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Abstract. We determine the Thurston unit ball of a family of
n-chained links with p half-twists on one component, where the
direction of the twists depends on the sign of p. These links are
denoted by C(n, p). For p ≥ 0, we compute the unit Thurston
ball precisely: it is an n-dimensional cocube (the dual of the n-
dimensional cube) when p ≥ 1 and it it the union of a cocube and
two simplices when p = 0. When p < 0, we instead give a conjec-
ture, supported by some computational evidence, on the shape of
the Thurston unit ball. Moreover, we are able to identify at least
one fibered face for each C(n, p). Finally, we explicitely compute
the Teichmüller polynomial for a fibered face of the Thurston unit
ball of C(n,−2), for arbitrary n ≥ 3.

1. Introduction

Let M be a 3-dimensional manifold and suppose, for simplicity, that
that M has tori boundaries. In one of his many seminal works [20], W.
Thurston introduced a notion of a semi-norm on the second homology
vector spaces of M . More precisely, let [a] ∈ H2(M,∂M ;Z) be an inte-
gral second homology class. Then [a] can be represented by a disjoint
union of properly embedded surfaces Si. The Thurston norm of [a] is
then defined to be

x(a) := min{
∑
i

max{0,−χ(Si)}}

where the minimum is taken over all possible ways to represent [a] as a
disjoint union of properly embedded surfaces. If M is irreducible and
atoroidal, this then extends to a norm on H2(M,R). We sometimes
use || · || to denote the Thurston norm. In the same paper, he proves
that the unit ball with respect to that norm, that we will call Thurston
unit ball, is always a polytope. Even though this concept has had
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Figure 1. The links C(n,−2)

huge theoretical consequences, it seems that there are very few cases
for which unit Thurston balls are computed explicitely. An interesting
question in that regard is the following.

Question. Which polytope can appear as the Thurston unit ball of
some 3-manifold?

This question was already posed by Kitayama in [14]. It has been
generalized in terms of groups and their first homology by Friedl, Lück
and Tillmann [5]. In [18], Pacheco-Tallaj, Schreve and Vlamis investi-
gate the shape of the Thurston unit ball for tunnel number-one man-
ifolds. We refer to Kitayama’s survery [14] for more information on
recent research about the Thurston norm.

In this article we show that the Thurston unit ball of a 3-dimensional
manifold M can contain highly symmetric polytopes of arbitrary high
dimensions. We will do so by determining the Thurston unit ball for a
family of complements of links. This family will be denoted by C(n, p),
for two integers n and p with n positive, and the complements of small
enough neighborhoods of C(n, p) in S3 will be denoted by M(n, p).
Briefly speaking, C(n, p) is an n-chained link with p positive half-twist
on the first component if p is positive or p negative half-twist on the
first component if p is negative (see Figure 1 for an example). In [17],
Neumann and Reid prove that M(n, p) with n ≥ 3 is hyperbolic if
and only if {|n + p|, |p|} ̸⊆ {0, 1, 2}. The complements of these links
are in some sense generalizations of the magic manifold, which is the
complement of C(3, 0). The magic manifold and its properties are thus
good examples to keep in mind.
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In a previous article [2], the two authors together with Harry Baik
and Changsub Kim studied the relation between the minimal (topolog-
ical) entropy of pseudo-Anosov maps on a surface S and the action of
these maps on H1(S). Here the topological entropy of a pseudo-Anosov
map is equal to log λ, where λ is the expanding factor of the given map.
In order to do so, the use of the complements of C(n,−2) was crucial.

Here are the main results of this article.

Theorem A. Let M(n, p) be the complement of the link C(n, p) with
n ≥ 3 and B be the Thurston unit ball of M(n, p). Suppose M(n, p) is
hyperbolic. Then

• If p ≥ 1, B is an n-dimensional cocube with vertices
(±1, 0, · · · , 0), · · · , (0, · · · , 0,±1). (Corollary 5.2)

• If p = 0, B is the union of an n-dimensional cocube and two
simplices. (Theorem 4.1)

Remark that in [17], the authors show that M(n, p) is hyperbolic if
and only if {|n+ p|, |p|} ̸⊆ {0, 1, 2}.

A complete answer for the case of p < 0 is out of our reach for now.
We nonetheless find a set V (n, p) of points in the Thurston unit ball
and conjecture that their convex hull, denoted by B(n, p), is the whole
Thurston unit ball. We refer to the end for Section 6 for the precise
statement of the conjecture. This conjecture is partially supported by
computational data, obtained using the program Tnorm [21]. The data
is gathered in Appendix B.

When−n < p < 0, the link C(n, p) is fibered, as shown by Leininger [15].
For n ≥ 4, we compute an explicit fiber using an operation that we call
‘squeezing’ one of the link components (see Definition 7.5).

Theorem B (Theorem 7.6). Let C(n, p) be a hyperbolic negatively
twisted n-chained link and let S be any surface obtained by perform-
ing the Seifert algorithm to the diagram obtained after squeezing one
of the link components. Then, the cone of B(n, p) containing [S] ∈
H2(M(n, p), ∂M(n, p)) is fibered.

When p = −2, we also compute the Teichmüller polynomial for every
value of n.

Theorem C. (Theorem 8.1) Suppose n ≥ 5. Let C be the fibered cone
of M(n,−2) which contains the point [Sn] ∈ H2(M(n,−2), ∂M(n,−2)),
where Sn is the surface depicted in Figure 15. The Teichmüller poly-
nomial P for the fibered cone C is

P (x1, · · · , xn−1, u) := A−
n∑

k=1

uakAk
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where a1 = 1, a2 = x−1
1 , · · · , an = (x1 · · ·xn−1)

−1, A := (a1−u) · · · (an−
u) and Ak =

A

(ak − u)(ak−1 − u)
, where an+1 = a1.
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2. Preliminary

For a hyperbolic 3-manifoldM , possibly with boundary ∂M , Thurston
[20] defined a norm || · || on H2(M,∂M ;R). It turns out the unit norm
ball B with respect to the Thurston norm is always a finite-sided poly-
tope. Let F be a top-dimensional face of B and let C = R · F be the
open cone over F . Thurston showed that if M is a fibered 3-manifold,
then either all integral points in C are fibered or none of them are
fibered. Here a point of H2(M,∂M ;Z) is fibered if it admits a repre-
sentative that is a fiber surface. In the former case, we call F a fibered
cone and the associated face F a fibered face. The goal of this paper is
to compute this norm ball B and some fibered faces of some hyperbolic
manifolds obtained as complements of chain links.

This section contains the essential tools that will be used in the rest
of the paper. In this paper, surfaces will be denoted by S or Si, for
some positive integer i, except for spheres that are denoted by Sn where
n is the dimension of the sphere.

2.1. Murasugi sums. David Gabai ( [8], [9]) proved theorems related
to the fiberedness of embedded surfaces and, whenever they are in fact
fibered, about their monodromy map. A key construction in his work
is a geometric operation called “Murasugi sum”. We begin with the
definition of this operation.

Definition 2.1 (Murasugi sum, [8]). The oriented surface S ⊂ S3 is a
Murasugi sum of two different oriented surfaces S1 and S2 if

(1) S = S1 ∪ S2 and S1 ∩ S2 = D, where D is a 2n-gon,
(2) The intersection of Si, i = 1, 2, with D is a disjoint union of n

arcs,
(3) There is a partition of S3 into two 3-balls B1, B2 satisfying that
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Figure 2. Murasugi sum of two surfaces, where D is a hexagon

• Si ⊂ Bi for i = 1, 2.
• B1 ∩B2 = S2 and Si ∩ S2 = D for i = 1, 2.

In simple terms, the Murasugi sum is a way to cut-and-paste two
surfaces in an alternating way so that, around the gluing region, it
looks like there are 2n legs going up and down alternatively (see Figure
2).
The interest of the Murasugi sum is that it preserves the fibered-

ness and also the monodromies. More precisely, Gabai proved the two
following theorems.

Theorem 2.2 ([6]). Let S be a Murasugi sum of S1 and S2. Then S
is a fiber surface if and only if both S1 and S2 are fiber surfaces.

Theorem 2.3 ([8], Cor 1.4). Suppose that S is a Murasugi sum of
S1, S2 with ∂Si = Li, where Li is a fibered link with monodromy fi
fixing pointwise the boundary ∂Si, resp. Then L = ∂S is a fibered link
with fiber S and its monodromy map is f = f ′

2 ◦ f ′
1 where f ′

i is equal to
fi on the image of Si in S and is the identity on S \ Si.

Using these two theorems, it is possible to construct fiber surfaces
by gluing together smaller fiber surfaces while keeping a nice control
on the monodromy maps. A good starting block for this construction
is the Hopf link L, which consists of 2 circles that are linked together
exactly once. The Hopf band is then a Seifert surface of the Hopf link.
It is thus a fiber surface of S3 − L.

Lemma 2.4 (Monodromy of a Hopf band). The Hopf band is a fiber
surface. Moreover, the monodromy of the positive (resp. negative) Hopf
band is the right-handed (resp. left-handed) Dehn twist along its core
curve.

In fact, Giroux and Goodman [10] proved that every fibered link in S3

can be obtained from the unknot by Murasugi summing or desumming
along Hopf bands. In that sense, the Hopf bands are building blocks
that can be used to construct any fibered link in S3.
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2.2. Fibers of alternating knots/links. Suppose that a fibered link
L in S3 is given. In general, it is difficult to find a concrete fiber surface
for S3−L. However, if L is alternating and D is an alternating diagram
for L, Gabai [7] showed that the surface obtained using the Seifert
algorithm on D will be a fiber surface of minimal genus. We now recall
the definition of an alternating link and explain the Seifert algorithm.
For more details, we refer to [19].

Let L be an oriented link. A link diagram for L is, roughly speaking,
the planar graph obtained by projecting L onto a plane. Whenever two
edges of this graph cross, a segment of one of the two edges is erased.
The choice of which edge to erase depends on which one was met first
during the projection. A link diagram is alternating if the crossings
alternate under and over as one travels along each component of the
link. A link is alternating if it admits an alternating diagram. See
Figure 1 for an example of an alternating link diagram.

Definition 2.5 (Seifert algorithm). Let L be an oriented link. The
Seifert algorithm can be described as follows.

(1) For each crossing, cut at the crossing and paste back in such a
way that, near the crossing, there are 2 components, as showed
in Figure 3.

Figure 3. Cut and paste at a crossing in Seifert algorithm.

(2) After all these cut-and-paste operations, a disjoint collection of
oriented simple closed curves is left. Each curve bounds a disk,
unless two or more curves are nested. If some of the curves are
nested, we can consider the innermost curve to be lying slightly
above the others and repeat this process until there are no more
nested curves. We then assign to each region a ”+” sign if the
region is on the left side of the boundary curve, with respect
to its orientation, or ”-” sign otherwise. Note that the result is
sometimes called a checkerboard coloring.

(3) Finally, reconnect these discs at each crossing with a twisted
strip. The direction of the twist is determined by the direction
of the original crossing.
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The result of this algorithm is a surface S whose (oriented) boundary
is L.

The surface obtained from the Seifert algorithm is called a Seifert
surface for L. The genus of a link L is defined to be the minimal genus
of a surface in the complement of L whose boundary is L. In [9] Gabai
proved that if L is alternating, the genus of L is equal to the genus of
any Seifert surface of L.

Theorem 2.6 ([9], Thm 4). Let L be an oriented link in S3. If S
is a surface obtained by applying Seifert’s algorithm to an alternating
diagram of L, then S is a surface of minimal genus.

The following theorem establishes a connection between the genus
of a Seifert surface and the possibility of the surface to be a fiber.

Theorem 2.7 (Theorem 4.1.10 in [11]). Let S be a Seifert surface for
a fibered link L. Then the following are equivalent.

(1) S attains the minimal Seifert genus for L.
(2) S is a fiber surface.

2.3. Teichmüller polynomial. The Teichmüller polynomial θF for a
fibered face F ⊂ H1(M,R) is a polynomial associated to the fibered
cone R+ · F that determines the stretch factors of all the monodromies
of fibers in the fibered cone. Similarly to the Alexander polynomial, the
Teichmüller polynomial has coefficients in the group ring Z(G) where
G = H1(M,Z)/torsion.

We describe here one way to compute the Teichmüller polynomial.
Let φ : S → S be a pseudo-Anosov map and let x = x1, · · · , xn−1 be a
multiplicative basis for

H = Hom(H1(M,Zφ),Z)
where H1(M,Z)φ is the φ-invariant cohomology. Remark that we can
construct a natural map from π1(S) to H by evaluating cohomology
classes on loops. Choose a lift φ̃ : S̃ → S̃ of φ to the cover S̃ corre-
sponding to H under the previous map.

Let M = S × [0, 1]/(p, 1) ∼ (φ(p), 0) be the mapping torus of φ.
Then, we have that

G = H1(M,Z)/ torsion = H ⊕ Z
Let u denote the generator of the Z component of G, so that G is

generated by x1, · · · , xn−1 and u. Let V and E be the vertices and the
edges of an invariant train track τ on S carrying the pseudo-Anosov
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map φ. The lifts Ṽ and Ẽ of V and E to S̃ can respectivily be con-
sidered as Z(H)-modules. Therefore, the lift φ̃ act as matrices PV (x)
and PE(x) on these Z(H)-modules. McMullen showed in [16] that the
Teichmüller polynomial can then be computed in term of these two
matrices.

Theorem 2.8. The Teichmüller polynomial can be explicitly computed
as follows:

θF(x, u) =
det(uI − PE(x))

det(uI − PV (x))

3. The n-chained links and their complements

In [12], Eiko Kin analysed in detail a 3-manifold, known as the magic
manifold. This manifold has the property that all the faces of its
Thurston unit ball are fibered. She was able to precisely determine
all the fibered faces and, for each integer point in a fibered face, find
the topology of the associated monodromy (i.e: determine its genus
and the number of boundary components). In this section, we general-
ize the technique used for the magic 3-manifold to study sequences of
fibers in more general link complements.

An n-chained link L is a link with n components that are linked
together in a circular fashion. Note that some of the components of
L may have self half-twists. A clasp of an n-chained link L is the
combinatorial structure defined by a pair of crossing of two adjacent
link components of L. There are only two different types of clasps,
that we will call positive (or +) and negative (or −) clasps, according
to the convention shown in Figure 4.

Let L be an n-chained link. We can always isotope L in such a way
that all the half-twists happen in a single component of L. Also, if C1

and C2 are two components of L that meet in a + clasp, performing a
half twist on C1 or on C2 will change the clasp to a − clasp.

Therefore, any n-chained link can isotoped to an n-chained link
where all the clasps are + clasps and where all the half-twists hap-
pened in a single component. We will denote by C(n, p) the n-chained
link L which admits a link diagram in which every clasp is positive
and in which there are exactly p half-twists, where the direction of the
twists in determined by the sign of the integer p. We will choose the
directions of the twists in such a way that the diagram is alternating
when p is positive. From now on, whenever we use a link diagram for
C(n, p), it will be the one we described here, unless explicitly specified
otherwise. Two examples are illustrated in Figure 5. The same Figure
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also shows how the sign of a clasp can be changed by a half-twist on
one of the components of the clasp.

Figure 4. The two different kinds of clasps. We will say that the
left clasp is positive and the right clasp is negative. Positive and
negative clasps will also be referred as + and − clasps, respectively.

Figure 5. C(5,−1) and C(6, 3).

Let M(n, p) be the complement of a small enough neighborhood
N (C(n, p)) of C(n, p). In particular, M(3, 0) is the magic 3-manifold.
Note that ∂N (C(n, p)) is a disjoint union of n tori. Suppose M(n, p)
is hyperbolic. The manifold M(n, p) with n ≥ 3 is hyperbolic if and
only if {|n+p|, |p|} ̸⊆ {0, 1, 2}, as shown by Neumann and Reid in [17].
Moreover, Leininger [15] shows that, except when (n, p) = (2,−1), the
manifold M(n, p) is fibered as long as n ≥ −p ≥ 0. He does so by
explicitly computing a fiber surface for M(n, p).

We roughly describe how to obtain such a fiber surface. We can
remove a half-twist, at the cost of changing the sign of one of the
clasps. Repeat this process until only 2 half-twists remain and then
use Seifert’s algorithm on the link diagram. The surface S obtained
in this way is a horizontal Hopf band Murasugi summed by n vertical
Hopf bands. Theorems 2.2 and 2.3 allow us to conlcude that S is indeed
a fiber surface for M(n, p).
Now, we focus on the homology of M(n, p). Consider that we draw

C(n, p) in such a way that the top link has the p half-twists, as in Figure
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Li

Figure 6. The Ki are spheres with 3 boundaries, where one of
the boundaries if Li and the two others are drawn in dotted circles

5. We will denote this top link component as L1, and we enumerate
the other components L2, L3, · · ·Ln in a clockwise fashion.

A diagram for a link L is said to be circular if the component
L1, · · · , Ln of L can be ordered in such a way that Li forms a clasp
exactly with Li−1 and Li+1, for every i = 1, 2, · · · , n, where Ln+1 = L1.
A diagram is said to be oriented if each link component is given an ori-
entation. Let D be an oriented circular diagram for C(n, p). There is a
standard basis {[Ki]1≤i≤n} for H2(M,∂M) associated to D, where each
Ki is a sphere with three boundaries. Each Ki can be seen as having
Li as one of its boundaries, while the two other boundaries correspond
to Li−1 and Li+1, as show in Figure 6.

Let {[Ki]1≤i≤n} be the standard basis associated to the circular ori-
ented diagram D for C(n, p) that is described in the beginning of this
section.

Lemma 3.1 ([2], lemma 4.6). Suppose n ≥ −p ≥ 0 with (n, p) ̸=
(2,−1). The fiber S provided by Lemma 4.1 in [15] has coordinates
(1, · · · , 1,−1) in the basis {[Ki]1≤i≤n}. In other words, we have that
[S] = [K1] + · · ·+ [Kn−1]− [Kn].

Note that the fiber S is a genus 1 surface with n boundaries, and so
its Euler characteristic is equal to n.

4. Thurston unit ball for C(n, 0)

4.1. Thurston unit ball. We start by stating the main theorem of
this section, even though its proof is relegated to the end of the sec-
tion. The notation used in the statement of the main theorem will
nonetheless be used throughout the whole section.



THURSTON UNIT BALL OF A FAMILY OF n-CHAINED LINKS 11

(0, 1, 0)

(1, 0, 0)

(−1, 0, 0)

(0, 0, 1) (1, 1, 1)

(0, 0,−1)
(−1,−1,−1)

Figure 7. The unit Thurston ball B3 for the link C(3, 0).
It is the convex hull of (±1, 0, 0), (0,±1, 0), (0, 0,±1) and
(1, 1, 1), (−1,−1,−1). The missing edges of the cocube are indi-
cated by dotted edges.

Theorem 4.1. For n ≥ 3, the Thurston unit ball Bn of C(n, 0) is the
union of:

(1) The n-dimensional cocube with vertices (±1, 0, · · · , 0), · · · , (0, · · · , 0,±1),
and

(2) Two n-simplices: the convex hull of (1, 0, · · · , 0), · · · , (0, · · · , 0, 1),
1

n−2
(1, · · · , 1), and its antipodal image.

The second homology class represented by 1
n
(1, · · · , 1,−1) then lies in

the fibered face F , whose vertices are (1, 0, · · · , 0), · · · , (0, · · · , 1, 0),
(0, · · · , 0,−1) and 1

n−2
(1, · · · , 1). Moreover, every face of Bn is a

fibered face.

Here, the n-dimensional cocube is the dual of the standard cube
[−1, 1]n. It can also be seen as an n consecutive suspension of the
closed interval [−1, 1].

Note that Theorem 4.1 includes the case of the magic 3-manifold
case, which was handled by Thurston in [20]. The Thurston unit
ball of the magic manifold is a parallelepiped with vertices (±1, 0, 0),
(0,±1, 0), (0, 0,±1) and (1, 1, 1), (−1,−1,−1), as illustrated by Figure
7.

We observe that

Lemma 4.2. Suppose that a1, · · · , an are vertices of a facet F of the
Thurston unit ball and let σ be the n-dimensional simplex spanned by
these vertices. Then, σ is a subset of F if there exists a point a ∈ σ
whose Thurston norm −χ(a) is equal to 1. In this case, the linear
equation of the facet F is

∑n
i=1 xi/ai = 1.

Proof. The proof is a direct consequence of the fact that the Thurston
unit ball is a polytope. □
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As in the magic manifold case, we can calculate the Thurston norm
of any points in the fibered cone C = R+ · F .

Corollary 4.3. The convex hull of the points e1, e2, · · · ,−en and 1
n−2

(1, 1, · · · , 1)
is a subset of the facet F of Bn. Moreover, for any α := (α1, · · · , αn)
in the cone C := R+ ·F , the Thurston norm of α is α1+ · · ·+αn−1−αn.

Proof. Set

ai =

{
ei, 1 ≤ i ≤ n− 1

−en, i = n

and a = 1
n
(1, · · · , 1,−1). Since we already observed in Lemma 3.1 that

na is a fiber and −χ(na) = n, this means that the linear equation
x1+ · · ·+xn−1−xn = 1 is the equation of a supporting hyperplane for
the fibered face F . Plugging (α1, · · · , αn) into x1 + · · ·+ xn−1 − xn, we
get the Euler characteristic for α. □

We are now ready to prove Theorem 4.1.

Proof of theorem 4.1. Note that C(n, 0) is circularly symmetric, so the
points pi := 1

n
(1, · · · , 1) − 2

n
ei for all 1 ≤ i ≤ n is also a fiber.

Hence, by Corollary 4.3, the n -dimensional parallelograms Pi of ver-
tices e1, · · · ,−ei, · · · , en and 1

n−2
(1, 1, · · · , 1) are subsets of the bound-

ary of the Thurston unit ball (each pi is contained in Pi). However,
the union of the Pi forms a closed polytope, so it has to contain the
boundary of the Thurston unit ball. □

4.2. Topological type of fibers. In addition to understanding the
Thurston unit ball, we can also get information about each fiber sur-
face in the fiber facet F . To obtain the complete topological type of
representatives of given fibered points, we will use a slightly generalized
version of the boundary formula proven by Kin and Takasawa, [13].

Lemma 4.4 ([2], lemma 4.9). Let M = M(n, 0), F be the fibered face
described in Theorem 4.1 and let C = R+ · F be the associated fibered
cone. Suppose S is a minimal representative of (α1, · · · , αn) ∈ C. Then
the number of boundaries of S is equal to

∑n
i=1 gcd(αi−1 + αi+1, αi),

where αn+1 = α1.

5. Thurston unit ball for C(n, p) with p ≥ 0

Since the link L = C(n, p) with p > 0 admits an alternating link
diagram, its Seifert surface S is a minimal genus surface for L.

Theorem 5.1. Let L = C(n, p) with p ≥ 1. Given arbitrary signs on
x = (±1, · · · ,±1) ∈ H2(M(n, p), ∂N (L)), the Thurston norm of x is
n.
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Proof. We will perform the Seifert algorithm explicitly. Assume first
that we arbitrarily fix the signs of each component of x. Note that
these signs determine the orientation of each component of the link.
Let L be the link with the orientations corresponding to x. As always,
the link L is drawn in a circular way so that the twisted component
lies at the top (as shown in Figure 5). Label the twisted link L1 and
continue the labeling clockwise.

We begin by applying the algorithm, starting with the crossings in-
volving L1. Applying the Seifert algorithm to the crossing correspond-
ing to half twists, we get p − 1 discs. On the contrary, applying the
algorithm at the 2 clasps involving L1, we get arcs on both sides L1.
Now, focus on the right arc and the next link L2. If the signs of L1, L2

agree, then the Seifert algorithm produces one disc, and the arc is still
not closed. Otherwise, the Seifert algorithm makes the arc tied and
ends up with a disk, and another arc will be created on the right side
of L2.

We proceed inductively until we get n + p disks. Note that the
number n+ p of circles does not depend on the signs assigned to each
component. As the number of crossings in the diagram is equal to
2n+ p, we conclude that the genus of S is

Genus of S =
2 + (2n+ p)− (n+ p)− n

2
= 1.

By Theorem 2.7, the surface S is a minimal genus surface for x. There-
fore, S is a minimal representative of x and ||x|| = n. □

The above Theorem implies that the Thurston unit ball of M ∼=
M(n, p) is an n dimensional cocube.

Corollary 5.2. Thurston unit ball of M(n, p) with p ≥ 1 is an n
dimensional cocube with vertices (±1, 0, · · · , 0), · · · , (0, · · · , 0,±1).

Proof. Let ei be a canonical basis of Zn ∼= H2(M(n, p), ∂M(n, p)).
Since ei is represented by a 2 punctured disk, it lies on the Thurston
unit ball. By the Theorem 5.1, we know that (±1/n, · · · ,±1/n) is
also on the unit ball. For each (±1/n, · · · ,±1/n), it is a convex com-
bination of the canonical basis (with suitable signs). Therefore, we
conclude that the convex hull of {±ei}1≤i≤n is exactly the Thurston
unit ball. □

6. Thurston unit ball for C(n, p) with p < 0

In Lemma 4.2 in [15], Leininger proved that C(n,−p) is fibered for
0 ≤ p ≤ n except (n, p) ̸= (2,−1). In this section we investigate
what is the shape of the Thurston unit ball for the complements of
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Figure 8. Flip

n-chained links with negative twists. Suppose that we have an n-chain
link C(n,−p) and that we have labeled each link component as before.
Note that we can untwist all the negative twists. After resolving the
negative twists on L1, the link becomes a chain link with no twists.
See Figure 10 for an example. However, the shape of clasps may have
changed during this process. We re-assign the orientations of each
component Li in a circular way after resolving all the twists on L1, and,
for each i = 1, · · · , n. Recall that, associated to a circular oriented
diagram, there is a standard basis {ei = [Ki]1≤i≤n} for H2(M,∂M),
where each Ki is a sphere with three boundaries, as in Figure 6. Let
{e1, · · · , en} be the standard basis associated to the diagram described
above.

Each component of the link has 2 clasps, which may now be + clasp
or − clasp. Since the − clasp only appears whenever a negative twist
is resolved, the number of − clasps in the final diagram is equal to |p|.
Let D be a circular diagram for C(n, p). We define shape vectors for
such diagrams.

Definition 6.1. Suppose n ≥ 4 and −⌊n/2⌋ ≤ p < 0 and D is a circular
diagram for C(n, p). The shape vector of D is an n-tuple, whose entries
are either + or −. The i’th entry records the shape of the clasp formed
by Li and Li+1. For each Li, we will say that Li has clasp shape (α, β),
with α, β ∈ {+,−}, if the clasp between Li−1 and Li is an α clasp and
the clasp between Li and Li+1 is a β clasp.

Suppose Li has − shape with Li−1 and + shape with Li+1. Here are
two isotopic operations that we can perform on such Li.

(1) A flip: we flip Li so that the + clasp changes to a − clasp and
vice versa. Hence a flip exchanges the (i− 1)’th entry and i’th
entry of the shape vector. See Figure 8.

(2) A full twist : Cut M(n, p) along Ki. In the slice, there are 2
copies of Ki, say D1, D2. Then, glue D1 and D2 back, after
twisting either D1 or D2 by 360 degrees. See Figure 9.
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Figure 9. Full twist.

Proposition 6.2. Let n ≥ 4. Suppose Li admits (+,−) or (−,+) clasp
shape. Then, the homology class (1, · · · , 0, · · · , 1) ∈ H2(M(c, p), ∂M(c, p)),
where the 0 is in the ith entry, admits a sphere with (n− 1) boundaries
as a representative. Its Thurston norm is thus equal to n− 3.

Proof. After performing a full twist on Li, the now consecutive link
components Li−1 and Li+1 form a clasp, whose shape depends on the
direction of the full twist. If we forget about the component Li, the
other link components now form a chain link with n − 1 components.
We can then apply the Seifert algorithm, with all positive orientations,
to this new chain link. The Seifert surface S obtained in this way is a
sphere with n−1 boundaries. Since the surface S does not admit Li as
its boundary component, S is an embedded surface in M(n, p). Since
it has no genus, this is the minimal Thurston norm representative of
the given homology class. □

We now show how to obtain many other points on the boundary of
the Thurston unit ball.

Suppose that L is C(n,−1). After untwisting once, we obtain an
n-chained link with shape vector (−,+, · · · ,+). By proposition 6.2,
1

n−3
(1, 0, 1, · · · , 1) is a point of Thurston norm equal to one. If we flip

L2, the shape vector changes to (+,−,+, · · · ,+). We can now perform
a full twist on L3 and then, using the same method as in the proof of
proposition 6.2, we can deduce that the point (1,−1, 0, 1, · · · , 1) is also
of norm equal to one. Note that we have a −1 on the second entry this
time. In conclusion, as the 0 coordinate moves one step on the right,
it also introduces a minus sign. Hence, by repeating this process, we
obtain a total of 2n points on the boundary of the Thurston unit ball.
These points are the points of coordinates

1

n− 3
(1, 0, 1, · · · , 1), 1

n− 3
(1,−1, 0, 1, · · · , 1), · · · ,

1

n− 3
(1,−1, · · · ,−1, 0) and

1

n− 3
(0,−1, · · · ,−1).
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L1

L2

L3L4

L5

Figure 10. C(5,−2). Note that the orientation of each link com-
ponent is re-assigned in a circular way. Starting from the top link
component, we label the components L1, L2, · · · , L5, clockwise.

L1

L3

Figure 11. After two full twists, one on L1 and one on L3, we get
the above link. Note that (0, 1, 0, 1, 1) is represented by S0,3, which
is obtained by oriented sum of the 3 disks bounded by L2, L4, L5.

and their antipodal points.
If instead L is C(n,−2), the shape vector contains two negative

entries. We can perform a full twist on the two link components Li

and Lj whose clasps on both sides are different, unless Li and Lj are
consecutive link components. In this case, we get 2 zero entries in
the new points and hence it represents a sphere with n− 2 punctures.
Therefore, it has Thurston norm (n− 4). See Figure 10 and 11 also.
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The processes described above generalize to all the links C(n, p),
with p < 0. We therefore obtain the following result.

Corollary 6.3. By following the process described above, we obtain a
set V := V (n, p) of points that lie on the boundary of the Thurston unit
ball. Every point in V is obtained by flipping the link components and
taking full twists. The flip operation slides the 0 entry to the next coor-
dinate. All points x = (x1, · · · , xn) in V have the following properties.

(1) ||x|| · xi ∈ {−1, 0, 1} for all i = 1, 2, · · · , n.
(2) No two consecutive entries are equal to 0.

Hence, B = B(n, p), the convex hull of V ∪ {±ei}, is contained in the
unit Thurston norm ball.

We now give some more details on the shape of the balls B(n, p).

Proposition 6.4. Let C(n, p) be a negative twisted n-chained link.
Choose any 1 ≤ i ≤ n and collect all points in V (n, p)∪{±ei} with xi =
0. Then the convex hull of such points forms an (n − 1)-dimensional
polytope and is contained in the union of B(n−1, p+1) and B(n−1, p).

Proof. After flipping some of the link components, we can suppose that
Li has clasp shape (−,+). Perform a full twist on Li and forget Li for
the moment. Then, the remaining link components form a new link,
which is either C(n−1, p+1) or C(n−1, p), depending on the direction
of the twist. More precisely, if the full twist yields a negative shape
clasp between Li−1 and Li+1, the link C(n− 1, p) is obtained. On the
other hand, if the full twist yields a positive one, we get C(n−1, p+1).
For any points in V (n − 1, p + 1) or V (n − 1, p), if we plug a 0 in the
ith tuple, it becomes a point which lies on the boundary of V (n, p).

□

We end this section with a question and some remarks.

Question 1. Is B(n, p) equal to the unit Thurston norm ball of C(n, p)
when p < 0?

We thanksWilliamWorden and the program Tnorm[21] which helped
us to calculate and verify that the question is true for n ≤ 6. We pro-
vide the table of all the vertices of the Thurston unit normal ball,
calculated by Tnorm, for various C(n, p)’s up to n ≤ 6 in the appendix
B.

As we already mentioned, C(n, p) is fibered for 0 ≤ −p ≤ n. Assign-
ing proper signs, Leininger’s fiber surface has coordinates (1, · · · , 1)
and has genus 1 and n punctures. Since each vector ei of the canonical
basis represents a twice punctured disk, we can deduce that there is a
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fibered face F which contains the standard (n − 1) simplex spanned
by the {ei}’s. Furthermore, using lemma 4.2 and similar methods as
in the proof of corollary 4.3, we can get that the Euler characteristic
of any primitive points of (x1, · · · , xn) with all positive entries is equal
to
∑n

i=1 xi.

7. Detecting fibered faces

By theorem 4.1 and corollary 5.2, we now understand the shape of
the Thurston unit ball of C(n, p) when p ≥ 0, and some faces when
p < 0. We now investigate which faces of that unit ball are fibered.

7.1. p is nonnegative. Denote by S(n, p)x the surface obtained from
the process in Theorem 5.1, when starting from x = (±1, · · · ,±1). By
Theorem 5.1, S(n, p)x has genus equal to 1 and n boundaries.

Figure 12. (Murasugi) desum the Hopf bands in the case of dif-
ferent orientations. Observe that the twist of result is compatible
with the positive half twist with respect to the clasp shape.

In the language of H2(M(n, p), ∂M(n, p)), the sign change of the
given orientation x can be interpreted as a number of half twists after
we (Murasugi) desum each vertical Hopf band. In addition, we use the
following Lemma, coming from the work of Baader and Graf [1].

Lemma 7.1 (Example 3.1 in [1]). Suppose L is a (2, 2n)-torus link with
a given oriented diagram D such that the Seifert surface obtained from
D is a full-twisted annulus. Then L is fibered if and only if |n| = 1,
and thus the Seifert surface is a positive/negative Hopf band.
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Remark that the (2, 2n)-torus link is fibered if the orientation of
the two link components is parallel. However, in our case, it cannot
happen since their orientations are inherited by the orientation of the
link components, so that they must be opposite.

Theorem 7.2 (p is even). Let p be nonnegative even integer. For a
given orientation x = (±1,±1, · · · ,±1), denote by s the number of
sign changes. Hence, s =

∑n
i=1 δ−1,xixi+1

, where δi,j = 1 if i = j and 0
otherwise.

Then, S(n, p)x is fibered if and only if (p, s) = (0, 2), (2, 0).

Proof. Choose one clasp. There are two components of the link associ-
ated to the clasp. Suppose both have the same orientation in the sense
that, after performing the Seifert algorithm ,locally around the clasp,
we get a disk and a band at the clasp. It implies that for a Seifert
surface of this diagram with given orientations, there is a Hopf band
Murasugi summed at the clasp.
If the orientations are different, then, perform a half twist on the one
of the component so that it changes the shape of clasp. Performing the
Seifert algorithm locally again, we get a disk and a half-twisted band,
as in Figure 12. We will thus desum whenever there arises a Murasugi
sum of Hopf bands. In the end, a twisted band remains whose bound-
ary is a (2, p+s)-torus link. By Lemma 7.1, such a torus link is fibered
if and only if p+ s = 2, which finishes the proof. □

Theorem 7.3 (p is odd). Let p be a non negative odd integer and
let x, s be as in Theorem 7.2. Then, S(n, p)x is fibered if and only if
(p, s) = (1, 0).

Proof. The only difference compared to the case where p is even is the
last desumming process. Since there is an odd number of half-twists,
the leftmost and rightmost parts of the top link L1 do not coincide.
Hence, after the desumming process, the remaining part is a twisted
band whose boundary is a (2, p+ s+ 1)-torus link. Again, by Lemma
7.1, it is fibered if and only if p + s + 1 = 2 and (p, s) = (1, 0) is the
only solution. □

Note that x = 1
n
(±1, · · · ,±1) is the barycenter of the vectors ±ei.

Therefore, together with Lemma 4.2 in [15] we obtain the following
corollary.

Corollary 7.4 (Fiberedness of C(n, p)). The link C(n, p) is fibered if
and only if −n− 2 ≤ p ≤ 2. Moreover, every face of the Thurston unit
ball of C(n, 0) is a fibered face. In contrast, there are only 2 fibered face
of C(n, 1) and C(n, 2), one which contain 1

n
(1, 1, · · · , 1) and one which

contains its antipodal point.
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Figure 13. The link component in the middle has a (−,−) shape.
After squeezing, the shape of the clasp changes to (+,+) with a
squeezed link component.

Proof. For p = 0, by theorem 7.2 S(n, 0)x is fibered if and only if x has
only one entry −1 and the others are all 1 or its antipodal points. By
corollary 4.3, each S(n, 0)xi

is in the distinct fibered cone, hence every
face of Thurston unit ball for C(n, 0) is fibered.

Suppose p = 1 or p = 2. By theorem 7.2 and 7.3, S(n, p)x is fibered
if and only if x = (1, · · · , 1) or (−1, · · · ,−1). By corollary 5.2, there
are only 2 faces whose supporting planes are

∑n
i=1 xi = ±1. □

7.2. p is negative. Some faces of the polytope B are actually faces
of the Thurston unit ball. We introduce another isotopic operation for
link components which have the same clasp shape on both sides.

Definition 7.5 (Squeezing). Suppose Li has a clasp shape (+,+) or
(−,−). Perform a half twists on both sides so that each clasp alters its
shape. We will call this operation squeezing the link Li.

Theorem 7.6. Let n ≥ 4 and C(n, p) be a twisted n-chained link
with −n − 2 ≤ p ≤ 0. Let S be any surface obtained by perform-
ing the Seifert algorithm to the diagram obtained after squeezing one
of the link components. Then, the cone of B(n, p) containing [S] ∈
H2(M(n, p), ∂M(n, p)) is fibered.

Proof. We will proceed by induction. In this proof, every full twist will
be performed such that the clasp has a + shape after the operation.

(1) p = −1. Choose any point q in V and any link component Li

which has a clasp shape (+,+). There is exactly one 0 entry
in q. Let k be its index. By Proposition 6.4, the slice of the
unit Thurston norm ball of C(n, p) at xk = 0 must contain
the union of B(n − 1, 0) and B(n − 1,−1). Choose one face
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S

Figure 14. The vertical axis is xk coordinates, orthogonal to
Rn−1. The convex hull of V (n − 1, p + 1) lies at the bottom and
taking the cone with the apex xk = 1. The point labeled S is a
fiber obtained by squeezing.

in B(n − 1, 0). Since its shape vector is all + (or −), any link
component of Lk has (+,+) shape (or (−,−)). We choose Li

except i = k − 1, k, k + 1 and squeeze it. Taking the inverse
orientation of Li, (1, · · · , −1︸︷︷︸

ith

, · · · , 0︸︷︷︸
kth

, · · · , 1) is represented

by one horizontal Hopf band Murasugi summed by n − 1 ver-
tical Hopf bands. i.e., x = 1

n−1
(1, · · · , −1︸︷︷︸

ith

, · · · , 0︸︷︷︸
kth

, · · · , 1) is

in the unit sphere of C(n,−1).
Now the convex sum x := n−1

n
×x+ 1

n
×ek is

1
n
(1, · · · , −1︸︷︷︸

ith

, · · · , 1).

This is still a fiber, since we choose i carefully so that the squeez-
ing still works even if we undo the full twist. Note that since this
point is in the convex hull of n+1 vertices, the face containing
x is fibered.

(2) ⌊n/2⌋ ≤ p ≤ −2. By induction, we already have squeezing
fibers on the face of C(n − 1, p + 1). See the figure 14. So it
remains to show that such squeezing still works after we undo
the full twists. But since |p+ 1| is strictly smaller than ⌊n/2⌋,
there always exists a link component of shape (+,+) or (−,−).
Hence by undoing full twists except near the link component,
we get the fibered face which contains a squeezing fiber.

□
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Theorem 7.6 implies that most of the faces in B(n, p) are actually
fibered faces of the Thurston unit norm ball. We provide some com-
putations of the vertices of the Thurston unit ball for the p < 0 cases
in the appendix B. In the remaining section, we will cover the special
case of C(n,−2), in which case more explicit calculations can be made.

8. Teichmüller Polynomial for one fibered face of
C(n,−2), for n ≥ 5

In this section we compute explicitly the Teichmüller polynomials
for one fibered face of C(n,−2), when n ≥ 5, so that M(n,−2) is
hyperbolic. Let Mn be the exterior complement of the link C(n,−2).
We denote by Sn the surface obtained by performing the Seifert algo-
rithm to the link diagram of C(n,−2) shown in Figure 10. We will
sometimes omit the subscript n if it is not important in the context.
Since Mn is the complement of C(n,−2), the second homology group
H2 = H2(Mn, ∂Mn) is a free abelian group of rank n, with a canonical
basis given by the meridians of the link components. With that in
mind, we remark that Sn is a surface of genus one with n boundaries
and its coordinates in H2 are (1, 1, · · · , 1). Since Sn is a Murasugi sum
of one horizontal Hopf bands with n vertical Hopf bands, it is a fiber.
By Theorem 2.3, the monodromy φn of this fibering is the composition
of the Dehn twists along the cores of the Hopf bands.

Figure 15. The surface Sn for C(n,−2), the horizontal band is a
positive Hopf band and each vertical band is a negative Hopf band.
Here we omit the full twists which are supposed to be at each band,
as they have no role in the remainder of the calculations.
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Thus, if Sn is placed as suggested in figure 15, the monodromy φn

is the composition of the multi-twists composed of the Dehn twists,
all directed downward, around the vertical bands followed by the left
Dehn twist along the core of horizontal band. Following the methods
in [3] and [16], we compute the Teichmüller polynomial corresponding
to the fibered cone R+ ·F of the Thurston unit ball which contains the
point (1, · · · , 1) ∈ H2(Mn, ∂Mn).
As explained in section 2.3, we first need to computeH = Hom (H1(S,Z)φ,Z)

and then understand how the lift φ̃n of φn acts on the cover S̃n of Sn

which has H as a deck transform group. In this case, as noted in [3],
the group H is equal to the φn invariant first homology H1(Sn : Z)φn .
We choose c0, · · · , cn as a basis for H1(Sn;Z), where c0 is the curve
corresponding to the core of the horizontal band and c1, · · · , cn are
the curves corresponding to the cores of the vertical bands, c1 being
the leftmost one and cn the rightmost one. Then, H1(Sn : Z)φn is the
subspace of H1(Sn;Z) generated by the column vectors of

Bn =



0 0 · · · 0
1 1 · · · 1
−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1



We still need to figure out what the cover S̃n is, and how φ̃n acts
on it. Once again, the details are all given in [3]. Instead of repeating
them here, we give some graphical explanations for the simplest non
trivial example, which is M3 = C(3,−2). In this case, the cover S̃n is
explicitly drawn in figure 17.

Let T be the matrix representing the H-module action of φ̃n on S̃n.
Since the monodromy φn is the composition of one horizontal Dehn
twist and n vertical ones, we can decompose the matrix T into TV

and TH . These matrices represent the action of the lifts of the vertical
multi-twist and the horizontal Dehn twist, respectively, on S̃. Note
that the entries of these matrices are in Z[G], where G is the deck

transformation group of S̃, and hence is isomorphic to Zn−1.
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Figure 16. The surface S3, which is the fiber associated to the
link C(3,−2)

Figure 17. The Galois covering S̃3 of S3 with deck transform H

Using our conventions, the matrices TV and TH are the 2n × 2n
matrices shown here.

TV =



(x1 · · ·xn−1)
−1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · (x1 · · ·xn−2)

−1 0 0 · · · 0
1 0 · · · 0 1 0 · · · 0
0 x−1

1 · · · 0 0 x−1
1 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · (x1 · · ·xn−1)
−1 0 0 · · · (x1 · · ·xn−1)

−1


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TH =



1 0 · · · 0 1 1 · · · 1
0 1 · · · 0 1 1 · · · 1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 1 1 · · · 1
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 1


We can consider these matrices as being block matrices with four blocks
of size n× n. As such, we get that

TV =

[
Ds 0
D D

]
, TH =

[
I 1
0 I

]
where Ds is an n × n matrix whose diagonal entries are the same as
D, but shifted to the right by one, and 1 is the n× n matrix with all
entries equal to 1.

By [16], the Teichmüller polynomial can be obtained using the for-
mula

P (x1, · · · , xn−1, u) :=
det(TV TH − uI)

det(D − uI)
.

The remaining calculations are showed in Appendix A.
Let ak be the k’th diagonal entry of D. Hence, a1 = 1, a2 =

x−1
1 , · · · , an = (x1 · · ·xn−1)

−1.

Theorem 8.1 (Teichmüller polynomial). Let n ≥ 5. The Teichmüller
polynomial P for the fibered cone C containing the point [Sn] ∈ H2(Mn, ∂Mn),
where Sn is the surface depicted in Figure 15.

P (x1, · · · , xn−1, u) := A−
n∑

k=1

uakAk

where A := (a1 − u) · · · (an − u) and Ak =
A

(ak−1 − u)(ak − u)
, where

an+1 := a1.

The manifold Mn can be viewed at the same time as a link comple-
ment and has a fibration. Both point of view lead to natural coordinates
on H2 = H2(Mn, ∂Mn;Z).

It is sometimes more convenient to use the coordinates coming from
the link complement point of view for the Teichmüller polynomials.
For example, that point of view is more fitted to the computation of
the stretch factor of the monodromy of the fiber which has coordinates
(1, 1, · · · , 1) in the basis given by the link components.
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The Teichmüller polynomials we computed are using the basis com-
ing from the fibration point of view. We thus need to find the explicit
change of coordinates for going from one basis to the other.

Let us fix the notation clearly. The basis Y given by the link com-
plements will be denoted as y1, · · · , yn, with y1 corresponding to the
link complement with the self twist. If the monodromy for the fi-
bration of Mn is denoted by φn, the corresponding basis X will be
u, x1, · · · , xn−1 where the xi form a basis for the φn invariant cohomol-
ogy and u corresponds to the suspension flow. We also let a0, · · · , an−1

be the canonical basis for H1(Sn,Z). By the computation above, we
already know that xi = a1− ai+1. Moreover, as suggested by figure 18,
we see that ai = yi − yi+1, where the indices are taken modulo n as
always. Finally, the basis element u corresponding to the suspension
flow is simply mapped to y1.

Figure 18. The surface Sn and the geometric representation of
the ai,for i = 0, · · · , n − 1. On the bottom, we see how each ai is
related to the link components, since ai, yi and yi+1 always bound
a disk in Mn
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To sum it up, the change of coordinates is given by

u → y1
x1 → y1 − y3

x2 → y1 − y2 + y3 − y4
...

xn−2 → y1 − y2 − yn−1 + yn
xn−1 → −y2 + yn

Hence the image of the fiber whose coordinates in the basis X are
(1, 1, · · · , 1) has (0, 0, · · · , 0, 1) as coordinates in the basis Y . The spe-
cialization of the Teichmüller polynomial to the point p = (0, 0, · · · , 0, 1)
is then given by

(1− u)n − nu(1− u)n−2 = (1− u)n−2(1− (n+ 2)u+ u2)

A simple calculation shows that the largest root of this polynomial

is n+2+
√
n2+4n

2
.

Appendix A. Proof of Theorem 8.1

In this appendix we finish the calculations of the Teichmüller poly-
nomial of section 8.

We need to compute the determinant of block matrices, and we make
use of the following Lemma to do so.

Lemma A.1. Let M =

[
A B
C D

]
a block matrix, where A and D

are square matrices of same size. If D is invertible, then det(M) =
det(A−BD−1C) det(D). Moreover, if C and D commute, we get that
det(M) = det(AD −BC).

Proof. Suppose that D is invertible. Then M can be factorized as

M =

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
Taking the determinant on both side, we conclude that the first part
of the Lemma holds. If C and D commutes, we get that

det(M) = det(A−BD−1C) det(D) = det(AD−BD−1CD) = det(AD−BC).

Hence, the second part of the Lemma also holds. □

The matrix TV TH − uI can be expressed as a block matrix,

TV TH − uI =

[
Ds − uI Ds · 1

D D · 1+D − uI

]
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By performing some row reductions, we can simplify this matrix.[
I 0

−DD−1
s I

]
×
[
Ds − uI Ds · 1

D D · 1+D − uI

]
=

[
Ds − uI Ds · 1
uDD−1

s D − uI

]
Such operations do not affect the determinant and now the bottom
two block matrices are both diagonals, so they commute. Hence we
can apply lemma A.1 to compute the determinant

det(TV TH − uI) = det((Ds − uI)(D − uI)− uDs · 1 ·DD−1
s )

= det(Ds((Ds − uI)(D − uI)− u1 ·D)D−1
s )

= det((Ds − uI)(D − uI)− u1 ·D)

Let Bk := (ak−1 − u)(ak − u), where a0 = an. Then the matrix (Ds −
uI)(D − uI)− u1 ·D is

B1 − ua1 −ua1 · · · −ua1
−ua2 B2 − ua2 · · · −ua2
...

...
. . .

...
−uan −uan · · · Bn − uan


In order to calculate the determinant of this matrix, we will use the

following Lemma.

Lemma A.2. Let A be the following matrix.

A =


c1 − u −u · · · −u
−u c2 − u · · · −u
...

...
. . .

...
−u −u · · · cn − u


Then, det (A) = c1 · · · cn−(

∑n
i=1 c1 · · · ĉi · · · cn)u, where c1 · · · ĉi · · · cn =

c1 · · · ci−1ci+1 · · · cn.

Proof. We proceed by induction. For n = 2, the determinant is equal
to (c1−u)(c2−u)−u2 = c1c2−(c1+c2)u. Suppose now that the Lemma
holds for any natural number n − 1 and let A be n × n matrix of the
given form. By induction hypothesis, the determinant of the upper-left
(n − 1) × (n − 1) block of A is c1 · · · cn−1 − (

∑n−1
i=1 c1 · · · ĉi · · · cn−1)u.

We now compute det (A) using cofactor expansion on the last row of
A. Then, we have that

det (A) =

[
c1 · · · cn−1 −

(
n−1∑
i=1

c1 · · · ĉi · · · cn−1

)
u

]
(cn − u)

+ (−u)× (other terms)
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Each other term is in fact the determinant of a (n − 1) × (n − 1)
block whose ith column is omitted and (n− 1)th column has −u on all
its entries. If we cyclically permute from the i’th column to the last
column, the determinant of this matrix is equal to −c1 · · · ĉi · · · cn−1u,
by applying ci = 0. The sign of each cyclic permutation offsets to the
alternating sum in the determinant formula. Hence, we get

det (A) =

[
c1 · · · cn−1 −

(
n−1∑
i=1

c1 · · · ĉi · · · cn−1

)
u

]
(cn − u)

+

(
n−1∑
i=1

c1 · · · ĉi · · · cn−1

)
u2

= c1 · · · cn −

(
n∑

i=1

c1 · · · ĉi · · · cn

)
u

□

The given matrix can be factorized as follows.
a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an




B1

a1
− u −u · · · −u

−u B2

a2
− u · · · −u

...
...

. . .
...

−u −u · · · Bn

an
− u


Apply Lemma A.2, the determinant of the given matrix is

B1 · · ·Bn − (a1B2 · · ·Bn +B1a2B3 · · ·Bn + · · ·B1 · · ·Bn−1an)u

The Teichmüller polynomial is obtained by dividing (a1−u) · · · (an−u),
the determinant of D − uI.

Appendix B. Some calculations of C(n, p) with p < 0

In this section we give our calculations and tables of vertices for some
C(n, p), p < 0 cases.
We thank William Worden, as we made extensive use of his paper

[4] and the program, called ‘Tnorm’, that he developed. Tnorm is
able to compute the vertices of the Thurston unit ball of given links
complements. In the tables in this section, we list the vertices, except
for vertices of the form ±ei’s, together with the topological type of their
representatives. The left columns of the tables are the coordinates
of the vertices and the right columns are the corresponding surfaces
representing them in the second homology groups.
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C(4,−1)
±(1, 0, 1, 1) S0,3

±(1,−1, 0, 1) S0,3

±(1,−1,−1, 0) S0,3

±(0,−1,−1,−1) S0,3

C(5,−1) C(5,−2)
±(1/2, 0, 1/2, 1/2, 1/2) 1

2
S0,4 ±(0, 1, 0, 1, 1) S0,3

±(1/2,−1/2, 0, 1/2, 1/2) 1
2
S0,4 ±(0, 1,−1, 0, 1) S0,3

±(1/2,−1/2,−1/2, 0, 1/2) 1
2
S0,4 ±(1, 0,−1, 0, 1) S0,3

±(1/2,−1/2,−1/2,−1/2, 0) 1
2
S0,4 ±(1, 0,−1,−1, 0) S0,3

±(0,−1/2,−1/2,−1/2,−1/2) 1
2
S0,4 ±(1,−1, 0,−1, 0) S0,3

C(6,−1)
±(1/3, 0, 1/3, 1/3, 1/3, 1/3) 1

3
S0,5

±(1/3,−1/3, 0, 1/3, 1/3, 1/3) 1
3
S0,5

±(1/3,−1/3,−1/3, 0, 1/3, 1/3) 1
3
S0,5

±(1/3,−1/3,−1/3,−1/3, 0, 1/3) 1
3
S0,5

±(1/3,−1/3,−1/3,−1/3,−1/3, 0) 1
3
S0,5

±(0,−1/3,−1/3,−1/3,−1/3,−1/3) 1
3
S0,5

C(6,−2)
±(0, 1/2, 0, 1/2, 1/2, 1/2) 1

2
S0,4

±(1/2, 0,−1/2, 0, 1/2, 1/2) 1
2
S0,4

±(1/2,−1/2, 0,−1/2, 0, 1/2) 1
2
S0,4

±(1/2,−1/2, 1/2, 0,−1/2, 0) 1
2
S0,4

±(0, 1/2,−1/2,−1/2, 0, 1/2) 1
2
S0,4

±(1/2, 0,−1/2,−1/2,−1/2, 0) 1
2
S0,4

±(0, 1/2,−1/2, 0, 1/2, 1/2) 1
2
S0,4

±(1/2, 0,−1/2,−1/2, 0, 1/2) 1
2
S0,4

±(1/2,−1/2, 0,−1/2,−1/2, 0) 1
2
S0,4

C(6,−3)
±(0, 1/2, 1/2, 0, 1/2, 1/2) 1

2
S0,4

±(1/2, 0,−1/2, 1/2, 0,−1/2) 1
2
S0,4

±(1/2,−1/2, 0, 1/2,−1/2, 0) 1
2
S0,4

±(0,−1/2, 1/2, 0, 1/2,−1/2) 1
2
S0,4

±(−1/2, 0, 1/2, 1/2, 0,−1/2) 1
2
S0,4

±(1/2, 1/2, 0,−1/2,−1/2, 0) 1
2
S0,4

±(0, 1, 0,−1, 0, 1) S0,3

±(−1, 0, 1, 0, 1, 0) S0,3
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