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Abstract. For a quadratic extension K of Q, we consider or-
ders O in K that are not necessarily maximal and the ideal class
group Cl+(O) in the narrow sense of proper ideals of O. Charac-
ters of Cl+(O) of order at most two are traditionally called genus
characters. Explicit description of such characters is known clas-
sically, but explicit L-functions associated to those characters are
only recently obtained partially by Chinta and Offen and com-
pletely by Kaneko and Mizuno. As remarked in the latter paper,
the present author also obtained the formula of such L-functions
independently. Indeed, here we will give a simple and transparent
alternative proof of the formula by rewriting explicit genus char-
acters and their values in an adelic way starting from scratch. We
also add an explicit formula for the genus number in the wide sense,
which is maybe known but rarely treated. As an appendix we give
an ideal-theoretic characterization of isomorphism classes of maxi-
mal orders of the matrix algebras Mn(F ) over a number field F up
to GLn(F ) and GL+

n (F ) conjugation respectively, and apply genus
numbers to count them when n = 2 and F is quadratic. Relations
between classes and genera of ideals and quadratic forms are ex-
plained in the appendix. To avoid any misconception, we include
some easy known details.

1. Introduction

The purpose of the paper is to give an alternative proof of the for-
mula for the genus character L-functions associated with not necessar-
ily maximal orders of quadratic fields, and to give a simple survey on
the related genus theory. Such formulas for L-functions are given only
recently in [5] except for some cases and in [12] for all the cases. As
pointed out in the introduction of [12], the present author also gave
an alternative proof of the formula independently (Theorem 4.3 in this
paper). To give our proof, we describe proper ideals of non-maximal
quadratic orders, their genus characters, and their values at ideals all
explicitly in an adelic way. A global description of such objects is a
classical result (see for example [6] or [18]). Anyway, this paper is
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more or less expository in nature, and our new point here is to treat
everything adelically. This allows us to avoid the very complicated
calculations in [12] and gives a simple group theoretic explanation. Al-
most from scratch except for an easy part of the class field theory, we
give explicit formulas of genus characters and L-functions associated
with it. Siegel described the genus theory for maximal quadratic orders
completely in [17] in global language, including concrete description of
genus characters and their values at ideals. Our method would give
more transparent view to the whole theory including the case of non-
maximal orders. When the quadratic order is not maximal, we do not
know any reference treating this subject in this way, so we believe it
is not useless to publish this. For readers’ convenience, we add an
appendix on relations between classes and genera of ideals and qua-
dratic forms. (This is more or less well known but references would be
rare. Also the definition of a genus of binary quadratic forms in the
wide sense given here would be new.) We also add a formula for the
genus number in the wide sense, which has application to conjugacy
classes of maximal orders of 2 × 2 matrix algebras. Indeed in sec-
tion 6, for general n and algebraic number fields F , we consider ideal
theoretic characterization of the number of maximal orders of Mn(F )
up to GLn(F ) conjugation and GL+

n (F ) conjugation, where GL+
n (F )

means those with totally positive determinants. The result for GLn(F )
conjugation has been known in [2].

The paper is outlined as follows. In the next section, we review the
theory of genus of cyclic extensions K of Q for orders O of K not neces-
sarily maximal. This is a minor generalization of [11], where the case of
maximal orders is treated. In section 3, we assume that K is quadratic,
and explicitly describe proper ideals of non-maximal orders, the adelic
subgroup corresponding to the genus, and genus characters. Then we
give formulas of values of genus characters at ideals. In section 4, we
give an explicit formula of L-functions associated to genus characters
(see Theorem 4.3). In section 5, we give a formula for the genus number
in the wide sense. In section 6, we give a general theory on the num-
ber of maximal orders of the matrix algebras over an algebraic number
field. In case of a quadratic field K, we give an application of the genus
numbers in the wide sense and in the narrow sense to the number of
GL2(K) and GL+

2 (K) conjugacy classes of maximal orders in M2(K).
In section 7, we explain relations between the genus of ideals and the
genus of binary quadratic forms.

For a history of the genus of quadratic forms and ideals, see [6],
[18], [3] or [1] for example. In fact, this paper would be read as an
appendix to (the Japanese version of) [1], where everything was treated
globally. For some old history of the genus theory, see [15], and further
generalization of the notion of the genus, see [9] and the references
there.
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2. Definition of a genus for cyclic extensions over Q

Our main concern is a quadratic order, but in this section we review
the genus theory of cyclic extensions of Q based on [11], since it would
make our points clearer. Here the only difference from [11] is that we
describe the theory for orders O not necessarily maximal. For reader’s
convenience, we repeat some arguments there.

Let V be any finite dimensional vector space over Q. A free Z sub-
module L of V is said to be a lattice if it contains a basis of V over Q.
When K is an algebraic number field, regarding K as a vector space
over Q, a subring O of K that contains 1 and is a lattice of K is called
an order of K. It is clear that any element of O is an algebraic integer,
so O ⊂ Omax, where Omax is the maximal order of K. While Omax

is a Dedekind domain, the order O ⫋ Omax is not Dedekind since it
is not integrally closed. So there is no prime ideal decomposition of
ideals of O. Besides, for an ideal a of O, there is no inverse ideal in
general. This means that if we want to define ideal classes, we must
restrict ideals to a smaller set of ideals of O. According to the usual
habit, a lattice L of K with OL ⊂ L is called a fractional ideal of O.
If L ⊂ O besides, we say that L is an integral ideal, or just an ideal of
O. We write Vp = V ⊗Q Qp for any prime p where Qp is the field of
p-adic numbers. For any submodule L of V and a prime p, we write
Lp = L⊗Z Zp ⊂ Vp, where Zp is the ring of p-adic integers.

Definition 2.1. We say that a fractional ideal a of O is locally principal
if ap = Opap for some ap ∈ Kp for every prime p.

Here we note that Kp = K ⊗Q Qp is a direct sum of fields according
to the decomposition of p in K and not a field in general. The ring Op

is not necessarily decomposed into a direct sum of orders of the fields,
and it is not suitable to consider each place of K over p separately when
O is not maximal. The relation between a and the collection of ap for
any p is given by the proposition given below. Any Zp submodule L
of Vp is called a lattice of Vp if L = Zpω1 + · · · + Zpωn for some basis
{ω1, . . . , ωn} of Vp over Qp.

Proposition 2.2. Notation being as above, let {Np}p:prime be a family
of lattices in Vp and L be a lattice in V . Assume that Lp = Np for
almost all p. Then there exists a latticeM in V such that Np =M⊗ZZp

and
M =

∩
p:prime

(V ∩Np).

For the proof, see Weil [19] p.84 Theorem 2.
We denote by K×

A the group of ideles of K. For any element a =
(av) ∈ K×

A , we may define a locally principal fractional ideal a of O by

a =
∩

p:prime

(apOp ∩K), (ap = (av)v|p ∈ Kp).
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So locally principal fractional ideals correspond with K×
A,fin/

∏
pO

×
p ,

where K×
A,fin is the finite part of the ideles, i.e. the group of ideles

whose components at infinite places are all 1. For a locally principal
fractional ideal a of O as above, we may define an inverse ideal by

a−1 =
∩

p:prime

(a−1
p Op ∩K).

Then we have aa−1 = O and locally principal fractional ideals of O
form a group. We say that locally principal fractional ideals a and b are
equivalent in the wide sense if b = aα for some α ∈ K×. Equivalence
in the narrow sense is defined by imposing a condition that α ∈ K×

+ ,
where K+ is the set of totally positive elements α of K, that is, α is
positive under embeddings of K into the real field at all infinite real
places and no condition at complex places. We denote by Cl(O) (resp.
Cl+(O)) the group of classes of locally principal fractional ideals in
the wide sense (resp. in the narrow sense). We will mainly consider
Cl+(O). As usual, K× is diagonally embedded in K×

A , and we denote
the image by the same letter K×. Let r1 and r2 be the number of real
places and complex places of K, respectively. We put

U∞ = (R×)r1 × (C×)r2 and U∞,+ = (R×
+)

r1 × (C×)r2 ,

where R×
+ is the set of positive real numbers. (If K/Q is Galois, we have

r2 = 0 if K ⊂ R and r1 = 0 if not.) We put U(O) = U∞
∏

p:primeO
×
p

and U+(O) = U∞,+

∏
p:primeO

×
p . Then we have

Cl(O) ∼= K×
A/K

×U(O),

Cl+(O) ∼= K×
A/K

×U+(O) ∼= U∞,+KA,fin/K
×
+U+(O).

The last isomorphism comes from the fact that K contains elements of
any signature at infinite places.

Here we shortly review the class field theory over Q.

Lemma 2.3 (Class field theory). The set of finite abelian extensions
K of Q in the algebraic closure of Q is bijective to the set of finite
index subgroups H of Q×

A containing Q×. Here, denoting by NK/Q the
norm from K to Q and by Gal(K/Q) the Galois group of K over Q,
the correspondence is given by

H = Q×NK/Q(K
×
A ), Gal(K/Q) ∼= Q×

A/H.

The following direct product decomposition is well known and easy
to see.

(1) Q×
A = Q× × R×

+ ×
∏

p:prime

Z×
p .

The Galois group of the maximal abelian extension of Q (that is, the
union of all cyclotomic fields) is given by

∏
p Z×

p = lim←−
N

(Z/NZ)×. The
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relation of this fact to the class field theory is as follows. By the direct
product (1), we see that any H in the lemma can be written as

H = Q× × (R×
+ ×H0), H0 ⊂

∏
p:prime

Z×
p .

Then we see that

Q×
A/H

∼=

(∏
p

Z×
p

)
/H0.

Of course H0 is in general bigger than
∏

p:prime(H0 ∩ Z×
p ), where Z×

p is

identified with the subset of Q×
A whose components at places v ̸= p are

all 1 while components at p are in Z×
p . If we write

ep = [Z×
p ;Z×

p ∩H0],

then ep is the ramification index of p inK. Indeed, for a ∈ Q×NK/Q(K
×
A )

written as a = cu∞u0 with c ∈ Q×, u∞ ∈ R×
+ and u0 = (u0,q) ∈ H0,

assume that u0,q = 1 unless q ̸= p. Denote by θ the reciprocity
map of Q×

A to Gal(K/Q). Then we have θ(b) =
∏

v θv(bv) for any
b = (bv) ∈ Q×, where θv is the reciprocity map from Q×

v to Gal(Kw/Qv)
for any place w of K over a place v. So we have θ(u0) = θp(u0,p). But
since θ(a) = θ(c) = θ(u∞) = 1 by definition, we have θp(u0,p) = 1.
This means u0,p ∈ NKp/Qp(K

×
v ) where p is any prime of K over p. So

ep = [Z×
p : Z×

p ∩NKp/Qp(K
×
p )]. Here ep = 1 for almost all p.

In particular, if K is cyclic over Q, then [K : Q] is the least common
multiple n of ep defined above. Indeed, take a character χK of

∏
q Z×

q

such that Ker(χK) = H0. If we decompose χK as χK =
∏

p χK,p by

characters χK,p on Z×
q /(Z×

q ∩H0), then χK,p is of order ep, and the order
of χK is n.

From here until the end of this section, we assume that K is a cyclic
extension of Q. We fix a generator σ of Gal(K/Q). For an order O of
K which is not necessarily maximal, we put

U+(O) = U∞,+

∏
p

O×
p .

To define a genus of O, we prepare the following proposition.

Proposition 2.4. Notation being as above, for a ∈ K×
A , the following

conditions (1) and (2) are equivalent.
(1) NK/Q(a) ∈ Q×NK/Q(U+(O)).
(2) There exists b ∈ K×

A , u ∈ U+(O) and c ∈ K× such that

a = b1−σuc.

Proof. This is essentially Theorem 3 in [11] except for the point that
we do not assume that O is maximal. It is trivial that (2) implies (1).
So we prove (2) assuming (1). First of all, we give an idelic version of
Hilbert Satz 90 stated as follows:



6 TOMOYOSHI IBUKIYAMA

For any a ∈ K×
A with NK/Q(a) = 1, there exists b ∈ K×

A such that
a = b1−σ.
This is claimed in [11] without proof, so we give here a proof. We

have Kp = F ⊕ · · · ⊕ F for some field F over Qp (isomorphic to the
completion of K at any place of K over p). Let p be a prime ideal
in K over p and τ = σm a generator the decomposition group of p.
Each component of Kp corresponds with the embedding associated to

pσ
i
with some i ∈ {0, . . . ,m − 1}. For x = (x1, . . . , xm) ∈ Fm = Kp,

we may regard
xσ = (xτm, x1, x2 . . . , xm−1).

So we have
x1−σ = (x1/x

τ
m, x2/x1, . . . , xm/xm−1).

For y = (y1, . . . , ym) ∈ Fm = Kp, we have

NK/Q(y) = NF/Q(y1 · · · ym).
The condition that

y = x1−σ

is
y1 = x1/x

τ
m, y2 = x2/x1, . . . , ym = xm/xm−1,

so y1 · · · ym = x1−τ
m . Since we assumed NK/Q(y) = NF/Q(y1 · · · ym) = 1,

there exists x0 ∈ F× such that y1 · · · ym = x1−τ
0 by the usual Hilbert

Satz 90 for cyclic extensions. If we put xm = x0 and define xi induc-
tively by xi = xi+1y

−1
i+1 for any 1 ≤ i ≤ m−1, then for x = (x1, . . . , xm),

we have y = x1−σ. Now we must show that x is in K×
A . For almost all

primes p, we have Op = Omax,p and p is unramified in K. For such p,
any element of the maximal order OF of F is written as x0 = peϵ for
some ϵ ∈ O×

F . Since x1−τ
0 = ϵ1−τ , we may take x0 = ϵ. By definition

of ideles, we have yi ∈ O×
F for almost all p, so xi = xi+1y

−1
i+1 is also in

O×
F . So for almost all p, we may assume y = x1−σ for x ∈ O×

p . This

means that for any a ∈ K×
A with NK/Q(a) = 1, we have a = b1−σ for

some b ∈ K×
A . So the idelic version of Satz 90 is proved. Now assume

(1) in Proposition for a ∈ K×
A . Then we have NK/Q(au

−1) ∈ Q× for
some u ∈ U+(O). For a cyclic extension, by the Hasse norm theorem,
an element of Q is a local norm if and only if it is a global norm (e.g.
[11] quoted [4]), so we have c ∈ K× such that NK/Q(au

−1c−1) = 1. So
we have au−1c−1 = b1−σ for some b ∈ K×

A . □
Definition 2.5. The subgroup of H(O) of elements of K×

A that satisfy
(1) and (2) in Proposition 2.4 is said to be a principal genus of O. A
coset in K×

A/H(O) is called a genus of O. We call the number of these
cosets a genus number in the narrow sense.

More classical explanation is given as follows. As we have explained,
we have

Cl+(O) ∼= K×
A/K

×U+(O) ∼= U∞,+K
×
A,fin/K

×
+U+(O).



GENUS CHARACTER L-FUNCTIONS 7

Here by definition we have

K×U+(O) ⊂ H(O) ⊂ K×
A ,

so H(O)/K×U+(O) is a subgroup of Cl+(O) ∼= K×
A/K

×U+(O). Ele-
ments in this subgroup are called the “principal genus classes” in the
narrow sense and a genus is a coset of ideal classes in the narrow sense
divided by these classes. (When K is quadratic, obviously the princi-
pal genus classes consists of square classes by the condition (2) above.
The purpose of Proposition 2.4 is to compare the condition (1) with
the classical setting. For non-cyclic extensions, only the condition (1)
is often used for the definition of the principal genus classes. See for
example [9].) A character of the group K×

A/K
×U+(O) ∼= Cl+(O) which

is trivial on H(O)/K×U+(O) is called a genus character.
If we consider the map

K×
A

NK/Q−→ Q×
A −→ Q×

A/Q
×,

then since K/Q is cyclic, the kernel is K×. So we see that

K×
A/H(O) ∼= (K×

A/K
×)/(H(O)/K×) ∼= Q×NK/Q(K

×
A )/Q

×NK/Q(U+(O)).

So the genus number g of O in the narrow sense is given by

g = [K×
A : H(O)] = [Q×NK/Q(K

×
A ) : Q

×NK/Q(U+(O))]

= [Q×
A : Q×NK/Q(U+(O)]/[Q×

A : Q×NK/Q(K
×
A )].

By the class field theory we have

[Q×
A : Q×NK/Q(K

×
A )] = [K : Q].

On the other hand, we have

[Q×
A : Q×NK/Q(U+(O))] =

∏
p

[Z×
p : NK/Q(O

×
p )].

So writing ep = [Z×
p : NK/Q(O

×
p )], we have

g =

(∏
p

ep

)
/[K : Q].

Here since O might not be maximal, ep might not be the ramifica-
tion index of K/Q. The abelian extension of Q corresponding to
Q×NK/Q(U+(O)) by the class field theory is called the genus field of
H(O).

We denote by X(O) the set of characters ϕ of
∏

p Z×
p such that the

p component ϕp is a character of Z×
p /NK/Q(O

×
p ). We can naturally

prolong ϕ to the character of Q×
A by setting so that it is trivial on

Q× × R×
+. Now we denote by χK one of non-trivial characters of Q×

A

trivial on Q×NK/Q(K
×
A ). This is called a character corresponding to

K/Q. Of course this is trivial on Q× × R×
+, so it can be regarded as

a character of
∏

p Z×
p . Then the p component χK,p of χK on Z×

p is
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a character of Z×
p /NK/Q(O

×
max,p). Since O×

p ⊂ O×
max,p, the character

χK,p can be regarded as a character of Z×
p /NK/Q(O

×
p ) and we have

χK ∈ X(O). If χ is a genus character of O, then the value χ(a) for
a ∈ K×

A depends only on Q×NK/Q(a), and (any power of) χK is trivial
on the latter elements. So genus characters of O corresponds bijectively
with

X(O)/{χi
K ; 0 ≤ i ≤ n− 1}, n = [K : Q].

For a genus character χ of O corresponding to ϕ ∈ X(O) and a =
(ap) ∈ K×

A with ap = (av)v|p such that N(a) ∈ R×
+

∏
p Z×

p , we have

χ(a) = ϕ(N(a)) =
∏

p ϕp(N(ap)) by definition. But in general, N(a)

belongs to R×
+

∏
p Z×

p only after multiplying an element of Q×, and in

order to give exact values of χ(a), we need this kind of adjustment.
When K is a quadratic field, we will describe X(O) and the values of
genus characters χ on ideals more precisely in the next section.

3. Explicit genus characters for quadratic orders

In the rest of the paper except for section 6, we assume that K is
a quadratic extension of Q and denote the norm NK/Q and the trace
TrK/Q from K to Q by N and Tr, respectively. The notation N is also
used for the norm N(a) of an ideal a defined to be [Of : a], but we be-
lieve no confusion is likely to happen. Assume that the maximal order
of K is written as Omax = Z + Zω. Then orders Of of K correspond
bijectively to positive integers f called conductors by

Of = Z+ Zfω.

We denote by DK the fundamental discriminant of K and we say that
D = f 2DK is the discriminant of Of . We say that an ideal a of Of is
proper if

{α ∈ K : aα ⊂ a} = Of .

It is obvious that a is proper if and only if ap is proper in Of,p = Of⊗ZZp

for all primes p, where the word proper is defined similarly for Of,p.
Any principal ideal is obviously proper. So any locally principal ideal
a of Of is proper. Conversely we have

Lemma 3.1. Any proper fractional ideal of Of is locally principal.

Proof. Though this has been proved in [10], we give a shorter proof
here. We may assume that a is integral. For a proper integral ideal a,
we have integers a > 0, ℓ > 0, d ∈ Z such that

a = ℓ(Za+ Z(d+ fω))

with N(d + fω) = ac for some integer c ([1]). It is enough to show
that ap = Zpa + Zp(d + fω) is principal for any prime p. If p ∤ f ,
then Of,p = Omax,p so the result is classical (even when p splits). So
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we assume p|f . If a ∈ Z×
p , then ap = O×

f,p so nothing to do. Next we
assume p|a. Since

N(d+ fω) = d2 + fdTr(ω) + f 2N(ω) = ac.

and we assumed p|a, p|f , we have p|d. If p|c, then

(d+ fω)(d+ fωσ)/p = a(c/p) ∈ a for σ ∈ Gal(K/Q) with σ ̸= id.

But since fω = fTr(ω)− fωσ, we have

(d+ fω)/p = −(d+ fωσ)/p+ 2(d/p) + (f/p)Tr(ω)

with d/p, (f/p)Tr(ω) ∈ Z, so we have (d+ fω)(d+ fω)/p ∈ a. On the
other hand we have

a(d+ fω)/p = (a/p)(d+ fω) ∈ a.

So a(d + fω)/p ⊂ a. But (d/p) + (f/p)ω ̸∈ Of,p so this contradicts
the assumption that ap is proper. So we have p ∤ c. This means
a ∈ (d+ fω)Of,p, so ap = Of,p(d+ fω). □

The proper ideals are important classically since they correspond
nicely to the binary quadratic forms (See [1] and section 7).

The principal genus H(Of ) corresponds to square classes of locally
principal ideals. This can be seen as follows. In Proposition 2.4, we
may assume that a ∈ b1−σK×U+(Of ), so a is in the same class as b1−σ

in the narrow sense. We regard Q×
A as a subset of K×

A naturally (i.e.
for v = ∞ or rational prime, if Kv = Qv ⊕ Qv, then we embed Qv

diagonally and if Kv is a field, we embed Qv as a subfield.) Since

bbσ ∈ Q×
A = Q×R×

+

∏
p

Z×
p ⊂ K×U+(Of ),

we have b1−σK×U+(Of ) = b2K×U+(Of ), so a belongs to the square
classes in the narrow sense. Hence a genus is a coset of the subgroup
of Cl+(Of ) consisting of square classes in the narrow sense, and genus
characters are nothing but a character of Cl+(Of ) of order at most
two. We will describe these characters explicitly in this section. First
we describe components of NK/Q(H(Of )) at primes. For the sake of
completeness and for reader’s convenience, we review easy known re-
sults concerning Omax for a while. By the local class field theory, if p is
unramified in K, then we have N(O×

max,p) = Z×
p . The following lemma

is well known and easy to see.

Lemma 3.2. (i) When p splits in K, we have Kp = Qp ⊕Qp and

N(K×
p ) = {pn : n ∈ Z} × Z×

p .

(ii) When p is unramified and remains prime in K, we have

N(K×
p ) = {p2n;n ∈ Z} × Z×

p .
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(iii) If p is odd and ramified in K = Q(
√
pm) where m is an integer

such that p ∤ m, then

N(K×
p ) = {(−pm)n : n ∈ Zp} × (Z×

p )
2.

Here (Z×
p )

2 is defined to be the set of square elements of Z×
p .

(iv) If p = 2 is ramified in K = Q(
√
m) for an integer m with 2 ∤ m

(so m ≡ 3 mod 4), we have

N(K×
2 ) =

{
(−2)n × (1 + 4Z2) if m ≡ 3 mod 8,
2n × (1 + 4Z2) if m ≡ 7 mod 8.

(v) If p = 2 is ramified in K = Q(
√
2m) for an integer m with 2 ∤ m,

we have

N(K×
2 ) =


{2n : n ∈ Z} × {1 + 8Z2,−1 + 8Z2} if m ≡ 1 mod 8,
{(−2)n : n ∈ Z} × {1 + 8Z2, 3 + 8Z2} if m ≡ 3 mod 8,
{6n : n ∈ Z} × {1 + 8Z2,−1 + 8Z2} if m ≡ 5 mod 8,
{2n : n ∈ Z} × {1 + 8Z2, 3 + 8Z2} if m ≡ 7 mod 8.

So the non-trivial character χp of Z×
p /N(O×

max,p) is given as follows.

For (i) and (ii), we have χp = 1. For (iii), we have χp(a) =
(

a
p

)
(the

quadratic residue symbol). For (iv), χ2(a) is χ−4(a) =
(−4

a

)
. For (v),

if m ≡ 1 mod 4, then χ2(a) is χ8(a) =
(
2
a

)
. For m ≡ 3 mod 4, we have

χ2(a) is χ−8(a) =
(−8

a

)
. For each quadratic field K/Q, the character

χ of
∏

p Z×
p is defined by

∏
p χp by taking χp on Z×

p as above, and we

can prolong this naturally to a character of Q×
A by using the direct

product decomposition (1) of Q×
A. This is nothing but the character

χK corresponding to the quadratic extension K over Q.
This character is also given in another way as explained below. If a

fundamental discriminant δ of some quadratic field can be divided only
by one prime, then we say δ is a prime discriminant. For example, for
an odd prime p, if we write p∗ = (−1)(p−1)/2p, then this is the unique
prime discriminant divisible by p. For p = 2, the prime discriminants
divisible by 2 are −4, 8, −8. For each prime discriminant δ, we define
a Dirichlet character χδ(a) =

(
δ
a

)
as usual: We put χδ(−1) = −1

if δ < 0 and = 1 if δ > 0. For a prime q such that q ∤ δ, we put

χδ(q) = 1 if q splits in Q(
√
δ), = −1 if q remains prime, and = 0 if

q|δ. For any integer a = ϵqe11 · · · qemm with ϵ = ±1 and primes qi, we
put χδ(a) = χδ(ϵ)

∏m
i=1 χδ(qi)

ei . Any fundamental discriminant DK of
a quadratic field K is uniquely decomposed into a product of prime
discriminants δi as DK = δ1 · · · δr. Then for any integer a, we define

χK(a) =
r∏

i=1

χδi(a) :=

(
DK

a

)
.

In particular, we see that χK(−1) = 1 if K is real and −1 if K is
imaginary. We may regard χK as a character

∏
p χK,p of

∏
p Z×

p where
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for each prime p, χK,p is the character of Z×
p already given just after

Lemma 3.2. The proof is as follows. For an odd prime p and an odd
prime q ̸= p, by the quadratic reciprocity we have(

p∗

q

)
=

(
q

p

)
.

This is true even for q = 2. Indeed for p ≡ 1 mod 8 and p ≡ 5 mod p,
we have

(
p
2

)
= 1 and −1, respectively. For p ≡ 3 mod 8 and 7 mod 8,

we have
(−p

2

)
= −1 and 1, respectively. We see that in all these cases,

this is equal to
(

2
p

)
. When p = 2, χK,2 is the same as χ2 defined before.

We can also see easily that
∏

p χK,p(−1) = 1 for real K and = −1 for
imaginary K. Of course the fact mentioned above are all classically
well known. We may prolong χK to the character of Q×

A trivial on
Q××R×

+. Then we have Ker(χK) = Q×N(K×
A ). In this adelic setting,

calculation of the value of χK at an element of Q×
A not in

∏
p Z×

p is
easy. For example, for a prime p with p ∤ DK , put

[p] := (1, . . . , 1, p, 1, . . . , 1) ∈ Q×
A,

where p-component is p and all the other components are 1. Then we
have

χK([p]) = χK((p
−1, . . . , p−1, 1, p−1, . . . , p−1)) =

∏
q ̸=p

χK,q(p
−1) =

(
DK

p

)
.

Next we consider N(O×
f,p) for p|f . We write D = f 2DK . We denote by

ordp(f) the p-adic order of f .

Lemma 3.3. Assume that p|f .
(1) If p is odd, then

N(O×
f,p) = (Z×

p )
2.

(2) If p = 2, then we have

N(O×
f,2) =


(i) Z×

2 if ord2(f) = 1 and DK is odd,
(ii) 1 + 4Z2 if ord2(f) = 1 and DK ≡ 12 mod 16,
(iii) 1 + 4Z2 if ord2(f) = 2 and DK ≡ 1 mod 4,
(iv) 1 + 8Z2 if D ≡ 0 mod 32.

The above cases exhaust all the cases, since the case (iv) is whether
ord2(f) = 1 and DK ≡ 0 mod 8, ord2(f) = 2 and DK ≡ 0 mod 4, or
3 ≤ ord2(f).

Proof. If p ̸= 2, then

N(x+ yfω) = x2 + xyfTr(ω) + f 2N(ω) ≡ x2 mod p.

If we put y = 0, we see (Z×
p )

2 ⊂ N(O×
p,f ), so we have (1) by Hensel’s

lemma. Now assume p = 2. First of all, we note that 1 + 8Z2 =
(Z×

2 )
2 ⊂ N(O×

f,2). Since Z×
2 /(1 + 8Z2) ∼= Z/2Z × Z/2Z, we must see

how many cosets of 1 + 8Z2 appears. In case (i), we have Of,2 =
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Z2 + Z2

√
DK , so N(x + y

√
DK) = x2 − y2DK . So N(O×

f,2) contains

−DK , 2
2 − DK = 4 − DK . Since DK ≡ 1 mod 8 or 5 mod 8, these

generate {1,−1, 3,−3} ⊂ N(O×
f,2), so we have N(O×

f,2) = Z×
2 . In case

(ii), we have Of,2 = Z2+Z22
√
m and N(x+2y

√
m) = x2−4my2. If this

belongs to Z×
2 , then x should be odd. So the norm is ≡ 1−4y2m. This

gives 1 mod 8 for even y and 5 mod 8 for odd y since m ≡ 3 mod 4,
so (ii) is proved. In the case (iii), we have Of,2 = Z2 + 2

√
DK and

x2 − 4DKy
2 ≡ 1 or 5 mod 8. For (iv), elements of Of,2 is written as

Z2 + Z2

√
D/2 so N(x + y

√
D/2) = x2 − y2(D/4) ≡ 1 mod 8, so we

prove (iv). □
In Lemma 3.3, the corresponding non-trivial character of Z×

p /N(O×
f,p)

is

(
p∗

a

)
for (1), trivial for (2)(i), χ−4 for (2)(ii) and (iii), and χ−4, χ8,

χ−8 for (2)(iv). For a fixed discriminant D = f 2DK , a character defined
as a product of several local characters of Z×

p /N(O×
f,p) appearing in

Lemma 3.2 and 3.3 is equal to a character χδ corresponding to some
fundamental discriminant δ of a divisor of D = f 2DK such that D/δ ≡
0 or 1 mod 4.

Any divisor δ of D = f 2DK which is a fundamental discriminant of
some quadratic field or 1 such that D/δ ≡ 0 or 1 mod 4 is called a
fundamental divisor of D (Stammteiler in Weber [18]). For example,
1 and DK are always fundamental divisors. For a fundamental divisor
δ1 of D, there exists another fundamental divisor δ2 of D such that
δ1δ2 = f 2

1DK for some f1|f . Or equivalently we may say D = δ1δ2f
2
0

for f0 with f0f1 = f . We say that such δ1 and δ2 are reciprocal. Here
δ2 is determined uniquely by δ1. We have χδ1χδ2 = χK (regarding χδ

as the trivial character when δ = 1, and taking the product so that the
result becomes a primitive character, i.e. regarding the square of the
same prime discriminant part as a trivial character.)

Proposition 3.4 (Weber [18]). The set of reciprocal pairs of funda-
mental discriminants of D = f 2DK corresponds bijectively to the set
of genus characters. In particular, if we denote by ν the number of odd
divisors of D, then the genus number g of Of in the narrow sense is
given as follows.

g =

 2ν−1 if D ≡ 1 mod 4 or D ≡ 4 mod 16,
2ν if D ≡ 8, 12, 16, 24, 28 mod 32,
2ν+1 if D ≡ 0 mod 32.

Proof. Since we have

K×
A/H(Of ) ∼= Q×N(K×

A )/Q
×N(U+(Of )),

and χK(a) = 1 for a ∈ Q×N(K×
A ), the first part of the above propo-

sition is obvious. The assertion on the genus number is obtained by a
careful check of Lemma 3.2 and 3.3. □
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A class C ∈ Cl+(Of ) in the narrow sense is said to be an ambig class
if Cσ = C. Equivalently, this is a class C satisfying C2 = 1. For such a
class, we can show C contains a proper ideal a such that a = aσ. This
is called an ambig ideal. Traditionally, the genus number is obtained
by counting ambig ideals up to equivalence. For such proofs, see for
example (the Japanese version of) [1]. (By the way, note that even if C
is of order two in the wide sense, C might not contain an ambig ideal.)

Since genus characters are characters of Cl+(Of ), it is preferable to
write it as a function on proper Of ideals. We explain this below. A
proper integral ideal a of Of is said to be prime to f if we have

a+ fOf = Of .

If a is prime to f , then a is a proper ideal. This is equivalent to the
condition that N(a) is prime to f . We denote by I(Of , f) the set of
proper Of ideals prime to f . It is well known that we have a bijective
multiplicative mapping from I(Of , f) to I(Omax, f) by

a→ aOmax,

preserving norm and products (See [1]). So any ideal in I(Of , f) is
uniquely decomposed into a product of prime ideals. If a is a proper
ideal of Of not prime to f , then there exists α ∈ K×

+ such that aα
is prime to f (easily proved by the weak approximation theorem that
claims K is dense in

∏
v∈S K

×
v for any finite set S of places of K, or see

[1] for a global proof), so to give values of genus characters at ideals,
it is enough to consider values at prime ideals p in I(Of , f). (By the
way, considering by ideles, it is clear that any proper ideal of Of not
necessarily prime to f is also decomposed uniquely to the product of
ideals of Of whose norms are powers of p. But maximal Of ideals are
not proper in general and there is no proper ideal of norm p for p|f .
In particular, there is no prime ideal decomposition for ideals of Of in
general.)

We give a formula below how to calculate χ(p) for prime ideals p ∈
I(Of , f) for a genus character χ. When f = 1, this is the same as those
written in Siegel [17] II Chapter 5.

Theorem 3.5. Let δ1, δ2 be a reciprocal pair of fundamental divisors
and χ be a genus character associated with the pair. Then for a prime
ideal p ∈ I(Of , f), we have the following formula.
(1) If p is unramified in K, then we have

χ(p) = χδ1(N(p)) = χδ2(N(p)).

(2) If p is ramified, then N(p) is prime to one of δi (say δ1). Then we
have

χ(p) = χδ1(N(p)).

Proof. For p ∤ f , the prime ideal p over p corresponds with an idele

a = (1, . . . , 1, ap, 1, . . . , 1) ∈ K×
A
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where ap ∈ K×
p is the p-th component such that pp = apOf,p =

apOmax,p. The value of a genus character χ on a is determined by
the value of N(a) ∈ Q×

A for the corresponding characters (χδ1 , χδ2).
When p remains prime in K, then we have N(p) = p2 and ap = pϵ with
ϵ ∈ O×

max,p. So we have

N(a) = (1, . . . , 1, p2N(ϵ), 1, . . . , 1) ∈ Q×
A.

We must change this to an element of
∏

q Z×
q by multiplying an element

of Q× to evaluate by the character of
∏

q Z×
q . So we consider

p−2N(a) = (p−2, . . . , p−2, N(ϵ), p−2, . . . , p−2).

Since any local character is of order two at q ̸= p and trivial at p (since
Z×

p = N(O×
p,f )), we have χ(p) = 1. We may write this as

χδi(N(p)) = χδi(p
2) = 1.

If p over p is unramified and split in K, then we have Of,p = Omax,p =
Zp ⊕ Zp and ap = (p, 1) or (1, p). So N(ap) = p. Multiplying p−1 to a,
we have

p−1N(a) = (p−1, . . . , p−1, 1, p−1 . . . , p−1).

So χ(a) =
∏

q ̸=p χδ1,q(p
−1) = χδ1(p

−1). Since χK(p) = 1, this is of

course equal to χδ2(p
−1). Since χδi is of order two, this is equal to

χδi(p). So we have χ(p) = χδ1(N(p)) = χδ2(N(p)). If (p) = ppσ, then
we also have χ(pσ) = χ(p).

Finally, assume that p is ramified. Then we have

N(a) = (1, . . . , 1, pu, 1, . . . , 1)

for some u ∈ Z×
p . We have

p−1N(a) = (p−1, . . . , p−1, u, p−1, . . . , p−1).

Since we assumed p ∤ f , one of δi does not contain p as a factor. Take
such i (say i = 1). Then we have χδ1,p = 1 so χδ1,p(u) = 1 and

χ(p) = χδ1(p
−1) = χδ1(p).

So the proof is completed. □

Remark 3.6. (1) When p is ramified in the above proof, if we take χδ2

with p|δ2 instead, then we should have χ(a) = χδ2,p(u)
∏

q ̸=p χδ2,q(p).

This is the same as χδ1(p) since χK is the character that is trivial on
Q×N(K×

A ). This can be also proved directly by using Lemma 3.2.
(2) Even when a is not prime to f , we can also give some formula
for χ(a) by the same sort of consideration, but in this case, we cannot
describe it only by N(a) since a value of some unit part like u for the
ramified case remains. We do not go into details since it seems we
cannot avoid a bit complicated case studies.
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4. The L-functions of genus characters

For an order Of of a quadratic field K/Q, we fix a genus character
χ. We define an L-function of proper ideals of Of with character χ as

L(s,Of , χ) =
∑

proper a⊂Of

χ(a)

N(a)s
,

where the sum is taken over all integral proper ideals of Of including
those not prime to f . Since any proper ideal a of Of is identified with
a representative a = (av) of K

×
A/K

×U∞,+

∏
pO

×
f,p we have the unique

decomposition of a to the product a =
∏

p(ap ∩K) where ap = apOf,p,

ap = (av)v|p. Here N(ap) = N(ap ∩ K) is a power of p. So it is clear
that L(s,Of , χ) is a product of the Euler p-factors.

The Euler p factors such that p is prime to f is simple. We see this
part first. Put

Lf (s,Of , χ) =
∑

a∈I(Of ,f)

χ(a)

N(a)s
,

and we will write a formula for this. Assume that χ corresponds with
a reciprocal pair of fundamental divisors (δ1, δ2). To simplify notation,
we denote the Dirichlet character χδ1 , χδ2 corresponding to δ1 and δ2
by ϕ and ψ. We will see the Euler p-factor for a prime p with p ∤ f . If
p splits in K, then we have pOf,p = p1p2 for some prime ideals p1, p2.
Then by Theorem 3.5, we have χ(p1) = χ(p2) = ϕ(p) = ψ(p). So the
Euler p factor should be

1

(1− ϕ(p)p−s)(1− ψ(p)p−s)
.

If p remain prime, then χ(p) = χ(pOf,p) = 1, so the Euler factor is

1

1−N(p)−s
=

1

1− p−2s
.

But since χK(p) = −1, we have ϕ(p)ψ(p) = −1, so the Euler factor can
be also written as

1

(1− ϕ(p)p−s)(1− ψ(p)p−s)
.

If p is ramified in K, then χK(p) = 0. By definition of the character χ
and the assumption p ∤ f , we have ϕ(p) = 0 and ψ(p) ̸= 0, or ϕ(p) ̸= 0
and ψ(p) = 0. So again the Euler p factor is

1

(1− ϕ(p)p−s)(1− ψ(p)p−s)
.

So if we write Lf (s, ϕ) and Lf (s, ψ) the usual Dirichlet L-functions
omitting the Euler p factors such that p|f , we have

Lf (s,Of , χ) = Lf (s, ϕ)Lf (s, ψ).
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This is well known for f = 1 (See Siegel [17] for example). The remain-
ing problem is to determine the Euler p factors for p|f . To determine
these part, we need more precise description of proper ideals of Of,p for
p|f . So we fix a prime p with p|f . For any integer b ≥ 0, we write

Rb = Zp + Zpp
bω

where 1, ω is a basis over Z of Omax. This is equal to Of,p for any f with
ordp(f) = b. For a proper integral ideal a = αRe of Re, if N(α) = pdu
(u ∈ Z×

p ), then we have N(a) = N(a ∩K) = pd.

Lemma 4.1. (1) If a is a proper integral ideal of Re such that ordpN(a) ≤
2e, then ordpN(a) is even.
(2) Proper integral ideals a of Re such that N(a) = p2c with c ≤ e are
given by pcϵRe for some ϵ ∈ R×

e−c. The number of such ideals of Re is
equal to [R×

e−c : R
×
e ].

(3) Proper integral ideals a of Re such that N(a) = p2e+c with c ≥ 0
are given by a = pea0Re for integral ideals a0 of R0 = Omax,p with
N(a0) = pc. The number of such ideals of Re is equal to [R×

0 : R×
e ]

times the number of ideals a0 of R0 with N(a0) = pc.

Proof. Since proper ideals are locally principal, we write a = (x +
ypeω)Re. Then N(a) = pc is equivalent to ordpN(x + ypeω) = c. We
put a = ordp(x). If we assume that 2e ≤ c, then e ≤ a. Indeed if a < e,
then

N(x+ ypeω) = x2 + xpeyTr(ω) + p2eN(ω) ≡ 0 mod pc,

and

ordp(x
2) = 2a < a+ e ≤ ordp(xp

eyTr(ω))

so ordp(N(x + peyω)) = 2a < 2e ≤ c, which is a contradiction. So we
have e ≤ a and

a = peα0Re for some α0 = x0 + y0ω ∈ R0.

If we put a0 = α0R0, then this is of course an ideal of R0. Here the
generators of a0 are written as α0ϵ with ϵ ∈ R×

0 , but generators of α0ϵRe

are α0ϵϵ0 with ϵ0 ∈ R×
e . So, for each R0 ideal a0, the number of ideals

b0 of Re such that b0R0 = a0 is [R×
0 : R×

e ], Hence we prove (3). (Note
here that a0Re is not an integral ideal of Re in general, but pea0Re is.)
Next we assume that c < 2e. We show that we have c/2 ≤ a. Indeed,
if a < c/2, then ordp(x

2) < c, c ≤ [c/2]+e ≤ ordp(xp
eyTr(ω)), and c <

ordp(p
2ey2N(ω)), so we have ordp(N(x + ypeω)) = ordp(x

2) < c which
is a contradiction. So we have c/2 ≤ a. If c is odd, then (c+1)/2 ≤ a,
e, and we see that a = p(c+1)/2(x0+ p

e−(c+1)/2yω), so c+1 ≤ ordpN(a),
which is a contradiction. So there exists no ideal such that ordpN(a)
is odd and < 2e. So we have (1). If c is even, we rewrite c by 2c. Then
we have

a = pc(x0 + y0p
e−cω)Re.
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Since N(a) = p2c, we have x0 + y0p
e−c ∈ R×

e−c. So the number of ideals
is exactly equal to [R×

e−c : R
×
e ]. □

In order to count the number of ideals, we give necessary indices.

Lemma 4.2. For 1 ≤ e− c we have

[R×
e−c : R

×
e ] = pc.

For e = c and Re−c = R0, we have

[R×
0 : R×

e ] = pe−1(p− χK(p)).

Proof. First we assume that p splits in K. Then we have Kp = Qp⊕Qp

and R0 = Omax,p = Zp ⊕ Zp. Since ω ∈ K is embedded in Zp ⊕ Zp

by ω → (ω, ωσ) where σ is the non trivial automorphism of K/Q, it is
easy to see that

Re = Of,p = {(a, b) ∈ Zp ⊕ Zp; a ≡ b mod pe}.

So if e− c > 0, we have

R×
e−c/R

×
e
∼= (1 + pe−cZp)/(1 + peZp) ∼= Zp/p

cZp

and the order is pc. If e = c, then

R×
0 /R

×
e = Z×

p /(1 + peZp)

and the order is pe−1(p − 1) = pe−1(p − χK(p)). Next we assume that
p remains prime in K. We write P = pOmax,p. When c = e, the order
of R×

0 /(1 + P e) ∼= R×
0 /(1 + P )× (1 + P )/(1 + P e) is (p2 − 1)p2(e−1). If

c < e, then

R×
e−c/(1 + P e) ∼= R×

e−c/(1 + P e−c)× (1 + P e−c)/(1 + P e).

and the order is (p− 1)pe+c−1. So we have

[R×
e−c : R

×
e ] =

{
pc if c < e,
pe−1(p+ 1) if c = e.

So noting that χK(p) = −1, we have the assertion. Finally we assume
that p ramifies in K and denote by P the prime ideal of Omax,p. Then
we have P 2 = pOmax,p. Assume that c < e. Then we have

[R×
e−c : 1 + P 2e] = [R×

e−c : 1 + P 2(e−c)][1 + P 2(e−c) : 1 + P 2e].

The order of this index is (p− 1)pe+c−1. So we have

[R×
e−c : R

×
e ] = pc.

If c = e, then

[R×
0 ;R

×
e ] = [R×

0 : 1+P 2e]/[Re : 1+P
2e] = (p−1)p2e−1/(p−1)pe−1 = pe.

Since χK(p) = 0, we have the result. □
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Finally we calculate the L-function of the genus character includ-
ing the Euler p factors with p|f . We fix a genus character χ of Of

corresponding to a pair (δ1, δ2) of reciprocal fundamental divisors. By
definition, we have δ1δ2 = f 2

1DK of some divisor f1 of f . If we put
f0 = f/f1, then we can also say that D = δ1δ2f

2
0 . For any p|f , we

write mp = ordp(f0) = ordp(f/f1). For any fundamental discriminant
δ of a quadratic field F/Q and the Dirichlet character χδ(a) =

(
δ
a

)
, we

define the Dirichlet L-function L(s, χδ) as usual by

L(s, χδ) =
∏
p

(1− χδ(p)p
−s)−1.

Here we regard χδ(p) = 0 if p|δ. For the sake of simplicity, we write
ϕ = χδ1 and ψ = χδ2 as before.

The following theorem was given in [12]. We give here a far simpler
alternative proof.

Theorem 4.3. Notation being as above, we have

(2) L(s,Of , χ) = L(s, ϕ)L(s, ψ)×∏
p|f0

(1− ϕ(p)p−s)(1− ψ(p)p−s)− pmp(1−2s)−1(p1−s − ϕ(p))(p1−s − ψ(p))
1− p1−2s

,

where the product is taken over primes dividing the positive integer f0
such that D = δ1δ2f

2
0 . Here if mp = ordp(f0) = 0, then the p-factor of

the product is regarded as 1.

Before proving this, we prove

Lemma 4.4. (1) Assume that mp < e. Then we have ϕ(p) = ψ(p) = 0.
(2) If ϕ(p) = ψ(p) = 0 and p ∤ DK, then mp < e.

Proof. (1) Since we assumed ordp(f1) = e− ordp(f0) = e−mp > 0, at
least one of δ1 and δ2 is divisible by p. Assume that ordp δ1 > 0 and
ordp(δ2) = 0. Then we have

ordp(δ1) = 2(e−mp) + ordp(DK).

Since e −mp > 0, we have ordp(δ1) ≥ 2, and since δ1 is a fundamen-
tal discriminant, we should have p = 2. So ord2(δ1) = 2 or 3, and
ord2(DK) = 0 or 1 for each case. The latter cannot happen, so we have
ord2(DK) = 0, ord2(f1) = 1, and ord2(δ1) = 2. Here −4 is a prime
discriminant dividing δ1, so if we write δ1 = (−4)δ0, then δ0 is an odd
fundamental discriminant. So we have

δ0δ2 = −(f1/2)2DK .

Here since f1/2 is odd, RHS is ≡ 3 mod 4. This contradicts that δ0
and δ2 are odd fundamental discriminants. This means that any p|f
divides both δ1 and δ2 if 0 < e−mp. So (1) is proved.
(2) By definition we have χK = ϕψ. Here the product is taken so
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that the result is primitive. So if ϕp = ψp with p ∤ DK , we are taking
ϕpψp = 1. So it might happen that ϕp(p) = ψ(p) = 0 and χK(p) ̸= 0 in
general. Now in our setting, if ϕ(p) = ψ(p) = 0, that is, if 1 ≤ ordp(δi)
for both i = 1, 2, then since

2 ≤ ordp(δ1) + ordp(δ2) = 2 ordp(f1) + ordp(DK),

and ordp(DK) = 0 by our assumption, we have 1 ≤ ordp(f1) = e−mp,
so 1 ≤ e−mp. □
Proof of Theorem 4.3. Any genus character χ of Of regarded as a char-
acter of K×

A is trivial on R×
e for e = ordp(f). By the construction,

a genus character χ of Of associated with a pair (δ1, δ2) such that
δ1δ2 = f 2

1DK can be regarded as a genus character of Of/pc for c ≤ e
if and only if ordp(f1) ≤ e − c. In other words, if we denote by Ic the
group of fractional ideals of Re defined by

Ic = {ϵRe : ϵ ∈ R×
e−c},

then χ is trivial on Ic if and only if c ≤ e−ordp(f1) = mp. So if mp < e,
we have

(3)
∑

a∈Ic/R×
e

χ(a)N(pca)−s = 0 for all c = mp + 1, . . . , e

since χ is not trivial on Ic in these cases and N(pca) = p2c for any ideal
a ∈ Ic.

By definition we have 0 ≤ mp ≤ e. First we assume that mp ̸= e.
Then by Lemma 4.1 (2) and (3), we have no contribution for L(s,Of , χ)
from ideals a with N(a) = pc with mp < c/2. Indeed, if c ≤ 2e and
c is odd, there is no such ideal by Lemma 4.1 (1). If c ≤ 2e and
c = 2c0 is even, then the ideals run over pc0Ic0 and since mp < c0 ≤ e,
the contribution vanishes by (3). If c = 2e + c0 with 0 ≤ c0 and
mp < e, then the ideals run over pea0Ie for several ideals a0 of R0 with
N(a0) = pc, and again the contribution is 0 by (3) since mp < e means
ordp(f1) > 0 and χ is non-trivial on Ie/R

×
e . In particular, if mp = 0,

then by Lemma 4.4, we have ϕ(p) = ψ(p) = 0 unless e = 0, and the
p Euler factor of Theorem 4.3 (2) becomes 1. Next, consider ideals a
such that N(a) = p2c with c ≤ mp < e. Then a runs over pcIc, and χ is
trivial on these ideals. So by Lemma 4.1 (2), the contribution of such
ideals to the L-function is given by [R×

e−c : R×
e ]p

−2cs, and by Lemma
4.2, the total contribution from c ≤ mp is given by

(4) 1 + p1−2s + p2(1−2s) + · · ·+ pmp(1−2s) =
1− p(1+mp)(1−2s)

1− p1−2s
.

By Lemma 4.4, we have ϕ(p) = ψ(p) = 0 in this case. So the p Euler
factor of Theorem 4.3 (2) coincides with the above (4). Next we assume
that mp = e. This means that χ is regarded as a genus character of
Of/pe . Then the character χ is trivial on ideals a of norm up to p2e
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and this part is given by (4). If a = pea0Re with ideals a0 of R0 then
the value of the character χ(a) = χ(a0Re) is the same value for the
corresponding character χ on Cl+(Of/pe). By using Lemma 4.2, we see
that the contribution of this part is given by

(5)
pe−1(p− χK(p))p

−2es

(1− ϕ(p)p−s)(1− ψ(p)p−s)
.

So summing up (4) and (5), and noting χK(p) = ϕ(p)ψ(p) for any
prime p by Lemma 4.4 (2), we obtain (2) of Theorem 4.3. □

5. The genus number in the wide sense.

If we replace the definition U+(O) by U(O) = U∞
∏

pO
×
p in section

2, where U∞ = (R×)r1 × (C×)r2 , then the genus in the wide sense is
defined by taking a ∈ K×

A such that N(a) ∈ Q×N(U(O)) in the same
way. (Since we are assuming K is cyclic over Q, actually we have r1 = 0
or r2 = 0.) The genus theory in the wide sense for maximal orders is
given in general setting in Furuta [7], for example. Maybe the concrete
genus numbers in the wide sense for orders of a quadratic field are well
known but we give the formula as an appendix as a continuation of the
previous sections. Of course this is nothing but the number of cosets in
the ideal class group in the wide sense over the group of square classes.
We will give an application of this formula in the next section.

We first prove results for maximal orders for the sake of simplicity,
and then state the result for general quadratic orders.

Proposition 5.1. Let K be a quadratic field. Let t be the number of
prime divisors of the fundamental discriminant DK of K.
(1) If K is imaginary, or if −1 ∈ N(K×), then the genus number in
the wide sense is the same as the genus number in the narrow sense
and given by 2t−1.
(2) If K is real and −1 ̸∈ N(K×), then the genus number in the wide
sense is 2t−2.
(3) For a real quadratic field K, we have −1 ∈ N(K×) if and only if
all the odd prime divisors of DK are 1 mod 4.

The condition (3) above is equivalent to the condition that the genus
field ofK in the narrow sense (the abelian extension ofK corresponding
to the principal genus classes in the narrow sense) is real, that is,
unramified at infinite places. (The genus field of K in the wide sense
is always real for real K by the class field theory.) Note also that by
(3), we always have t ≥ 2 in (2).

Proof. The results (1) and (2) are essentially due to [7], but we reprove
it here. The claim is clear when K is imaginary, so we assume K is real.
The difference from the narrow sense comes from N(U∞) = R× since
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this is not contained in R×
+. So correcting this part by multiplying by

−1 ∈ Q, the genus number in the wide sense is given by the index

1

2

[∏
p

Z×
p :
∏
p

N(O×
max,p)

∪
(−1)

∏
p

N(O×
max,p)

]
.

This number is the same as the genus number in the narrow sense if
and only if −1 ∈ N(O×

max,p) for all p, and half of it if −1 ̸∈ N(O×
max,p)

for some p. For a real field, the condition that −1 ∈ N(O×
max,p) for

all primes p is equivalent to the condition −1 ∈ N(K). Indeed, if −1
is a norm at all local places, then the global element −1 ∈ Q× is a
norm of an element of K× by the Hasse norm theorem. Conversely,
if N(c) = −1 for c ∈ K×, then c ∈ Omax,p if Kp is a field and −1 ∈
N(O×

max,p). If Kp = Qp ⊕ Qp, then −1 ∈ Z×
p = N(Z×

p × Z×
p ) always.

So (1) and (2) are proved. Now more concrete condition is as follows.
If p does not ramify, then −1 ∈ Z×

p = N(O×
max,p) always. If p ramifies,

then by Lemma 3.2, for odd p, we have −1 ∈ N(O×
max,p) if and only

if p ≡ 1 mod 4. For p = 2, by Lemma 3.2 (iv) and (v), we have
−1 ∈ N(O×

max,2) if and only if 8|DK andDK/8 ≡ 1 mod 4. But since we
assumed DK > 0, the condition that all odd p|DK satisfy p ≡ 1 mod 4
means that DK/8 ≡ 1 mod 4. □
Note that −1 ∈ N(K×) is much weaker than the existence of a

unit ϵ ∈ O×
max with N(ϵ) = −1. For example, for K = Q(

√
221) =

Q(
√
13 · 17), we have N

(
5 +
√
221

14

)
= −1 but the fundamental unit

(15 +
√
221)/2 of K has norm +1. In this case, if we put

c = Z7 + Z
5 +
√
221

2
,

then

c2 =

(
5 +
√
221

2

)
OK .

Here we have N(5+
√
221

2
) = −49, so square classes in the wide sense

are equal to square classes in the narrow sense. The genus numbers in
the narrow sense and in the wide sense are both equal to 2. The genus
field for K is Q(

√
13,
√
17). For general quadratic K, if N(c) = −1 for

c ∈ K×, then by using the prime ideal decomposition of cOK , we can
easily see that cOK = c1−σ for an ideal c that is a product of prime
ideals splitting in K. This means that c2 = cN(c)OK and that the
square classes in the narrow sense and in the wide sense are the same.

Finally, for a quadratic order Of of general conductor f , we have the
following results.

Proposition 5.2. Put D = f 2DK. The genus number for Of in the
narrow sense is equal to the genus number in the wide sense if and only
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if the following two conditions are satisfied.
(1) p ≡ 1 mod 4 for all odd p|D.
(2) D ̸≡ 0 mod 16.
Otherwise, the genus number in the narrow sense is 2 times the one in
the wide sense.

The proof is almost the same as the proof of Proposition 5.1 by using
Lemma 3.2 and 3.3, so we omit it here.

6. Maximal orders of matrix algebras over algebraic
number fields

Let F be an algebraic number field and Omax = OF be the ring of
all integers of F . A submodule L of F n is said to be an OF lattice if it
is finitely generated OF module and contains a basis of F n. A subring
Λ of Mn(F ) is said to be an OF order of Mn(F ) if it is an OF lattice in
Mn(F ) and contains the unit matrix. We denote by F×

+ the subgroup
of elements of F× which are positive under all real embeddings of F .
We define a subgroup GL+

n (F ) of GLn(F ) as

GL+
n (F ) = {g ∈ GLn(F ) : det(g) ∈ F×

+ }.
The number of GLn(F ) conjugacy classes of maximal OF orders of
Mn(F ) is called a type number of Mn(F ) (sometimes called in the
wide sense in this paper). The similar number up to GL+

n (F ) conjugacy
classes will be called a type number in the narrow sense in this paper.
The purpose of this section is to characterize these numbers in terms of
ideal classes. This has been known for type numbers in the wide sense
in [8] for n = 2 and in [2] for general n. We include this theory in the
paper because when n = 2 and F is quadratic, these two kinds of type
numbers are given by the genus number in the wide sense and in the
narrow sense, respectively. The papers [8] and [2] use a global method
but here we prove everything adelically. Most results below except for
Propositions 6.3 and 6.4 are also found in [16].

We start from description of OF lattices L ⊂ F n. For any g = (gv) ∈
GLn(FA), we define On

Fg by

On
Fg =

∩
v<∞

(On
F,vgv ∩ F n).

For any OF lattice L and a finite place v of F , we put Lv = L⊗OF
OF,v.

Then we have Lv = On
v for almost all v and it is clear that we have

Lv = On
v gv for some gv ∈ GLn(Fv) for all v. So any OF lattice is

written as On
Fg for some g ∈ GA.

For an OF lattice L, we write

ΛL = {g ∈Mn(F );Lg ⊂ L}
and call it the right order of L. Any maximal order Λ of Mn(F ) is the
right order of some L. This is clear since LΛ is again an OF lattice
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for any OF lattice L and we have Λ ⊂ ΛLΛ. So any maximal order of
Mn(F ) is written as

g−1Mn(OF )g :=
∩
v<∞

(g−1
v Mn(OF,v)gv ∩Mn(F ))

for some g = (gv) ∈ GLn(FA).
To write down global orbits of lattices and conjugacy classes of max-

imal orders, we prepare adelic subgroups.
We denote by GL+

n (R) the subgroup of elements of GLn(R) with
positive determinants. We denote by r1 and r2 the number of real
places and complex places of F . Put U∞ = GLn(R)r1 ×GLn(C)r2 and
U∞,+ = GL+

n (R)r1 × GLn(C)r2 . We put U0 =
∏

v<∞GLn(OF,v) and
U = U∞U0 and U+ = U∞,+U0. For ideal classes Ci ∈ Cl(OF ) and C

+
j ∈

Cl+(OF ), we fix representative ideles ai and bj in F
×
A , respectively. So

we have

F×
A =

⊔
i

aiF
×(R×)r1(C×)r2

∏
v<∞

O×
F,v (disjoint)

F×
A =

⊔
j

bjF
×(R×

+)
r1(C×)r2

∏
v<∞

O×
F,v (disjoint).

We define ideals ai and bi corresponding these by

ai =
∩
v<∞

(ai,vOF,v ∩ F ), bj =
∩
v<∞

(bj,vOF,v ∩ F ).

Here we may assume that infinite components ai and bi are all 1. We de-
fine diagonal matrices gi = diag(1, . . . , 1, ai) and hj = diag(1, . . . , 1, bj)
in GLn(FA). It is well known that we have the following double coset
decomposition. The proof is based on the strong approximation theo-
rem on SLn, and we omit the proof.

Lemma 6.1 ([14]). We have

GLn(FA) =
⊔
i

UgiGLn(F ) (disjoint),

GLn(FA) =
⊔
j

U+hjGLn(F ) (disjoint).

If we denote byGL+
n (FA) the subgroup of elements of GLn(FA) whose

infinite components are in U∞,+. Then, since F× contains an element
with arbitrary sign at real places, we also have

GL+
n (FA) =

⊔
j

U+hjGL
+
n (F ) (disjoint).

It is easy to see that any g ∈ GLn(FA) belongs to the double coset
of gi if and only if det(g) belongs to the ideal class of ai and any
g ∈ GL+

n (FA) belongs to hj if and only if det(g) belongs to the ideal
class of bj.
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In terms of global lattices, Lemma 6.1 is written as follows.

Lemma 6.2. We fix an OF lattice L.
(1) There exists the unique ideal class Ci ∈ Cl(OF ) such that the
GLn(F ) orbit of L contains (OF , . . . , OF , ai) for ai ∈ Ci.
(2) There exists the unique ideal class C+

j ∈ Cl+(OF ) such that the

GL+
n (F ) orbit of L contains (Of , . . . , OF , bj) for bj ∈ C+

j .

So any maximal order of Mn(F ) is GL
+
n (F ) conjugate to

Λ(a) =


OF · · · OF a
... · · · ...

...
OF · · · OF a
a−1 · · · a−1 OF


for some ideal a of OF . (This is well known up to GLn(F ) conjugacy.
See [16] for example.) We note that when n = 1, we have Λ(a) = OF

by definition.
Next problem is to describe dependence of Λ(a) on a. The relation

g−1Mn(O)g = Mn(O) for g = (gv) ∈ GLn(FA) means that Mn(OF,v)gv
(v < ∞) is a two sided ideal of Mn(OF,v). It is well known that any
two sided ideal is written as cvMn(OF,v) for some cv ∈ F×

v (See [16]).
Now take k1, k2 ∈ GL+

n (FA) and assume that g−1
0 k−1

1 Mn(O)k1g0 =
k−1
2 Mn(O)k2 for some g0 ∈ GL+

n (F ). Assume that k1 and k2 belong to
the double cosets of hi and hj in Lemma 6.1, respectively. Then by the
above consideration, there exists c ∈ F×

A whose infinite components are
1 such that

U+hiGL
+
n (F ) = U+chjGL

+
n (F ).

This means that det(chj) = cnbj belongs to the narrow class of bi. The
argument for conjugacy classes with respect to GLn(F ) is similar. So
we have

Proposition 6.3. (1) Λ(ai) and Λ(aj) are GLn(F ) conjugate if and
only if ai and ajc

n belong to the same ideal class in the wide sense for
some fractional ideal c of OF .
(2) Λ(bi) and Λ(bj) are GL+

n (F ) conjugate if and only if bi and bjc
n

belong to the same ideal class in the narrow sense for some fractional
ideal c of OF .

Of course the type numbers for both cases are the orders of ideal
class groups Cl(OF ) and Cl+(OF ) divided by n-th power classes, re-
spectively. In particular, when n = 1, then the type numbers are one.
When n = 2 and F is quadratic over Q, these are genus numbers.

Proposition 6.4. When K is a quadratic field over Q, the number of
maximal orders of M2(K) up to GL2(K) conjugation is equal to the
genus number in the wide sense, and up to GL+

2 (K) conjugation is
equal to the genus number in the narrow sense.
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Example: When K = Q(
√
3) then the genus number in the wide

sense is 1, while the one in the narrow sense is 2. Representatives of
maximal orders up to GL+

2 (K) conjugacy classes are given by

M2(OK) and

(
OK

√
3OK

(
√
3)−1OK OK

)
.

These are conjugate by

(
1 0

0
√
3

)
but not conjugate by any element of

GL+
2 (K).

7. Appendix on quadratic forms

In this section, for readers’ convenience, we explain relations between
classes and genera of binary quadratic forms and those of proper ideal
classes of a quadratic order.

Let K be a quadratic extension of Q and DK be the fundamental
discriminant of K. We fix a positive integer f and put D = f 2DK . We
denote by Of the quadratic order of K of conductor f as before. For
a fixed D, we consider the set of quadratic forms

ax2 + bxy + cy2

with b2 − 4ac = D and gcd(a, b, c) = 1, where gcd means the greatest
common divisor. This is bijective to the following set S(D) defined as

S(D) = {S =

(
a b/2
b/2 c

)
; a, b, c ∈ Z, b2 − 4ac = D, gcd(a, b, c) = 1}.

We call an element of S(D) a primitive quadratic form of discriminant
D. We say that S1, S2 ∈ S(D) belongs to the same class in the narrow
sense if S2 = tAS1A for some A ∈ SL2(Z). We say that S1 and
S2 ∈ S(D) are in the same class in the wide sense if S2 = det(A) tAS1A
for some A ∈ GL2(Z). When D < 0, we put

S+(D) = {S ∈ S(D);S > 0},
where S > 0 means that S is positive definite. The following theorem
is well known.

Theorem 7.1. The set of classes in the wide sense of S(D) is bijective
to the proper ideal class group Cl(Of ) in the wide sense. The set of
classes in the narrow sense of S+(D) for D < 0 or the set of the classes
in the narrow sense of S(D) for D > 0 is bijective to the proper ideal
class group Cl+(Of ) in the narrow sense.

We omit the proof here, since this is written for example in [1] English
version Chapter 6 Theorem 6.7.
Next we consider the genus of quadratic forms. In general a genus

means the set of quadratic forms that are isomorphic locally at every
place and integrally at every finite place. Before giving a precise def-
inition of a genus of quadratic forms, we give a remark on a relation
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between equivalence by GLn(Zp) and by SLn(Zp) for general n-ary
quadratic forms.

Lemma 7.2. Let n be any natural number. Let S1 and S2 be any
symmetric matrices inMn(Zp) and assume that det(S1) = det(S2) ̸= 0.
If S2 =

tBS1B for an element B ∈ GLn(Zp), then we have S2 =
tAS1A

for some element A ∈ SLn(Zp).

Proof. This is essentially in [3] Chapter 8 Lemma 3.2 Corollary, but we
give here an alternative proof for readers’ convenience. Since det(S2) =
det(B)2 det(S1), we have det(B) = ±1. If det(B) = 1, we have nothing
to prove, so assume that det(B) = −1. By Jordan decomposition of a
quadratic form, we may assume that tCS1C for some C ∈ GLn(Zp) is
an orthogonal sum of several matrices of the following shape,

pe1u (u ∈ Z×
p ), pe2

(
0 1
1 0

)
, pe3

(
2 1
1 2

)
.

(See for example [13] Theorem 5.3.1, 5.2.5.) Here det(C) = ϵ ∈
Z×

p . But if we write the diagonal matrix D of diagonal elements

(1, . . . , 1, ϵ−1) and replace C by C1 = CD, then det(C1) = 1 and
tC1SC1 can be taken again as an orthogonal sum containing one of

pe1ϵ−2u, pe2
(

0 ϵ−1

ϵ−1 0

)
, pe3

(
2 2ϵ−1

2ϵ−1 2ϵ−2

)
,

the others being unchanged. Since we have

(−1)pe1ϵ−2u(−1) = peϵ−2(
0 1
1 0

)
pe2
(

0 ϵ−1

ϵ−1 0

)(
0 1
1 0

)
= pe2

(
0 ϵ−1

ϵ−1 0

)
(

0 ϵ
ϵ−1 0

)
pe3
(

2 ϵ−1

ϵ−1 2ϵ−2

)(
0 ϵ−1

ϵ 0

)
= pe3

(
2 ϵ−1

ϵ−1 2ϵ−2

)
,

there exists C2 ∈ GL2(Zp) with det(C2) = −1 such that t(C1C2)S1(C1C2) =
tC1S1C1. So if we put C0 = C1C2C

−1
1 , then

S2 =
tBS1B = t(C0B)S1(C0B)

and det(C0B) = 1. This proves the assertion. □
We put Z∞ = R as before. If S1, S2 ∈ GLn(Q) and there exists

Av ∈ GLn(Zv) such that S2 =
tAvS1Av for any place v, then we have

automatically det(S1) = det(S2). Indeed, we have det(S2)/ det(S1) =
det(Ap)

2 ∈ Z×
p , so det(S2)/ det(S1) = ±1 but by S2 = tA∞S1A∞,

we have det(S2)/ det(S1) > 0, so det(S2) = det(S1). We also have
det(Av) = ±1.

Definition 7.3. We say that S1, S2 ∈ S(D) belongs to the same genus in
the narrow sense if there exists Av ∈ GL2(Zv) such that S2 =

tAvS1Av

for each place v of Q. We say that S1, S2 ∈ S(D) belongs to the
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same genus in the wide sense if, for a fixed ϵ ∈ {±1}, there exists
Av ∈ GL2(Zv) such that S2 = det(Av)

tAvS1Av with det(Av) = ϵ for
every place v of Q.

The above definition of the genus of binary quadratic forms in the
wide sense would be new. If S1 and S2 are in the same genus in the
wide sense for ϵ = −1, then S1 and −S2 are in the same genus in the
narrow sense by virtue of Lemma 7.2. The genus in the narrow sense
is the usual definition of a genus of quadratic forms. In this case, by
Lemma 7.2, we may assume that det(Av) = 1 for all places v. The
following theorem is well known for the genera in the narrow sense
(See for example [3]).

Theorem 7.4. Fix a positive integer f and a quadratic field K. The
genera of binary quadratic forms in S(D) for D > 0 or in S+(D) for
D < 0 of discriminant D = f 2DK in the narrow sense correspond
bijectively to the genera of Cl+(Of ). The genera in the wide sense in
S(D) correspond bijectively to the genera of Cl(Of ) in the wide sense.

Proof. When D < 0, every class in S(D) in the wide sense has a repre-
sentative in S+(D), and we also have Cl+(Of ) = Cl(Of ), so the genera
in the wide sense and in the narrow sense are the same. So in this case,
it is sufficient to prove the claim for the narrow sense. For any element
S ∈ S(D) with D > 0 or in S ∈ S+(D) with D < 0, it is well known

that there exists an element S0 =

(
a b/2
b/2 c

)
equivalent in the nar-

row sense to S such that a > 0 ([1] p.83). For the sake of simplicity,
we denote by S0(D) the subset of S(D) such that (1, 1) component is
positive, i.e.

S0(D) =

{(
a b/2
b/2 c

)
∈ S(D); a > 0

}
.

When D < 0, of course we have S0(D) = S+(D). Now for S1, S2 ∈
S0(D), we write

Si =

(
ai bi/2
bi/2 ci

)
(i = 1, 2).

The corresponding proper primitive ideals in Theorem 7.1 are given by

ai = Zai + Z
bi +
√
D

2
.

Fix ϵ ∈ {±1}. First we assume that S2 = det(Av)
tAvS1Av for some

elements Av ∈ GL2(Zv) with det(Av) = ϵ for every place v of Q. (If
S1, S2 ∈ S+(D), then ϵ = 1 automatically, but this does not matter.)
In this case, we show that a1 and a2 belong to the same genus in the
narrow sense if ϵ = 1 and belong to the same genus in the wide sense
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if ϵ = −1. For ideals ai, we take αi ∈ K×
A such that ∞ component

αi,∞ = 1 ∈ K∞(= R2 or C) and p components αi,p for primes p satisfy

ai =
∩
p

(Of,pαi,p ∩K).

We will show that α2α
−1
1 belongs to the principal genus in the narrow

sense if ϵ = 1 and in the wide sense if ϵ = ±1. For each prime p, we
define ω1,p, ω2,p ∈ Kp by

(6) (ω1,p, ω2,p) = (a1,
b1 +

√
D

2
)Ap.

If we write ai,p = ai⊗Z Zp for i = 1, 2, then (ω1,p, ω2,p) is a basis of a1,p
over Zp. For variables x, y, we put(

X
Y

)
= Ap

(
x
y

)
.

Multiplying t(x, y) from the right of (6) and taking the norm of both
sides, we have

N(ω1,p)x
2 + Tr(ω1,pω

σ
2,p)xy +N(ω2,p)y

2 = a1(a1X
2 + b1XY + c1Y

2),

where σ denotes the non-trivial automorphism of Kp over Qp. Here by
the relation of S1 and S2, the right hand side is equal to

ϵa1(a2x
2 + b2xy + c2y

2),

so we have

N(ω1,p) = a1a2ϵ(7)

Tr(ω1,pω
σ
2,p) = a1b2ϵ(8)

N(ω2,p) = a1c2ϵ.(9)

On the other hand, by taking the conjugate by σ of (6), we have(
ω1,p ω2,p

ωσ
1,p ωσ

2,p

)
=

(
a1

b1+
√
D

2

a1
b1−

√
D

2

)
Ap,

and taking the determinants of both sides, we have

ω1,pω
σ
2,p − ω2,pω

σ
1,p = ϵ(−a1

√
D).

Subtracting this from (8), we have

(10) ω2,pω
σ
1,p = a1ϵ

b2 +
√
D

2
.

If we put γp =
a2
ω1,p

, then by (7) and (11), we have

ω2,pγp =
b2 +

√
D

2
.

So we have
Of,pα2,p = a2,p = a1,pγp = Of,pα1,pγp.
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So α2,p = upα1,pγp for some up ∈ O×
f,p. We also have N(γp) = ϵa2/a1 by

(7). If D > 0, then there exists γ∞ ∈ K∞ such that N(γ∞) = ϵa2/a1.
If D < 0, then we should have ϵ = 1 and since we assumed that ai > 0,
there exists γ∞ ∈ K∞ such that N(γ∞) = a2/a1. So in both cases, by
Hasse’s norm theorem, we have γ ∈ K× such that N(γ) = ϵa2/a1. So
if we put u∞ = γ−1 ∈ K∞ and u = (uv), then we have

N(α2/α1) ∈ N(γ)N(U(Of )) ⊂ Q×N(U(Of ))

if ϵ = ±1, so a1 and a2 belong to the same genus in the wide sense. If
ϵ = 1, then N(γ) > 0, so

N(α2/α1) ∈ N(γ)N(U+(Of )) ⊂ Q×N(U+(Of )).

So a1 and a2 belong to the same genus in the narrow sense.
On the contrary, assume that a1 and a2 belongs to the same genus

in the narrow sense. Then we have

N(α2/α1) ∈ Q×N(U+(Of )).

Here Q× part is obviously a norm of an element of K×
A and by Hasse’s

norm theorem, it is written as N(γ) for some γ ∈ K×. So there exists
w = (wv) ∈ K×

A with N(w) = 1 and u ∈ U+(Of ) such that

α2/α1 = γwu.

So we have

a2,p = a1,pγwp.

Since we assumed αi,∞ = 1, we have N(γ) > 0, so if we put a3 = a1γ,
then a3 is equivalent to a1 in the narrow sense. So if we put

a2 = Za2 +
b2 +

√
D

2
, a3 = Za3 +

b3 +
√
D

2

with a2 > 0, a3 > 0 and D = b2i − 4aici for i = 2, 3, then we have

(11) (a2,
b2 +

√
D

2
) = (a3,

b3 +
√
D

2
)wpAp

for some Ap ∈ GL2(Zp). So we have(
a2

b2+
√
D

2

a2
b2−

√
D

2

)
=

(
wp 0
0 wσ

p

)(
a3

b3+
√
D

2

a3
b3−

√
D

2

)
Ap.

Since N(wp) = 1, taking the determinant of both sides, we have

−a2
√
D = −a3

√
D det(Ap).

Since a2/a3 = det(Ap) ∈ Z×
p for all p and a2/a3 > 0, we have a2 = a3

and det(Ap) = 1 for all p. Writing(
X
Y

)
= Ap

(
x
y

)
,
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and multiplying t(x, y) to both sides of (11) from the right and taking
the norm, we have

a2(a2x
2 + b2xy + c2y

2) = a3(a3X
2 + b3XY + c3Y

2).

We write

Si =

(
ai bi/2
bi/2 ci

)
for i = 2, 3. Then since we proved a3 = a2, we have

S2 =
tApS3Ap.

We also have A∞ ∈ SL2(R) such that

S2 =
tA∞S3A∞

since this is valid for any positive definite, or indefinite real symmetric
matrices of the same determinant. So we see that S1 and S2 belong to
the same genus in the narrow sense. Now assume that a1 and a2 belong
to the same genus in the wide sense. By definition, we have

N(α2α
−1
1 ) ∈ Q×N(U(Of ))

so we have
α2α

−1
1 = γwu

for some γ ∈ K×, w ∈ K×
A with N(w) = 1, and u ∈ U(Of ) in the same

way as before. Here we might have N(γ) < 0. But anyway, if we put

a3 = a1γ

then
S3 = det(B) tBS2B

for some B ∈ GL2(Z) by Theorem 7.1. Here S3 and S2 belong to the
same genus in the narrow sense by the same argument as before, so S1

and S2 belong to the same genus in the wide sense. □
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[4] C. Chevalley, La théorie du corps de classes, Ann. of Math. 41(1940), 394-418.
[5] G. Chinta and O. Offen, Orthogonal period of a GL3(Z) Eisenstein

series. Representation theory, complex analysis, and integral geometry,
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