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Abstract

We show the existence of quadratic number fields possessing an ev-
erywhere unramified Galois extension with Galois group Ãn, the double
covering group of the alternating group, under the assumption of Bun-
yakovsky’s conjecture.

1 Introduction

Unramified extensions of number fields (and, indeed, of function fields) and their
Galois groups have been studied for a long time, due to their relevance in, e.g.,
class field theory and inverse Galois theory. In particular, a problem of interest
is to realize prescribed finite groups as the Galois groups of unramified Galois
extensions of low degree number fields. It is expected (although of course way
out of reach to prove in general) that every finite group occurs as an unramified
Galois group over infinitely many quadratic number fields. For certain solvable
groups, this conjecture can be answered positively via class field theory (see, e.g.,
[23]); for nonsolvable groups, the most classical results concern the construction
of quadratic fields having unramified extensions with alternating and symmetric
groups (e.g., [20], [22], [3], [8], and [6]). Some further almost simple groups were
realized in this sense in [12], making crucial use of specialization of function
field extensions as well as Abhyankar’s lemma (together with the fact that these
groups are generated by involutions). Additional problems arise for non-solvable
groups which are not almost-simple, notably central extensions of almost simple
groups, whose treatment may require the combination of established techniques
for the solvable and nonsolvable cases. A step in this direction was undertaken
in [7], dealing with direct products of alternating and cyclic groups. A yet
different direction was explored in [9] and [10], yielding the first realizations of
certain perfect groups not generated by involutions as unramified Galois groups
over infinitely many quadratic number fields. These included in particular the
realization of infinitely many quadratic number fields having unramified Galois
extensions with Galois group (the double covering group) Ãn for n = 5 and
n = 7.1

0 2020 Mathematics Subject Classification. Primary 12F05 ; Secondary 12F12 and 11R32.
0 Key words and phrases: inverse Galois problem with restricted ramification, unramified

extensions of number fields
1On a related note, see [18] for unramified realizations with Galois group Ã4

∼= SL2(3).
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In this note, we investigate these covering groups Ãn in more generality. We
will prove the following general result, which, albeit conditional, reduces the
problem to a well-accepted number-theoretical conjecture.

Theorem 1.1. Assume that the Bunyakovsky conjecture holds. Then for every
n ≥ 4, there exist infinitely many quadratic number fields possessing an every-
where unramified Galois extension with group Ãn, the unique double covering
group of the alternating group An.

The relevance of Bunyakovsky’s conjecture, or indeed the more general
Schinzel Hypothesis, for certain problems in inverse Galois theory is known.
Our proof of Theorem 1.1 in Section 3.2 adapts previous arguments leading
to a conditional proof of the so-called minimal ramification problem for the
symmetric groups Sn. Before this, in Section 3.1 we review an approach using
trinomials, which has also been successfully applied to many problems in inverse
Galois theory, and which can be applied to deduce some, but not all, cases of
Theorem 1.1.

2 Preliminaries

We begin by collecting some terminology and results crucial to the proof of
Theorem 1.1.

2.1 Hilbert’s irreducibility theorem

We will make use of several aspects of Hilbert’s irreducibility theorem. All of
these are well-known, but may be useful to recall here. The first is (a special
case of) the irreducibility theorem as shown by Hilbert himself in [4].

Theorem 2.1. Let T1, . . . , Tr and X be independent transcendentals (r ≥ 1),
and let f(T1, . . . , Tr, X) ∈ Q[T1, . . . , Tr, X] be an irreducible polynomial, non-
constant in X. Then there exist infinitely many values (t1, . . . , tr) ∈ Qr such
that f(t1, . . . , tr, X) ∈ Q[X] is irreducible. Moreover, given any arithmetic pro-
gressions ai + biZ (i = 1, . . . , r), these infinitely many values (t1, . . . , tr) may
additionally be chosen such that ti ∈ ai + biZ for all i = 1, . . . , r.

The following corollary on the preservation of Galois groups under special-
ization is also well-known, see, e.g., [17, Prop. 3.3.3].

Corollary 2.2. Let f(T,X) ∈ Q[T,X] be an irreducible polynomial with Galois
group G. Then there exist infinitely many t ∈ Q such that f(t,X) ∈ Q[X]
has Galois group G. If furthermore the splitting field of f(T,X) is a Q-regular
extension of Q(T ) (i.e., it contains no nontrivial algebraic extension of Q), then
these infinitely many values t may additionally be chosen such that the splitting
fields of the polynomials f(t,X) are pairwise linearly disjoint over Q.

2.2 On Bunyakovsky’s conjecture

The Bunyakovsky conjecture (see [2]) is a classical conjecture on prime values
of polynomials, stating the following:
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(BC) If f ∈ Z[X] is an irreducible polynomial and D ∈ N is the largest integer
dividing all values f(n) (n ∈ Z), then there are infinitely many n ∈ Z for which

f(n)/D ∈ Z is prime.2

Although it is supported by computational evidence and has been widely ex-
tended (e.g., into the Schinzel Hypothesis and the Bateman-Horn conjecture), it
is not known for any non-linear f . On the other hand, it has many applications
to number-theoretical problems.

In this paper, we will invoke the the Bunyakovsky conjecture in its “multi-
variate” form, i.e., use the following claim:

(MBC) For any r ≥ 1 and any irreducible integer polynomial f(X1, . . . , Xr)
there exist infinitely many different primes of the form f(x1, . . . , xr)/D, where
x1, . . . , xr ∈ Z, and D ∈ N denotes the largest integer dividing all integer

specializations f(x1, . . . , xr) (xi ∈ Z).

We note that this is in fact implied by the univariate form of the conjecture.

Lemma 2.3. The “classical” Bunyakovsky conjecture (BC) and the multivariate
Bunyakovsky conjecture (MBC) are equivalent.

Proof. Trivially (MBC) implies (BC). To show the converse, let f(X1, . . . , Xr) ∈
Z[X1, . . . , Xr] be irreducible and let D ∈ Z be the greatest common divisor of
all integer specializations of f . It suffices to find polynomials g1(U), . . . , gr(U) ∈
Z[U ] such that F (U) := f(g1(U), . . . , gr(U)) ∈ Z[U ] is irreducible and the great-
est common divisor of all its values is still D. We assume additionally that
f(0, . . . , 0) =: N 6= 0; this assumption can be made without loss of generality
via a simple linear shift in the variables Xi. It is elementary (see, e.g., [16, The-
orem 5.6]) that there exist a1, . . . , ar ∈ Z such that gcd(N, f(a1, . . . , ar)) = D,
and thus automatically gcd(N, f(x1, . . . , xr)) = D for all x1 ≡ ai mod N
(i = 1, . . . , r). We now consider the auxiliary polynomial fU (X1, . . . , Xr, U) :=
f(X1U, . . . ,XrU) ∈ Z[X1, . . . , Xr, U ]. We claim that fU is irreducible. Firstly,
fU is certainly irreducible when viewed as a polynomial in X1, . . . , Xr over
Q(U), since f is irreducible and Xi 7→ XiU is an invertible transformation over
Q(U). Furthermore, fU is primitive as a polynomial over the ring Z[U ]. Indeed,
all its coefficients equal the coefficients of f (which is irreducible over Z, hence
primitive) up to powers of U , whence the gcd of all coefficients of fU must be a
power of U ; on the other hand the constant coefficient fU (0, . . . , 0) = f(0, . . . , 0)
is a non-zero constant, whence the gcd of all coefficients must be 1. Since
Z[U ] is a UFD with field of fractions Q(U), the above observations imply
that fU is irreducible in Z[U ][X1, . . . , Xr] = Z[X1, . . . , Xr, U ]. Hilbert’s irre-
ducibility theorem (Theorem 2.1) now implies the existence of infinitely many
(x1, . . . , xr) ∈ Zr such that xi ≡ ai mod N for all i = 1, . . . , r, and F (U) :=
f(x1U, . . . , xrU) is irreducible. This also automatically yields gcd(F (0), F (1)) =
gcd(f(0, . . . , 0), f(x1, . . . , xr)) = D, i.e., the greatest common divisor of all val-
ues of F is still D. This completes the proof.

2Here, we count negatives of prime numbers as prime. Note that, strangely enough, many
modern sources explicitly demand the extra assumption D = 1. This is, however, not in the
spirit of Bunyakovsky’s original paper, which is in fact dedicated primarily to the investigation
of such “fixed divisors” D.
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2.3 Stem extensions of alternating and symmetric groups

In this section, we recall some basic facts around stem extensions of the sym-
metric and alternating groups. See [21, Chapter 2.7] for more details. Recall
that a stem extension of a group G is an extension

1→ H → G0 → G→ 1, (2.1)

where H ⊂ Z(G0)∩G′0 is a subgroup of the intersection of the center of G0 and
the derived subgroup of G0. If the group G is finite, then there is a largest size
for such a group G0, and for every G0 of that size the subgroup H is isomorphic
to one and the same group, called the Schur multiplier of G. Moreover, if the
finite group G is a perfect group, then G0 is unique up to isomorphism and is
itself perfect. Such G0 are often called universal perfect central extensions of
G, or covering groups. The following summarizes some important properties of
stem covers of An and Sn.

Lemma 2.4. a) The Schur multiplier of An is C2 for n = 4, 5 or n > 7 and
it is C6 for n = 6 or 7. In particular, for all n ≥ 5,3 there is a unique
degree-2 stem cover of An, denoted by Ãn.

b) For all n ≥ 4, the Schur multiplier of Sn is C2. Furthermore, there

are two degree-2 stem covers of Sn: in the first one, denoted by S̃n, the
transpositions of Sn lift to elements of order 2, whereas in the second one,
denoted by Ŝn, they lift to elements of order 4. Both these stem covers
contain Ãn as a subgroup of index 2.

2.4 Embedding problems

The proof of the main theorem requires the solution of certain central embedding
problems (with kernel of order 2). We recall some basic terminology and key
results around these.

A finite embedding problem over a field K is a pair (ϕ : GK → G, ε : G̃→ G),
where ϕ is a (continuous) epimorphism from the absolute Galois group GK of
K onto G, and ε is an epimorphism between finite groups G̃ and G fitting in
an exact sequence 1 → N → G̃ → G → 1. The kernel N = ker(ε) is called the
kernel of the embedding problem. An embedding problem is called central if
ker(ε) ≤ Z(G̃). A (continuous) homomorphism ψ : GK → G̃ is called a solution
to (ϕ, ε) if the composition ε ◦ψ equals ϕ. In this case, the fixed field of ker(ψ)
is called a solution field to the embedding problem. A solution ψ is called a
proper solution if it is surjective. In this case, the field extension of the solution
field over K has full Galois group G̃.

If K is a number field and p is a prime of K, every embedding problem (ϕ, ε)
induces an associated local embedding problem (ϕp, εp) defined as follows: ϕp is
the restriction of ϕ to GKp

(well defined up to fixing an embedding of K into

Kp), and εp is the restriction of ε to ε−1(G(p)), where G(p) := ϕp(GKp
).

Proposition 2.5 ([14], Chapter IV, Cor. 10.2). Let Γ = C.G be a central
extension of G by a cyclic group C of prime order and ε : Γ→ G the canonical
projection. Let ϕ : GQ → G be a continuous epimorphism. Then the following
hold:

3In fact, this uniqueness property holds for n = 4 as well, even though A4 is not perfect.
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a) The embedding problem (ϕ, ε) is solvable if and only if all associated local
embedding problems (ϕp, εp) are solvable, where p runs through all primes
of Q (including the infinite one).

b) If additionally |C| = 2, the equivalence of a) holds already when the set of
all primes is replaced by “the set of all primes, with one exception” (hence,
e.g., with the set of all finite primes).

Proposition 2.6 ([17], Prop. 2.1.7). Let Γ = C.G be a central extension of
G by a finite abelian group C, let ε : Γ → G be the canonical projection, and
let ϕ : GQ → G be a continuous epimorphism such that the embedding problem
(ϕ, ε) has a solution. For each finite prime p, let ϕ̃p : GQp

→ Γ be a solution of
the associated local embedding problem (ϕp, εp), chosen such that all but finitely
many ϕ̃p are unramified. Then there exists a (not necessarily proper) solution
ϕ̃ : GQ → Γ of (ϕ, ε) such that for all finite primes p, the restrictions of ϕ̃ and
ϕ̃p to the inertia group inside GQp coincide. In particular, ϕ̃ is ramified exactly
at those finite primes p for which ϕ̃p is ramified.

Remark 2.7. Note also that the local embedding problem (ϕp, εp) as in Propo-
sitions 2.5 and 2.6 is always solvable in the case where ϕp is unramified (simply
lift the image of Frobenius at p in G to any cyclic preimage in Γ).

3 Proof of Theorem 1.1

We now proceed to the proof of Theorem 1.1. There are several ways to construct
An-unramified extensions over quadratic fields. A well-known approach works
with trinomials, i.e., polynomials of the form Xn + aXk + b. We demonstrate
this approach and its limitations for identifying Ãn-unramified extensions of
quadratic number fields in Section 3.1, thereby motivating the necessity of the
more general approach of the following Section 3.2. Both approaches construct
suitable S̃n-extensions4 of Q, making use of the following observation.

Lemma 3.1. Let K ⊃ Q be the splitting field of an irreducible degree-n poly-
nomial, and assume that the following hold:

i) K/Q is ramified only at one finite prime p ≥ 3 and at the infinite prime,
and

ii) the inertia groups at p and at ∞ are generated by a transposition and by
an involution with 4j + 1 transpositions (j ≥ 0), respectively.

Then K/Q is an Sn-extension and embeds into an S̃n-extension L/Q such that

L/F is an Ãn-unramified extension, where F ⊂ K denotes the fixed field of An.

Proof. First, note that Gal(K/Q) = Sn, since the Galois group of a Galois ex-
tension of Q is generated by the set of all inertia subgroups at finite ramified
primes, and furthermore it is well known that a transitive permutation group
G ≤ Sn generated by transpositions is necessarily Sn itself, see e.g. [17, Lemma

4.4.4]. Now consider the embedding problem induced by S̃n → Gal(K/Q) ∼= Sn.

4Recall that S̃n denotes the unique degree-2 stem cover of Sn in which the tranpositions
of Sn split.
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Figure 1: Diagram of fields and Galois groups in Lemma 3.1

The induced local embedding problems are automatically solvable at all unram-
ified primes by Remark 2.7. Also, due to Condition ii), the local embedding
problem at infinity is solvable since the decomposition group at ∞ in K/Q is
generated by an involution with 4j + 1 transpositions, and such an element is
necessarily split in S̃n, cf., e.g., [5]. Thus, from Condition i), the local em-
bedding problem is solvable at all primes except possibly at p, and hence the
global embedding problem is solvable due to Proposition 2.5b). The solutions

are automatically proper, since the extension S̃n → Sn is non-split. Next, apply
Proposition 2.6 to conclude that such solution fields L ⊃ K ⊃ Q may be chosen
without any newly ramified finite primes (compared to K/Q), and even without
further ramification at the prime p (since the inertia group at p is generated by

a transposition, hence split in S̃n, i.e., doesn’t have any cyclic preimage of order
larger than 2). In total, all inertia groups in L/Q are generated by involutions

outside of the index 2 normal subgroup Ãn of S̃n. This implies that, if F ⊃ Q
denotes the quadratic number field fixed by Ãn, then L/F is an everywhere

unramified Ãn-extension.

3.1 A partial proof using trinomial extensions

Theorem 3.2. Assume Bunyakovsky’s conjecture. Then, for each n ≥ 4 with
n ≡ 2, 3, 4 or 5 mod 8, there exists a trinomial f = Xn + aX + b ∈ Q[X] whose

splitting field embeds into a S̃n-extension K/Q, such that K/Q(
√
D(f)) is a

Ãn-unramified extension where D(f) is the discriminant of f .

Proof. It suffices to show the existence of infinitely many different Galois ex-
tensions K/Q which are splitting fields of trinomials f(X) = Xn + aX + b
(a, b ∈ Z) and fulfill the assumptions of Lemma 3.1. For this, note that,
as a special case of [19, Theorem 2], the discriminant of f equals ∆(a, b) =
(−1)(n−1)(n−2)/2((n−1)n−1an−(−n)nbn−1). In particular, ∆(a, b) is irreducible
as a bivariate integer polynomial and without any fixed divisor D > 1 (since,
e.g., it takes the coprime values ∆(1, 0) = ±(n−1)n−1 and ∆(0, 1) = ±nn). Fur-
thermore, one of the two variables a and b occurs of odd degree. It then follows
from Bunyakovsky’s conjecture that ∆ takes infinitely many different values of
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the form ∆(a, b) = −p, for some prime number p.5 Choose now such values
a, b ∈ Z. The inertia groups at primes extending p in K/Q are then generated
by a transposition, since p strictly divides the discriminant. Furthermore, due
to ∆(a, b) < 0, the inertia group at∞ is generated by an odd involution; on the
other hand, since f is a trinomial, it has at most three real roots. Thus com-
plex conjugation acts as an involution σ ∈ Sn with at most three fixed points.
The latter leaves, for each n, only two possible cycle types, namely consisting
of either bn2 c or bn2 c − 1 transpositions. Use now that n ≡ 2, 3, 4 or 5 mod 8
to see immediately that an odd involution of this form must consist of 4j + 1
transpositions (j ≥ 0). We have thus verified conditions i) and ii) of Lemma
3.1. This completes the proof.

Remark 3.3. In analogy with the above proof, one verifies that for n ≡ 0, 1, 6
or 7 mod 8 and for any trinomial Xn + aXk + b with Galois group Sn, the
only candidates for a complex conjugation σ ∈ Sn which are compatible with our
problem (namely, which are odd involutions and fix at most three points) have

4j − 1 transpositions. Since these are nonsplit in S̃n, in order to make the tri-
nomial approach work for these residues, one would then have to use instead the
second stem cover Ŝn of Sn (in which the involutions with 4j − 1 transpositions
split). In this group, however, the transpositions are non-split, and hence prime
(or indeed squarefree) discriminants as obtained in the above argument are of
no use since a prime with transposition inertia in the Sn-extension would then
necessarily ramify further in the Ŝn-extension. This demonstrates the necessity
of an argument beyond the trinomial approach for a full proof of Theorem 1.1.

3.2 The general proof

We now present a construction which works for general n ∈ N. As before,
it suffices to justify the existence of infinitely many extensions K/Q fulfilling
Conditions i) and ii) of Lemma 3.1. The following lemma is more than we need
for our purposes, but may be useful in other contexts as well.

Lemma 3.4. Let n ∈ N, and let n1, . . . , nr and m1, . . . ,ms be positive integers
such that

∑r
i=1 ni =

∑s
j=1mj = n. For each i = 1, . . . , r (resp. j = 1, . . . , s), let

fi(X) (resp. gj(X)) be a “generic” monic polynomial of degree ni (resp., mj)
over Q, i.e., its coefficients are independent transcendentals over Q. Denote
the vector of all coefficients of all fi by a, and the vector of coefficients of the
gj by b; set f(X) =

∏r
i=1 fi(X), g(X) =

∏s
j=1 gj(X), and choose another

independent transcendental t. Then the discriminant D ∈ Z[a, b, t] of f(X) −
tg(X) is irreducible in Q(a, b)[t].

Proof. Let F (X) and G(X) be generic monic degree-n polynomials (with mutu-
ally independent coefficient vectors α, β). Then the discriminant ∆ of F (X)−
tG(X) is irreducible in Q[α, β, t], e.g., as a special case of [11, Lemma 4.3]. By
Hilbert’s irreducibility theorem, there exist infinitely many rational specializa-
tion vectors α→ α0, β → β

0
which preserve the irreducibility of ∆ (while also

5To see that the minus sign can be achieved, one may, e.g., consider ∆(a, (−1)
n
2
−1b2) (for

n ≡ 2, 4 mod 8) and ∆((−1)
n+1
2 a2, b) (for n ≡ 3, 5 mod 8), which are still irreducible without

fixed divisor > 1, and are now even degree polynomials with negative leading coefficient in
one of the variables. Now it is easy, via specializing first the other variable, to reduce to the
case of a one-variable irreducible polynomial taking only finitely many positive values in total.
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preserving its degree). Denote the specialized polynomials by F0, G0 ∈ Q[X],
and ∆0 ∈ Q[t], and let Ω ⊃ Q(t), resp. L ⊃ Q, be the splitting field of F0− tG0,
resp. of ∆0. Since ∆0 is irreducible and hence in particular separable, all non-
trivial inertia groups of ΩQ/Q(t) are generated by transpositions. Consequently,
Gal(ΩQ/Q(t)) is generated by transpositions, hence isomorphic to Sn. Since this
group is on the other hand a subgroup of Gal(Ω/Q(t)), it follows that Ω/Q(t)
is a Q-regular6 Sn-extension. Corollary 2.2 then implies that there are two (in
fact, infinitely many) values t0, t1 ∈ Q ∪ {∞}7 such that the splitting fields of
F (X)−tiG(X) have Galois group Sn (i = 0, 1) and their compositum is linearly
disjoint from L over Q. By applying a suitable fractional Q-linear transforma-
tion µ := µ(t), we may thus assume that t0 = 0 and t1 = ∞ are such values,
i.e., the splitting fields of F0 and G0 themselves are linearly disjoint from L.
Importantly, µ does not change L (the splitting field of ∆0), since it merely
induces a fractional linear change on the multiple values of the rational func-

tion t(X) := F0(X)
G0(X) , i.e., on the roots of the discriminant ∆0, thus leaving the

splitting field of ∆0 invariant.
Denote the splitting field of F0 by Ω1 and the one of G0 by Ω2. We thus

have that L is linearly disjoint over Q from Ω1Ω2. In particular, ∆0 is irre-
ducible over Ω1Ω2. Let E1 ⊂ Ω1 be the fixed field of the (intransitive) subgroup
Sn1
×· · ·×Snr

≤ Sn, and E2 ⊂ Ω2 the fixed field of Sm1
×· · ·×Sms

≤ Sn. By def-
inition, F0 factors over E1 into irreducible factors of degrees n1, . . . , nr (i.e., the
factorization pattern of our polynomial f(X) from the assertion), and G0 factors
over E2 into irreducible factors of degrees m1, . . . ,ms (i.e., the factorization pat-
tern of g(X)). This means that, for the polynomial f(X)−tg(X) ∈ Q(a, b)[t,X]
from the assertion, we have found specialization vectors a 7→ a0 and b 7→ b0 with
entries in Ω1Ω2, at which the discriminant D specializes to an irreducible poly-
nomial in (Ω1Ω2)[t] (of non-decreasing degree). This can only happen if D itself
was irreducible in (Ω1Ω2)(a, b)[t], and hence a fortiori in Q(a, b)[t].

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We apply Lemma 3.4 with (n1, . . . , nr) = (1, . . . , 1) and
(m1, . . . ,ms) = (2, . . . , 2, 1, . . . , 1), where, in view of Lemma 3.1, we demand
the number of 2’s to be congruent to 1 modulo 4. By Hilbert’s irreducibility
theorem, there exist infinitely many specializations of the coefficient vectors a
and b maintaining the irreducibility (in Q[X]) of the discriminant ∆0 of the
thus specialized polynomial f0(X) − tg0(X). Moreover, we may additionally
demand each quadratic factor of g0 to remain irreducible over R; indeed, this
additional condition merely amounts to saying that the discriminant of each
quadratic factor X2 + biX + bi+1 should be negative, i.e., bi+1 should be chosen
sufficiently large compared to bi, something obviously compatible with Hilbert’s
irreducibility theorem.

Now let E be the splitting field of f0 − tg0 over Q(t), and let S be the set
of primes dividing all integer values of ∆0. Since f0 is totally split over Q, for
any p ∈ S and any p-adically sufficiently small value t0 ∈ Q, the polynomial
f0(X)− t0g0(X) is totally split over Qp by Krasner’s lemma. In particular, p is
then unramified in the splitting field of f0− t0g0. We wish to restrict to integer
specializations at such p-adically small values (for all p ∈ S simultaneously)

6I.e., Ω ∩ Q = Q.
7Here, for convenience, we define the specialization of F0(X)−tG0(X) at t =∞ as G0(X).
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from now on, which may be achieved by considering all integer specialization
values of f0−Nt ·g0(X) for a suitable non-zero integer N (namely, a product of
suitable high powers of the primes in S). Note also that, if t0 is of sufficiently
large absolute value, then its factorization pattern over the reals equals the one
at t = ∞, i.e., the one of g0, which by assumption splits into 4j + 1 quadratic
irreducible factors and linear factors otherwise over R. In particular, complex
conjugation in the splitting field is an involution with 4j + 1 transpositions.
Assuming Bunyakovsky’s conjecture, there are infinitely many integers t0 for
which ∆0(Nt0) is of the form qD, where q is a prime and D is divisible only
by primes in S (we have used here that replacing t by Nt does not lead to
any new fixed prime divisors p /∈ S, which is evident upon mod-p reduction,
since gcd(p,N) = 1). This means that the discriminant of the splitting field of
f0(X)−Nt0g0(X) is also a prime up to at most such a factor D. But also, by
choice of N , we already know that the primes in S are unramified in the latter
splitting field. Therefore, there is only one ramified finite prime, and its inertia
group is generated by a transposition. Furthermore, for |Nt0| sufficiently large,
the inertia group at the infinite prime generated by an involution with 4j + 1
transpositions, as already explained. This yields infinitely many Sn-extensions
of Q fulfilling the assumptions of Lemma 3.1, thus completing the proof.

Remark 3.5. An approach somewhat similar to the one taken above has been
carried out in the proof of [1, Theorem 6.5] (improving over the earlier [15, Re-
mark 3.10]), namely to show that (conditionally on Schinzel’s Hypothesis - and,
in fact, ultimately only on Bunyakovsky’s conjecture) there exist Sn-extensions
of Q ramified at only one (necessarily finite) prime. For this purpose, the au-
thors necessarily require totally real Sn-extensions, whereas we deliberately avoid
this special scenario, since Proposition 2.6 would then not be sufficient to ex-
clude the solution field of the embedding problem acquiring new ramification over
infinity.

4 Some explicit examples

While unconditional results on the existence of infinitely many quadratic number
fields as in the assertion of Theorem 1.1 may be hard (for arbitrary n), simple
database checks (e.g., lmfdb.org, [13]) yield some fields of this form (for small
n). In Table 1, we list, for small values of n, the “smallest” database hit (when
counting by discriminant norm) of a quadratic number field F embedding into
an Sn-extension K/Q which fulfills the assumptions of Lemma 3.1, and thus in

particular possessing an unramified Ãn-extension.
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n F

4 Q(
√
−283)

5 Q(
√
−4903)

6 Q(
√
−92779)

7 Q(
√
−3444743)

8 Q(
√
−69367411)

9 Q(
√
−2307632671)

10 Q(
√
−215067767)

11 Q(
√
−5901091967)

Table 1: Some quadratic fields with unramified Ãn-extension
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