re-
lated to K(a) and K(a′) for some a, a′ ∈ Z with 0 ≤ a, a′ < k, respec-
tively, by a finite sequence of 2k-moves and Ξ-moves. Then it follows
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from Theorem 1.2 and Proposition 2.2 that

J(K) ≡ J(K(a)) = 2a (mod 2k)

and
J(K ′) ≡ J(K(a′)) = 2a′ (mod 2k).

By assumption, we have 2a ≡ 2a′ (mod 2k). Since the nonnegative
integers a and a′ are less than k, we have a = a′. Thus K(a) and K(a′)
coincide.

(ii)⇒(i): This follows from Theorem 1.2 and Proposition 2.2. �

The following corollary is an immediate consequence of the proof of
Theorem 1.3.

Corollary 3.4. A complete system of representatives of the equivalence
classes of virtual knots under 2k-moves and Ξ-moves is given by the
set

{K(a) | a ∈ Z, 0 ≤ a < k}.
In particular, the number of equivalence classes equals k. �

4. Proofs of Theorems 1.5 and 1.6

For two virtual knots K and K ′ that are related by a finite sequence
of 2k-moves, Jeong, Choi and Kim [11] provided a lower bound for
d2k(K,K ′) using the affine index polynomials of K and K ′, which can
be rephrased in terms of the n-writhes as follows:

Theorem 4.1 ([11, Theorem 2.3]). Let K and K ′ be virtual knots such
that they are related by a finite sequence of 2k-moves. Then we have

d2k(K,K ′) ≥ 1

k

∑
n>0

|Jn(K)− Jn(K
′)| = 1

k

∑
n<0

|Jn(K)− Jn(K
′)|.

In particular, when K ′ = O is the trivial knot, we have

u2k(K) ≥ 1

k

∑
n>0

|Jn(K)| = 1

k

∑
n<0

|Jn(K)|.

We conclude this paper with the proofs of Theorems 1.5 and 1.6.

Proof of Theorem 1.5. Consider a long virtual knot diagram T whose
closure represents the virtual knot K. Let K ′ be the virtual knot
represented by the diagram D in the left of Figure 4.1. The Gauss
diagram GD associated with D is given in the right of this figure, where
the boxed part depicts the Gauss diagram GT corresponding to T .

Removing 2pk half-twists from D by 2k-moves p times, we can de-
form D into a diagram of K. Thus we have d2k(K,K ′) ≤ p.

The 2pk vertical chords in GD consist of pk positive chords with
index 1 and pk positive chords with index −1, and the remaining one
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T

2pk half-twists

GT

2pk chords

Figure 4.1. A diagram D of K ′ and its Gauss diagram GD

chord of GD excluding the chords in GT has index 0. Therefore it
follows from [22, Lemma 4.3] that

Jn(K
′) =


J1(K) + pk if n = 1,

J−1(K) + pk if n = −1,

Jn(K) if n 6= 0,±1.

By Theorem 4.1, we have

d2k(K,K ′) ≥ 1

k
|J1(K)− J1(K

′)| = 1

k
| − pk| = p,

and hence d2k(K,K ′) = p. �

Proof of Theorem 1.6. For a positive integer s, let Ks be the virtual
knot represented by the diagram Ds in Figure 4.2. As shown in the
proof of [19, Theorem 2.8], the set {Ks | s ≥ 1} forms an infinite family
of virtual knots with u(Ks) = pk for any s ≥ 1, where u(Ks) is the
minimal number of crossing changes needed to deform a diagram of Ks

into that of the trivial knot O.

2pk half-twists

2s− 1 half-twists

Figure 4.2. A virtual knot diagram Ds

Since a 2k-move is realized by crossing changes k times, we have
u2k(Ks) ≥ 1

k
u(Ks) = p. On the other hand, since Ds can be deformed

into a diagram of O by 2k-moves p times removing 2pk half-twists, we
have u2k(Ks) ≤ p. Thus Ks satisfies u2k(Ks) = p for any s ≥ 1. �
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