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Abstract. In this paper, for any Shimura datum (G,D) satisfying reasonable conditions that many

interesting cases satisfy, we prove some finiteness theorems for any graded vector space consisting

of automorphic forms on D of some weights over the graded ring of automorphic forms on X with

positive parallel weights. We also discuss the integral base ring which we can work on. To realize

automorphic forms as global sections on some coherent sheaves on the minimal compactification, we

use the notion of reflexive sheaves and higher Koecher principle due to Kai-Wen Lan. Further, we

give a slightly modified version of finiteness results for Siegel modular forms by using only the results

of Chai-Faltings.

1. Introduction

We refer [19], [16] and [25] for Shimura data and Shimura varieties. Let D be the Hermitian

symmetric domain associated to a Shimura datum (G,D) where G is a connected reductive group

over Q. Let G(R)+ be the connected component of G(R) with the identity in the real topology. Put

G(Q)+ = G(Q) ∩G(R)+. Let (Gad,D+) be the connected Shimura datum for (G,D) such that D+

is a connected component of D and G(R)+ acts transitively on D+. Let Af = Ẑ⊗Z Q be the finite

part of the ring of adeles of Q. For any open compact subgroup U of G(Af ), put

(1.1) XU := G(Q)\D ×G(Af )/U ' G(Q)+\D+ ×G(Af )/U =
∐
i∈I

Γi\D+

where G(Af ) =
∐

i∈I G(Q)+giU and Γi = (giUg−1
i )∩G(Q)+. Clearly each Γi is commensurable with

G(Z). Here G(Z) is defined by, first, choosing an embedding ιN : G ↪→ GLN for some positive integer

N and then by talking the pullback of GLN (Z) under ιN . It is well-known (cf. Theorem 1 of [28])

that each component Γi\D+ has a structure as a quasi-projective algebraic variety over C even when

Γi is not neat. Let K be a maximal compact subgroup of G(R) and KC be its complexification. Then

D = G(R)/ZG(R)K. For γ ∈ G(R)+ and z ∈ D+ we write γ · z for the natural left action. For each

algebraic, finite dimensional representation ρ of KC with the representation space Vρ, we define the

holomorphic vector bundle (G+(R)×K,ρ|K Vρ(C))/K on D+ as a quotient of G+(R)× Vρ(C) by the

relation (g, v) ∼ (gk, ρ−1(k)v) for (g, v) ∈ G+(R)×Vρ(C) and k ∈ K. Since D+ is simply connected,

the above holomorphic vector bundle is trivialized. Therefore, there is a canonical automorphic

factor associated to ρ:

(1.2) Jρ : G(R)+ ×D+ −→ AutC(Vρ)
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which is holomorphic in the complex variables of D+ and it satisfies the cocycle condition. We can

also associate the automorphic vector bundle on XU by

Wρ,U = ZG(R)G(Q)+\(G(R)×G(Af )× Vρ(C))/(K × U) '
∐
i∈I

Γi\(D+ × Vρ(C))

with the relation (g∞, gf , v) ∼ (z∞γg∞k, γgfu, ρ
−1(k)v), z∞ ∈ ZG(R), γ ∈ G(Q)+, k ∈ K, u ∈ U

for (g∞, gf , v) ∈ D ×G(Af )× Vρ and each Γi acts on D+ × Vρ(C) by γi(Z, v) = (γiZ, J(γi, Z)v).

Fix an algebraic (or holomorphic) character λ : KC −→ C× which is a positive parallel weight

[16] (equivalently, it is also said to be positive of rational type in the classical language [28]). We

will specify λ when we apply the results to Siegel modular forms. For any arithmetic subgroup

Γ ⊂ G(Q)+ and an algebraic representation ρ of KC as above, we define the space Mρ(Γ) which

consisting of all holomorphic Vρ(C)-valued functions F : D+ −→ Vρ(C) enjoying the conditions:

• F (γ · z) = Jρ(γ, z)F (z) for any γ ∈ Γ,

• lim
z→∂D

Jρ(δ, z)
−1F (δ · z) is finite for any δ ∈ G(Q)+

where ∂D is the boundary of Satake compactification [27] or Baily-Borel compactification [1]. In

this paper we call F a (classical) automorphic form of weight ρ with respect to Γ. If we replace the

above second condition with

• lim
z→∂D

Jρ(γ, z)
−1F (γ · z) = 0 for any γ ∈ G(Q)+,

then we call F a (classical) cusp form of weight ρ with respect to Γ. We denote by Sρ(Γ) the space

of all cusp forms of weight ρ with respect to Γ. It is well-known that both of Mρ(Γ) and Sρ(Γ) are

finite dimensional vector spaces over C. We also define the graded vector spaces by

(1.3) Mρ,λ,∗(Γ) :=
⊕
k∈Z

Mρ⊗λk(Γ), Sρ,λ,∗ :=
⊕
k∈Z

Sρ⊗λk(Γ).

Put

(1.4) Mλ,∗(Γ) = M1,∗(Γ).

where 1 stands for the trivial representation of KC. Put

(1.5) Mρ,λ,∗(U) =
⊕
i∈I

Mρ,λ,∗(Γi), Sρ,λ,∗(U) =
⊕
i∈I

Sρ,λ,∗(Γi), Mλ,∗(U) =
⊕
i∈I

M1,λ,∗(Γi)

with respect to (1.1). It will be revealed in the course of proofs of the main theorems that (1.5) can

be defined as the global sections of coherent sheaves related to Wρ,U .

The graded ring Mλ,∗(Γi) (or Mλ,∗(U)) is consisting of automorphic forms of scalar weights pro-

portional to λ. For such a λ, Mλ,∗(Γi) (or Mλ,∗(U)) is finitely generated by Theorem 1.1 below.

For positive parallel weights, all cases are described in Section 3.3 of [16]. For example, when G is

ResF/QSL2/F or ResF/QGL2/F for any totally real field F of degree g, then the weights of characters

are parametrized by g-tuple non-negative integers (k1, . . . , kg) and they are said to be positive and

of rational type if k1 = . . . = kg > 0. We have the same condition for the symplectic group Sp2g over

Q of rank g whose corresponding highest weights of characters are parametrized by g-tuple integers

(k1, . . . , kg). When G = GSp2g/Q, the positive pararell weights are given by the same weights for

Sp2g/Q by ignoring the similitude part (see Section 3).
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Henceforth we assume

(1.6)
(dim) Every Q-simple factor of each component of XΓ or XU is compact or of dimension

greater than one.

Many interesting cases including Hilbert modular varieties, Siegel modular varieties, and unitary

Shimura varieties satisfy the above condition, and it plays an important role in applying Serre’s

extension theorem (see the discussion in lines between (2.1) and (2.2)).

The following theorem seems to be well-known for some cases for experts (and even to some

non-experts) after Cartan Seminaires (however, this is not a paper directed to experts on Shimura

varieties but to the community working on classical modualr forms and even over C, most people do

not know a reference in the vector-valued case with my experience from discussions at conferences).

Theorem 1.1. Assume (1.6) for G and an arithmetic subgroup Γ of G(Q)+. For any algebraic

representation ρ of KC and any positive algebraic character of KC which is of rational type, the

graded vector spaces Mρ,λ,∗(Γ) and Sρ,λ,∗(Γ) are finitely generated over the graded ring Mλ,∗(Γ).

Note that Γ in the claim needs not to be congruent. A key is to realize automorphic forms and

cusp forms as global sections of coherent sheaves on the minimal compactification of XΓ. However

the minimal compactification is highly singular in general and therefore it seems difficult to directly

construct desired coherent sheaves. As usual, we first consider automorphic vector bundles on XΓ

and then extend them to a suitably chosen toroidal compactification of XΓ. Among them, we lose

the ampleness of a natural automorphic line bundle ω on any toroidal compactification in most cases.

However we can push forward the extended automorphic vector bundles in question to the minimal

compactification preserving the coherence and descend ω to an ample line bundle. In proving these

things, we often use the results from reflexive sheaves, Serre’s extension theorem (for the classical

case), and later its variant over integral bases due to Kai-Wen Lan. Then the claim follows from a

standard argument for coherent sheaves on projective schemes. Though the claim of Theorem 1.1

seems to be a folklore except for some cases or even a standard result in textbooks, it has been

missing, such a finiteness might not have been clearly documented after Cartan Seminaires. Some

important language is maintained during the last decade by Kai-Wen Lan and his collaborators

though the classical modular forms on Shimura varieties have been understood very well in terms of

various methods including keywords as (g,K)-cohomology, mixed Hodge theory and so on.

Next we consider similar claims for integral bases. To define an integral structure of the space of

automorphic forms or cusp forms, let us assume that

• (G,D) is a Shimura datum of PEL type.

For each rational prime p, let us fix an isomorphism ιp : Qp
∼−→ C and we say a subring R ⊂ C is

p-adically integral if ι−1
p (R) ⊂ Zp. We also say any subring of Zp p-adically integral. Note that Z(p)

and Zp are standard examples of p-adically integral rings. For any positive integer N and a finite

extension F/Q, the ring OF [
1
N ] is also a p-adically integral ring when p ∤ N .

Let p be a good prime and R1 be a p-adically integral ring defined in Subsection 2.2. If G =

GSp2g/Q, then any rational prime p is good and R1 can be any of Z(p) and Zp.

Then it will be explained in next section that by using the moduli interpretation of XU for any

open compact subgroup U = UpUp such that Up is an open compact subgroup in G(Ẑp) =
∏
q ̸=p

G(Zq)
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and Up = G(Zp), for any R1-algebra R, we can define geometric automorphic forms or geometric cusp

forms over R. As in the cases before, we define the R-module Mν0(U , R) (resp. Sρ(U , R)) consisting

of automorphic forms (resp. cusp forms) over R of weight ν0 ∈ X+
M1

with respect to U (see §2.2 for

weights). According to this definition, as (1.3),(1.4), we also define the graded R-modules

(1.7) Mν0,λ,∗(U , R) =
⊕

k∈Z≥0

Mν0+kλ(U , R), Sν0,λ,∗(U , R) =
⊕

k∈Z≥0

Sν0+kλ(U , R),

and

(1.8) Mλ,∗(U , R) =
⊕

k∈Z≥0

Mkλ(U , R)

where λ ∈ X+
M1

is a positive parallel weight in the sense of Definition 7.1, p.1153 of [22].

Theorem 1.2. Let p be a good prime and R1 be as above. Assume that the symmetric space X is

a Shimura variety of PEL type. Let ν0 ∈ X+
M1

be a weight and λ be a positive parallel weight. Then

it holds that

(1) the graded ring Mλ,∗(U , R) is finitely generated over R;

(2) the graded modules Mν0,λ,∗(U , R) and Sν0,λ,∗(U , R) are finitely generated over Mλ,∗(U , R).

Let R1 be as above and R be R1-algebra which is p-adically integral in the above sense. For any

finite R-module M we denote by MTF the maximal R-free quotient of M . We can also study a more

finer structure on these R-modules:

Corollary 1.3. Keep the notation in Theorem 1.2. Assume that an R1-module R is p-adically

integral. Then it holds that

(1) the graded ring Mλ,∗(U , R)TF :=
⊕

k∈Z≥0

Mkλ(U , R)TF is finitely generated over R;

(2) the R-free graded modules Mν0,λ,∗(U , R)TF :=
⊕

k∈Z≥0

Mν0+kλ(U , R)TF and Sν0,λ,∗(U , R)TF :=⊕
k∈Z≥0

Sν0+kλ(U , R)TF are finitely generated over Mλ,∗(U , R)TF.

Further, these objects give integral structures of the classical forms (1.5) respectively.

In the course of proving the main theorems, we will use the results of Kai-Wen Lan and his

collaborators. However, if we focus on Siegel modular forms, we will have more finer results which

will be explained in Section 4 by using only the results in [3].

This paper will be organized as follows. In Section 2 we will built up the settings precisely and

prove the main theorems. In Section 3 we give an explicit form of positive parallel weights and good

prime in the case when G = GSp2g. In the last section, we will prove the more finer version of the

finiteness results for Siegel modular forms of level one.

Acknowledgments. The author would like to thank Nobuyoshi Takahashi for the useful dis-

cussion in algebraic geometry. He would also like to thank the Professor Siegfried Böecherer and
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2. Settings and results

2.1. Shimura data and Shimura varieties. Let us start recalling some basic facts of Shimura

varieties. We refer [19] and [25]. Let (G,D) be a Shimura datum introduced in Section 1 where

G is a connected reductive group over Q and D is the G(R)-conjugacy classes of homomorphisms

h : S := ResC/RGm,C −→ GR which satisfy the following conditions:

(1) The adjoint action of G(R) on the complexification g of the Lie algebra LieG(R) and h yield

the homomorphism Ad ◦ h : S(R) = C× −→ AutC(g) and it induces a decomposition

g = k⊕ g+ ⊕ g−

such that h(z), z ∈ C× acts on the right hand side of the above decomposition by 1, z/z, z/z

respectively.

(2) h(
√
−1) induces a Cartan involution on Gad(R) where Gad = G/ZG and ZG is the center of

G.

(3) Gad has no nontrivial Q-simple factor H such that H(R) is compact.

Factoring through a connected Shimura variety (see Lemma 5.11 of [25]) the set D has a structure as

a Hermitian symmetric domain (see Proposition 4.8 of [25]). The third condition for Shimura data

guarantees that Gad is semisimple. By Proposition 4.1 of [25], G(Q) ∩ U is a congruence subgroup

for any compact open subgroup U and conversely any congruence subgroup is recovered in this way.

As explained in Section 1, the Shimura variety

XU := G(Q)\D ×G(Af )/U '
∐
i∈I

Γi\D+

has a structure as a quasi-projective variety over C for any open compact subgroup U of G(Af ). We

may work on XΓ = Γ\D+ for any congruent subgroup Γ of G(Q)+ such as each connected component

of XU . Since Γ has a finite index normal subgroup which is neat and the cohomologies in question

are C-vector spaces, we may assume that Γ is neat in proving Theorem 1.1 (cf. the argument around

the equation (2) in Chapter IV p.140 of [2]). For an automorphic factor Jρ in (1.2) one can associate

the holomorphic automorphic vector bundle Wρ on XΓ such that H0(XΓ,Wρ) 'Mρ(Γ) (see Chapter

III of [24] or [30]).

To apply some results on projective varieties we need to compactify XΓ and canonically extend

our sheaf Wρ there. Under this process the condition (dim) is reasonable to make no difference

between holomorphic automorphic forms and holomorphic global sections of the extended coherent

sheave.

Let XΓ,∆ be a smooth toroidal compactification of XΓ with respect to a fan ∆ (cf. Chapter V of

[24]). In fact, one can choose such a fan by using good cone decompositions. Then there exists a

suitable choice of ∆ such that Wρ extends to a vector bundle (so called a canonical extension) W can
ρ

on XΓ,∆ such that

(2.1) H0(XΓ,∆,W
can
ρ ) 'Mρ(Γ), H0(XΓ,∆,W

sub
ρ ) ' Sρ(Γ)

where W sub
ρ = W can

ρ (−D∆) and D∆ = (XΓ,∆ \XΓ)red (see Theorem 6.1 of [24] for W can
ρ and W sub

ρ ).

The isomorphisms (2.1) for cusp forms follow from Proposition 5.4.2 of [6] when Γ is a congruence

subgroup and Theorem 4.7 of [16] for general case since the codimension condition is fulfilled under

the assumption (dim) (see (1.6)). In particular as mentioned in Remark 2.4 of [17] the case of Siegel
5



modular forms of degree greater than one, or Hilbert modular forms for totally real fields of degree

greater than one satisfies (dim). The interested readers for this condition may consult the table in

Example 3.19 of [18].

To work on projective varieties it would be better to use toroidal compactifications rather than

the minimal compactification. For example the former one is smooth while the latter one is normal

and in general it has bad singularities. Nevertheless there are some advantages to work on the

minimal compactification to naturally get a suitable automorphic line bundle which is ample there

but not on toroidal compactifications (see Section 3.1 of [18]). In fact we need to study (holomorphic)

automorphic bundles on the minimal compactification to get the finiteness results.

Let jmin : XΓ ↪→ Xmin
Γ be the minimal compactification. By the assumption (1.6), the codimention

ofXmin
Γ \XΓ inXmin

Γ is greater than or equal to 2. Therefore, it follows from Serre’s extension theorem

[32] that jmin
∗ Wρ is coherent (see the proof of Theorem 10.14 of [1]) and this is a unique extension of

Wρ to Xmin
Γ . Let π : XΓ,∆ −→ Xmin

Γ be the canonical proper surjective morphism (see the proof of

Lemma [16]). Then π∗W
can
ρ and π∗W

sub
ρ are both coherent since π is proper. It follows from (2.1)

that

(2.2) H0(Xmin
Γ , π∗W

can
ρ ) 'Mρ(Γ)

and

(2.3) H0(Xmin
Γ , π∗W

sub
ρ ) ' Sρ(Γ).

Therefore, we have two coherent sheaves on the normal projective variety Xmin
Γ which give rise to

automorphic forms and cusp forms respectively.

Now we are ready to prove Theorem 1.1.

Proof. Assume that λ is a positive character of rational type. Then by Theorem 1 of [28] and Lemma

3.2 of [16] the line bundle W can
λ descend to the ample line bundle ωλ which is nothing but jmin

∗ Wλ. In

fact since π is proper birational and Xmin
Γ is normal, by Zariski main theorem, π∗OXΓ,∆

= OXmin
Γ

. It

follows from the projection formula that π∗W
can
λ = π∗π

∗ωλ = ωλ. Since ωλ and jmin
∗ Wλ are reflexive,

and ωλ|XΓ
= (π∗W

can
λ )|XΓ

= Wλ = (jmin
∗ Wλ)|XΓ

, we have

(2.4) π∗W
can
λ = ωλ = jmin

∗ Wλ

by Proposition 1.6, p.126 of [9] or Theorem 3, p.817 of [5]. This is a key ingredient regarding the

following cohomological description of automorphic forms and cusp forms.

Since H0(Xmin
Γ , jmin

∗ Wλk) ' Mλk(Γ) for non-negative integer k, the graded ring Mλ,∗(Γ) '⊕
k∈Z≥0

H0(Xmin
Γ , jmin

∗ Wλk) is finitely generated by Lemma 16.1 of [33]. Similarly since

(2.5) Mρ,λ,∗(Γ) '
⊕

k∈Z≥0

H0(Xmin
Γ , π∗W

can
ρ ⊗ (jmin

∗ Wλ)
⊗k)

by (2.2), (2.4) and

(2.6) Sρ,λ,∗(Γ) '
⊕

k∈Z≥0

H0(Xmin
Γ , π∗W

sub
ρ ⊗ (jmin

∗ Wλ)
⊗k)

by (2.3), (2.4), the claim for these graded vector spaces follows from Lemma 16.1-(5) of [33]. □
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2.2. Integral models. In this subsection we impose the following condition to work on p-adically

integral bases:

(2.7) (PEL) (G,D) is a Shimura datum of PEL type.

We refer [15], [20], [23], [22], [21] and also [13]. Since the notations in [23],[22] would be heavy for

most readers, we recall the results in [20] quickly and avoid explaining in detail. Instead we give a

few examples which would be enough for applications to many interesting cases. By classification

any irreducible factor of (G,D) is of type A, C, or D. According to Section 1.1 of [22], let us consider

an integral PEL datum (O, ?, L, 〈∗, ∗〉, h0) in the following sense:

(1) O is an order in a non-zero semisimple algebra, finite dimensional over Q after tensoring

with Q, together with a positive involution ?;

(2) (L, 〈∗, ∗〉, h0) is a PEL type O-lattice (a polarized symplectic lattice in other word, cf. Defi-

nition 1.2.1.2 of [15])

Let F be the center of O⊗ZQ which is a product of number fields. Then we define for any Z-algebra
R,

G(R) := {(g, r) ∈ GLO⊗ZR(L⊗Z R)×Gm(R) | 〈gx, gy〉 = r〈x, y〉, ∀x, y ∈ L⊗Z R}.

As explained in Remark 1.2.1.8, the group functor is not necessarily a smooth functor over Z but

an affine group scheme over Z. However one can easily check that GQ is a smooth reductive group

over Q and it is also connected because of the similitude character.

The polarization h0 : C −→ EndO⊗ZR(L⊗ZR) defines a Hodge structure of weight −1 with Hodge

decomposition L ⊗Z C = V0 ⊕ V c
0 as a O ⊗Z C-module, such that h0(z) acts as 1 ⊗ z on V0 and

as 1 ⊗ zc on V c
0 . Here superscript “c” stands for the complex conjugation. Let F0 be the reflex

field defined by the O ⊗Z C-module V0 (see Section 1.2.5.4, p.51 of [15]). For instance, F0 = Q if

G = ResF/QGSp2n,F for a totally real field F and in general F0 is a subfield of the Galois closure

of K if G is the unitary similitude group GU(p, q) = GU(p, q)(K/F ) for a CM extension K/F but

F0 = Q if we further assume p = q. To be more precise when K/Q is an imaginary quadratic

extension, F0 = K unless p = q (see Chapter III, Section 1, p.143 of [7]). For Example 5.24, p.312

and Example 12.4-(d), p. 344 (which is related to Shimura curves) of [25] we have F0 = v(F ) when

Inc = {v} ⊂ HomQ(F,R) for a totally real field (see [25, Example 5.24, p.312] for the symbol Inc).

Let Diff−1 be the inverse difference of O/Z and put Disc = [Diff−1 : O] (see (1.1.1.17), p.4 of

[15]). We say a rational prime p is good if it satisfies

(1) p ∤ Disc;

(2) p 6= 2 if OZ ⊗ Q involves a simple factor of type D, in the sense of Definition 1.2.1.15, p.31

of [15];

(3) the pairing 〈∗, ∗〉 is perfect after the base change to L ⊗Z Zp. This is equivalent to ask if

p ∤ [L♯ : L] for the dual lattice L♯ of L.

For GSp2n/F or GU(n, n) = GU(n, n)(K/F ) (the similitude unitary groups for a CM extension

K/F ), Disc is nothing but the discriminant of F or K and p is a good prime if and only if p is

unramified in F or K respectively.

By Lemma 1.2.5.9, p.52 of [15], there exists a finite extension F ′
0 of F0 in C, unramified at p,

together with an O ⊗Z OF ′
0,(p)

-module L0 such that L0 ⊗OF ′
0,(p)

C ' V0 as a O ⊗Z C-module. Here

OF ′
0,(p)

stands for the localization of OF ′
0
with respect to the ideal (p). One can easily find F ′

0 out
7



from the statement or the proof of above lemma. For instance, if F or K is Galois for an integral

PEL datum in the case of GSp2n/F or GU(n, n)(K/F ) as above, then F ′
0 = F0.

For a good prime p and F ′
0, put W0 = L0 ⊕ L∨

0 (1) and let us denote by 〈∗, ∗〉can : W0 ×W0 −→
OF ′

0,(p)
(1) the alternating pairing defined in Lemma 1.1.4.13, p.20 of [15]. This is an integral structure

of Hodge decomposition L⊗ZC = V0⊕V c
0 . We define an integral model of G over OF ′

0,(p)
as follows.

For any OF ′
0,(p)

-algebra R set

G0(R) = {(g, r) ∈ GLO⊗ZR(W0 ⊗OF ′
0,(p)

R)×Gm(R) | 〈gx, gy〉can = r〈x, y〉, ∀x, y ∈W0 ⊗OF ′
0,(p)

R}.

Similarly the Siegel parabolic subgroup P0 of G0 and its Levi factor M0 which are both defined

over OF ′
0,(p)

are given in Definition 1.4 of [22]. By line -14, p.1117 of [22] there exists a discrete

valuation ring R1 over OF ′
0,(p)

satisfies the conditions (1),(2),(3) there. This relates the original

〈∗, ∗〉 with 〈∗, ∗〉can over R1. Hence G0 ×OF ′
0,(p)

R1 ' GR1 . This is necessary to define an integral

automorphic vector bundle over R1 which will be revealed later on. As for R1, one can take R1 to be

the localization of OF ′
0,(p)

at a prime ideal dividing (p) when GSp2n/F or GU(n, n)(K/F ) as above.

Hence for a prime ideal v dividing (p) in OF ′
0,(p)

= OF,(p) or OK,(p), one can take R1 = OF,(v) or

OK,(v) respectively. We can also consider its v-adic completion OF,v or OK,v as R1. In particular if

G = GSp2n/Q, then R1 can be Z(p) or Zp.

Let us fix R1 and set

G1 := G0 ×OF ′
0,(p)

R1, P1 := P0 ×OF ′
0,(p)

R1, M1 := M0 ×OF ′
0,(p)

R1.

Since the polarization h0 is a R-algebra homomorphism, it is determined by h0(
√
−1) and it also

defines an element in G(R) by Definition 1.2.1.2-1 of [15]. Hence (G,G(R)h0) define a Shimura datum

where G(R) acts on h0 by conjugation. As in the previous subsection it gives rise to the Shimura

variety XU for any U = UpUp where Up is an open compact subgroup of G(Ẑp) and Up = G(Zp).

Here Ẑp = lim←−
N, p∤N

Z/NZ. Assume that Up is neat. As in Section 1.2 of [22], the PEL-datum

(O, ?, L, 〈∗, ∗〉, h0) and Up define a moduli problem MUp over S0 := SpecOF0,(p), parameterizing

tuples (A, λ, i, αUp) over S0-schemes S of the following form:

(1) A −→ S is an abelian scheme;

(2) λ : A −→ A∨ is a polarization of degree prime to p;

(3) LieA/S with its O ⊗Z Z(p)-module structure given naturally by i satisfies the (Kottwitz)

determinantal condition in Definition 1.3.4.1, p.69 of [15];

(4) αUp is an integral level Up-structure of (A, λ, i) of type (L ⊗Z Ẑp, 〈∗, ∗〉) as in Definition

1.3.6.2, p.72 of [15].

Then by Theorem 1.4.1.12, p.82 and Corollary 7.2.3.10, p.461 of [15], the moduli problem MUp is

represented by a smooth quasi-projective scheme over S0. By Section 2 of [14] there is a canonical

open and closed immersion XU ↪→MUp⊗OF0,(p)
F0 which is defined over F0. Let XU be the schematic

closure of XU in MUp (it is written by MH,0 for H = Up in the notation of [22]). By Proposition 4.2,

p.250 of [23] XU admits a toroidal compactification X tor
U = X tor

U ,Σ, a scheme projective and smooth

over S0 = SpecR1 depending on a cone decomposition Σ.

In what follows we refer Section 1, 2 of [22] for (integral) automorphic vector bundles and we follow

the notation there. For any ν0 ∈ X+
M1

and any R1-algebra R we can define the automorphic vector

bundle W ν0,R over XU . By Lemma 1.18 of [22] and by definition it is locally free sheaf on XU . As
8



explained in Section 4 of [23] we can define the canonical extensionW can
ν0,R

and subcanonical extension

W sub
ν0,R

= W can
ν0,R
⊗ ID where ID is the OX tor

U
-ideal defining relative Cartier Divisor (X tor

U \ XU )red.

Then the space of geometric automorphic forms (resp. geometric cusp forms) over R of weight v0

with respect to U are defined by

(2.8) Mv0(U , R) := H0(X tor
U ,R,W

can
ν0,R), Sv0(U , R) := H0(X tor

U ,R,W
sub
ν0,R).

Let λ ∈ X+
M1

be a positive parallel weight in the sense of Definition 7.1, p.1153 of [22]. Then define

the graded vector space of geometric automorphic forms

(2.9) Mv0,λ,∗(U , R) :=
⊕

k∈Z≥0

H0(X tor
U ,R,W

can
ν0+kλ,R) =

⊕
k∈Z≥0

H0(X tor
U ,R,W

can
ν0,R ⊗OX tor

U,R

(W can
λ,R)

⊗k)

and the graded vector space of geometric cusp forms

(2.10) Sv0,λ,∗(U , R) :=
⊕

k∈Z≥0

H0(X tor
U ,R,W

sub
ν0+kλ,R) =

⊕
k∈Z≥0

H0(X tor
U ,R,W

sub
ν0,R ⊗OX tor

U,R

(W can
λ,R)

⊗k).

We also define Mλ,∗(U , R) = M0,λ,∗(U , R) and Sλ,∗(U , R) = S0,λ,∗(U , R) where 0 stands for the

trivial element in X+
M1

.

As in the classical case, we try to relate theses spaces with coherent sheaves on the minimal

compactification. An algebraic model Xmin
U of the minimal compactification Xmin

U is constructed

in Chapter 7 of [15] and it is a normal projective scheme over SpecOF0,(p) together with a proper

surjective birational morphism π : X tor
U −→ Xmin

U which commutes with the natural embedding

jmin : XU −→ Xmin
U and jtor : XU −→ Xmin

U . It is well-known that the line bundle W λ,R is obtained

by the pullback of an ample line bundle Lλ,R on Xmin
U ,R via π (see Section 2A of [20]). Now we are

ready to prove Theorem 1.2. The situation is easier than the classical case.

Proof. It follows from the definition of direct images of sheaves that

(2.11) Mv0,λ,∗(U , R) =
⊕

k∈Z≥0

H0(Xmin
U ,R , π∗W

can
ν0,R ⊗OXmin

U,R

L⊗k
λ,R)

and

(2.12) Sv0,λ,∗(U , R) =
⊕

k∈Z≥0

H0(Xmin
U ,R , π∗W

sub
ν0,R ⊗OXmin

U,R

L⊗k
λ,R).

Notice that π∗W
can
ν0,R

and π∗W
sub
ν0,R

are coherent, since π is proper. The claim follows from Lemma

16.1-(1),(5) of [33]. □

Next we give a proof of Corollary 1.3.

Proof. We may assume that R is a DVR by flat base change. Let κR = R/mR where mR is the

maximal ideal of R. By Serre’s vanishing theorem, for any i > 0 and k � 0

H i(Xmin
U ,κR

, π∗W
can
ν0,κR

⊗OXmin
U,κR

L⊗k
λ,R) = 0

and

H i(Xmin
U ,κR

, π∗W
sub
ν0,κR

⊗OXmin
U,κR

L⊗k
λ,R) = 0.
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For such a k, the argument in the proof of Corollary 4.3, p.1877 of [21] shows that Mν0+kλ(U , R)

and Sν0+kλ(U , R) are free over R. Take any non-negative integer k such that ν0 + kλ satisfies the

above vanishing for higher cohomology. The product induces a paring

Mν0(U , R)×Mkλ(U , R) −→Mν0+kλ(U , R), (f, g) 7→ f · g.

Since Mν0+kλ(U , R) is torsion free, this paring factors through Mν0(U , R)TF ×Mkλ(U , R)TF. It is

the same for cusp forms. Hence we have the decomposition

Mv0,λ,∗(U , R) = T1 ⊕
( ⊕

k∈Z≥0

Mv0+kλ(U , R)TF
)
, Sv0,λ,∗(U , R) = T2 ⊕

( ⊕
k∈Z≥0

Sv0+kλ(U , R)TF
)
,

and Mλ,∗(U , R) = T3 ⊕
(⊕

k∈Z≥0
Mkλ(U , R)TF

)
where T1, T2, T3 are torsion R-modules which are

also finitely generated over R. Hence the claim follows from Theorem 1.2. □

3. An application to Siegel modular forms

Let us consider G = GSp2g/Z with the similitude character ν : G −→ Gm. Its derived group

Gder = Sp2g = Ker(ν) is a semisimple reductive group scheme of type (C). It naturally gives a

Shimura datum of a PEL type (see Subsection 3.1 of [19]). Put Γ = Sp2g(Z) and for any positive

integer N , we denote by Γ(N) be the principal congruence subgroup of level N . Let K(N) be

the open compact subgroup of G(Ẑ) consisting of all elements which are congruent to the identity

element modulo N . It follows that K(N) ∩ Sp2g(Q) = Γ(N) and K(N) is neat if N ≥ 3. Any

element ν0 of X+
M1

can be written by a tuple ((k1, . . . , kg); k0)) where k1 ≥ k2 ≥ · · · ≥ kg and k0

are integers. In view of the application here the last entry k0 is unnecessary and it will play an

important role when we relate classical forms with adelic forms though we do not pursue it. Then

we have that

(1) any rational prime p is good;

(2) R1 can be any of Z(p) and Zp;

(3) any positive parallel weight can be represented by k1 = · · · = kg ≥ 1 (see Lemma 3.49, p.13

of [16]).

For any k = (k1, . . . , kg) ∈ Zg satisfying k1 ≥ · · · ≥ kg and an arithmetic subgroup Γ of Sp2g(Q),

we denote by Mk(Γ) (resp. Sk(Γ)) the space of Siegel modular forms (resp. Siegel cusp forms) of

weight k with respect to Γ. Assume that Γ contains Γ(M) for some M as a finite index subgroup

and put dM := [Γ : Γ(M)]. Since Mk(Γ) ⊂Mk(Γ(M)) and Sk(Γ) ⊂ Sk(Γ(M)), by using q-expansion

principle (cf. Theorem 2 of [11]), for any subring R of C, we define the space Mk(Γ, R) consisting

of all Siegel modular forms over C whose Fourier coefficients at the cusp with respect to the Siegel

parabolic subgroup are defined over R. Similarly we can define Sk(Γ, R).

Theorem 3.1. Let k be as above. Let K be an open compact subgroup of G(Ẑ) such that ν(K) = Ẑ×.

Put ΓK = Sp2g(Q) ∩K and assume ΓK contains Γ(M) for some positive integer M ≥ 3. Let p be a

rational prime which never divides dM . Let R1 be Z(p) or Zp. Then, it holds that

(1) M∗(ΓK , R1) :=
⊕

k∈Z≥0

Mk1(Γ, R1) is finitely generated over R1;

(2) Mk,∗(ΓK , R1) :=
⊕

k∈Z≥0

Mk+k1(ΓK , R1) and Sk,∗(ΓK , R1) :=
⊕

k∈Z≥0

Mk+k1(ΓK , R1) are finitely

generated over M∗(ΓK , R1).
10



Proof. Let us consider the finite group G = K/K(M) whose cardinality is coprime to p by assump-

tion. Then we have Mk+k1(ΓK , R1) = Mk+k1(K(M), R1)
G and it is the same for cusp forms. The

claim follows from Corollary 1.3. □

4. Another classical setting

In this section, we will discuss the previous claims for the Siegel modular forms of level one by

using only Chai-Faltings’s results in [3]. Let us keep the notation in the previous section. Assume

that g ≥ 2. Let k1 ≥ · · · ≥ kg be integers. Put k = (k1, . . . , kg). Let ρ = ρk : GLg(C) −→ AutC(Vρ)

be a unique irreducible representation with the highest weight k. In terms of classical language, as

in [4] we can define the space Mρ(Sp2g(Z)) (resp. Sρ(Sp2g(Z))) consisting of Siegel modular forms

on the Siegel upper half space Hg (resp. Siegel cusp forms) of weight ρ with respect to Sp2g(Z). It

follows from Theorem 2.3-(2) of [3] that the graded ring M∗(Sp2g(Z),Z) :=
⊕

k∈Z≥0

Mk1(Sp2g(Z),Z)

is finitely generated over Z. Here Mk1(Sp2g(Z),Z) is the subspace of Mk1(Sp2g(Z)) consisting of all

forms with integral Fourier coefficients.

There is no canonical way to define geometric Siegel modular forms of level one. To detour this

issue we can apply the results in [3] in terms of stacks. However to save notation and to avoid using

much of stacks, we work on schemes and use reflexive-ness of some coherent sheaves related to Siegel

modula forms. The coarse moduli Ag = Sp2g(Z))\Hg is not a complex manifold but an orbifold

since Sp2g(Z) has non-trivial torsions. However there is a model Ag,Z which is a quasi-projective

normal scheme over Z such that Ag,Z(C) ' Ag as an analytic space (see [3, Theorem 2.3, p.150]).

By [3, Theorem 2.3, p.150] again, there also exists a canonical compactification Amin
g,Z of Ag,Z (which

is so called the minimal compactification) and an ample line bundle L on it. As claimed there, Amin
g,Z

is a projective normal scheme over Z. Let Areg
g,Z be the regular locus of Ag,Z. Since Amin

g,Z is normal

and the codimension of Amin
g,Z \ Ag,Z in Amin

g,Z is greater or equal to
g(g + 1)

2
− g(g − 1)

2
= g ≥ 2,

so is for the codimension of Amin
g,Z \ A

reg
g,Z in Amin

g,Z . Let f : X ′ −→ Areg
g,Z be the universal abelian

variety which is a morphism of schemes over Z. This will be defined as follows. We first consider

the universal abelian variety X −→ [Ag,Z] over the smooth stack [Ag,Z] (see [3, Theorem 6.7, p.130]

for the properties of [Ag,Z]). Since Ag,Z is a corase moduli scheme of [Ag,Z] ([3, Theorem 2.3-(3),

p.150]), there is a natural map α : Ag,Z −→ [Ag,Z] as a stack (see also [3, Theorem 4.10, p.23]).

Then, the map f , as a morphism of stacks, is defined to be the fiber product of X −→ Ag,Z and

α|Areg
g,Z

. Then, it yields the desired morphism f : X ′ −→ Areg
g,Z by Example 5.1.7, p.121 of [26]. Since

f is smooth by the fiber-wise argument, E = f∗Ω
1
X/Areg

g,Z
is a locally free sheaf of rank g and it is

clearly reflexive. Let ρ : GLg −→ Autg(Vρ) be an irreducible algebraic representation. Since Young

symmetrizers in Weyl’s construction of ρ are defined over Z[ 1g! ] (we just observe the denominators

of Young symmetrizers), the representation ρ is defined over Z[ 1g! ]. This is not optimal, for example,

the determinant character is defined over Z for any g. Let Rρ be the minimal subring of Z[ 1g! ] such
that ρ is defined. For each ρ, we can associate a locally free sheaf Eρ on Areg

g,Rρ
:= Areg

g,Z ×Z Rρ such

that Eρ is locally isomorphic to Vρ(Rρ)⊗Rρ OAreg
g,Rρ

. By Theorem 3, p.817 of [5], there exists unique

extensions Ẽρ and Emin
ρ of Eρ on Ag,Rρ := Ag,Z ×Z Rρ and Amin

g,Rρ
:= Amin

g,Z ×Z Rρ respectively. They

are both coherent sheaves such that

H0(Ag,Rρ , Ẽρ) = H0(Areg
g,Rρ

, Eρ) = H0(Amin
g,Rρ

, Emin
ρ ).
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Note that Emin
ρ is also a unique extension of Ẽρ. By construction the ample line bundle L is a unique

extension of the line bundle ω := det E . We denote by L̃ a unique extension of ω on Ag,Z. Then we

also have

(4.1) H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k) = H0(Areg
g,Rρ

, Eρ ⊗ ω⊗k) = H0(Amin
g,Rρ

, Emin
ρ ⊗ L⊗k).

By flat base change (Proposition 9.3 in Chapter III of [8]), GAGA [31], and Serre’s extension theorem

(see the proof of Theorem 10.14 of [1]), we have

(4.2) Mρ⊗detk(Sp2g(Z)) ' H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k)⊗ C = H0(Amin
g,Rρ

, Emin
ρ ⊗ L⊗k)⊗ C.

We need to compare Mρ⊗detk(Sp2g(Z), Rρ) with H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k)TF. For each integer N ≥ 1

there exists a quasi-projective model Ag,N over Z of Γ(N)\Hg such that Ag,N is smooth over RN :=

Z[ 1N , ζN ] if N ≥ 3 together with a finite étale morphism πm,n : Ag,n −→ Ag,m over Rn if m|n (cf.

Theorem 6.7, p. 130 of [3] and Remark 6.2-(c), p.121 of loc.cit.). Put Rρ,N = Rρ[
1
N , ζN ].

Lemma 4.1. Let UN be the inverse image of Areg
g,Rρ

under the morphism π1,N/SpecRρ for N ≥ 3.

Let X ′
N = X ′ ×Areg

g,Rρ
UN be the fiber product of f and π1,N |UN

. Then it holds that

π∗f∗Ω
1
X′/Areg

g,Rρ

' f ′
∗Ω

1
X′

N/UN

where π := π1,N and f ′ : X ′
N −→ UN is the base extension of f with respect to π1,N |UN

.

Proof. Let us consider the following Cartesian diagram:

X ′ π′=prX′←−−−− X ′
N

f

y f ′

y
Areg

g,Rρ

π←−−−− UN

By Proposition 8.10, p.175 of [8], firstly we have π′∗Ω1
Ω1

X′/Areg
g,Rρ

' Ω1
X′

N/UN
. Since π is étale, in

particular, it is flat, hence by flat base change (see Proposition 9.3, p.255 of [8]), we have

π∗f∗Ω
1
X′/Areg

g,Rρ

= f ′
∗π

′∗Ω1
X′/Areg

g,Rρ

= f ′
∗Ω

1
X′

N/UN
.

□

Proposition 4.2. There exists an isomorphism

ιρ : H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k)TF ∼−→Mρ⊗detk(Sp2g(Z), Rρ)

as an Rρ-module such that its base change to C coincides with the isomorphism in (4.2).

Proof. Let g : XN −→ Ag,RN
be the universal abelian variety. Let Fρ (resp. F ′

ρ) be the vector

bundle on Ag,Rρ,N
(resp. UN/Rρ,N ) associated to the Hodge bundle g∗Ω

1
XN/Ag,RN

(resp. f ′
∗Ω

1
X′

N/UN
)

and ρ. By Theorem 3, p.517 of [5] F ′
ρ is extended to Fρ. By Lemma 4.1 and (4.1), since π is finite

surjective, we have an injective map

ι′ρ,N : H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k)TF = H0(Areg
g,Rρ

, Eρ ⊗ ω⊗k)TF

π∗
↪→ H0(UN/Rρ,N ,F ′

ρ⊗detk
)TF = H0(Ag,Rρ,N

,Fρ⊗detk)
TF

12



as a Rρ module. Here Rρ,N is naturally regarded as a Rρ-module. Clearly the base extension of ι′ρ,N
to C yields the isomorphism in (4.2).

Since N ≥ 3 we have a natural identification H0(Ag,Rρ,N
,Fρ⊗detk)

TF = Mρ⊗detk(Γ(N), Rρ,N ) by

using q-expansion principle. Combining it with ι′N , we have an injective morphism

ιρ,N : H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k)TF ↪→Mρ⊗detk(Γ(N), Rρ,N )

as Rρ modules. Applying this to N = 3 and N = 5 we see that Im(ιρ,3) ∩ Im(ιρ,5) is included in

Mρ⊗detk(Γ(3), Rρ,3) ∩Mρ⊗detk(Γ(5), Rρ,5) ∩Mρ⊗detk(Sp2g(Z)) = Mρ⊗detk(Sp2g(Z), Rρ)

since Rρ,3 ∩Rρ,5 = Rρ. Hence we have an injective homomorphism

ιρ : H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k)TF −→Mρ⊗detk(Sp2g(Z), Rρ)

as a Rρ-module such that its base change to C coincides with the isomorphism in (4.2). What we

need to prove is the surjectivity of ιρ. Pick an element F in the right hand side. We regard it as an

element in Mρ⊗detk(Γ(N), Rρ,N ) for some N ≥ 3. Then by q-expansion principle it can be regarded

as an element H in H0(Ag,Rρ,N
,Fρ⊗detk)

TF such that the finite group G := Γ(1)/Γ(N) acts trivially

onH. By using the trace map for π1,N we see that H belongs to H0(Ag,Rρ , Ẽρ⊗L̃⊗k)TF⊗RρRρ,N [ 1
|G| ].

However by q-expansion principle again, the Fourier coefficients of H are all defined over Rρ since

so is F . Hence F belongs to H0(Ag,Rρ , Ẽρ ⊗ L̃⊗k)TF. This completes the proof. □

Theorem 4.3. Let ρ be as above. Fix a positive integer m. Let Rρ be a subring of Z[ 1g! ] such that

ρ is defined. Then it holds that the graded vector space Mρ,m,∗ :=
⊕

k∈Z≥0

Mρ⊗detkm(Sp2g(Z), Rρ) is

finitely generated over Mm,∗ :=
⊕

k∈Z≥0

Mdetkm(Sp2g(Z), Rρ).

Proof. The claim follows immediately from Theorem 4.2 and the proof of Theorem 1.2. □

Corollary 4.4. Let g = 2 and let k1 ≥ k2 ≥ 1, m ≥ 1 be integers. The graded ring⊕
k∈Z

M(k1+mk,k2+mk)(Sp4(Z),Z)

is finitely generated over
⊕
k∈Z

Mmk(Sp4(Z),Z).

Proof. Clearly ρ = Symk1−k2St2 ⊗ detk+k2 is defined over Z. Hence we can take Rρ = Z. The claim

immediately follows from Theorem 4.3. □

Remark 4.5. The strategy in proving Theorem 4.3 may work for other congruence subgroups, as

Γ0(M) =
{( A B

C D

)
∈ Sp2g(Z)

∣∣∣ C ≡ 0 mod M
}
for M ∈ Z>0. For example, the same claim for

Γ0(M) is true if we replace Rρ with Rρ[
1
M ]. The results in [3] will be substituted into the corresponding

results in [15]. Checking the details will be left to interested readers.
13



References

[1] W.L. Jr Baily and A. Borel: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of

Math. (2) 84 (1966), 442-528.

[2] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups, and representations of reductive groups.

Second edition. Mathematical Surveys and Monographs, 67. American Mathematical Society, Providence, RI,

2000. xviii+260 pp.

[3] C.L. Chai and G. Faltings: Degeneration of abelian varieties. With an appendix by David Mumford. Ergebnisse

der Mathematik und ihrer Grenzgebiete (3), 22. Springer-Verlag, Berlin, 1990. xii+316 pp.

[4] G. van der Geer: Siegel modular forms and their applications. The 1-2-3 of modular forms, 181-245, Universitext,

Springer, Berlin, 2008.

[5] A. Ghitza: All Siegel Hecke eigensystems (mod p) are cuspidal. Math. Res. Lett. 13 (2006), no. 5-6, 813-823.

[6] M. Harris: Automorphic forms of ∂-cohomology type as coherent cohomology classes. J. Differential Geom. 32

(1990), no. 1, 1-63.

[7] M. Harris: Cohomological automorphic forms on unitary groups. I. Rationality of the theta correspondence.

Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), 103-200, Proc. Sympos.

Pure Math., 66, Part 2, Amer. Math. Soc., Providence, RI, 1999.

[8] R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-

Heidelberg, 1977.

[9] R. Hartshorne: Stable reflexive sheaves. Math. Ann. 254 (1980), no. 2, 121-176.

[10] H. Hida: p-adic automorphic forms on reductive groups. Automorphic forms. I. Asterisque No. 298 (2005), 147-254.

[11] T. Ichikawa: Vector-valued p-adic Siegel modular forms. J. Reine Angew. Math. 690 (2014), 35-49.

[12] H. Kodama: On certain vector valued Siegel modular forms of type (k, 2) over Z(p). Acta Arith. 188 (2019), no.

1, 83-98.

[13] K.W. Lan: Geometric modular forms and the cohomology of torsion automorphic sheaves, Fifth International

Congress of Chinese Mathematicians, AMS/IP Studies in Advanced Mathematics, vol. 51, part 1, pp. 183-208,

American Mathematical Society and International Press, 2012.

[14] K.W. Lan: Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type

Shimura varieties. J. Reine Angew. Math. 664 (2012), 163-228.

[15] K.W. Lan: Arithmetic compactifications of PEL-type Shimura varieties. London Mathematical Society Mono-

graphs Series, 36. Princeton University Press, Princeton, NJ, 2013. xxvi+561 pp.

[16] K.W. Lan: Vanishing theorems for coherent automorphic cohomology. Res. Math. Sci. 3 (2016), Paper No. 39, 43

pp.

[17] K.W. Lan: Higher Koecher’s principle. Math. Res. Lett. 23 (2016), no. 1, 163-199.

[18] K.W. Lan: Proceedings of the Seventh International Congress of Chinese Mathematicians, Volume I, Advanced

Lectures in Mathematics, vol. 43, pp. 303-325, International Press, 2019.

[19] K.W. Lan: An example-based introduction to Shimura varieties, to appear in the proceedings of the ETHZ

Summer School on Motives and Complex Multiplication.

[20] K.W. Lan and B. Stroh: Relative cohomology of cuspidal forms on PEL-type Shimura varieties. Algebra Number

Theory 8 (2014), no. 8, 1787-1799.

[21] K.W. Lan and J. Suh: Liftability of mod p cusp forms of parallel weights. Int. Math. Res. Not. IMRN 2011, no.

8, 1870-1879.

[22] K.W. Lan and J. Suh: Vanishing theorems for torsion automorphic sheaves on compact PEL-type Shimura

varieties. Duke Math. J. 161 (2012), no. 6, 1113-1170.

[23] K.W. Lan and J. Suh: Vanishing theorems for torsion automorphic sheaves on general PEL-type Shimura varieties.

Adv. Math. 242 (2013), 228-286.

[24] J.S. Milne: Canonical models of (mixed) Shimura varieties and automorphic vector bundles. Automorphic forms,

Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), 283-414, Perspect. Math., 10, Academic Press,

Boston, MA, 1990.

14



[25] J.S. Milne: Introduction to Shimura varieties. Harmonic analysis, the trace formula, and Shimura varieties, 265-

378, Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005.

[26] M. Olsson: Algebraic spaces and stacks. American Mathematical Society Colloquium Publications, 62. American

Mathematical Society, Providence, RI, 2016. xi+298 pp.

[27] I. Satake: A note on holomorphic imbeddings and compactification of symmetric domains. Amer. J. Math. 90

(1968), 231-247.

[28] I. Satake: On some properties of holomorphic imbeddings of symmetric domains. Amer. J. Math. 91 (1969),

289-305.

[29] I. Satake: Algebraic structures of symmetric domains. Kano Memorial Lectures, 4. Iwanami Shoten, Tokyo;

Princeton University Press, Princeton, N.J., 1980. xvi+321 pp.
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