
A PLAT FORM PRESENTATION FOR SURFACE-LINKS

JUMPEI YASUDA

Abstract. In this paper, we introduce a method, called a plat form, of
describing a surface-link in the 4-space using a braided surface. We
prove that every surface-link, which is not necessarily orientable, can be
described in a plat form. The plat index is defined as a surface-link in-
variant, which is an analogy of the bridge index for a link in the 3-space.
We classify surface-links with plat index 1 and show some examples of
surface-links in plat forms.

1. Introduction

In knot theory we often use two methods of presenting links in the 3-
space using braids: One is a closed braid form as in Figure 1, and the other
is a plat form as in Figure 2.

Figure 1. A closed braid form. Figure 2. A plat form.

A surface-link is a closed surface embedded in R4, and a 2-knot is a 2-
sphere embedded in R4. Two surface-links are considered to be equivalent
if they are ambient isotopic in R4. It is known that every orientable surface-
link is equivalent to a surface-link in a closed 2-dimensional braid form (cf.
[9, 12, 21]). It is an analogy of a closed braid form for a link.

The purpose of this paper is to introduce a new method of presenting a
surface-link, which we call a plat form, as an analogy of a plat form for a
link.

Theorem 1.1. Every surface-link is equivalent to a surface-link in a plat
form.
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We emphasize that our method works for every surface-link, while the
closed 2-dimensional braid form works only for orientable ones. A gen-
uine plat form is a special case of a plat form. Some surface-links can be
presented in genuine plat forms.

Theorem 1.2. Every orientable surface-link is equivalent to a surface-link
in a genuine plat form.

We show that the normal Euler number e(F) of a surface-link F in a
genuine plat form is zero (Proposition 5.9). It is unknown to the author
whether every surface-link with e(F) = 0 is equivalent to one in a genuine
plat form.

We define two surface-link invariants, which are called the plat index
and the genuine plat index, denoted by Plat(F) and g.Plat(F), respectively.
These are analogies of the plat index, or the bridge index, of a link.

Using a theory of braided surfaces and 2-dimensional braids, we show
that a surface-link F with Plat(F) = 1 or with g.Plat(F) = 1 is trivial (The-
orem 5.5) and that a 2-knot with g.Plat(F) = 2 is ribbon (Theorem 5.7). We
also see an example of a 2-knot whose plat index and genuine plat index
are different (Proposition 5.8). An example of a non-trivial surface-link in a
plat form is shown in Figure 3 by using a motion picture (Proposition 5.8).

Figure 3. The 2-twist spun trefoil in a (normal) plat form.

This paper is organized as follows. In Section 2, we recall the notions of
braids, surface-links, and braided surfaces. We also recall the definition of
a plat form for a link. In Section 3, we define a (normal) plat form and a
genuine plat form for a surface-link. In Section 4, we prove Theorems 1.1
and 1.2. In Section 5, we discuss the plat index and the genuine plat index
of a surface-link, and show some examples.

We work in the PL or smooth category. Surfaces embedded in the 4-space
are assumed to be locally flat in the PL category.

2. Preliminaries

2.1. A plat form presentation for a link. Let n be a positive integer, I =
[0, 1] the interval, D the square I2 in R2, Int D the interior of D, and Qn =
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{q1, . . . , qn} the subset of n points in D such that qk = (1/2, k/(n + 1)) for
k = 1, 2, . . . , n.

An n-braid is a union of n intervals β embedded in D × I such that each
component intersects with every open disk Int D × {t} (t ∈ I) transversely
at a single point, and ∂β = Qn × {0, 1}. The n-braid group Bn is the group
consisting of equivalence classes of n-braids in D × I. The braid group
Bn is identified with the fundamental group π1(Cn,Qn) of the configuration
space Cn of n points of Int D. We denote by σ1, σ2, . . . , σn−1 the standard
generators of Bn or their representatives due to Artin ([1]).

To define the plat closure of a braided surface in Section 3, we introduce
the space of m wickets.

Definition 2.1 ([3]). A wicket is a semicircle in D × I that meets D × {0}
orthogonally at its endpoints in Int D × {0}. A configuration of m wickets is
a disjoint union of m wickets in D × I. The space of m wicketsWm is the
space consisting of all configurations of m wickets.

For a configuration w = w1∪· · ·∪wm of m wickets, we denote by |∂w| the
2m points ∂w1 ∪ · · · ∪ ∂wm in Int D, which is identified with Int D× {0}, and
by ∂w the 2m points |∂w| equipped with the partition {∂w1, . . . , ∂wm}. Note
that if two configurations w and w′ satisfy ∂w = ∂w′, then w = w′.

The set Q2m equipped with the partition {{q1, q2}, . . . , {q2m−1, q2m}} bounds
a unique configuration of m wickets, which we call the standard configura-
tion of m wickets and denote by w0.

The fundamental group π1(Wm,w0) is called the wicket group in [3]. Let
|∂| : (Wm,w0) → (C2m,Q2m) be the continuous map sending w to |∂w|. It
induces a homomorphism |∂|∗ : π1(Wm,w0)→ π1(C2m,Q2m) = B2m.

Hilden’s subgroup K2m is the subgroup of B2m generated byσ1,σ2σ1σ3σ2,
and σ2iσ2i−1σ

−1
2i+1σ

−1
2i for i = 1, . . . ,m − 1 ([7], cf. [2]).

Proposition 2.2 ([3]). For each positive integer m, the homomorphism |∂|∗ :
π1(Wm,w0) → π1(C2m,Q2m) = B2m is injective and the image is Hilden’s
subgroup K2m. Namely, the wicket group π1(Wm,w) is isomorphic to Hilden’s
subgroup K2m.

The isomorphism from π1(Wm,w) to K2m is restated as follows: Let f :
(I, ∂I)→ (Wm,w0) be a loop. Consider a 2m-braid β f =

⋃
t∈I |∂ f (t)| × {t} ⊂

D × I, then the isomorphism sends [ f ] ∈ π1(Wm,w) to [β f ] ∈ K2m.

Definition 2.3. A loop g : (I, ∂I) → (C2m,Q2m) is liftable if there exists a
loop f : (I, ∂I)→ (Wm,w0) such that g = |∂| ◦ f .

Definition 2.4. A 2m-braid β in D × I is adequate or wicket-adequate if the
associated loop g : (I, ∂I) → (C2m,Q2m) is liftable, namely, there exists a
loop f : (I, ∂I)→ (Wm,w0) such that β = β f .
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Note that Hilden’s subgroup K2m consists of the elements of B2m repre-
sented by some adequate 2m-braids.

Let β be a 2m-braid in D× I ⊂ R2 ×R = R3. Attach a pair of the standard
configurations of m wickets to β as in Figure 4, and we obtain a link which
is called the plat closure of β and denoted by β̃. A link is said to be in a plat
form when it is the plat closure of a braid. Every link is equivalent to a link
in a plat form.

Figure 4. The plat closure of a braid.

In Section 3 we introduce a plat form of a surface-link in R4. We will
also introduce a normal plat form, which is a plat form satisfying a nice
condition such that its motion picture is easy to describe.

To define a normal plat form of a surface-link in Section 3, we construct
an isotopic deformation changing the plat closure of an adequate braid to
the plat closure of the trivial braid as follows: Let f : (I, ∂I) → (Wm,w0)
be a loop. For each t ∈ I, let βt be

⋃
s∈I |∂ f ((1 − t)s)| × {s} in D × I, which

is a union of 2m arcs. We denote by Lt a link obtained from βt by attaching
the configuration f (t) of m wickets to the side of D × {1} and the standard
configuration w0 to the side of D × {0} in R3. See Figure 5. Then, {Lt}t∈I

is a 1-parameter family of links in R3 such that L0 is β̃ f and L1 is the plat
closure of the trivial 2m-braid as in Figure 5. We call {Lt}t∈I the isotopic
deformation changing β̃ f to the plat closure of the trivial braid.

As a corollary, the plat closure of an adequate 2m-braid is an m-component
trivial link.

Figure 5. The isotopic deformation changing β̃ f to the plat
closure of the trivial braid.
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2.2. Surface-links. A surface-link is a closed surface embedded in R4, and
a surface-knot is a connected surface-link. A 2-knot is a surface-knot home-
omorphic to a 2-sphere. A 2-link is a surface-link consisting of 2-spheres.
Two surface-links F and F′ are said to be equivalent if they are ambient
isotopic in R4. We denote it by F ≃ F′ that F and F′ are equivalent.

Let h : R3 × R1 → R1 be the projection onto the second factor. Set
F[t] = F ∩ R3 × {t} for t ∈ R, which is called the cross-section of F at t.
A motion picture of F is a 1-parameter family {F[t]}t∈R. We often describe
surface-links using motion pictures.

A surface-knot is trivial if it is equivalent to a connected sum of stan-
dardly embedded 2-spheres, tori, and projective planes ([8]). Here stan-
dardly embedded projective planes P+ and P− are illustrated in Figure 6.

Figure 6. Motion pictures of P+ and P−.

2.3. Braided surfaces and 2-dimensional braids. A braided surface was
introduced by Rudolph [19] and a 2-dimensional braid was introduced by
Viro (cf. [10, 11, 12]). Let D1 and D2 be the squares I2 ⊂ R2 and pri :
D1 × D2 → Di (i = 1, 2) the projection onto the i-th factor. Let y0 ∈ ∂D2 be
a fixed base point.

Definition 2.5 ([19], [21]). A (pointed) braided surface of degree n is a
surface S embedded in D1 × D2 satisfying the following conditions:

(1) πS = pr2|S : S → D2 is a simple branched covering map of degree
n (i.e., the preimage of each branch locus consists of n − 1 points).

(2) ∂S is the closure of an n-braid in the solid torus D1 × ∂D2.
(3) pr1(π−1

S (y0)) = Qn.
In particular, a 2-dimensional braid of degree n is a braided surface S of
degree n such that ∂S is trivial, i.e., pr1(π−1

S (y)) = Qn for all y ∈ ∂D2.

The degree of S is denoted by deg S . We say that two braided surfaces
of the same degree are equivalent if they are ambient isotopic by an isotopy
{hs}s∈I of D1 × D2 such that each hs (s ∈ I) is fiber-preserving when we
regard D1 × D2 as the trivial D1-bundle over D2, and the restriction of hs to
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pr−1
2 (y0) is the identity map. A braided surface is trivial if it is equivalent to

Qn × D2.

Lemma 2.6 (cf. [12]). A braided surface S is trivial if and only if S has no
branch points.

We assume D1 × D2 ⊂ R
2 × R2 = R4. Let S be a 2-dimensional braid of

degree n. The closure of S is an orientable surface-link in R4 obtained from
S by attaching n 2-disks trivially outside D1 × D2 in R4 along the boundary
∂S . It is described in Figure 7 when n = 3, where ε is a positive number
and S [t] = S ∩ D1 × (I × {t}) (t ∈ I).

Proposition 2.7 ([11, 21]). Every orientable surface-link is equivalent to
the closure of a 2-dimensional braid.

Figure 7. The closure S of a 2-dimensional braid S .

For an orientable surface-link F, the braid index of F, denoted by Braid(F),
is the minimum degree of 2-dimensional braids whose closures are equiva-
lent to F.

3. A plat form presentation for a surface-link

In this section, we introduce a plat form for a surface-link.
We fix a loop µ : (I, ∂I) → (∂D2, y0) which runs once on ∂D2 counter-

clockwise. For a braided surface S of degree n, let gS : (I, ∂I) → (Cn,Qn)
be a loop in the configuration space Cn obtained by

gS (t) = pr1(π−1
S (µ(t)))

and βS an n-braid in D1 × I obtained by

βS =
⋃
t∈I

pr1(π−1
S (µ(t))) × {t},
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where πS : S → D2 is the simple branched covering map appearing in the
definition of a braided surface. Then ∂S is the closure of βS in D1 × ∂D2.

Definition 3.1. A braided surface S in D1 × D2 is adequate if gS is liftable
or equivalently if βS is adequate.

Note that the degree of an adequate braided surface is even. For an ade-
quate braided surface S of degree 2m, let fS : (I, ∂I)→ (Wm,w0) be the lift
of gS , i.e., a loop inWm with gS = |∂| ◦ fS .

Let N be a regular neighborhood of ∂D2 in R2 \ Int D2. Since N is home-
omorphic to an annulus I × S 1, we identify them by a fixed identification
map ϕ : I × S 1 → N such that ϕ(0, p(t)) = µ(t) ∈ ∂D2 for all t ∈ I, where
p : I → S 1 = I/∂I is the quotient map.

Definition 3.2. A properly embedded surface A in D1 × N is of wicket type
if there exists a loop f : (I, ∂I)→ (Wm,w0) such that

A =
⋃
t∈I

f (t) × {p(t)} ⊂ (D1 × I) × S 1 = D1 × N.

In this case, we say that A is associated with f and denote it by A f .

We remark that a surface A of wicket type is a union of annuli or Möbius
bands, and that ∂A = ∂A f is expressed as

∂A =
⋃
t∈I

|∂ f (t)| × {p(t)} ⊂ D1 × S 1 = D1 × ∂D2.

Since two loops f and f ′ in (Wm,w0) with |∂| ◦ f = |∂| ◦ f ′ are the same, we
see that two surfaces A and A′ of wicket type with ∂A = ∂A′ are the same.

Let S be an adequate braided surface, and let f : (I, ∂I) → (Wm,w0) be
a loop with gS = |∂| ◦ f . Then it holds that S ∩ A f = ∂S = ∂A f . We denote
A f by AS and say that AS is the surface of wicket type associated with S .

Definition 3.3. Let S be an adequate braided surface and AS the surface of
wicket type associated with S . The plat closure of S , denoted by S̃ , is the
union of S and AS in R4.

When deg S = 2m and S has r branch points, the Euler characteristic
χ(S ) of S is 2m − r. Since χ(AS ) = χ(∂AS ) = 0, we have χ(S̃ ) = 2m − r.

Definition 3.4. A surface-link is said to be in a plat form if it is the plat
closure of an adequate braided surface. Moreover, a surface-link is said to
be in a genuine plat form if it is that of a 2-dimensional braid.

We introduce a normal plat form for a surface-link by using a motion
picture as follows: Let S̃ be the plat closure of an adequate braided surface
S of degree 2m, and set S̃ [t] = S̃∩R3×{t} (t ∈ R) and S [t] = S∩D1×(I×{t}) =
S ∩ R3 × {t} (t ∈ [0, 1]). Replacing S with an equivalent braided surface if
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necessary, we may assume that S satisfies the following conditions for some
t0 ∈ [0, 1]:

(1) S has no branch points over I × [t0, 1] ⊂ D2.
(2) pr1(π−1

S (y)) = Q2m for every y ∈ ∂D2 \ ({1} × [t0, 1]).
(3) S [t0] = βS × {t0}.

In particular, S [0] and S [1] are both the trivial braids. Furthermore, replacing
S with an equivalent braided surface if necessary, we may assume that the
motion picture {S̃ [t]}t∈[t0,1] between t = t0 and t = 1 is the isotopic deforma-
tion changing β̃ f to the plat closure of the trivial braid. (See Figure 5.) Fi-
nally, deforming AS by an ambient isotopy rel boundary, we have a surface-
link F, equivalent to S̃ , described by a motion picture as in Figure 8. The
surface-link F in this form is said to be in a normal plat form.

Figure 8. A surface-link in a normal plat form.

4. Proofs of Theorems 1.1 and 1.2

In this section, we give proofs of Theorems 1.1 and 1.2. To prove them,
we discuss a plat form for a link and a banded link presentation for a surface-
link.

4.1. Stabilization and generalized stabilization for braids. For positive
integers n and n′ with n ≤ n′, let ιn

′

n : Bn → Bn′ denote the natural inclusion
map from Bn to Bn′ sending each generator σi ∈ Bn to σi ∈ Bn′ .

A stabilization of a 2m-braid β is a replacement of β with a 2m′-braid β′

such that
β′ = ι2m′

2m (β)σ2m σ2(m+1) σ2(m+2) . . . σ2(m′−1),

where m′ is an integer with m ≤ m′. We also call a stabilization an l-
stabilization when l = m′ − m.

It is obvious that if β′ is obtained from β by an l-stabilization then the
plat closure of β′ is equivalent to that of β as links in R3. See Figure 9 for
l = 1, 2.
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Figure 9. Plat closures of stabilized braids.

Proposition 4.1 ([2]). Let βi (i = 1, 2) be a 2mi-braid such that the plat
closure β̃i is a knot. Then β̃1 is equivalent as knots in R3 to β̃2 if and only
if there exists an integer t ≥ max{m1,m2} such that for each m ≥ t, the
2m-braids β′i (i = 1, 2) obtained from βi by stabilization belong to the same
double coset of B2m modulo K2m.

Proposition 4.1 is generalized into the case of links in R3 by using the
notion of a generalized stabilization.

Let Λm be the set of m-tuples of non-negative integers. For two elements
λ = (l1, . . . , lm) and λ′ = (l′1, . . . , l

′
m) of Λm, we write λ ⪯ λ′ if li ≤ l′i for each

i = 1, . . . ,m. Then ⪯ is a (directed) partial ordering on Λm. Put |λ|0 = m,
|λ|i = m + l1 + · · · + li (i = 1, . . . ,m), and |λ| = |λ|m. For a given λ ∈ Λm, we
denote τi = σ2iσ2i−1σ2i+1σ2i ∈ K2|λ| (1 ≤ i ≤ |λ| − 1) and

Ti, j =

m−1∏
k=i

τk ·

j∏
k=m

τ−1
k ∈ K2|λ| (1 ≤ i ≤ m,m − 1 ≤ j ≤ |λ|),

where the former or later product is assumed to be the identity element of
the group if i = m or j = m − 1, respectively, and we construct a 2 |λ|-braid
T (λ) as follows:

T (λ) =
m∏

i=1

Ti, (|λ|(i−1)−1) σ2|λ|i−1σ2(|λ|i−1+1) · · ·σ2|λ|i T−1
i, (|λ|(i−1)−1).

For a 2m-braid β and λ ∈ Λm, we let βλ denote a 2 |λ|-braid such that

βλ = ι2|λ|2m (β) · T (λ).

A generalized stabilization (with respect to λ) or λ-stabilization of β
is a replacement of β with βλ. A λ-stabilization is a composition of li-
stabilization performed on the 2i-th strand of β for each i = 1, . . . ,m. A
l-stabilization of β is a λ-stabilization with λ = (0, . . . , 0, l) ∈ Λm. Fig-
ure 10 depicts the plat closure of a 12-braid obtained from a 6-braid β by a
generalized stabilization with respect to λ = (2, 0, 1) ∈ Λ3.
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Figure 10. The plat closure of a (2, 0, 1)-stabilized braid.

The following proposition states that two braids of even degrees have
equivalent plat closures as links in R3 if and only if, after applying a gen-
eralized stabilization suitably, they belong to the same double coset of B2m

modulo K2m.

Proposition 4.2 (cf. [2]). Let βi (i = 1, 2) be a 2mi-braid. The plat closure
β̃1 is equivalent to β̃2 as links in R3 if and only if there exists an element
λ ∈ Λm1 satisfying the following condition: For any λ1 ⪰ λ, there exists
λ2 ∈ Λm2 with |λ1| = |λ2| such that βλ1

1 and βλ2
2 belong to the same double

coset of B2m modulo K2m, where m = |λ1| = |λ2|.

Proposition 4.2 is proved directly by applying the proof of Proposition 4.1
given in [2] for each component of a link.

4.2. A banded link presentation for a surface-link. A banded link in R3

means a pair (L, B) of a link L and a family B of mutually disjoint bands
attaching to L. We let LB denote the link obtained from L by surgery along
the bands belonging to B. A banded link (L, B) is admissible if both L and
LB are trivial links.

Let (L, B) be an admissible banded link in R3. Let d and D be unions
of mutually disjoint 2-disks embedded in R3 bounded by L and LB, respec-
tively. Consider a closed surface F = F(L, B) in R4 = R3 × R defined
by

p(F ∩ R3 × {t}) =



D (t = 1),
LB (0 < t < 1),
L ∪ |B| (t = 0),
L (−1 < t < 0),
d (t = −1), and
∅ otherwise,
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where |B| is the union of the bands belonging to B. We call F(L, B) a closed
realizing surface of (L, B). Although it depends on a choice of d and D, the
equivalence class as surface-links does not depend on them (cf. [13, 16]).

Let r be a real number, and let h : R3 × (−∞, r] → (−∞, r] be the pro-
jection onto the second factor, which we regard as a height function of
R3 × (−∞, r].

Lemma 4.3 (cf. [13, 16]). Let F and F′ be compact surfaces properly em-
bedded in R3 × (−∞, r] such that all critical points of F and F′ are minimal
points with respect to h, and their boundaries are the same trivial link in
R3 × {r}. Then, F and F′ are ambient isotopic in R3 × (−∞, r] rel R3 × {r}.

Lemma 4.4 ([16]). If two admissible banded links (L, B) and (L′, B′) are
ambient isotopic in R3, then their closed realizing surfaces F(L, B) and
F(L′, B′) are equivalent.

Lemma 4.5 ([16]). Any surface-link F is equivalent to a closed realizing
surface F(L, B) of an admissible banded link (L, B).

Lemma 4.6. By an isotopy of R3, any banded link (L, B) in R3 is deformed
to a banded link (L0, B0) satisfying the following conditions:

(1) There exists a disk D in R2 and a 2m0-braid β0 in D× I (⊂ R2 ×R =

R3) for some m0 ∈ N such that β0 = L0 ∩ D × I and β̃0 = L0.
(2) There exist mutually disjoint n subcylinders Ui = di × [si, ti] (i =

1, . . . , n) in D × I such that each Ui contains a part of L0 as a pair
of vertical line segments and a half-twisted band bi ∈ B0 as in Fig-
ure 11, where n is the number of bands belonging to B0.

Furthermore, we may take subcylinders Ui = di×[si, ti] such that d1, . . . , dn

are mutually disjoint disks in Int D and [si, ti] = [2/5, 3/5] for i = 1, . . . , n.

Figure 11. A local model of L0 and bi in Ui = di × [si, ti].

Proof. Let d1, . . . , dn be mutually disjoint disks in Int D and let Ui = di ×

[2/5, 3/5] for i = 1, . . . , n. By an isotopy of R3, (L, B) is deformed into
(L1, B0) such that for each i, Ui intersects with (L1, B0) as in Figure 11.

By an isotopy of R3 keeping Ui (i = 1, . . . , n) fixed pointwise, (L1, B0)
is deformed into (L2, B0) such that all maximal points of L2 are in R2 × {1}
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and all minimal points of L2 are in R2 × {0}. Finally, by an isotopy of R3

keeping Ui (i = 1, . . . , n) fixed pointwise, we deform the link L2 into a link
L0 satisfying the condition (1). □

We denote by (β0)B0 the 2m0-braid in D × I obtained from β0 by surgery
along bands belonging to B0.

Proof of Theorem 1.1. We prove the theorem by 3 steps. Let F be a surface-
link.

Step 1: By Lemmas 4.4, 4.5 and 4.6, F is equivalent to a closed realizing
surface of a banded link (L0, B0) satisfying the conditions (1) and (2) in
Lemma 4.6. Let β0 be the 2m0-braid in D × I as in Lemma 4.6.

Let c1 and c2 be the numbers of components of L0 and (L0)B0 , respec-
tively. Since β̃0 = L0 is a trivial link of c1 components, the plat closure
β̃0 is equivalent as links in R3 to the plat closure 1̃2c1 of the trivial braid
12c1 ∈ B2c1 . The plat closure (̃β0)B0 is equivalent to the plat closure 1̃2c2 of
the trivial braid 12c2 ∈ B2c2 by the same reason.

Applying Proposition 4.2 to the two pairs (β0, 12c1) and ((β0)B0 , 12c2) of
braids in D× I, there exist a positive integer m ∈ Z, three elements λ ∈ Λm0 ,
λ1 ∈ Λc1 , λ2 ∈ Λc2 , and four adequate 2m-braids γ, γ′, δ, δ′ in D × I such
that |λ| = |λ1| = |λ2| = m and

β1 = γ α1 γ
′, β2 = δ α2 δ

′ in B2m,

where β1 = β
λ
0, α1 = 1λ1

2c1
, β2 = (β0) λB0

and α2 = 1λ2
2c2

are 2m-braids in D × I
obtained by generalized stabilization.

Since β1 is a λ-stabilized β0, there exists a subcylinder U of D × I such
that β1 ∩U = β0 under an identification of U and D× I. Let B1 be the set of
bands attaching to β1 obtained from B0 via the identification. Then, β2 and
(β1)B1 are the same braid. Note that (β̃1, B1) is ambient isotopic to (L0, B0).

Step 2: We construct a properly embedded compact surface S 0 in D1×D2

and a braided surface S of degree 2m in D1 × D2. Let 0 = t0 < t1 < · · · <
t6 < t7 = 1 be a partition of I = [0, 1]. We divide D2 = I × I into seven
pieces E0, . . . , E6 with Ei = I×[ti, ti+1]. Let α∗1 and α∗2 be 2m-braids in D1× I
given by

α∗1 =

m∏
i=1

Ti, (|λ1 |(i−1)−1)T−1
i, (|λ1 |(i−1)−1), α

∗
2 =

m∏
i=1

Ti, (|λ2 |(i−1)−1)T−1
i, (|λ2 |(i−1)−1),

which are obtained from α1 = 1λ1
2c1
= T (λ1) and α2 = 1λ2

2c2
= T (λ2) by re-

moving the partsσ2|λ1 |(i−1)σ2(|λ1 |(i−1)+1) . . . σ2|λ1 |i andσ2|λ2 |(i−1)σ2(|λ2 |(i−1)+1) . . . σ2|λ2 |i

(i = 1, . . . ,m), respectively (Figure 14). Note that α∗1 and α∗2 are equivalent
to the trivial braid 12m = Q2m × I as braids in D1 × I.
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Figure 12. The partition of D2.

Let p1 : D1 × I → D1 and p2 : D1 × I → I be the projections onto the first
and second factors, respectively. Let pri : D1 × D2 → Di be the projections
onto the i-th factors (i = 1, 2). For a braid b in D1 × I and s ∈ I, we denote
by b[s] the image p1(b ∩ p−1

2 (s)) in D1 of the intersection b ∩ p−1
2 (s).

Now, we define a properly embedded compact surface S 0 in D1×D2, step
by step, as follows:

(0) First, we define S 0 ∩ D1 × ∂E0 by

pr1(S 0 ∩ pr−1
2 (s, t)) =


(α∗1)[s] ((s, t) ∈ I × {t1}),
Q2m ((s, t) ∈ {0, 1} × [t0, t1]),
Q2m ((s, t) ∈ I × {t0}).

See Figure 13. Since α∗1 is equivalent to the trivial 2m-braid, we may
define S 0 ∩ D1 × E0 as a braided surface of degree 2m without branch
points in D1 × E0, which is trivial by Lemma 2.6.

Figure 13. A blueprint for a surface S 0. Each braid is ap-
peared as the section of S 0.
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(1) We define S 0 ∩ D1 × (E1 \ I × {(t1 + t2)/2}) as follows:

pr1(S 0 ∩ pr−1
2 (s, t)) =

(α∗1)[s] ((s, t) ∈ I × [t1, (t1 + t2)/2)),
(α1)[s] ((s, t) ∈ I × ((t1 + t2)/2, t2]).

Then, we define S 0 ∩ D1 × (I × {(t1 + t2)/2}) as the 2m-braid α∗1 with
bands such that the surgery result of α∗1 is α1 (see Figure 14). We denote
by B−1 the set of these bands.

Figure 14. A motion picture of S 0 (t1 ≤ t ≤ t2).

(2) We construct S 0 ∩ D1 × E2 similarly to the case (0). First, we define
S 0 ∩ D1 × ∂E2 by

pr1(S 0 ∩ pr−1
2 (s, t)) =


(β1)[s] ((s, t) ∈ I × {t3}),
γ′[(t−t2)/(t3−t2)] ((s, t) ∈ {1} × [t2, t3]),
(α1)[s] ((s, t) ∈ I × {t2}),
γ[(t−t3)/(t2−t3)] ((s, t) ∈ {0} × [t2, t3]).

Since β1 = γ α1 γ
′, the closed braid S 0 ∩ D1 × ∂E2 is equivalent to the

trivial closed braid in D1 × ∂E2. Thus we may define S 0 ∩ D1 × E2 as a
braided surface of degree 2m without branch points.

(3) We construct S 0 ∩ D1 × E3 similarly to the case (1). First, we define
S 0 ∩ D1 × (E3 \ I × {(t3 + t4)/2}) by

pr1(S 0 ∩ pr−1
2 (s, t)) =

(β1)[s] ((s, t) ∈ I × [t3, (t3 + t4)/2)),
(β2)[s] ((s, t) ∈ I × ((t3 + t4)/2, t4]).

Then, we define S 0 ∩ D1 × (I × {(t3 + t4)/2}) as the 2m-braid β1 with
bands belonging to B1.
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(4) We construct S 0 ∩ D1 × E4 similarly to the case (2). We define S 0 ∩

D1 × ∂E4 by

pr1(S 0 ∩ pr−1
2 (s, t)) =


(β2)[s] ((s, t) ∈ I × {t4}),
δ′[(t−t5)/(t4−t5)] ((s, t) ∈ {1} × [t4, t5]),
(α2)[s] ((s, t) ∈ I × {t5}),
δ[(t−t4)/(t4−t5)] ((s, t) ∈ {0} × [t4, t5]).

Since β2 = δ α2 δ
′, we define S 0∩D1×E4 as a braided surface of degree

2m without branch points.
(5) We construct S 0 ∩ D1 × E5 similarly to the case (1). We define S 0 ∩

D1 × (E5 \ {(t5 + t6)/2}) by

pr1(S 0 ∩ pr−1
2 (s, t)) =

(α2)[s] ((s, t) ∈ I × [t5, (t5 + t6)/2)),
(α∗2)[s] ((s, t) ∈ I × ((t5 + t6)/2, t6]).

Then, we define S 0∩D1× I×{(t5+ t6)/2} as the 2m-braid α∗2 with bands
attaching to α∗2 as in the opposite direction of Figure 14 such that the
surgery result of α∗2 is α2. We denote by B+1 the set of these bands.

(6) We construct S 0 ∩ D1 × E6 similarly to the case (0). First, we define
S 0 ∩ D1 × ∂E6 by

pr1(S 0 ∩ pr−1
2 (s, t)) =


(α∗2)[s] ((s, t) ∈ I × {t7}),
Q2m ((s, t) ∈ {0, 1} × [t6, t7]),
Q2m ((s, t) ∈ I × {t6}).

Since α∗2 is equivalent to the trivial 2m-braid, we may define S 0∩D1×E6

as a braided surface of degree 2m without branch points.

As a result, we have a properly embedded surface S 0 in D1×D2. We take
a based point y0 = (0, 0) ∈ ∂D2. Then, S 0 is a braided surface of degree 2m
except in neighborhoods of the bands appearing in (1), (3), and (5). By an
ambient isotopy of a neighborhood of each band, we can change the band to
a branch point as shown in Figure 15. Hence, we obtain a braided surface
S of degree 2m from S 0. The braided surface S is adequate because the
2m-braid βS is the composition of adequate 2m-braids γ−1, δ, δ′, and γ′−1.

Step 3: Finally, we show that the surface-link F is equivalent to the plat
closure S̃ of S .

Let p : R4 = R3 × R → R3 and h : R4 = R3 × R → R be the projections
onto the first and second factors, respectively. We regard h as a height
function of R4. Let A be the surface of wicket type associated with S . Note
that ∂A = ∂S = ∂S 0. Let F0 = S 0 ∪ A. Then F0 is a surface-link equivalent
to S̃ = S ∪ A. Thus we show that F0 and F are equivalent.
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Figure 15. An isotopic deformation changing a band to a
branch point.

By an ambient isotopy of R4 keeping R3 × (t0, t7) fixed pointwise, we
deform F0 to a surface-link F1 such that

p(F1 ∩ R
3 × {t}) =



D1 (t = t7),
α̃∗2 ((t5 + t6)/2 < t < t7),
α̃∗2 ∪ |B

+
1 | (t = (t5 + t6)/2),

p(F0 ∩ R
3 × {t}) ((t1 + t2)/2 < t < (t5 + t6)/2),

α̃∗1 ∪ |B
−
1 | (t = (t1 + t2)/2),

α̃∗1 (t0 < t < (t1 + t2)/2),
d1 (t = t0),
∅ otherwise,

where |B−1 | (resp. |B+1 |) is the union of the bands belonging to B−1 (resp. B+1 ),
and d1 (resp. D1) is a union of mutually disjoint m 2-disks in R3 bounded
by α̃∗1 (resp. α̃∗2) such that d1 (resp. D1) is disjoint from |B−1 | (resp. |B+1 |) as in
the left of Figure 16 except for the attaching arcs of the bands, respectively.
Next, we define a surface-link F2 in R4 by

p(F2 ∩ R
3 × {t}) =



D2 (t = t7),
α̃2 ((t5 + t6)/2 ≤ t < t7),
p(F0 ∩ R

3 × {t}) ((t1 + t2)/2 < t < (t5 + t6)/2),
α̃1 (t0 < t ≤ (t1 + t2)/2),
d2 (t = t0),
∅ otherwise,

where d2 = d1∪ |B−1 | (resp. D2 = D1∪ |B+1 |) is the union of mutually disjoint
c1 (resp. c2) 2-disks as in the right of Figure 16, respectively.

Then, F2 is obtained from F1 by cellular moves (cf. [18]) along 3-cells
|B−1 | × [t0, (t1 + t2)/2]∪ |B+1 | × [(t5 + t6)/2, t7]. This implies that F1 and F2 are
equivalent.
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Figure 16. d2 is the union of d1 and |B−1 |.

Note that F2 ∩ R
2 × {t0} = d2 × {t0} is the union of all minimal disks of F

with respect to the height function h, F2∩R
2×{t7} = D2×{t7} is the union of

all maximal disks of F, and all saddle bands of F appear at t = (t3 + t4)/2 as
bands belonging to B1. By Lemma 4.3, F2 is equivalent to a closed realizing
surface of the banded link (β̃1, B1).

Since (L0, B0) is ambient isotopic to (β̃1, B1) and F is equivalent to a
closed realizing surface of (L0, B0), we see that F2 is equivalent to F. □

Next, we show Theorem1.2. We define the 2m-braid ∆m by ∆1 = Q2 × I
and ∆m =

∏m−1
k=1 (σ2k σ2k−1 · · ·σ2 σ1) for m ≥ 2. See Figure 17.

Figure 17. The 2m-braids ∆m (m = 1, 2, 3).

Note that the closure of an m-braid b is equivalent to the plat closure of a
2m-braid ∆m ι

2m
m (b)∆−1

m . See Figures 18 and 19.

Figure 18. An isotopic deformation of ∆m with the standard
wicket configuration w0 to a configuration of wickets appear-
ing in a closed braid form (Figure 1).
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Figure 19. A transformation from the closure of b to the plat
closure of ∆m ι

2m
m (b)∆−1

m (m = 3).

Proof of Theorem 1.2. Let F be an orientable surface-link. By Proposi-
tion 2.7, there exists a 2-dimensional braid S in D1×D2 = D1× I × I whose
closure in R4 is equivalent to F. Let m be the degree of S and S [t] the cross-
section S ∩ D1 × (I × {t}) for each t ∈ I. See Figure 7 when m = 3. Let S 1

be the 2-dimensional braid of degree 2m obtained from S by adding trivial
m sheets.

Let ε be a positive number and let D′2 = I × [−ε, 1 + ε]. We consider a
2-dimensional braid S 2 of degree 2m in D1×D′2 = D1× (I× [−ε, 1+ε]) with
a motion picture (S 2)[t] as in Figure 20. Here, the motion picture (S 2)[t] for
t ∈ [−ε, 0] (or t ∈ [1, 1+ε]) is the 1-parameter family of 2m-braids changing
12m to ∆m ∆

−1
m (or ∆m ∆

−1
m to 12m), respectively, and the motion picture (S 2)[t]

for t ∈ I = [0, 1] is the composition of ∆m, (S 1)[t] and ∆−1
m .

Figure 20. A motion picture of S 2 (m = 3).

As a result, the plat closure of S 2 has the motion picture as in Figure 21.
By comparing Figure 7 and Figure 21, we see that the closure of S is equiv-
alent to the plat closure of S 2. Hence, F has a genuine plat form presenta-
tion. □

Remark 4.7. In Lemma 4.6, each subcylinder Ui contains a part of a banded
link as in the left of Figure 22. However, we may assume that for each i,
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Figure 21. A motion picture of S̃ 2 (m = 3).

the band in Ui is either as in the left or as in the right of Figure 22. Then
we have another braided surface in the proof of Theorem 1.1, where the
corresponding branch point changes the sign. (A branch point of a braided
surface is positive (or negative) if the local monodromy is a conjugate of a
standard generator (or its inverse), cf. [12, 13]).

Figure 22. Two types of half-twisted bands in a subcylinder
Ui = di × [si, ti].

5. The plat index of a surface-link and examples

In this section, we introduce two surface-link invariants called the plat
index and the genuine plat index.

Definition 5.1. Let F be a surface-link. The plat index of F, denoted by
Plat(F), is defined as the half of the minimum degree of all adequate braided
surfaces whose plat closures are equivalent to F:

Plat(F) = min{ deg S/2 | S is a braided surface with S̃ ≃ F}.

Definition 5.2. Let F be a surface-link. If F admits a genuine plat form,
the genuine plat index of F, denoted by g.Plat(F), is defined as the half of
the minimum degree of all 2-dimensional braids whose plat closures are
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equivalent to F. If F dose not admit a genuine plat form, it is defined as
infinity:

g.Plat(F) =

min{deg S/2 | S is a 2-dimensional braid with S̃ ≃ F},
∞ if F admits no genuine plat forms.

By definition, it holds that Plat(F) ≤ g.Plat(F) for every surface-link F.
Moreover, from the proof of Theorem 1.2, we have the following proposi-
tion.

Proposition 5.3. The following inequalities hold for every orientable surface-
link F:

Plat(F) ≤ g.Plat(F) ≤ Braid(F).

In the rest of this section, we show some examples of surface-links in plat
forms and discuss the plat index and the genuine plat index.

We first recall the notion of a braid system of a braided surface. Refer to
[12] for more details. Let pri : D1 × D2 → Di (i = 1, 2) be the projection
and Cn the configuration space of n points of Int D1. Let S be a braided
surface of degree n, and Σ(S ) the branch locus of πS = pr2|S : S → D2. Let
y0 ∈ ∂D2 be a fixed base point.

The braid monodromy of S is a homomorphism ρS : π1(D2 \ Σ(S ), y0)→
π1(Cn,Qn) = Bn defined as follows: For a loop c : (I, ∂I)→ (D2 \ Σ(S ), y0),
define a loop ρS (c) : (I, ∂I) → (Cn,Qn) as ρS (c)(t) = pr1(π−1

S (c(t))). Then
the braid monodromy of S is defined as a group homomorphism sending
[c] to [ρS (c)] ∈ π1(Cn,Qn).

Let r be a positive integer. A Hurwitz arc system in D2 (with the base
point y0) is an r-tuple A = (α1, · · · , αr) of oriented simple arcs in D2 such
that

(1) for each i, αi∩∂D2 = ∂αi∩∂D2 = {y0} and this is the terminal point
of αi,

(2) for i , j, αi ∩ α j = {y0}, and
(3) α1, . . . , αr appear in this order around the base point y0.

The set of initial points of α1, . . . , αr is called the starting point set ofA.
Let A = (α1, · · · , αr) be a Hurwitz arc system with the starting point

set Σ(S ). For each i, let Ni be a (small) regular neighborhood of the start-
ing point of αi, αi an oriented arc obtained from αi by restricting to D2 \

Int Ni, and γi a loop αi
−1
· ∂Ni · αi in D2 \ Σ(S ) with base point y0. Here,

∂Ni is oriented counter-clockwise. Then π1(D2 \ Σ(S ), y0) is generated by
[γ1], [γ2], . . . , [γr] and we have [∂D2] = [γ1] · · · [γr]. The braid system of S
associated withA is an r-tuple bS of elements of Bn defined as

bS = (ρS ([γ1]), . . . , ρS ([γr])) ∈ (Bn)r.
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It is known that ρS ([γi]) is a conjugation of a standard generator or its
inverse, σ ε1 (ε ∈ {±1}), such that ε is the sign of the branch point which
is the starting point of αi. The composition ρS ([γ1])ρS ([γ2]) · · · ρS ([γr]) is
equal to βS in Bn.

The slide action of the braid group Br on (Bn)r is a left group action
defined as

slide(σ j)(β1, . . . , βr) = (β1, . . . , β j−1, β jβ j+1β
−1
j , β j, β j+2, . . . , βr)

for σ j ∈ Br and (β1, . . . , βr) ∈ (Bn)r. Two elements of (Bn)r are said to be
Hurwitz equivalent if they are in the same orbit of the slide action of Br.

Lemma 5.4 (cf. [12, 17, 20]). Two braided surfaces in D1 × D2 are equiv-
alent if and only if their braid systems are Hurwitz equivalent.

Let e(F) be the normal Euler number of a surface-knot F. The normal
Euler number of any orientable surface-knot is 0, and the normal Euler num-
ber of a trivial non-orientable surface-knot, which is a connected sum of p
copies of P+ and q copies of P−, is 2(p − q) (cf. [4, 8]).

Theorem 5.5. Let F be a surface-link.
(1) Plat(F) = 1 if and only if F is either a trivial 2-knot or a trivial

non-orientable surface-knot.
(2) g.Plat(F) = 1 if and only if F is either a trivial 2-knot or a trivial

non-orientable surface-knot with e(F) = 0.
(3) If F is a trivial orientable surface-knot with positive genus, then

Plat(F) = g.Plat(F) = 2.

Proof. (1) Let F be a surface-link with Plat(F) = 1 and S a braided surface
of degree 2 with S̃ ≃ F. Let p and q be the numbers of positive and negative
branch points of S , respectively. Then a braid system for S is Hurwitz
equivalent to (σ1, . . . , σ1, σ

−1
1 , . . . , σ

−1
1 ) consisting of p σ1’s and q σ−1

1 ’s.
Hence, the equivalence class of S is determined from p and q. Figure 23
is a motion picture of the plat closure of a braided surface of degree 2 with
p positive branch points and q negative branch points. The motion picture
describes a trivial 2-knot if p = q = 0 holds, otherwise, it describes a
connected sum of p copies of P+ and q copies of P−. Therefore, F is either
a trivial 2-knot or a trivial non-orientable surface-knot.

Conversely, if F is a trivial 2-knot, then Plat(F) = 1. If F is a trivial non-
orientable surface-knot, then F is equivalent to a surface-knot described in
Figure 23 and hence Plat(F) = 1.

(2) Let F be a surface-link with g.Plat(F) = 1 and S a 2-dimensional
braid of degree 2 with S̃ ≃ F. Since S is a 2-dimensional braid, the number
of positive branch points of S , denoted by p, is equal to the number of
negative ones. Hence, the argument in the proof of (1) implies that F is
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Figure 23. A surface-knot in a (normal) plat form.

equivalent to a trivial 2-knot, when p = 0, or a connected sum of p copies
of P+ and p copies of P−. In particular, it holds that e(F) = 0.

Conversely, if F is a trivial 2-knot, then g.Plat(F) = 1. If F is a trivial
non-orientable surface-knot with e(F) = 0, then F is a connected sum of p
copies of P+ and p copies of P− for some p > 0, which is equivalent to a
surface-knot described in Figure 23 with p = q. Hence g.Plat(F) = 1.

(3) Let F be a trivial orientable surface-knot with a positive genus. Since
Braid(F) = 2 (cf. [9, 12]), by Proposition 5.3, we have Plat(F) ≤ g.Plat(F) ≤
2. On the other hand, by (1), it holds that Plat(F) , 1. Hence, we have
Plat(F) = g.Plat(F) = 2. (Figure 24 shows a motion picture of a genuine
plat form of F.) □

Figure 24. A trivial orientable surface-knot with a positive
genus in a genuine plat form.

Proposition 5.6. Let F be the 2-knot denoted by 2 2 in the table of [15],
which is depicted in Figure 25. Then Plat(F) = g.Plat(F) = 2.

Proof. Figure 26 shows a deformation of a banded link by an isotopy of
R3. Using the isotopy, we see that F is equivalent to a surface-knot in a
genuine plat form depicted in Figure 27. Hence, we have the inequality
Plat(F) ≤ g.Plat(F) ≤ 2. Since F is not a trivial 2-knot, we have Plat(F) =
g.Plat(F) = 2. □

The braid index of every non-trivial surface-knot is greater than 2 ([9]).
Hence, 2 2 is an example such that the equality in g.Plat(F) ≤ Braid(F) in
Proposition 5.3 does not hold.
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Figure 25. A motion picture of the 2-knot 2 2.

Figure 26. An isotopic deformation of a banded link.

Figure 27. A motion picture of the 2-knot 2 2 in a genuine
plat form.

A surface-link is said to be ribbon if it is obtained from a trivial 2-link by
some 1-handle surgeries.

Theorem 5.7. Let F be a 2-knot (or a surface-link with χ(F) = 2) with
g.Plat(F) = 2. Then, F is ribbon.

Proof. Let S be a 2-dimensional braid of degree 4 with S̃ ≃ F, and r the
number of branch points of S . Since χ(F) = 2, we see that r = 2 from
χ(S̃ ) = 4 − r. Let bS = (β1, β2) ∈ (B4)2 be a braid system of S . Since
S is a 2-dimensional braid, βS = β1β2 = 1 in B4, i.e., β2 = β

−1
1 . A 2-

dimensional braid with a symmetric braid system (β1, β
−1
1 ) is known as a

ribbon 2-dimensional braid ([12]), which is equivalent to a 2-dimensional
braid S ′ in D1 × D2 = D1 × (I × [0, 1]) such that S ′ is symmetric with
respect to t = 1/2. Then the plat closure of S ′ is symmetric with respect to
t = 1/2 and it is in a normal form in the sense of [16]. Hence S̃ ′ is ribbon
(cf. Theorem 11.4 of [12]). Since F ≃ S̃ and S̃ ≃ S̃ ′, F is ribbon. □
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Proposition 5.8. Let k(n) be the twist knot (n ∈ Z) and F(n) the 2-twist spin
of k(n) ([23]). Then Plat(F(n)) = 2 holds for n , 0.

Proof. The 2-knot F(n) has a motion picture described in [14] as in Fig-
ure 28, where m = 2n + 1 and a box labeled by m contains m positive
half-twists or −m negative half-twists for m < 0. Since the trivial link de-
picted in (4) of Figure 28 is the plat closure of an adequate braid of degree
4, this motion picture gives us a (normal) plat form presentation for F(n).
On the other hand, it is known that F(n) is a non-trivial 2-knot if n , 0.
Hence, we have that Plat(F(n)) = 2. □

Figure 28. The 2-knot F(n) in a plat form (m = 2n + 1).

Furthermore, it is known that F(n) is not a ribbon 2-knot for n , 0
([6]). By Theorem 5.7, the genuine plat index of F(n) is greater than 2.
Thus, Proposition 5.8 gives us examples of 2-knots such that the equality in
Plat(F) ≤ g.Plat(F) in Proposition 5.3 does not hold.

A P2-link is a surface-link whose components are projective planes. Re-
placing m = 2n + 1 (or −m = −2n − 1) crossings in Figure 28 with 2n (or
−2n) crossings, respectively, we have a 2-component P2-link in a plat form.
In particular, in the case of n = 1, the P2-link is a P2-link denoted by 8−1,−1

1
in Yoshikawa’s table ([22]).

Proposition 5.9. Let F be a surface-link in a genuine plat form. Each
component of F is a surface-knot whose normal Euler number is zero.

Proof. Each connected component of F is regarded as a surface-knot in a
genuine plat form by forgetting other components of F. Thus it is sufficient
to show that e(F) = 0 for a surface-knot F in a genuine plat form.

For a (broken surface) diagram D of F (cf. [5]), let b+(D) (resp. b−(D))
be the number of positive (resp. negative) branch points of D. Then, the
normal Euler number e(F) is equal to b+(D) − b−(D).

When F = S̃ is in a genuine plat form, taking a diagram suitably, positive
(resp. negative) branch points of S (in the sense of a 2-dimensional braid)



A PLAT FORM PRESENTATION FOR SURFACE-LINKS 25

correspond to positive (resp. negative) branch points of D, and vise versa.
Since S is a 2-dimensional braid, the number of positive branch points of
S and that of negative branch points of S are the same. Thus we have
e(F) = b+(D) − b−(D) = 0. □

It is unknown to the author whether every surface-link consisting of surface-
knots whose normal Euler numbers are zero is equivalent to a surface-link
in a genuine plat form.
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