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Abstract

By specializing regular polynomial with Galois group PGL(2, 7) and using
Newton polygon technique, we construct PGL(2, 7)-extensions over Q unrami-
fied over their unique quadratic subfields. The Galois group over the quadratic
field is a simple group PSL(2, 7).
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1 Introduction

Unramified abelian extensions over a number field are well described by class field
theory. However, no unified description is known for unramified nonabelian exten-
sions. Despite this situation, many examples of unramified nonabelian extensions
are known, especially over quadratic fields. Among these examples, Yamamoto’s
classical result [14] shows that infinitely many real quadratic fields have unramified
An-extensions for n ≥ 3, and its extension by Yamamura [15] is worth mentioning
as well. Recently, a systematic method to generate such extensions was found in
[1] based on the idea of [5], and applied to the construction of an easily describ-
able infinite family from certain regular polynomials. Another technique for such
construction can be found in [4].

The aim of this paper is to construct PGL(2, 7)-extensions over Q providing
unramified PSL(2, 7)-extensions over the unique quadratic subfields. There are
several literature on unramified PSL(2, 7)-extensions over quadratic fields and the
above-mentioned [4] is one of them. In that paper, the authors construct unrami-
fied PSL(2, 7)-extensions over quadratic fields with the Galois group isomorphic to
C2 × PSL(2, 7). Our approach is quite different: starting from a regular realization
of PGL(2, 7)-extension, we deduce ramification information using Newton polygon
to construct such unramified extensions.

∗This work was supported by JSPS KAKENHI Grant Number 20K03521.
2020 Mathematics Subject Classification. Primary 12F12; Secondary 11R09, 11R32.
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There are several researches on PGL(2, 7)-extension recently. We mention to
two of them. In the paper [3], they study PGL(2, 7)-extensions defined by a similar
polynomial as ours imposing local conditions. Our study is different in purpose
and we need wider range of parameter variation. On the other hand, in the paper
[10], the authors construct PGL(2, 7)-extensions ramified only at one prime using
non-liftable modular forms of positive characteristic.

The outline of this paper is as follows. In Section 2, we give some preliminaries
on regular PGL(2, 7)-polynomials and on the Newton polygon method to deduce
ramification properties of these polynomials. In Section 3, based on the above-
developed technique, we analyze prime decomposition in PGL(2, 7)-extension, and
in particular, we compute the decomposition groups and the inertia groups of at
most tamely ramified primes. In Section 4, we construct PGL(2, 7)-extensions with
only one ramified prime and unramified PSL(2, 7)-extensions over quadratic fields
by using the results in Section 3.

Throughout this paper, we mean by a number field a finite extension of the field
of rational numbers Q. For a number field K, we denote by DK the discriminant of
K, by OK the ring of integers of K, and by K̃ the Galois closure of K over Q. For
a rational prime p, we denote by vp the p-adic (exponential) valuation. For a prime
ideal p of a number filed K lying above p, we denote the ramification index and the
inertia degree by e(p/p) and f(p/p), respectively.

All computation in this paper has been done by Magma [2].

2 Preliminaries

Our study on arithmetic of PGL(2, 7)-extensions is based on the polynomial

F (T,X) = X8 +X7 + 7X6 − TX − T ∈ Q(T )[X] (2.1)

given in [8, Table 6 in Appendix]. Here, we consider PGL(2, 7) as a transitive
subgroup of S8:

PGL(2, 7) ≃ ⟨(3 4 6 5 7 8), (1 8 2)(4 5 6)⟩ ⊂ S8.

In the below, we identify these two groups. The above regular polynomial is com-
puted by the rigidity method described as [8, Chapter I]. We shall explain the
method briefly.

Definition 2.1 ([12]). Let G be a finite group and r(≥ 3) an integer. An r-point
Hurwitz parameter is a triple h = (G,C, ν) consisting of

• C = (Γ1, . . . ,Γk) is a k-tuple of distinct conjugacy classes of G,

• ν = (ν1, . . . , νk) is a partition of r

satisfying the two conditions
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• Γ1, . . . ,Γk generate G,

•
∏
[Γi]

νi = 1 holds in the abelianization Gab.

When G is clear from the context, we write h = (C, ν) for simplicity.

If a Hurwitz parameter satisfies so-called the rigidity, rationality, and genus-zero
conditions, then we can obtain the polynomial over Q(T ) of the form

f0(X)− T · f∞(X) (f0, f∞ ∈ Q[X])

defining a G-extension (see [8, Chapter I]).
The conjugacy classes of PGL(2, 7) are listed in Table 1.

Table 1: Conjugacy classes of PGL(2, 7)
Class order length representative
c1 1 1 id
c2 2 21 (1 6)(2 4)(3 7)(5 8)
c3 2 28 (1 7)(2 4)(3 8)
c4 3 56 (1 8 2)(4 5 6)
c5 4 42 (1 5 6 8)(2 7 4 3)
c6 6 56 (1 3 4 7 8 2)
c7 7 48 (1 5 3 7 6 8 2)
c8 8 42 (1 7 5 4 6 3 8 2)
c9 8 42 (1 4 8 7 6 2 5 3)

The PGL(2, 7)-polynomial (2.1) is computed from the three-point Hurwitz pa-
rameter (C, ν) = ((c3, c6, c7), (1, 1, 1)). There are 3 other three-point Hurwitz pa-
rameters giving rise to PGL(2, 7)-polynomials. They are

(C, ν) = ((c6, c4), (2, 1)), ((c6, c2), (2, 1)), ((c3, c5, c6), (1, 1, 1)).

Each parameter respectively leads to

X6(X2 + 9X + 21)− T (7X2 − 9X + 3),

X6(X2 + 6X + 21) + T (7X2 − 12X + 12),

(X2 + 63)4 − T (7X2 + 18X + 567).

As our main task in this paper is to study the decomposition of rational primes
in PGL(2, 7)-extensions obtained by specializations of (2.1) by the aid of Newton
polygons, we recall the definition of a Newton polygon. Let p ∈ Z be a fixed
rational prime and f(X) =

∑
aiX

i ∈ Qp[X]. The lower convex envelope Γ of the
set of points {(i, vp(ai))} in R2 is called the Newton polygon of f with respect to p.
Let S1, . . . , Sg be the segments of Γ.
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To state a theorem of Ore, which is a key tool of our study, we need additional
definitions. We further assume that f(X) ∈ Z[X] is a monic polynomial. In this
case, the Newton polygon decreases monotonically to the horizontal axis. For a
segment Si of Γ starting from (s, vp(as)) ending at (t, vp(at)) (s < t), we set Ei = t−s
and Hi = vp(as) − vp(at). Let di = gcd(Ei, Hi), ei = Ei/di, and hi = Hi/di. We
define the integer sequence (bj)0≤j≤di by

bj =

{
as+jei/p

vp(as+jei
) if vp(as+jei) = vp(as)− jhi,

0 otherwise.

Then the polynomial

fSi
(Y ) =

di∑
j=0

bdi−jY
j

is called the associated polynomial of the segment Si (see [6, p.32]). If the discrimi-
nant of fSi

is not divisible by p, then f is called Si-regular. If f is Si-regular for all
segments Si of Γ, then f is called Γ-regular.

Remark 2.2. We add some comments on the above definitions.
We adopt the definition of Newton polygon in [9, p.144], in which the points

are taken in the reverse order of [6]. By adopting this definition, our polygon is
symmetric about a vertical line with one in [6].

The associated polynomial is defined also in the reverse order from [6]. They
relate by fi′(Y ) = Y difSi

(1/Y ), where fi′ on the left hand side is the polynomial
defined in [6] and Si and Si′ are the corresponding segments. In the following
theorem, we only need the factorization type of fSi

(mod p) and therefore, this
definition does not affect the result below.

In the original paper [11] by Ore, the Newton polygon and the associated polyno-
mial are defined using a factor φ(X) of f(X) (mod p). By translating f(X) linearly,
we may assume φ(X) = X and recover the mordern definition of them as in [6].

Theorem 2.3 (Ore [6, Theorem 6]). Keep all the above notation. Then, the decom-
position of p in Q[X]/(f(X)) is

(p) = Ae1
1 · · ·Aeg

g .

Moreover, for each Si, if f is Si-regular and the factorization of fSi
over Fp is

ϕi,1(Y ) · · ·ϕi,ki(Y ),

then the prime decomposition of Ai is

Ai = pi,1 · · · pi,ki , f(pi,j/p) = deg(ϕi,j).
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Remark 2.4. Theorem 2.3 also holds for a monic polynomial in Q[X]. Let f(X) =∑d
i=0 aiX

i ∈ Q[X] be a monic polynomial. If we define m = max{−vp(ai) | i =
0, . . . , d}, then g(X) = pmdf(X/pm) is a monic polynomial over Zp. The polynomials
f(X) and g(X) have the same number of segments in their Newton polygons with
respect to p. The differences between the slopes of the corresponding segments equal
m and therefore, they share the same associated polynomial.

3 Decomposition of primes in PGL(2, 7)-extensions

Let F (T,X) be the polynomial defined in (2.1) with the discriminant

−77T 5(T + 108)3. (3.1)

We denote by Kt the number field defined by the polynomial F (t,X) specialized by

t ∈ Q. We assume that the Galois group Gal(K̃t/Q) is isomorphic to PGL(2, 7).
In this section, we only consider the case t ∈ Z. The possible ramifying primes in
Kt/Q divide −77t5(t+108)3. In this section, we study the decomposition a rational
prime p dividing t in Kt. The other cases will be treated in Section 4. We fix the
notation used in this section. If the prime factorization of an ideal A of OKt is

A = pe11 · · · pegg , fi = f(pi/p),

then we say that A has the decomposition type

(f e1
1 , . . . , f eg

g )

and we write A = (f e1
1 , . . . , f

eg
g ). Moreover, if ei = 1, then we simply write fi instead

of f 1
i . We denote by N(A) denote the absolute norm of A and by

(
·
p

)
the Legendre

symbol. When p ≡ 1 mod 3, then we define cubp = {x3 | x ∈ F×
p }.

We compute the decompositions of primes in two steps. The following two propo-
sitions give the first step.

Proposition 3.1. Let p ≥ 5 be a prime not equal to 7. If vp(t) > 0, then the prime
p decomposes in Kt as

pOKt = AB, N(A) = p6, N(B) = p2. (3.2)

Here the ideal B has the factorization

B =

(1, 1) if
(

−3
p

)
= 1,

(2) if
(

−3
p

)
= −1.

Proposition 3.2. The prime 7 decomposes in Kt as follows:
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(i) if 0 < v7(t) < 7, then 7OKt = (1, 17).

(ii) if v7(t) = 7, then

7OKt =


(1, 7) if n ≡ 1 mod 7,

(1, 1, 3, 3) if n ≡ 2, 4 mod 7,

(1, 1, 6) if n ≡ 3, 5 mod 7,

(1, 1, 2, 2, 2) if n ≡ 6 mod 7.

(iii) if v7(t) > 7, then 7OKt = AB with N(A) = 76 and B = (1, 1).

As a second step, we decompose the ideal A which remains in the first step.

Proposition 3.3. Let p ≥ 5 be a rational prime and write t = pvp(t)n ∈ Z. Let A
be the ideal in Propositions 3.1 and 3.2.

(i) The case p ̸= 7:

(1) if gcd(vp(t), 6) = 1, then A = (16).

(2) if gcd(vp(t), 6) = 2, then

A =

(13, 13) if
(

7n−1

p

)
= 1,

(23) if
(

7n−1

p

)
= −1.

(3) if gcd(vp(t), 6) = 3, then

A =


(12, 22) if 3 ∤ p− 1,

(12, 12, 12) if 3 | p− 1 and 7n−1 ∈ cubp,

(32) if 3 | p− 1 and 7n−1 /∈ cubp.

(4) if gcd(vp(t), 6) = 6, then

A =



(1, 1, 1, 1, 1, 1) if 3 | p− 1, 7n−1 ∈ cubp and
(

7n−1

p

)
= 1,

(2, 2, 2) if 3 | p− 1, 7n−1 ∈ cubp and
(

7n−1

p

)
= −1,

(3, 3) if 3 | p− 1, 7n−1 /∈ cubp and
(

7n−1

p

)
= 1,

(6) if 3 | p− 1, 7n−1 /∈ cubp and
(

7n−1

p

)
= −1,

(1, 1, 2, 2) if 3 ∤ p− 1 and
(

7n−1

p

)
= 1,

(2, 2, 2) if 3 ∤ p− 1 and
(

7n−1

p

)
= −1.

(ii) The case p = 7 and v7(t) > 7:

6



(1) if gcd(v7(t)− 1, 6) = 1, then A = (6).

(2) if gcd(v7(t)− 1, 6) = 2, then

A =

{
(13, 13) if n ≡ 1, 2, 4 mod 7,

(23) if n ≡ 3, 5, 6 mod 7.

(3) if gcd(v7(t)− 1, 6) = 3, then

A =

{
(12, 12, 12) if n ≡ ±1 mod 7,

(32) if n ̸≡ ±1 mod 7.

(4) if gcd(v7(t)− 1, 6) = 6, then

A =


(1, 1, 1, 1, 1, 1) if n ≡ 1 mod 7,

(3, 3) if n ≡ 2, 4 mod 7,

(6) if n ≡ 3, 5 mod 7,

(2, 2, 2) if n ≡ 6 mod 7.

We shall prove these propositions at the same time.

Proof of Propositions. Let p be a prime ̸= 7. For t ∈ Z with vp(t) > 0, the Newton
polygon of F (t,X) with respect to p is as follows.

0 1 2 3 4 5 6 7 8
0
1
2
3
4

S1 S2

Let us denote the segments of the Newton polygon with the horizontal length 6 and
2 by S1 and S2, respectively. Then S1 corresponds to A and S2 corresponds to B in
the notation of Proposition 3.1. To decompose B by using Ore’s theorem (Theorem
2.3), we consider the factorization of the associated polynomial

FS2(Y ) = 7Y 2 + Y + 1

of S2 in Fp with Disc(FS2) = −33. Since 2 ̸= 0 in Fp, we have

7 · 22FS2(Y ) = (7 · 2Y + 1)2 + 27.

This implies that FS2 is reducible in Fp if and only if
(

−27
p

)
=

(
−3
p

)
= 1. This

proves Proposition 3.1.
On the other hand, the possible Newton polygon with respect to p = 7 is one of

the following forms.
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0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9
10

0 1 2 3 4 5 6 7 8

v7(t) < 7 v7(t) = 7 v7(t) > 7

If v7(t) > 7, then the Newton polygon has a segment with the horizontal lengths
of 6 and two segments with the horizontal length of 1. This proves Proposition 3.2
(iii) for the case v7(t) > 7. If v7(t) ≤ 7, then the Newton polygon has segments of
the horizontal length 1 and 7. This shows that 7 decomposes as

7OK = Aq, N(A) = 77

where q is a prime of Kt. This completes the proof of (i) in Proposition 3.2.
It remains to decompose the ideal A. For our purpose, we use Theorem 2.3. We

demonstrate the computation only for the cases:

(i) The case when p ̸= 7 and gcd(vp(t), 6) = 3;

(ii) the case when p ̸= 7, 3 ∤ (p− 1) and
(

7n−1

p

)
= −1.

While the case (i) covers the generic cases, the case (ii) needs some careful arguments.
We begin with case (i). In this case, the associated polynomial of S1 is

FS1(Y ) = −nY 3 + 7

with n = t · p−vp(t). The discriminant of the above polynomial is −3372n2. Thus we
can apply Theorem 2.3 to the polynomial. If 3 ∤ p − 1, then Fp has no primitive
third roots of unity. This implies that FS1 has only one root in Fp for all n. On the
other hand, if 3 | p − 1, then Fp has a primitive third root of unity. This implies
that FS1 has a root in Fp if and only if FS1 has 3 roots in Fp. Thus we have obtained

FS1(Y ) =


(degree1)× (degree2) if 3 ∤ p− 1,

(degree1)× (degree1)× (degree1) if 3 | p− 1, 7n−1 ∈ cubp,

(degree3) if 3 | p− 1, 7n−1 /∈ cubp.

This shows the decomposition of A.
For the case (ii), the decomposition type of A is given by the associated poly-

nomial −nY 6 + 7. We have to consider the splitting field of the polynomial. A
decomposition of the polynomial to quadratic factors in an algebraic closure Fp is

Y 6 − 7−1n = (Y 2 − b)(Y 2 − bω)(Y 2 − bω2),
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where b ∈ Fp and ω is a primitive third root of unity. This implies that the degree of
the splitting field of −nY 6+7 is 2. On the other hand, −nY 6+7 has no degree one

factors, because
(

7n−1

p

)
= −1. Hence, the irreducible decomposition of −nY 6 + 7

consists of three degree 2 irreducible factors over Fp, and thus, the decomposition
type of A is (2, 2, 2).

If a prime divisor p of t ramifies tamely in Kt/Q, then we can calculate the

decomposition and inertia groups in Galois closure K̃t. Let K be a Galois extension
over Q with Galois group G. For a prime p and a prime ideal p in K lying over p,
we denote the decomposition group by Z(p/p) and the inertia group by T (p/p). We
simply write Z and T if no confusion can occur.

The decomposition and inertia groups have the following fundamental properties:

• The both groups are subgroups of the Galois group G;

• The group T (p/p) is normal in Z(p/p);

• The quotient Z/T is cyclic;

• If p ramifies tamely, then the group T is cyclic.

By using the following lemma, we can calculate ramification indices and inertia
degrees in Kt/Q from the pair (Z, T ).

Lemma 3.4 ([13]). Let K be a number field and G = Gal(K̃/Q). We denote by H

the subgroup of G fixing K. Let p be a prime. For a prime ideal P of K̃ lying above
p, we denote by Z and T the decomposition and the inertia groups of P, respectively.
Then there is a one-to-one correspondence between the double cosets Z\G/H and
the distinct prime ideals in K lying above p. For a prime ideal p of K corresponding
to ZσH, the following equalities hold:

e(p/p)f(p/p) = (σ−1Zσ : σ−1Zσ ∩H);

e(p/p) = (σ−1Tσ : σ−1Tσ ∩H).

By applying Lemma 3.4 to Kt and K̃t, we obtain the possible pairs (Z, T ) for
the decomposition types of the tamely ramified primes in Kt/Q.

We explain the notation in Table 2 and Table 3.
Table 2 contains the all subgroups of PGL(2, 7) up to conjugacy. In the table,

the “length” column contains the conjugacy length of the group. Figure 1 shows
the subgroup lattice of PGL(2, 7), which is downloadable from

https://people.maths.bris.ac.uk/~matyd/GroupNames/321/PGL(2,7).html.
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Table 2: Subgroups of PGL2(7).

No. subgroups generators order length No. subgroups generators order length
1 C1 (1) 1 1 14 D4 (1 6 4 7)(2 5 3 8), 8 21
2 C2 (1 3)(2 4)(5 6)(7 8) 2 21 (1 8)(2 7)(3 6)(4 5)
3 C2 (1 7)(2 6)(3 5) 2 28 15 D4 (1 3 2 5)(4 7 6 8), 8 21
4 C3 (3 7 6)(4 8 5) 3 28 (1 5)(2 3)(7 8)
5 C7 (1 6 8 5 4 7 2) 7 8 16 C8 (1 6 5 7 2 4 3 8) 8 21
6 C2

2 (1 3)(2 4)(5 6)(7 8), 4 14 17 A4 (3 7 6)(4 8 5), 12 14
(1 4)(2 3)(5 8)(6 7) (1 8)(2 7)(3 6)(4 5)

7 C4 (1 6 4 7)(2 5 3 8) 4 21 18 D6 (2 4 8 7 3 5), 12 28
8 C2

2 (1 5)(2 3)(7 8), 4 42 (1 6)(2 8)(5 7)
(1 2)(3 5)(4 6)(7 8) 19 F7 (1 6 3 7 2 5), 42 8

9 C6 (1 6 3 7 2 5) 6 28 (1 4 7 6 3 5 2)
10 S3 (1 6)(2 8)(5 7), 6 28 20 D8 (1 6 5 7 2 4 3 8), 16 21

(2 8 3)(4 7 5) (1 5)(2 3)(7 8)
11 S3 (1 3)(2 4)(5 6)(7 8), 6 28 21 S4 (1 6 4 7)(2 5 3 8), 24 14

(1 4 5)(2 3 6) (3 7 6)(4 8 5)
12 D7 (1 7)(2 6)(3 5), 14 8 22 PSL2(7) (1 5)(2 8)(3 6)(4 7), 168 1

(1 4 7 6 3 5 2) (1 5 7 6)(2 4 8 3)
13 C7 ⋊ C3 (1 5 8)(2 6 7), 21 8 23 PGL2(7) (1 6)(2 4)(3 7)(5 8), 336 1

(1 6 8 5 4 7 2) (1 2 3 8 6 4)

Figure 1: The lattice of subgroups of PGL2(7).
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8
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288 21
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Table 3: The decomposition and inertia groups.
Z T decomposition type vp(DKt)
C1 C1 (1, 1, 1, 1, 1, 1, 1, 1) 0

C2(No.3) C1 (1, 1, 2, 2, 2) 0
C3 C1 (1, 1, 3, 3) 0
C6 C1 (1, 1, 6) 0

C2(No.3) C2(No.3) (1, 1, 12, 12, 12) 3
C6 C2(No.3) (1, 1, 32) 3
C3 C3 (1, 1, 13, 13) 4
C6 C3 (1, 1, 23) 4
C6 C6 (1, 1, 16) 5
C7 C1 (1, 7) 0
C7 C7 (1, 17) 6

C7 ⋊ C3 C7 (1, 17) 6
D7 C7 (1, 17) 6
F7 C7 (1, 17) 6

C2(No.2) C1 (2, 2, 2, 2) 0
C2

2(No.8) C2(No.3) (2, 12, 22) 3
S3(No.10) C3 (2, 13, 13) 4
S3(No.11) C3 (2, 23) 4

D6 C6 (2, 16) 5
C4 C1 (4, 4) 0
C8 C1 (8) 0

C2(No.2) C2(No.2) (12, 12, 12, 12) 4
C2

2(No.8) C2(No.2) (12, 12, 22) 4
C2

2(No.6) C2(No.2) (22, 22) 4
C4 C2(No.2) (22, 22) 4
C8 C2(No.2) (42) 4
C4 C4 (14, 14) 6

D4(No.15) C4 (14, 14) 6
C8 C4 (24) 6

D4(No.14) C4 (24) 6
C8 C8 (18) 7
D8 C8 (18) 7
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In Table 3, to distinguish the isomorphic subgroups, we add the number from
Table 2. Since the ramification is tame, the p-order of DKt can be calculated by the
formula

vp(DKt) =
∑
p

f(p/p)(e(p/p)− 1).

The pairs of the decomposition and inertia groups for tamely ramified primes
p ≥ 5 in the PGL(2, 7)-extensions defined by (2.1) can be determined. For exam-
ple, by Proposition 3.1 and Proposition 3.3 (i)(2), we obtain that, if p ≥ 5, p ̸=
7, gcd(vp(t), 6) = 2, and

(
7n−1

p

)
= −1, then the decomposition type of p is (1, 1, 23).

Since (C6, C3) is the unique pair having the decomposition type, p has (C6, C3) as

the decomposition and the inertia groups at K̃t/Q. Similarly, if p = 7, v7(t) >
7, gcd(v7(t)− 1, 6) = 2, and n ≡ 3, 5, 6 mod 7, then 7 has (C6, C3) as the pair.

4 Construction of PGL(2, 7)-extensions unramified

over quadratic fields

The group PGL(2, 7) has a unique subgroup of index 2, that is PSL(2, 7). This
implies that a PGL(2, 7)-extension contains the unique quadratic subfield Q(

√
DKt)

and the Galois group of K̃t/Q(
√

DKt) is isomorphic to PSL(2, 7). For a rational
prime p, Table 3 shows that if vp(DKt) = 3, then T ∼= C2(No.3) ⊈ PSL(2, 7). Thus,
we have the following lemma, which will be used throughout this section.

Lemma 4.1. A tamely ramified prime ideal of Q(
√

DKt) lying above p in Kt/Q is

unramified in K̃t/Q(
√

DKt) if and only if vp(DKt) = 0 or 3.

The aim of this section is to prove the following theorem.

Theorem 4.2. Let n be an integer coprime to 6 and m an integer coprime to 7.
Assume that n and m are relatively prime. Then, the following hold.

(i) If there exists a prime p such that (77n6 + 108m7)/p is square, then Kt/Q is
unramified outside p for t = 77n6/m7.

(ii) For a rational number t = 77n3/m7, the extension K̃t/Q is a PGL(2, 7)-
extension unramified over the unique quadratic subfield.

To prove Theorem 4.2, we have to study the decompositions of the prime divisors
of t+ 108 for the case t ∈ Z, and the denominators of t for the case t ∈ Q, because
these numbers appear in the discriminant (3.1).

As for the prime factors of t+ 108, we have the following proposition.

Proposition 4.3. Let p be a prime ̸= 2, 3, 7. If vp(t+ 108) > 0, then

vp(DKt) =

{
0 if vp(t+ 108) is even,

3 if vp(t+ 108) is odd.
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To prove Proposition 4.3, we use the following lemma by Dedekind.

Lemma 4.4 (Dedekind [7, Lemma 1]). Let φ(X) be an irreducible polynomial over
Q, K = Q[X]/(φ(X)), Dφ the discriminant of φ, and i the integer satisfying Dφ =
i2DK. If a prime p does not divide i and

φ(X) ≡ φ1(X)e1 · · ·φg(X)eg mod p

is the factorization into the irreducible factors modulo p, then p decomposes as

pO = pe11 · · · pegg

in K where f(pj/p) = degφj for j = 1, . . . , g.

Proof of Proposition 4.3. Let DF (t) be the discriminant of the octic F (t,X) given
in (2.1) and i(t) the integer satisfying DF (t) = i(t)2DKt . By assumption,

F (t,X) ≡ X8 +X7 + 7X6 + 108(X + 1) mod p.

Note that the right hand side of the above congruence does not depend on t.
Assume vp(t + 108) = 1. Then vp(DF (t)) = 3, which implies vp(DKt) = 1 or 3.

However, since vp(DKt) ̸= 1 by Table 3, we conclude vp(DKt) = 3 and vp(i(t)) = 0.
Hence, by applying Lemma 4.4 to F (t,X), we have

F (t,X) ≡ F1(X)E1 · · ·Fg(X)Eg mod p,

which corresponds to the decomposition of p in Kt/Q, i.e.,

pOK = pe11 · · · pegg , Ei = ei, fi = f(pi/p) = degFi(X).

Since vp(DKt) = 3, and p is tamely ramified, we have

g∑
i=1

degFi · (Ei − 1) = 3. (4.1)

Assume vp(t + 108) > 0. Since the factorization of F (t,X) mod p does not
depend on t, the equation (4.1) holds again. By Hensel’s lemma, we obtain∑

fi · (ei − 1) ≤
g∑

i=1

degFi · (Ei − 1) = 3,

and hence, from Table 3, it follows vp(DKt) = 0 or 3. Noting that vp(DKt) is odd if
and only if vp(t+ 108) is odd, we obtain the proposition.

Next, we study the decomposition of p = 7.
If 7 divides t, then the decomposition of 7 in Kt/Q is shown in Proposition 3.3.

Hence, we consider the two cases where 7 divides t + 108 and 7 does not divide
t(t+ 108).

We first consider the case 7 | t+ 108.
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Proposition 4.5. If 0 < v7(t+108) ≤ 2, then 7 ramifies wildly. If v7(t+108) ≥ 3,
then

v7(DKt) =

{
4 if v7(t+ 108) is odd,

5 if v7(t+ 108) is even.

Proof. If 7 divides t + 108, then we obtain t ≡ 4 mod 7. The Newton polygon of
F (t,X − 3) with respect to 7 is one of the following.

0 1 2 3 4 5 6 7 8

v7(t+ 108) ≤ 2

0 1 2 3 4 5 6 7 8

v7(t+ 108) > 2

For the left polygon, the height of the left side is v7(t+ 108). This implies that the
decomposition of 7 is (1, 17). For the right polygon, the height of the center side is
2 so that the decomposition of 7 is (1, 1, 16), (1, 1, 13, 13) or (1, 1, 23). This implies
vp(DKt) = 4 or 5. Since the discriminant of F is −77t5(t+ 108)3, we see

v7(DKt) =

{
even if v7(t+ 108) is odd,

odd if v7(t+ 108) is even.

and hence, the proposition follows.

When 7 ∤ t(t+108), we have t ≡ 1, 2, 3, 5, 6 mod 7. Similarly as in the previous
case, we consider the Newton polygons of F (t,X − 7 + t). As a result, we obtain

7OKt =


(18) if t ≡ 6 mod 7,

(1, 1, 16) if t ≡ 12, 16, 29, 45 mod 49,

(1, 17) otherwise.

This also shows the tame part of the following proposition.

Proposition 4.6. Let t be an integer. If 7 ∤ t(t+ 108), then the following hold.

(i) If t ≡ 6 mod 7, then v7(DKt) = 7.

(ii) If t ≡ 1, 2, 3, 5 mod 7, then

v7(DKt) =

{
5 if t ≡ 12, 16, 29, 45 mod 49,

7 otherwise.

Proof. It remains to prove that v7(DKt) = 7 if 7OKt = (1, 17). In this case, 7 is
wildly ramified in Kt/Q. This implies that v7(DKt) ≥ 7. On the other hand, since
7 ∤ t(t+ 108), we have v7(DKt) ≤ 7.
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Lastly, we compute vp(DKt) for t ∈ Q with p ̸= 2, 3, 7. We write t = n/m with
coprime integers n and m. Since the discriminant of F (n/m,X) is

−77
( n

m

)5 ( n

m
+ 108

)3

= −77n5(n+ 108m)3

m8
,

the ramified prime p inKt/Q is 7 or a divisor of nm(n+108m). From Remark 2.4, we
can use the technique of the Newton polygon for F (n/m,X). The decomposition of
divisors of n prime to 6 are obtained by Proposition 3.3. For divisors ofm(n+108m),
we have the following propositions.

Proposition 4.7. Let n and m be coprime integers and p a prime divisor of n +
108m. Then the factorization of F (n/m,X) mod p does not depend on n and m.

Proof. We can show this proposition similarly as Proposition 4.3.

Proposition 4.8. We write t = n/m with coprime integers n and m, and we let p
be a prime divisor of m.

(i) If 7 ∤ vp(m), then p ramifies wildly when p = 7, and vp(DKt) = 6 when p ̸= 7.

(ii) If p ̸= 7 and 7 | vp(m), then p is unramified at Kt/Q.

Proof. The first statement is clear. Therefore, we assume p ̸= 7 and 7 | vp(m). The
Newton polygon of F (n/m,X) has two segments S1 and S2 whose horizontal lengths
are 1 and 7, respectively. It suffices to consider the associated polynomial FS2 of S2.
Since 7 | vp(m), the degree of FS2 is 7 and

FS2(Y ) = − n

m′Y
7 + 1

with m′ = mp−vp(m). Since the discriminant of FS2 is −77( n
m′ )

6, this polynomial
satisfies Ore’s condition. This proves the proposition.

Proof of Theorem 4.2. As noted in the above, we need to consider the numerators
and the denominators of t and the numerators of t+ 108.

We start with the proof of (ii), and hence, assume t = 77n3/m7. By Propositions
3.1, 3.2, and 3.3, we have vp(DKt) = 0 or 3 for all p dividing 7n. The equation
vp(DKt) = 0 or 3 holds also for all p dividing 77n3 + 108m7 by Proposition 4.3.
Therefore, the primes of the quadratic subfield lying above such p are unramified
by Lemma 4.1. The prime divisors of the denominator m are unramified in K̃t/Q
from Proposition 4.8. Consequently, we have proved that K̃t is unramified over the
unique quadratic subfield.

Similar argument for t = 77n6/m7 shows (i).
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Table 4: Examples of Theorem 4.2

Examples of (i) Examples of (ii)
n m DK77n6/m7 n m DK77n3/m7

1 −5 450533 1 −4 9459293

1 −4 9459293 1 −3 −16273

1 −3 −16273 1 −2 −8097193

1 −2 −8097193 1 −1 −53 · 373 · 44513
1 1 −8236513 1 1 −8236513

1 2 −8373673 1 2 −8373673

5 3 −128680955713 1 3 −673 · 158173
5 6 −128980924633 1 4 −53 · 893 · 58273
5 8 −130943517913 5 −4 −53 · 3173 · 3191593
7 −6 −968587773193 5 −3 −53 · 3973 · 2587073
7 −2 −968889965833 5 −2 −53 · 733 · 1493 · 94633
7 3 −968892466033 5 −1 −53 · 793 · 13030733
7 4 −968907798793 5 1 −53 · 113 · 133 · 1393 · 51793
7 8 −971155028233 5 2 −53 · 293 · 413 · 1313 · 6613

5 3 −53 · 293 · 2933 · 121433
5 4 −53 · 1047123473

We find 615 pairs of integers n and m with 1 ≤ n ≤ 100, −100 ≤ m ≤ 100
satisfying conditions of Theorem 4.2 (i). For these pairs, the Galois group of
K77n6/m7/Q is isomorphic to PGL(2, 7) and there is only one prime dividing the
discriminant of K77n6/m7 . Similarly, we find 5252 pairs of n and m satisfying
the conditions of Theorem 4.2 (ii) in the same range. For these pairs n and m,
Gal(K77n3/m7/Q) ∼= PGL(2, 7) holds and the valuations of DK77n3/m7 for prime di-

visors of DK77n3/m7 are 3. Table 4 consists of some such pairs (n,m) with small
absolute values and the discriminants of the fields Kt.
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