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Abstract. A pseudo-Riemannian metric is called geodesic orbit if its
geodesics are the orbits of one-parameter subgroups of the group of i-
sometries. In this paper, we study pseudo-Riemannian geodesic orbit
metrics on compact homogeneous spaces. First we obtain a sufficient
and necessary condition for a pseudo-Riemannian metric to be geodesic
orbit. Then we show that every Tamaru’s homogeneous space admits a
two-parameter family of pseudo-Riemannian geodesic orbit metrics. Fi-
nally, we obtain a complete description of pseudo-Riemannian geodesic
orbit metrics on spheres. In particular, we prove that a Sp(n+1)-invariant
pseudo-Riemannian geodesic orbit metric on S4n+3 = Sp(n + 1)/Sp(n)
must be Sp(n + 1)Sp(1)-invariant.

1. Introduction

Let (M, g) be a connected (pseudo-)Riemannian manifold and G be a
subgroup of the full group of isometries I(M, g). A geodesic γ : R → M
is called G-homogeneous if there exists a vector X ∈ g such that γ(t) =

exp(tX) · γ(0), where g denotes the Lie algebra of G and exp denotes the
exponential map of g. The notion of a homogeneous geodesic plays a fun-
damental role in the theory of geodesic orbit manifolds (i.e., a (pseudo-
)Riemannian manifold whose geodesics are all G-homogeneous). In [13],
Kowalski and Vanhecke started a systematical study on Riemannian geo-
desic orbit manifolds and presented a fundamental geodesic lemma for a
geodesic to be G-homogeneous. Since then, many excellent works have
been done. In particular, it is worth to mention that, Gordon in [11] claimed
that the classification of Riemannian geodesic orbit manifolds can be re-
duced to three special cases: (1) Riemannian geodesic orbit nilmanifolds
(i.e., a nilpotent Lie group with a left invariant Riemannian metric), (2)
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compact Riemannian geodesic orbit manifolds, and (3) a Riemannian ge-
odesic orbit manifold admitting a transitive non-compact semisimple Lie
group of isometries. Later, in [17], Nikonorov found that Gordon’s reduc-
tion is not generally correct by showing some examples of Riemannian ge-
odesic orbit solvmanifolds that are different from nilmanifolds (see Exam-
ples 6 and 7 in [17]). Recently, Gordon and Nikonorov [12] corrected an
error (Theorem 1.15 of [11]) to a slightly weakened version of this state-
ment (Theorem 3.1 of [12]) and so the study of an arbitrary Riemannian
geodesic orbit manifold largely reduced to the study of the nilradical and
two homogeneous spaces generated by the compact and non-compact parts
of the Levi group of its isometry group. Moreover, Tamaru [20] classified
the compact and non-compact Riemannian geodesic orbit manifolds fibered
over irreducible symmetric spaces, we list the classification in [20] in Ta-
ble 1. Nikonorov [16] obtained a complete classification of Riemannian
geodesic orbit metrics on spheres and constructed some explicit geodesic
vectors. Chen, Nikolayevsky and Nikonorov [7] classified all G-invariant
Riemannian geodesic orbit metrics on a compact and simply connected ho-
mogeneous space G/H, where G is (almost) effective and H is a simple
Lie group. For more information about homogeneous geodesics and relat-
ed topics, we refer the readers to [2, 3] and the references therein. More
recently, the geodesic orbit property has been extensively studied in Finsler
setting [1, 6, 9, 22, 23, 24, 25, 26].

The situation is more complicated for pseudo-Riemannian geodesic or-
bit manifolds, see [21]. For example, Nikolayevsky and Wolf [15] showed
that a geodesic orbit Lorentz nilmanifold need not be two step nilpoten-
t. Moreover, unlike the Riemannian case, it seems not an evident fact that
every compact homogeneous space admits a pseudo-Riemannian geodes-
ic orbit metric. In this paper, motivated by Tamaru and Nikonorov’s re-
sults on compact Riemannian geodesic orbit manifolds, we are going to
study pseudo-Riemannian geodesic orbit metrics on compact homogeneous
spaces. Now we introduce the main results of this paper. Let M = G/H
be a compact homogeneous space with B-orthogonal reductive decompo-
sition g = h + m, where B is an Ad(G)-invariant positive definite inner
product on g (always exists) and h denotes the Lie algebra of H. Then
G-invariant pseudo-Riemannian metrics on G/H are in one-to-one corre-
spondence with Ad(H)-invariant indefinite inner products on m. We obtain
a characterization of pseudo-Riemannian metrics on compact homogeneous
spaces to be geodesic orbit, which generalizes Proposition 2 of [27] to the
pseudo-Riemannian setting.

Theorem 1.1. A G-invariant pseudo-Riemannian metric g on G/H is geo-
desic orbit with respect to G if and only if for every T ∈ m, there exist a
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vector Z ∈ h and a constant c ∈ R such that

[A(T ),T + Z] = cA(T ),

where A denotes the metric endomorphism of g defined by

〈X,Y〉 = B(A(X),Y),∀X,Y ∈ m,

〈·, ·〉 is the indefinite inner product on m determined by g.

As applications of Theorem 1.1 to Tamaru’s homogeneous spaces (see
Table 1), we prove that every Tamaru’s homogeneous space admits a two-
parameter family of pseudo-Riemannian geodesic orbit metrics. Moreover,
we obtain a complete description of pseudo-Riemannian naturally reduc-
tive, weakly symmetric and geodesic orbit metrics on spheres and mainly
prove the following result, a pseudo-Riemannian version of Theorem 1 of
[16].

Theorem 1.2. A Sp(n+1)-invariant pseudo-Riemannian metric g on S4n+3 =

Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it
is Sp(n + 1)Sp(1)-invariant.

This paper is organized as follows. In Section 2, we recall some ba-
sic facts about pseudo-Riemannian geodesic orbit, naturally reductive and
weakly symmetric manifolds and prove Theorem 1.1. In Section 3, we re-
view the Tamaru’s classification of Riemannian geodesic orbit manifolds
fibered over irreducible symmetric spaces and show that every such space
admits a two-parameter family of pseudo-Riemannian geodesic orbit met-
rics. In Section 4, we study pseudo-Riemannian geodesic orbit metrics on
spheres and prove Theorem 1.2.

2. Pseudo-Riemannian geodesic orbit metrics on compact homogeneous
spaces

In this section we discuss the characterization of pseudo-Riemannian ge-
odesic orbit metrics on compact homogeneous spaces. First we recall the
definition of pseudo-Riemannian geodesic orbit manifolds, which is a gen-
eralization of Riemannian geodesic orbit manifolds.

Definition 2.1. Let (M, g) be a connected pseudo-Riemannian manifold and
G be a subgroup of the full group of isometries I(M, g). (M, g) is called a
geodesic orbit manifold with respect to G if every geodesic of (M, g) is an
orbit of a one-parameter subgroup of G. That is, if γ : R→ M is a geodesic
of (M, g), then there exists a vector X ∈ g such that γ(t) = exp(tX) · γ(0),
where g denotes the Lie algebra of G and exp denotes the exponential map
of g.
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Now let G be a compact Lie group and H be a closed subgroup of G,
which has no nontrivial normal subgroup of G. As usual we denote the
Lie algebras of G and H by g and h respectively. As H is compact, g has
an Ad(H)-invariant reductive decomposition g = h + m, where m is a sub-
space of g satisfying [h,m] ⊂ m. In this case, one can identify m with
the tangent space To(G/H) of G/H at the point o = eH via the mapping
π : X → d

dt

∣∣∣
t=0

exp(tX) · o. Moreover, under this identification, G-invariant
pseudo-Riemannian metrics on homogeneous space G/H are in one-to-one
correspondence with Ad(H)-invariant indefinite inner products on m.

Lemma 2.2 ([10], Lemma 2.1). Notation as above. Let G/H be a com-
pact homogeneous space with reductive decomposition g = h + m. Then
a G-invariant pseudo-Riemannian metric g on G/H is geodesic orbit with
respect to G if and only if for every T ∈ m, there exist Z = Z(T ) ∈ h and
c = c(T ) ∈ R such that

〈[T + Z,T ′]m,T 〉 = c〈T,T ′〉 (2.1)

holds for all T ′ ∈ m, where 〈·, ·〉 is the indefinite inner product on m associ-
ated to g and [·, ·]m is the projection to m with respect to the decomposition
g = h +m.

Remark 2.3. Take T ′ = T in (2.1), we can see that c = 0 unless T is a null
vector.

Since G is compact, there exists an Ad(G)-invariant positive definite in-
ner product B on g. We can choose the decomposition g = h+m by requiring
B(h,m) = 0. In this situation, for an Ad(H)-invariant indefinite inner prod-
uct 〈·, ·〉 on m associated to a G-invariant pseudo-Riemannian metric g on
G/H, there exists a unique Ad(H)-equivariant, symmetric and nondegener-
ate endomorphism A : m → m, called the metric endomorphism of g, such
that

〈X,Y〉 = B(A(X),Y),∀X,Y ∈ m.

Proof of Theorem 1.1. By Lemma 2.2, a G-invariant pseudo-Riemannian
metric g on G/H is geodesic orbit with respect to G if and only if for every
T ∈ m, there exist Z ∈ h and c ∈ R such that

〈[T + Z,T ′]m,T 〉 = c〈T,T ′〉,∀T ′ ∈ m.

Notice that

〈[T + Z,T ′]m,T 〉 − c〈T,T ′〉
= B([T + Z,T ′], A(T )) − cB(A(T ),T ′)
= B(T ′, [A(T ),T + Z]) − cB(A(T ),T ′)
= B(T ′, [A(T ),T + Z] − cA(T )),
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which implies that g is geodesic orbit if and only if [A(T ),T +Z]−cA(T ) ∈ h.
On the other hand, since the metric endomorphism A is Ad(H)-equivariant

and symmetric with respect to B, for every X ∈ h, we have

B([A(T ),T + Z], X) = B([A(T ),T ], X)
= −B(T, [A(T ), X]) = −B(T, A([T, X]))
= −B(A(T ), [T, X]) = B([T, A(T )], X).

Thus B([A(T ),T ], X) = 0 and [A(T ),T + Z] − cA(T ) ∈ m. As a result,
[A(T ),T + Z] − cA(T ) ∈ h if and only if [A(T ),T + Z] = cA(T ). This
completes the proof. �

Recall that a G-invariant pseudo-Riemannian metric g on homogeneous
space G/H is said to be naturally reductive with respect to G if there is an
Ad(H)-invariant decomposition (not necessarily B-orthogonal) g = h + m

such that

〈[T ′,T ]m,T 〉 = 0,∀T,T ′ ∈ m, (2.2)

where 〈·, ·〉 is the indefinite inner product on m induced by the pseudo-
Riemannian metric g on G/H. We can also replace equation (2.2) by

〈[T,T ′]m,T ′′〉 + 〈[T,T ′′]m,T ′〉 = 0,∀T,T ′,T ′′ ∈ m. (2.3)

It is easily seen that a pseudo-Riemannian naturally reductive metric must
be geodesic orbit. The following result is due to Ovando [18].

Theorem 2.4 ([18], Theorem 2.2). Let (G/H, g) be a compact pseudo-
Riemannian naturally reductive homogeneous space with respect to a re-
ductive decomposition g = h +m. Assume g = m + [m,m], then there exists
a unique Ad(G)-invariant symmetric nondegenerate bilinear form Q on g
such that

Q(h,m) = 0, Q|m = 〈·, ·〉,

where 〈·, ·〉 is the indefinite inner product on m associated to g.

Now we present a sufficient condition for a special class of G-invariant
pseudo-Riemannian metrics on G/H to be naturally reductive. It can be
viewed as a pseudo-Riemannian version of Theorem 3 of [28].

Theorem 2.5 ([28], Theorem 3). Let G/H be a compact homogeneous s-
pace with B-orthogonal reductive decomposition g = h + m. Assume G is
semisimple and H is connected. If m has an Ad(H)-invariant B-orthogonal
decomposition m = m1 + m2 with [h,m2] = 0 and [m2,m2] ⊂ m2, then
the G-invariant pseudo-Riemannian metrics ga,b on G/H corresponding to
aB|m1 + bB|m2 (ab < 0, a, b ∈ R) are naturally reductive with respect to
G×K, where K is the connected subgroup of G with the Lie algebra k � m2.
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Proof: The proof is similar to that of Theorem 3 of [28]. Let Ḡ = G × K.
For any (g, k) ∈ Ḡ, g operates on G/H by left translation with g and k
operates on G/H by right translation with k−1, then the isotropy subgroup
of this action at the point eH is H̄ = H×K with embedding (h, k)→ (hk, k).
The reductive decomposition of the Lie algebra is

ḡ = g ⊕ k = h̄ + m̄(s) = (h, 0) + k̄ + m̄1 + m̄2(s),

where k̄ = {(X, X)|X ∈ m2}, m̄1 = (m1, 0), m̄2(s) = {(sX, (s − 1)X)|X ∈ m2},
s ∈ R. We need to find a real number s ∈ R for ga,b to be naturally reductive
with respect to the above decomposition.

Clearly, both m̄1 and m̄2(s) are Ad(H̄)-invariant subspaces. Notice that
the isomorphism between the tangent spaces ϕ : m̄1 + m̄2(s) → m1 + m2 is
given by

ϕ((X, 0) + (sY, (s − 1)Y)) = X + Y,∀X ∈ m1,Y ∈ m2.

Hence the Ad(H̄)-invariant indefinite inner product 〈·, ·〉a,b on m̄1 + m̄2(s)
induced by the pseudo-Riemannian metric ga,b on G/H is given as follows:

〈(X, 0), (Y, 0)〉a,b = aB(X,Y), X,Y ∈ m1,

〈m̄1, m̄2(s)〉a,b = 0,
〈(sX, (s − 1)X), (sY, (s − 1)Y)〉a,b = bB(X,Y), X,Y ∈ m2.

Note that [h,m2] = 0 and [m2,m2] ⊂ m2, one easily has that [m1,m2] ⊂
m1. Now for every X,Y ∈ m1 and Z ∈ m2, by a direct computation we have

〈[(X, 0), (Y, 0)]m̄(s), (sZ, (s − 1)Z)〉a,b
+〈[(X, 0), (sZ, (s − 1)Z)]m̄(s), (Y, 0)〉a,b

= 〈([X,Y]m1 , 0) + (s[X,Y]m2 , (s − 1)[X,Y]m2), (sZ, (s − 1)Z)〉a,b
+s〈([X,Z], 0), (Y, 0)〉a,b

= bB([X,Y]m2 ,Z) + saB([X,Z],Y)
= (b − sa)B([X,Y],Z).

So let s = b
a and by a similar computation as above, we see that ga,b is

naturally reductive with respect to G × K. Namely, the associated indefinite
inner product 〈·, ·〉a,b on m̄1 + m̄2(s) satisfies equation (2.3). This completes
the proof of the theorem. �

Another important class of pseudo-Riemannian geodesic orbit manifolds
consist of pseudo-Riemannian weakly symmetric manifolds introduced by
Selberg [19], Chen and Wolf [8].

Definition 2.6. Let (M, g) be a connected pseudo-Riemannian manifold. Sup-
pose that for every x ∈ M and every nonzero tangent vector ξ ∈ TxM, there
is an isometry φ = φx,ξ of (M, g) such that φ(x) = x and dφ(ξ) = −ξ. Then
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we say that (M, g) is a pseudo-Riemannian weakly symmetric manifold. In
particular, a pseudo-Riemannian weakly symmetric manifold is homoge-
neous.

Definition 2.7. Let G be a Lie group and H be a closed subgroup of G. The
pair (G,H) is called a weakly symmetric pair if there exists an automorphis-
m θ of G such that

(i) θ(H) ⊂ H and there exists h ∈ H such that θ2 = Ad(h) (i.e., θ2(g) =

hgh−1, g ∈ G).
(ii) Hθ(g)H = Hg−1H for all g ∈ G.

Theorem 2.8 ([4, 8]). Let (G,H) be a weakly symmetric pair and M =

G/H, then every G-invariant pseudo-Riemannian metric on M is weakly
symmetric and geodesic orbit with respect to G.

At the last of this section, we study the isometry group of the indefinite
inner product on the tangent space of a pseudo-Riemannian geodesic orbit
manifold. We first need a technical lemma.

Lemma 2.9. Let g be a Lie algebra and 〈·, ·〉 be an indefinite inner product
on g satisfying the condition of Lemma 2.2(the isotropy subalgebra h is
assumed trivial). Namely, for every T ∈ g, there exists a constant c(T ) ∈ R
such that

〈[T,T ′],T 〉 = c(T )〈T,T ′〉
holds for all T ′ ∈ g. Then we have

〈[T,T ′],T 〉 = 0,∀T,T ′ ∈ g.

Proof: Fix a non-null vector T ∈ g, then c(T ) = 0 and 〈[T,T ′],T 〉 = 0
holds for all T ′ ∈ g. Set VT = {Y ∈ g|〈Y,T 〉 = 0}, then g = RT + VT .
Moreover, for every Y ∈ VT , 〈[Y,T ],Y〉 = c(Y)〈Y,T 〉 = 0. Now for every
X = γT + Y ∈ g, γ ∈ R, Y ∈ VT , we obtain

〈[X,T ], X〉
= 〈[γT + Y,T ], γT + Y〉
= 〈[Y,T ], γT 〉 + 〈[Y,T ],Y〉
= 0,

which implies that ad(T ) is skew-symmetric.
Finally, assume T ∈ g is a null vector. One can always find another null

vector S ∈ g such that 〈S ,T 〉 = 1. Notice that 〈2T + S , 2T + S 〉 = 4 and
〈T + S ,T + S 〉 = 2, by the above arguments, we have

〈[X,T ], X〉 = 〈[X, 2T + S ], X〉 − 〈[X,T + S ], X〉 = 0,∀X ∈ g.

This asserts that for all T ∈ g, ad(T ) is skew-symmetric, which completes
the proof of the lemma. �
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Now assume G is a Lie group (not necessarily compact) and H is a com-
pact subgroup of G, which has no nontrivial normal subgroup of G. Let H0

be the unit component of H and NG(H0) be the normalizer of H0 in G. Note
that NG(H0) has a well-defined action on the homogeneous space G/H by
g(xH) = gxg−1H, ∀g ∈ NG(H0), x ∈ G. In [17], Nikonorov proved that
the inner product, generating the metric of a Riemannian geodesic orbit
manifold, is not only Ad(H)-invariant but also Ad(NG(H0))-invariant (see
Corollary 4 of [17]). We prove that this statement is still true in pseudo-
Riemannian case.

Theorem 2.10. Notation as above. Let (G/H, g) be a pseudo-Riemannian
geodesic orbit manifold with respect to G. Then the indefinite inner product
〈·, ·〉 on m is not only Ad(H)-invariant but also Ad(NG(H0))-invariant.

Proof: Let K be the Killing form of g, then K is negative definite on h (see
Lemma 2 of [17]). So the Lie algebra g of G has a K-orthogonal decompo-
sition g = h+m, where h denotes the Lie algebra of H, m is a subspace of g
and we identify it with the tangent space To(G/H) as described above. Let
〈·, ·〉 be the indefinite inner product on m determined by g. Obviously, 〈·, ·〉
is Ad(H)-invariant, we will show that it is also Ad(NG(H0))-invariant.

According to Proposition 11 of [17], the Lie algebra Ng(h) of NG(H0) is
given by

Ng(h) = {X ∈ g|[X, h] ⊂ h} = Cg(h) + [h, h],
where Cg(h) = {X ∈ g|[X, h] = 0} denotes the centralizer of h in g. Notice
that

K(h, [Cg(h), g]) = K([h,Cg(h)], g) = 0,
one has [Cg(h), g] ⊂ m. Hence Cg(h) keeps m invariant and consequently
Ad(NG(H0)) keepsm invariant. It is clear that Cg(h) = Cg(h)∩h+Cg(h)∩m,
so to prove the theorem, it is sufficient to prove that for every T ∈ Cg(h)∩m,
ad(T )|m is skew-symmetric with respect to 〈·, ·〉.

By Proposition 9 of [17], regarding m as an ad(h)-module, we have the
K-orthogonal decomposition

m = Cg(h) ∩m + [h,m].

Moreover, this decomposition is also 〈·, ·〉-orthogonal, since

〈Cg(h) ∩m, [h,m]〉 = −〈[h,Cg(h) ∩m],m〉 = 0.

Hence the restriction of 〈·, ·〉 to Cg(h) ∩ m is nondegenerate. We note also
that

[h, [Cg(h) ∩m,Cg(h) ∩m]] ⊂ [[h,Cg(h) ∩m],Cg(h) ∩m] = 0,

therefore [Cg(h)∩m,Cg(h)∩m] ⊂ Cg(h) and consequently [Cg(h)∩m,Cg(h)∩
m] ⊂ Cg(h) ∩ m. This asserts that Cg(h) ∩ m is a Lie subalgebra of g and
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(Cg(h) ∩ m, 〈·, ·〉|Cg(h)∩m) satisfies the condition of Lemma 2.9. Hence for
every T ∈ Cg(h) ∩ m, ad(T )|Cg(h)∩m is skew-symmetric. Now for every X ∈
[h,m], there exist a vector Z ∈ h and c(X) ∈ R such that

〈[T, X + Z]m, X〉 = −c(X)〈T, X〉 = 0

holds for all T ∈ Cg(h) ∩ m. Obviously, [Cg(h) ∩ m, [h,m]] ⊂ [h,m], so the
above equality says that 〈[T, X], X〉 = 0, ∀T ∈ Cg(h) ∩ m. This implies that
ad(T )|m is skew-symmetric, which completes the proof of the theorem. �

3. Pseudo-Riemannian geodesic orbit metrics on Tamaru’s homogeneous
spaces

Let G/H be a compact homogeneous space and K be an intermediate
closed subgroup of G, H < K < G. Consider the B-orthogonal decomposi-
tion of g:

g = h +m = h +m2 +m1, k = h +m2,

where k denotes the Lie algebra of K.
In [11], Gordon studied the geodesic orbit property of G-invariant Rie-

mannian metrics ga,b on G/H generated by aB|m1 + bB|m2 , a, b > 0.

Theorem 3.1 ([11], Theorem 3.3). The G-invariant Riemannian metric ga,b

is geodesic orbit with respect to G for every a, b > 0 if and only if, for
every X ∈ m1 and Y ∈ m2, there exists Z ∈ h such that [Z,Y] = 0 and
[Z, X] = [Y, X].

Later in [20], Tamaru classified the triples (G,K,H) whose Lie algebras
satisfy Theorem 3.1 and (G,K) are compact effective irreducible symmetric
pairs. These triples of Lie algebras are listed in Table 1. Now we state the
main result of this section.

Theorem 3.2. Let (G,K,H) be a triple listed in Table 1. Then for every
a, b ∈ R, ab < 0, the G-invariant pseudo-Riemannian metric ga,b on G/H
generated by aB|m1 + bB|m2 is geodesic orbit with respect to G.

Proof: It is easily seen that the metric endomorphism of ga,b is

A = aId|m1 + bId|m2 .

Then for every T = X + Y ∈ m, X ∈ m1, Y ∈ m2, by Theorem 3.1 we
can choose a Z ∈ h such that [Z,Y] = 0 and [Z, X] = b−a

a [Y, X]. A direct
computation shows that

[A(T ),T + Z]
= [aX + bY, X + Y + Z]
= (a − b)[X,Y] + a[X,Z]
= 0,
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which asserts that ga,b is geodesic orbit with respect to G, according to The-
orem 1.1. �

Remark 3.3. From the proof of Theorem 3.2, the constant c = c(T ) associ-
ated to a geodesic vector T + Z is necessarily equal to 0.

Table 1. Tamaru’s homogeneous spaces.

g k h Cond.
1.1 so(2n + 1) so(2n) u(n) n ≥ 2
1.2 so(4n + 1) so(4n) su(2n) n ≥ 1
1.3 so(8) so(7) g2

1.4 so(9) so(8) so(7)
1.5 su(n + 1) u(n) su(n) n ≥ 2
1.6 su(2n + 1) u(2n) u(1) ⊕ sp(n) n ≥ 2
1.7 su(2n + 1) u(2n) sp(n) n ≥ 2
1.8 sp(n + 1) sp(1) ⊕ sp(n) u(1) ⊕ sp(n) n ≥ 1
1.9 sp(n + 1) sp(1) ⊕ sp(n) sp(n) n ≥ 1
2.1 su(2r + n) su(r) ⊕ su(r + n) ⊕ R su(r) ⊕ su(r + n) r ≥ 2, n ≥ 1
2.2 so(4r + 2) u(2r + 1) su(2r + 1) r ≥ 2
2.3 e6 R ⊕ so(10) so(10)
3.1 so(9) so(7) ⊕ so(2) g2 ⊕ so(2)
3.2 so(10) so(8) ⊕ so(2) spin(7) ⊕ so(2)
3.3 so(11) so(8) ⊕ so(3) spin(7) ⊕ so(3)

4. Pseudo-Riemannian geodesic orbit metrics on spheres

In this section, we study pseudo-Riemannian geodesic orbit metrics on
spheres. We will give a complete description of pseudo-Riemannian geo-
desic orbit, naturally reductive and weakly symmetric metrics on spheres.
These results are listed in the last column of Table 2. Spheres can be viewed
as a special class of homogeneous spaces. Borel in [5] and Montgomery and
Samelson in [14] classified the compact connected Lie groups that admit an
effective transitive action on spheres. In Table 2 we list all homogeneous
spheres G/H where G is a compact connected Lie group with an effective
action on G/H. We also give the isotropy representations of the homoge-
neous spaces.
• Cases 1, 2, 3. The isotropy representations are irreducible, there are no

invariant pseudo-Riemannian metrics.
• Case 4. (Spin(9),Spin(7)) is a weakly symmetric pair [8] and the

isotropy representation of Spin(9)/Spin(7) has two irreducible components.
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Table 2. Homogeneous spheres.

G/H iso. rep Cond.
1 SO(n + 1)/SO(n) irreducible n ≥ 1
2 G2/SU(3) irreducible
3 Spin(7)/G2 irreducible
4 Spin(9)/Spin(7) m = m1 +m2 w.s.
5 U(n + 1)/U(n) m = m0 +m1 n ≥ 1 w.s., n.r.
6 SU(n + 1)/SU(n) m = m0 +m1 n ≥ 2 w.s., g.o.
7 SU(2) trivial
8 Sp(n + 1)/Sp(n) m = m0 +m1 n ≥ 1
9 Sp(n + 1)Sp(1)/Sp(n)diag(Sp(1)) m = m1 +m2 n ≥ 1 w.s., n.r.

10 Sp(n + 1)U(1)/Sp(n)diag(U(1)) m = m̃1 + m̃2 + m̃3 n ≥ 1 w.s.

The family of pseudo-Riemannian invariant metrics on Spin(9)/Spin(7) is
two-parametric. All these pseudo-Riemannian metrics are weakly symmet-
ric but not naturally reductive, according to Theorem 2.4.
• Case 5. (U(n + 1),U(n)) is a weakly symmetric pair and the family of

pseudo-Riemannian invariant metrics on U(n + 1)/U(n) is two-parametric.
Every such metric is naturally reductive and weakly symmetric [8].
• Case 6. This case is just the case 1.5 of Table 1. Hence every SU(n+1)-

invariant pseudo-Riemannian metric on SU(n + 1)/SU(n) is geodesic orbit
with respect to SU(n + 1). Moreover, note that every SU(n + 1)-invariant
pseudo-Riemannian metric on SU(n+1)/SU(n) is U(n+1)-invariant. Hence
every such metric is weakly symmetric and naturally reductive with respect
to U(n + 1) (not SU(n + 1)), see Theorem 2.5.
• Case 7. We will show that SU(2) admits no left invariant pseudo-

Riemannian geodesic orbit metrics with respect to SU(2).

Lemma 4.1. Assume A is an invertible linear isomorphism on su(2). If for
every T ∈ su(2), there exists c ∈ R satisfying

[A(T ),T ] = cA(T ),

then A = γId for some γ ∈ R.

Proof: Since [A(T ),T ] = cA(T ), T is in the normalizer N(R · A(T )) of
R · A(T ) in su(2). As R · A(T ) is the maximal torus subalgebra of su(2),
the normalizer N(R · A(T )) must be one-dimensional subalgebra of su(2).
Consequently, N(R · A(T )) = R · A(T ) and there exists c ∈ R such that
A(T ) = cT . Since T is an arbitrary element in su(2) we have A = γId for
some γ ∈ R. �
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Theorem 4.2. Let g be any left invariant pseudo-Riemannian metric on
SU(2), then it is not geodesic orbit with respect to SU(2).

Proof: Let A be the metric endomorphism corresponding to the left invari-
ant pseudo-Riemannian metric g on SU(2). By Theorem 1.1, g is geodesic
orbit with respect to SU(2) if and only if for every T ∈ su(2), there exists
c ∈ R such that [A(T ),T ] = cA(T ). The theorem follows from Lemma 4.1.
�

• Cases 8 and 9. Case 9 is a special situation of case 8. We adopt the
notation as in [16]. Let H = R + Ri + Rj + Rk be the field of quaternions,
where i, j, k are the quaternionic units in H. That is, ij = −ji = k, jk =

−kj = i, ki = −ik = j, ii = jj = kk = −1. For u = x0 + x1i + x2j + x3k ∈ H,
x0, x1, x2, x3 ∈ R, define Re(u) = x0 and ū = x0 − x1i − x2j − x3k. In the Lie
algebra sp(n + 1) of Lie group Sp(n + 1), we define

B(X,Y) = −
1
2

tr (Re(XY)), X,Y ∈ sp(n + 1).

It is easy to see that B is an Ad(Sp(n+1))-invariant inner product on the Lie
algebra sp(n + 1). So we have a B-orthogonal reductive decomposition of
sp(n + 1):

sp(n + 1) = sp(n) +m = sp(n) +m0 +m1,

where m0 = RiG1 + RjG1 + RkG1, G1 denotes the matrix with
√

2 in the
(1, 1)-th entry, and zeros elsewhere,

m1 =

{(
0 α
−ᾱ′ 0n

) ∣∣∣∣∣∣α = (u1, u2, . . . , un) ∈ Hn

}
, ᾱ = (ū1, ū2, . . . , ūn).

Every Sp(n + 1)-invariant pseudo-Riemannian metric g on S4n+3 can be
generated by a metric endomorphism A = Ã + aId|m1 for some a ∈ R and
some symmetric nondegenerate operator Ã : m0 → m0. In particular, when
Ã = bId|m0 for some b ∈ R, the corresponding Sp(n + 1)-invariant pseudo-
Riemannian metric g on S4n+3 is Sp(n + 1)Sp(1)-invariant and naturally re-
ductive with respect to Sp(n+1)Sp(1), according to Theorem 2.5. Moreover,
the pair (Sp(n + 1)Sp(1),Sp(n)diag(Sp(1))) is also a weakly symmetric pair.

Proof of Theorem 1.2. Assume g is geodesic orbit with respect to Sp(n +

1), then according to Theorem 1.1, for every T ∈ m0, there exists Z ∈ sp(n)
and c ∈ R such that

[Ã(T ),T + Z] = cÃ(T ). (4.4)

Since Ã(T ) ∈ m0 and [Ã(T ),Z] = 0, we obtain that equation (4.4) is equiva-
lent to [Ã(T ),T ] = cÃ(T ). By Lemma 4.1 and the fact thatm0 is isomorphic
to su(2), we get Ã = γId for some γ ∈ R. Consequently, g is Sp(n+1)Sp(1)-
invariant.
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On the other hand, we consider any Sp(n + 1)Sp(1)-invariant pseudo-
Riemannian metric on S4n+3. It is generated by a metric endomorphism of
the type A = aId|m1 + bId|m0 , a, b ∈ R, ab < 0. It coincides with the case 1.9
of Table 1, hence by Theorem 3.2, every Sp(n + 1)Sp(1)-invariant pseudo-
Riemannian metric on S4n+3 is geodesic orbit with respect to Sp(n + 1). �
• Case 10. The family of Sp(n + 1)U(1)-invariant pseudo-Riemannian

metrics on S4n+3 is three-parametric. Every such metric is weakly symmet-
ric and we have a three-parameter family of pseudo-Riemannian geodesic
orbit metrics. In the following, we give an explicit description of geodesic
vectors for Sp(n + 1)U(1)-invariant pseudo-Riemannian metrics on S4n+3.

Identify sp(1) withm0, B|sp(1) is an Ad(Sp(1))-invariant inner product and
we can extend B to an Ad(Sp(n + 1)Sp(1))-invariant inner product (also
denoted by B) on the Lie algebra sp(n + 1) ⊕ sp(1) by assuming B((sp(n +

1), 0), (0, sp(1))) = 0. Let u(1) be any Lie subalgebra of sp(1) (� m0) and
m2 be the B-orthogonal complement of u(1) inm0. We have a B-orthogonal
reductive decomposition of sp(n + 1) ⊕ u(1):

sp(n + 1) ⊕ u(1) = h̃ + m̃1 + m̃2 + m̃3,

where h̃ = h̃1 + h̃2, h̃1 = {(X, 0) ∈ sp(n + 1) ⊕ u(1)|X ∈ sp(n)}, h̃2 = {(X, X) ∈
sp(n + 1) ⊕ u(1)|X ∈ u(1)}, m̃1 = {(X, 0) ∈ sp(n + 1) ⊕ u(1)|X ∈ m1}, m̃2 =

{(X, 0) ∈ sp(n+1)⊕u(1)|X ∈ m2}, m̃3 = {(X,−X) ∈ sp(n+1)⊕u(1)|X ∈ u(1)}.
We have the following relations:

[̃h1, h̃2] = 0, [̃h1, m̃2] = 0, [̃h1, m̃3] = 0, [̃h2, m̃3] = 0.

It is easy to see that the modules m̃i, i = 1, 2, 3, are ad(̃h)-irreducible. Then
every Sp(n + 1)U(1)-invariant pseudo-Riemannian metric g on S4n+3 is de-
termined by the metric endomorphism

A = x1Id|m̃1 + x2Id|m̃2 + x3Id|m̃3

for some nonzero numbers x1, x2, x3 ∈ R.
Without losing generality, we may assume u(1) = RiG1 and then m2 =

RjG1 + RkG1.

Proposition 4.3. Notation as above. For every T1 = (V, 0) ∈ m̃1, T2 = ((sj+

tk)G1, 0) ∈ m̃2, T3 = (riG1,−riG1) ∈ m̃3, r, s, t ∈ R, let Z1 = (U, 0) ∈ h̃1,
Z2 =

(
( x3

x2
− 1)riG1, ( x3

x2
− 1)riG1

)
∈ h̃2, where U satisfies

[U,V] =

[(
(
x3

x1
−

x3

x2
)ri + (

x2

x1
− 1)(sj + tk)

)
G1,V

]
.

Then T1 + T2 + T3 + Z1 + Z2 is a geodesic vector.
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Proof: It follows by a direct calculation.

[A(T ),T + Z]
= (x1 − x2)[T1,T2] + (x1 − x3)[T1,T3] + x1[T1,Z1] + x1[T1,Z2]

+x2[T2,Z2] + (x2 − x3)[T2,T3]
= (x1 − x2)[(V, 0), ((sj + tk)G1, 0)] + (x1 − x3)[(V, 0), (riG1,−riG1)]

+x1[(V, 0), (U, 0)] + x1[(V, 0), ((
x3

x2
− 1)riG1, (

x3

x2
− 1)riG1)]

+x2[((sj + tk)G1, 0), ((
x3

x2
− 1)riG1, (

x3

x2
− 1)riG1)]

+(x2 − x3)[((sj + tk)G1, 0), (riG1,−riG1)]

=
(
(x1 − x2)[V, (sj + tk)G1] + (x1 − x3)[V, riG1] + x1[V,U]

+x1[V, (
x3

x2
− 1)riG1] + x2[(sj + tk)G1, (

x3

x2
− 1)riG1]

+(x2 − x3)[(sj + tk)G1, riG1], 0
)

=
(
[V,

(
(x1 − x2)(sj + tk) + (x1 − x3)ri + x1(

x3

x2
− 1)ri

)
G1] + x1[V,U], 0

)
= 0.

�

Remark 4.4. For the explicit matrix form of U in Proposition 4.3, one can
see Lemma 3 of [16] or Lemma 6.2 of [1].
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