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Abstract. Bar-Natan’s �-construction associates to each n component virtual link dia-
gram L an (n + 1) component virtual link diagram �(L). If L0, L1 are equivalent virtual
link diagrams, then �(L0),�(L1) are equivalent as semi-welded links. The importance
of the �-construction is that it unifies several classical knot invariants with virtual knot
invariants. For example, the generalized Alexander polynomial of a virtual link diagram L
is identical to the usual multi-variable Alexander polynomial of �(L). From this it follows
that the generalized Alexander polynomial is a slice obstruction: it vanishes on any knot
concordant to an almost classical knot. Our main result is a characterization theorem for
the �-construction in terms of almost classical links. Several consequences of this charac-
terization are explored. First, we give a purely geometric description of the �-construction.
Secondly, the �-construction is used to obtain a simple derivation of the Dye-Kauffman-
Miyazawa polynomial. Lastly, we show that every quandle coloring invariant and quandle
2-cocycle coloring invariant can be extended to a new invariant using the �-construction.

1. Introduction

1.1. Motivation. Many invariants of virtual knots often more closely resemble invariants of
classical links than invariants of classical knots. That is, invariants of n component virtual
links seem to look like invariants of (n + 1) component classical links. In a series of talks
(see e.g. [1]), Bar-Natan introduced a simple and elegant method that realizes this loose
analogy. Bar-Natan’s �-construction associates to each n component virtual link diagram
D an (n+ 1) component virtual link diagram �(D) = D ∪ ω. As an example of the utility

of this construction, consider the generalized Alexander polynomial H
(0)
K (x, y) of a virtual

knot K [26, 28]. This multivariable polynomial was originally defined using the elementary
ideal theory of a certain extension of the fundamental group. This group is not the standard
Wirtinger group. However, the generalized Alexander polynomial turns out to be just the
usual multivariable Alexander polynomial ∆1(x, y) of the two component virtual link �(D).
Only the elementary ideal theory of the standard Wirtinger group is used. Furthermore, the

extra variable in H
(0)
K (x, y) corresponds to extra component ω!

One may wonder why this new interpretation of the generalized Alexander polynomial is
useful. Consider the example of link concordance. It is a classic result that the multivari-
able Alexander polynomial vanishes on any link in S3 that is concordant to a boundary link
(see e.g. [17]). The �-construction allows one to directly adapt this proof to the virtual
setting. First note that the �-construction maps concordant virtual knots to concordant
(two component) semi-welded links [3]. Applying the exact same argument as in the classical
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case to �(D), it follows that the generalized Alexander polynomial vanishes on any virtual
knot that is concordant to an almost classical knot. Here almost classical knots play the
role of boundary links in the classical result. An important consequence is that the gener-
alized Alexander polynomial is a virtual slice obstruction [3, 8]. In the indentical way that
Milnor’s µ-invariants refine the slice obstructions arising from the Alexander module, the
�-construction refines the virtual slice obstructings arising from the generelized Alexander
polynomial. The resulting �-invariants vanish on any virtual knot that is concordant to an
almost classical knot [8]. These new slice obstructions obtained are quite powerful; there are
many examples of non-slice virtual knots having trivial Rasmussen invariant but non-trivial
�-invariants.

The �-construction thus unifies virtual knot invariants with classical link theory and opens
a bridge over which classical geometric tools can be ported to virtual knot theory. In the
process of this translation, almost classical links appear to play a central role. The aim
of this paper is two-fold. First, we extend Bar-Natan’s “original recipe” for �(D) to a
characterization theorem which clarifies the relationship between almost classical knots and
the �-construction. Secondly, we continue the program of unifying and strengthening
virtual knot invariants with the �-construction. We give a new example of a well-known
virtual link invariant that factors through the �-construction and many new examples of
virtual link invariants that are improved by pre-composing with �.

1.2. Main results: characterization of �. Our first result is a characterization theorem
for the �-construction in terms of Alexander numberings (see Section 2.2). For any n
component virtual link diagram D, we consider a family of (n + 1) component virtual link
diagrams D∪ γ which satisfy both of the following properties (see Definition 3.1.1 ahead for
more details).

(1) Any classical crossings involving the γ component are over-crossings of γ with D.
(2) The arcs of D ∪ γ contained in D are Alexander numerable.

This will be called an Alexander system for D. We will show that for any D, an Alexander
system for D can be obtained from �(D) = D ∪ ω by simply changing the orientation
of ω. This will be denoted by �op(D). Up to semi-welded equivalence, �op(D) is itself
Alexander numerable. Conversely, if D ∪ γ is any Alexander numerable diagram which
satisfies (1), then D ∪ γ determines an Alexander system for D. Our first theorem is below:

Theorem A. Let D0, D1 be equivalent virtual link diagrams. Any Alexander system for D1

is semi-welded equivalent to �op(D0).

Recall that almost classical links were originally defined by Silver-Williams [28] as those
virtual links having an Alexander numerable diagram. Thus, Theorem A can be restated
as follows. The �op-construction turns a virtual link of n components into an (n + 1)
component almost classical link. Any other method of doing so by adding an over-crossing
component is semi-welded equivalent to the �op-construction.

As is well known, every almost classical link has a homologically trivial representative in
some thickened surface Σ× I, where I = [0, 1] and Σ is closed and oriented. Hence L bounds
a Seifert surface in Σ × I. Theorem A implies that the �op-construction can also be de-
scribed geometrically in terms of Seifert surfaces. Suppose that a virtual link J is represented
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by some link J ⊂ Σ× I and F is a compact oriented surface in Σ× I such that ∂F = J ∪ C,
where C is a collection of pairwise disjoint simple closed curves in Σ × {1}. We show that
such a cobounding surface F for L exists and any given cobounding surface F determines an
Alexander system. In particular, we give an explicit F which realizes the �op-construction.
From this perspective the added component ω in the �-construction could be thought of
as a homology (or cohomology) class, though we will maintain a diagrammatic perspective
and treat ω as a component of a link.

The previous examples of the translation of classical results to the virtual setting had the
curious property that boundary links in the classical case corresponded to almost classical
knots in the virutal case. Here we make that correspondence clear. If D itself is an almost
classical link, it was proved in [3] that �(D) is semi-welded equivalent to a split virtual
link D ⊔⃝, where ⃝ is an unknot diagram disjoint from D. Using our model of the �-
construction, we give a simple geometric proof of this fact and its converse: a virtual link
D is almost classical if and only if �op(D) is semi-welded equivalent to a split Alexander
system D ⊔⃝. In this sense, Alexander systems detect almost classical links.

1.3. Main results: new examples. Thus far, the �-construction has only been applied
to studying extensions of the group of a virtual link. From this we obtain the generalized
Alexander polynomial, the various index polynomials, and the extended Milnor (i.e. �)-
invariants. Here we will consider invariants arising from the quantum point of view. That is,
invariants arising from skein theory and solutions to the set-theoretic Yang-Baxter equation.

In the inaugural paper on virtual knot theory [21], Kauffman showed that the skein relation
for the bracket polynomial defines a virtual knot invariant that extends the Jones polyno-
mial. Later, an inequivalent (and much more powerful) extension of the Jones polynomial
was independently discovered by Dye-Kauffman [11] and Miyazawa [24]. Rather than taking
values in Z[A±1], the Dye-Kauffman-Miyazawa polynomial is valued in Z[A±1, K1, K2, . . .].
It is defined using a different skein relation than the classical case, but agrees with the usual
bracket polynomial on classical knots. Here we give an alternate derivation of the DKM-
polynomial using the �-construction. The derivation uses only the usual Kauffman bracket
skein relation. Virtual linking numbers of the ω component with the state curves are used
to keep track of the variables K1, K2, . . .. Thus, the �op-construction again brings virtual
link invariants back into the realm of classical link theory.

As a self-distributive structure, every quandle yields a solution to the set-theoretic Yang-
Baxter equation. The usual quandle coloring and 2-cocycle invariants of classical links also
give invariants of virtual links. We will show that any of these invariants can be extended
using the �-construction. The method is simply to take the fundamental quandle of �(D)
and then use the usual coloring or 2-cocyle invariants of �(D). For a fixed finite quandle,
we give examples where the extended invariants are stronger than the usual ones.

1.4. Organization. Section 2 reviews the elements of virtual knots, almost classical knots,
and the �-construction that are needed in the sequel. Alexander systems are defined and
explored in Section 3.1. Theorem A is proved in Section 3.2. Alexander systems and cobound-
ary surfaces are discussed in Section 3.3. The derivation of the DKM-polynomial appears in
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Section 4. For extended quandles, see Section 5. Section 6 concludes the paper with some fur-
ther discussion and questions for future research. For the latex code to typeset �, follow this
link: https://github.com/micah-chrisman/virtual-knots/blob/main/how to typset zh.tex.

negative positive virtual

Figure 1. Crossings in virtual link diagrams.

2. Background

2.1. Virtual knots. An (oriented) virtual knot diagram is an (oriented) immersed circle on
R2 such that each point of self-intersection is a transversal double point. Each double point
is marked as either a positive classical crossing, a negative classical crossing, or a virtual
crossing. See Figure 1. An arc of a virtual knot diagram D is a path along D from one
under-crossing to the next, where virtual crossings are ignored. In addition to planar iso-
topies, two types of moves can be performed on virtual knot diagrams (see Figure 2). First,
the usual Reidemeister moves are allowed. Secondly, the detour move allows for any arc con-
taining only virtual crossings to be redrawn in any position, where any new self-intersections
are marked as virtual. The smallest equivalence relation on virtual knot diagrams generated
by planar isotopies, Reidemeister moves, and detour moves will be called virtual Reidemeis-
ter equivalence. If two virtual knot diagrams D0, D1 are virtually Reidemeister equivalent,
we write D0 ⇋ D1. A virtual Reidemeister equivalence class will be called a virtual knot type.

Ω1 Ω2 Ω3 Detour Move Example

Figure 2. The Reidemeister (Ω1, Ω2, Ω3) and detour moves.

The Gauss diagram G of a virtual knot diagram D is obtained as follows. For each classical
crossing of D, connect the preimages of the corresponding double-point in the underlying
immersion S1 → R2 by a signed and directed chord of S1. The signed chord is called an
arrow of G. The arrow points from the over-crossing arc to the under-crossing arc. The
sign of each arrow is the crossing sign: ⊕ for positive crossings and ⊖ for negative crossings.
An example is shown in Figure 3. Note that virtual crossings are ignored. Gauss diagrams
are considered equivalent up to orientation preserving diffeomorphisms of S1 that preserve
the arrow endpoints, signs, and directions. The Reidemeister moves of Figure 2 can be
translated into moves on Gauss diagrams (see [15], Figure 6). The Reidemeister equivalence
classes of Gauss diagrams are in one-to-one correspondence with the set of virtual knot types.
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Let n ≥ 1 be a natural number. A virtual link diagram of n components is an immer-
sion of n circles

⊔n
i=1 S1 in the plane whose transversal double points are marked as either

classical of virtual. A virtual link type is a virtual Reidemeister equivalence class of virtual
link diagrams. If L is a virtual link diagram L of n components, then a Gauss diagram G of
L is formed by connecting each pair of preimages in each classical crossing of the immersion⊔n

i=1 S1 → R2 by a signed and directed arrow. Note that the endpoints of an arrow may be
in either the same or different component circles.

Figure 3. A virtual knot diagram K (center), a Gauss diagram G of K (left),
and K realized by a knot diagram K on its Carter surface Σ ≈ S1×S1 (right).

Every virtual link diagram L can be drawn as a link diagram L on a closed orientable surface
Σ. The surface Σ is constructed as follows. Place a 0-handle (i.e. a disc) at each classical
crossing of L. An untwisted 1-handle (i.e. a band) is placed along each arc of L, where virtual
crossings are ignored. Lastly, we attach 2-handles (discs) to the boundary components to
obtain the closed surface Σ. This is often called the Carter surface of L. Conversely, given
a link diagram L on a closed oriented surface Σ, a Gauss diagram G of L is obtained in
the same fashion as for virtual link diagrams. Hence, there are many surfaces on which a
given virtual link diagram can be represented. In [7], Carter, Kamada, and Saito proved
that there is a one-to-one correspondence between virtual link types and equivalence classes
of knot diagrams on surfaces up to Reidemeister moves, diffeomorphisms of surfaces, and
addition/subtraction of handles from surfaces that are disjoint from the link diagram.

2.2. Almost classical links. Let D be a virtual link diagram. A short arc of D is a path
along D from one classical crossing to the next, where virtual crossings are again ignored.
The short arcs of D are in one-to-one correspondence to the arcs between adjacent arrow
endpoints in a Gauss diagram of D. Let S denote the set of short arcs of D. An Alexander
numbering of D is a function f : S → Z such that at each classical crossing of D, the
assignment of short arcs to integers follows the rule depicted in Figure 4. A virtual link
diagram having an Alexander numbering is said to be Alexander numerable.

Definition 2.2.1 (Almost classical link). A virtual link type L is called almost classical if
there is an Alexander numerable virtual link diagram D of L.

Almost classical links were first defined and studied by Silver and Williams [27, 29]. Note
that not every diagram of an almost classical link is Alexander numerable. Given an Alexan-
der numerable diagram D, let Σ be its Carter surface, and L be the corresponding link in
Σ × I. It can then be shown that L is homologically trivial in H1(Σ × I;Z) (see e.g. [4]).
Thus, L is a 1-boundary and hence L bounds a Seifert surface in Σ × I. An algorithm for
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Figure 4. An Alexander numbering at a crossing.

constructing such Seifert surfaces was given in [9].

As every classical knot type can be represented by a homologically trivial knot in S2 × I,
every classical knot type is almost classical. However, not every almost classical knot type
is classical. In Green’s table of virtual knots [16], only 77 of the 92800 virtual knot types up
to six classical crossings are almost classical. Of these 77, exactly 10 are classical.

2.3. The �-construction. Here we will review the �-construction and its basic proper-
ties. Further details can be found in [1, 3, 8]. Recall that a welded knot type is an equivalence
class of virtual knot diagrams up to planar isotopies, Reidemeister moves, detour moves, and
the over-crossings-commute move (OCC move) depicted in the left panel of Figure 5. The
�-construction is well-defined up to semi-welded equivalence, which we now describe.

⇌w

ω ω

⇌sw

ω ω
⇌sw

Figure 5. Welded equivalence: over-crossings commute (left). Semi-welded
equivalence: ω-over-crossings commute (middle). Gauss diagram formulation
of semi-welded equivalence (right).

Definition 2.3.1 (Semi-welded equivalence). Let L,L′ be two (n+ 1) component virtual link
diagrams with components labeled 1, 2, . . . , n, n+1. The (n+1)-st component will be called
the ω component and will be colored gray in figures. We say that L,L′ are semi-welded
equivalent if they may be obtained from one another by a finite sequence of Reidemeister
moves, detour moves, and ω-over-crossings-commute (ωOCC) moves (see Figure 5 middle
and right) in which the over-crossing arc is part of the ω component. If L,L′ are semi-welded
equivalent, we write L ⇋sw L′.

Definition 2.3.2 ( �-construction). Let D be an n component link diagram. Let �(D) be
the (n + 1) component diagram constructed by adding a new component, denoted ω, as
follows. Add two solid gray over-crossing arcs around each classical crossing in the diagram
D as depicted in Figure 6. Then connect the ends of the arcs into a single component. Con-
nections may be made in any order. To emphasize the arbitrary nature of these connections,
the connecting arcs are drawn as dashed. New crossings of ω with D and ω with itself are
marked as virtual crossings. We will refer to D as the base component(s) of �(D).
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ω

−OR−

ω ω

−OR−

ω

Figure 6. Drawing the ω component in �(D). Each positive and negative
classical crossing of D contributes to ω in one of the two depicted ways.

Example 2.3.3. Figure 7 shows one way to draw the ω component for the positive right-
handed trefoil. Any two ways of drawing the ω component are semi-welded equivalent.

� //

Figure 7. The �-construction for the positive virtual trefoil.

Theorem 2.3.4 ([3], Proposition 4.2). The �-construction is well defined up to semi-
welded equivalence. Furthermore, If D0 and D1 are equivalent virtual link diagrams then
�(D0) and �(D1) are semi-welded equivalent.

It is important to emphasize the role of semi-welded equivalence in the definition of the �
map. First note that if ω, ω′ are any two ways of connecting the solid gray arcs together for
a virtual link diagram D, then D ∪ ω ⇋sw D ∪ ω′. To see this, choose a base point on the ω
component. Using detour moves, it can be arranged so that when traveling along ω, all of
the virtual crossings of ω with D are passed before the classical crossings. Then passing a
pair of classical crossings of ω with D appears as in Figure 8, left. Using a detour move and
an ωOCC move, the order of two adjacent crossings can be transposed. See again Figure 8.
Since all permutations are generated by transpositions, it follows that the over-crossings of
ω with D can be arranged in any order. Hence, the �-construction is well defined.

⇋sw ⇋sw

Figure 8. The ωOCC move allows the order of the classical crossings along
ω to be switched without changing the integer labeling of the base component.

While the recipe for constructing �(D) is completely diagrammatic, it encodes interesting
geometric properties of the virtual link type of D. For example, the �-map is functorial
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under virtual link concordance (see [3], Theorem 4.3). In [1], Bar-Natan noted that if D is
classical, then �(D) is semi-welded equivalent to a split 2-component classical link diagram
D ∪ ω where ω is an unknotted circle. In [3], this was generalized to the following result for
almost classical links. A geometric proof of this theorem will be in Section 3.3 ahead.

Theorem 2.3.5 ([3], Theorem 4.5). If L is a diagram of an almost classical link, then
�(L) is semi-welded equivalent to the split link L ⊔ ω, where ω is an unknot disjoint from
the diagram of L.

The �-construction has been defined here following the orientation conventions of [1, 3, 8].
For many of our applications, the opposite orientation of ω is more natural.

Definition 2.3.6 ( �op-construction). By �op(D) = D∪ωop, we mean a virtual link diagram
obtained from �(D) = D ∪ ω by changing the orientation of ω.

Clearly, the �op-construction is well-defined up to semi-welded equivalence and if D0, D1

are equivalent virtual link diagrams, then �op(D0) ⇋sw �op(D1). Furthermore, if D is
almost classical, then �op(D) splits as in Theorem 2.3.5.

3. Characterizing the �-construction

3.1. Alexander systems. Let D be an n component virtual link diagram and D ∪ γ an
(n + 1) component virtual link containing D as a sublink. In figures, the component γ will
be drawn in gray while the diagram D will be drawn in black. Each short arc of D ∪ γ lies
in a short arc of the original link D or in the added component γ. Let Dγ denote the subset
of the short arcs of D ∪ γ that are contained in D.

Definition 3.1.1, (2a) Definition 3.1.1, (2b)

Figure 9. Alexander sub-numberings.

Definition 3.1.1 (Alexander system). Let D be an n component virtual link diagram. An
Alexander system for D is a triple (D, γ,Γ), where D∪γ is an (n+1) component virtual link
diagram and Γ : Dγ → Z is an integer labeling of Dγ such that the following two conditions
are satisfied.

(1) For every classical crossing involving the γ component, the over-crossing arc lies in γ
and the under-crossing arcs lie in D.

(2) Γ is an Alexander sub-numbering of Dγ. That is, Γ resembles:
(a) Figure 9, left, at every classical crossing of γ and D, and
(b) Figure 9, right, at every classical self-crossing of D.

Two Alexander systems (D, γ,Γ),(D, γ′,Γ′) for D are called equivalent if D ∪ γ ⇋sw D ∪ γ′.
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Some remarks about this definition are in order. First, observe that the labeling function
Γ is not used in the definition of equivalence for Alexander systems. If an Alexander sub-
numbering for Dγ exists, then the choice of this function can be made arbitrarily. It is fixed
in the notation simply for the sake of definiteness. Secondly, it is important to emphasize
that the short arcs of γ in D ∪ γ are not labeled by Γ. Only the short arcs in Dγ are
labeled. The arcs of γ are not labeled because the virtual link diagram D ∪ γ determined
by an Alexander system (D, γ,Γ) need not be Alexander numerable. Nonetheless, as the
next lemma shows, the �op-construction can be drawn in such a way that in the resulting
Alexander system (D,ωop,Ω), D ∪ ωop is Alexander numerable.

(a) (b)

Figure 10. Panel (A) shows the Alexander sub-numbering with ωop on the
right. Panel (B) shows the Alexander sub-numbering for ωop on the left. The
same Alexander sub-numberings are used for negative crossings of D.

.

(a) (b)

Figure 11. Panel (A) shows the Alexander numbering with ωop on the right.
Panel (B) shows the Alexander numbering for ωop on the left. The same
Alexander numberings are used for negative crossings of D.

.

Lemma 3.1.2. Let D be a virtual link diagram. Then the following hold.

(1) �op(D) = D ∪ ωop defines an Alexander system (D,ωop,Ω) for D.
(2) The ωop component of �op(D) can be drawn so that D∪ωop is Alexander numerable.

Proof. First suppose that near a positive crossing of D, �op(D) resembles Figure 10, left.
Label the short arcs of Dγ with 0 or 1 as shown in Figure 10, left. Alternatively, the two
gray arcs flanking a classical crossing of D in �op(D) can instead be drawn on the left, as
in Figure 10, right. In this case, the short arcs may be labeled as shown with a 1 or 2. For a
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negative crossing of D, the labeling of the short arcs is obtained from Figure 10 by changing
the depicted crossing of D from positive to negative. All together, this defines a function
Ω : Dωop → Z satisfying Definition 3.1.1. The labeling is consistent since all the incoming
and outgoing short arcs near a classical crossing of D are labeled with a 1.

For the second claim, we begin at a classical crossing x of D. Connect the two gray over-
crossing arcs of ωop near x so that they appear as on the left or right in Figure 11. Do this at
every classical crossing x of D. Then connect these longer pieces together to finish making
ωop. Next, label the short arcs of D∪ωop as shown in Figure 11. Although a positive crossing
is shown, the same connections and labeling is to be used at negative crossings of D. This
labeling is an Alexander numbering as all the incoming and outgoing arcs are labeled 1. □

γ
i

ii+ 1

i+ 1

γ
i

i

i+ 1

i+ 1

Figure 12. By ignoring the label on γ, we see that the labeling onDγ satisfies
property (2a) of the definition of an Alexander system.

Lemma 3.1.3. Suppose that D is an n component virtual link diagram and D ∪ γ is an
(n+ 1) component virtual link diagram satisfying condition (1) of Definition 3.1.1. If D ∪ γ
is Alexander numerable, then there is an Alexander system (D, γ,Γ) of D.

Proof. Let f : S → Z be an Alexander numbering of the short arcs of D∪γ. Let Γ : Dγ → Z
be the restriction of S to the short arcs of D in D ∪ γ. Since f is an Alexander numbering
of D∪ γ, Γ automatically satisfies condition (2b) of Definition 3.1.1. By condition (1), every
classical crossing involving γ resembles one of the two pictures shown in Figure 12. It follows
from Figure 12 that the labeling inherited from f satisfies condition (2a). Thus, (D, γ,Γ) is
an Alexander system. □

Corollary 3.1.4. Let D be an n component virtual link diagram. Let D ⊔⃝ be the (n+ 1)
component diagram obtained from D by drawing an unknotted circle disjoint from D. Then
D is Alexander numerable if and only if D ⊔⃝ gives an Alexander system (D,⃝,Γ).

Proof. The diagram D ⊔⃝ vacuously satisfies condition (1) of Definition 3.1.1. If D ⊔⃝
is Alexander numerable, then there is an Alexander system (D,⃝,Γ) by Lemma 3.1.3.
Conversely, if there is an Alexander system (D,⃝,Γ), then the absence of crossings between
⃝ and D, together with condition (2b), implies that D itself is Alexander numerable. □

Lastly, we consider a very different type of Alexander system for a virtual link diagram D.
First take every virtual crossing of D and convert it to either a positive or negative classical
crossing. The result is a classical link diagram and thus there is an Alexander numbering of
its short arcs. Next, convert these altered crossings back to virtual crossings. To preserve the
Alexander numbering of the short arcs, add in over-crossing arcs near each virtual crossing as
pictured in Figure 13. Connect these arcs together in an arbitrary manner to create a single
component υ. As usual, any new intersections between υ and D or υ and itself are marked
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as virtual crossings. With this labeling Υ, the (n+1) component virtual link diagram D∪υ
satisfies conditions (1) and (2) of Definition 3.1.1. This Alexander system for D will be used
in Section 4. It is recorded as a definition below for future reference.

Definition 3.1.5 (Virtual Alexander system). An Alexander system (D, υ,Υ) for D con-
structed as in the preceding paragraph will be called a virtual Alexander system for D.

// //

Figure 13. Construction of a virtual Alexander system. See Definition 3.1.5.

3.2. Proof of Theorem A. Our proof generalizes the classification of cut-point systems
due to N. Kamada [20]. We begin by establishing a collection of moves on Alexander systems
that are needed in the proof. First it is shown that reordering the over-crossing arcs of γ
in an Alexander system (D, γ,Γ) gives an equivalent Alexander system for D with the same
labeling Γ. More precisely, suppose that D ∪ γ′ is a virtual link diagram obtained from the
given diagram D ∪ γ as follows. Erase all of γ except for small over-crossing arcs at each of
the classical crossings of γ with D. Then reconnect the leftover pieces in an arbitrary fashion
so that the result has one component γ′. All new intersections between γ′ and D, or γ′ and
itself, are required to be transversal intersections that are disjoint from all other crossings.
Mark all of these added crossings as virtual crossings. Note that in this case Dγ = Dγ′ and
hence we can label the short arcs of D in D ∪ γ′ using the same function Γ.

Lemma 3.2.1. If D ∪ γ′ is obtained from an Alexander system (D, γ,Γ) by rearranging the
over-crossing arcs of γ with D as above, then (D, γ,Γ) is equivalent to (D, γ′,Γ).

Proof. Since γ′ and γ have the same classical crossings with D and Dγ = Dγ′ , the labeling
f : Dγ = Dγ′ → Z also gives a labeling of Dγ′ satisfying (2) of Definition 3.1.1. Hence
(D, γ′,Γ) is an Alexander system. It remains to show that D∪γ and D∪γ′ are semi-welded
equivalent. First observe that detour moves and the ωOCC move do not change the labeling
of Dγ′ . This is obvious for detour moves. For the ωOCC move, see Figure 8. Now, following
the proof that the �-construction is well defined, any desired ordering of the under-crossing
arcs of D along γ′ can be achieved from the given one by permuting pairs of adjacent under-
crossing arcs. Virtual crossings can likewise be placed in any desired position using detour
moves. Hence, (D, γ,Γ) and (D, γ′,Γ′) are equivalent. □

Now consider the moves shown in Figures 14 and 15. These will be called Alexander sys-
tem (AS) moves. Each move transforms an Alexander system (D, γ,Γ) into an equivalent
Alexander system (D, γ′,Γ′). The Alexander system 1 move on the left in Figure 14 is a
detour move. This has no effect on the Alexander sub-numbering of D. The Alexander
system 2A and 2B moves (see Figure 14 center and right) shows the effect of an Ω2 move
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⇋sw ⇋sw ⇋sw

Figure 14. The Alexander system 1 move (left), Alexander system 2A move
(center), and Alexander system 2B move (right).

⇋sw ⇋sw

Figure 15. The Alexander system 3A (left) and 3B (right) moves.

on an Alexander sub-numbering of D. Note that after performing the move, there are no
over-crossings of γ and D in the depicted portion of the virtual link diagram. By Lemma
3.2.1, only the positions of the over-crossing arcs of γ and D are of importance. Hence, it
is not necessary to draw the γ component after the Ω2 move is performed. Likewise, the
loop on the left hand side of each move in Figure 15 can be pulled off using a Ω3 move and
two Ω2 moves. Afterwards, there is a part of γ that has no crossings with D. The moves in
Figure 15 are then completed by erasing this portion of γ and then reconnecting the arcs of
γ in any desired fashion.

m n· · · · · ·

Figure 16. The short arc α of D from Lemma 3.2.2. The component γ (in
gray) further subdivides α into short arcs of D ∪ γ.

Lemma 3.2.2. Suppose that (D, γ,Γ) is an Alexander system. Let α be the short arc of D
between two (possibly the same) classical crossings of D. Let m and n be the integer labelings
of the first and last short arcs of D ∪ γ along α, as shown in Figure 16. Then there is an
equivalent Alexander system (D, γ′,Γ′) such that γ′ over-crosses α exactly |m − n| times,
where all crossings are positive if m < n and all crossings are negative if m > n.

Proof. First suppose that all of the over-crossing arcs of γ are oriented in the same direc-
tion along α. Then either the labeling starts at m and decreases by 1 to n while traveling
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the length of α or it increases by 1 to n. This implies that all of the crossing of γ with α
are negative in the first case and positive in the second. Hence, the number of crossings is
|m − n|, m < n when the common crossing sign is positive, and m > n when the common
crossing sign is negative.

For the general case, suppose that not all of the crossings of γ and α are oriented in the
same direction. Then starting from the left, we can always find a first pair of arcs that have
opposite orientations. By Lemma 3.2.1, there is an equivalent Alexander system such that
this pair of arcs occurs consecutively in their ordering along γ. Using either an Alexander
system 2A or 2B move, this pair of crossings can be removed. This process can be repeated
until all of the over-crossings of γ with α point in the same direction. The result then follows
from the first case. □

Lemma 3.2.3. Any two Alexander systems for the same virtual link diagram are equivalent.

Proof. Let (D, γ0,Γ0), (D, γ1,Γ1) be two Alexander systems for a virtual link diagram D.
The Alexander sub-numberings Γ0,Γ1 provide instructions on how to achieve the required
semi-welded equivalence. Let x be a classical self-crossing of D. The labels in Dγi incident
to x are determined by a single integer mx

i . If x is rotated so that it appears as in Figure 4 ,
take mx

i to be the label in the lower right-hand corner. If mx
0 = mx

1 , there is nothing to do.
If mx

0 < mx
1 , perform Alexander system 3A moves on (D, γ0,Γ0) until m

x
0 = mx

1 . If m
x
0 > mx

1 ,
perform Alexander system 3B moves on (D, γ0,Γ0) until equality is reached. Do this for
every classical self-crossing of D. Hence we may assume that the two Alexander systems
have the same integer labeling at every classical self-crossing of D. Now apply Lemma 3.2.2
to each short arc α of D for each of the two Alexander systems. After this reduction, the
over-crossings of γ0 with D must be of the same quantity and sign with the over-crossings
of γ1 with D along each α. Finally, applying Lemma 3.2.1 to γ0, we can reorder the over-
crossings of γ0 with D to match the ordering of the over-crossings of γ1 with D. It follows
that (D, γ0,Γ0), (D, γ1,Γ1) are equivalent Alexander systems for D. □

Proof.[Proof of Theorem A] Let (D0, γ0,Γ0), (D1, γ1,Γ1) be Alexander systems with D0 ⇋
D1. Lemmas 3.2.3 and 2.3.4 imply that D0 ∪ γ0 ⇋sw �op(D0) ⇋sw �op(D1) ⇋sw D1 ∪
γ1. □

3.3. Alexander systems & relative Seifert surfaces. The results of the previous sec-
tions can now be used to give a geometric derivation of the �op-construction. By Lemma
3.1.2, every virtual link diagram D has an Alexander system (D,ωop,Ω) that is Alexander
numerable. Since D∪ωop is Alexander numerable, it bounds a Seifert surface F in its Carter
surface Σ (see e.g. [4], Theorem 6.1). The boundary of F in Σ × I consists of a link L

corresponding to the virtual link diagram D and a knot C corresponding to ωop. As the only
classical crossings of ωop and D are over-crossings, C lies above L in Σ × I. Furthermore,
ωop has no classical self-crossings. It follows that C can be drawn as a simple closed curve
in Σ × {1}. Now, since Alexander systems characterize the �op-construction, our aim is
to show that Alexander systems are generated by surfaces F that are cobounded by L and
some simple closed curves in Σ× {1}. Such surfaces always exist, as is shown below.

Lemma 3.3.1. Let Σ be the Carter surface of a virtual link diagram D and let D be the
corresponding link diagram on Σ. Let L ⊂ Σ × I be a link having diagram D. Then there
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is a compact oriented surface F ⊂ Σ× I cobounded by L and a collection of disjoint simple
closed curves CF ⊂ Σ× {1}.
Proof. Note that homology relative to Σ×{1} satisfies H1(Σ×I,Σ×{1};Z) ∼= {0}. Any link
L ⊂ Σ× I is thus a relative 1-boundary. Hence L cobounds a 2-chain in Σ× I together with
some simple closed curves in Σ× I and the result follows. That this 2-chain can be assumed
to be a smooth surface essentially follows from Seifert’s algorithm. See, for example, the
proof of Lemma 3.3.4 below. □

Definition 3.3.2 (Relative Seifert surface). Let D be a virtual link diagram and let Σ, D, L be
as in Lemma 3.3.1. A relative Seifert surface for D is a compact oriented surface F ⊂ Σ× I
with ∂F = L ⊔ CF , where CF is a collection of disjoint oriented closed curves in Σ× {1}.
Every relative Seifert surface F forD determines an Alexander system (D, γF ,ΓF ), as we now
show. The link L⊔CF ⊂ Σ× I projects to a link diagram D∪DF on Σ×{0} (perhaps after
deforming CF slightly to ensure transversal intersections). Observe that the only crossings
in D ∪ DF involving the components of DF are over-crossings by DF . Now, consider the
intersection pairing for the subspaces D and DF of Σ (see e.g. Dold [10], VIII.13.18):

• : H1(D;Z)×H1(DF ;Z) → H1+1−2(D ∩DF ).

Clearly, H0(D ∩ DF ;Z) ∼= Z|D∩DF |. In other words, each over-crossing of DF with D con-
tributes a summand of Z. Since DF always over-crosses D, the sign of the crossing is
determined by the intersection pairing. To see this, write DF as a union of its components
D1,D2, . . . ,Dm. Let ηi = [Di] ∈ H1(DF ;Z) and let η = [D] ∈ H1(D;Z). Then:

η •

(
m∑
i=1

ηi

)
∈ H0(D ∩DF ;Z) ∼= Z|D∩DF |

has a ±1 in each summand according to the local intersect number. See Figure 17. It is read-
ily checked that the sign of the crossing agrees with the local intersection number of η and ηi.

ηi

η

ηi

η

⊕ crossing sign = 1 sign = −1 ⊖ crossing

Figure 17. Classical crossings and local intersection numbers.

An Alexander system (D, γF ,ΓF ) is now constructed as follows. For the (n+ 1) component
virtual link diagramD∪γF , note that every transversal intersection ofD andDF corresponds
to a point x on the virtual link diagram D. Draw a small over-crossing arc at x so that the
sign of the crossing matches the local intersection number of D and DF . As in the �op-
construction, these are connected in an arbitrary fashion to obtain a single component γF .
For the labeling function ΓF : DγF → Z, we use the fact that L ∪ CF is almost classical.
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Since L⊔CF bounds the Seifert surface F , the diagram D∪DF is Alexander numerable. As
in the proof of Lemma 3.1.3, the restriction of this labeling to the short arcs of DγF is an
Alexander sub-numbering. This proves the following theorem.

Theorem 3.3.3. Any relative Seifert surface F of D gives is an Alexander system (D, γF ,ΓF ).

An additional feature of the above construction is that it explains the need for the semi-
welded equivalence relation. Each over-crossing arc of γF with D represents a summand of
the intersection homology class of η•

∑
i ηi ∈ H0(D∩DF ;Z). Since H0(D∩DF ;Z) is abelian,

the order in which these summands are added together to make the full intersection homology
class η •

∑
i ηi is irrelevant. The γF component in D ∪ γF can therefore be interpreted as a

diagrammatic representation of the full intersection homology class η •
∑

i ηi. The ωOCC
relation simply encodes the fact that H0(D ∩DF ;Z) is abelian. Next we derive the �op-
construction from relative Seifert surfaces.

Theorem 3.3.4. For every virtual link diagram D, there is a relative Seifert surface S
such that the Alexander system (D, γS,ΓS) is equivalent to the Alexander system (D,ωop,Ω)
obtained from the �op-construction.

Proof. Let Σ be the Carter surface of D and D the diagram of D on Σ. Perform the oriented
smoothing at each crossing of D on Σ (see Figure 18). As usual, we would like to connect
the smoothed crossings together to make the Seifert circles of D. To do so, however, it may
be necessary to introduce new intersections with the arcs of D. Therefore, we must first
redraw the smoothed crossings of D in such a way that no additional crossings are needed.
This is shown in the two middle pictures in Figure 18. Note that as you enter or exit the
crossing of D, the arcs of the smoothed crossing now always lie to the right of an arc of
D. Hence the smoothed arcs for adjacent crossings of D can be connected together without
introducing any additional crossings with D. At each crossing, the figure shows a piece of
the desired two-sided surface S. Extending these pieces of the surface along the remaining
arcs of D gives an oriented surface S with boundary L⊔ CS. The fact that D ∪ γS coincides
with �op(D), up to semi-welded equivalence, follows from Figure 18, right. □

As an application of the above, we give a geometric proof of Theorem 2.3.5. A corollary of
this is that �op(D) splits as an Alexander system D⊔⃝ if and only if D is almost classical.

Theorem 3.3.5 (Theorem 2.3.5). Let D be a diagram of an almost classical link. Then
�op(D) is semi-welded equivalent to the split link D ⊔ ωop, where ωop is an unknot.

Proof. If D0, D1 are equivalent diagrams, then �op(D0), �op(D1) are semi-welded equiv-
alent. Hence we may assume that the given diagram D is Alexander numerable. Let Σ be
the Carter surface of D and D the corresponding diagram of D on Σ. Any link L ⊂ Σ × I
with diagram D bounds a Seifert surface F in Σ × I. Let τ : [0, 1] → Σ × I be a smooth
path such that τ(0) is in the interior of F , τ(1) ∈ Σ × {1}, and τ((0, 1)) ∩ F = ∅. Let N
be a sufficiently small closed tubular neighborhood of the image of τ so that N intersects F
exactly in a disc E0 ⊂ int(F ) that is centered at τ(0) and N intersects Σ × {1} only in a
disc E1 that is centered at τ(1) . Let T = ∂N ∖ (int(E0)∪ int(E1)), so that T is an annulus.
Define S = (F ∖ int(E0)) ∪ T . Then S intersects Σ× {1} in the circle ∂E1 that bounds the
disc E1 in Σ×{1}. Let (D, γS,ΓS) be the Alexander system for D corresponding to S as in
Theorem 3.3.3. Since ∂E1 can be contracted to as small a circle in Σ as desired, it follows
that γS has no classical or virtual crossings with D. Hence, D ⊔ γS splits as desired. □
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// //

// //

Figure 18. Realizing �op(D) with a relative Seifert surface.

Corollary 3.3.6. A virtual link diagram D is almost classical if and only if �op(D) is
semi-welded equivalent to a split diagram D′ ⊔⃝ where (D′,⃝,Γ′) is an Alexander system.

Proof. If D is almost classical, then �op(D) splits by Theorem 3.3.5. Conversely, suppose
�op(D) ⇋sw D′ ⊔ ⃝. Since (D′,⃝,Γ′) is an Alexander system, Corollary 3.1.4, implies
that D′ is an Alexander numerable diagram. Since the ωOCC move can only be applied
when the over-crossing arc is in the ωop component, it follows that D ⇋ D′ as virtual link
diagrams. Hence, D is almost classical. □

4. Realizing the Dye-Kauffman-Miyazawa polynomial with �

4.1. Review of DKM-polynomial. Here we will use the formulation due to Dye-Kauffman
[11], which gives an equivalent invariant to the Miyazawa polynomial [24]. The DKM-
polynomial is defined as a state sum, similar to the Kauffman bracket, but over the ring
Z[A±1, K1, K2, . . .]. By an arrow state of D, we mean the collection of planar curves obtained
from D by successively applying the following rule to the classical crossings of D until no
classical crossings remain:〈〈 〉〉

= A

〈〈 〉〉
+ A−1

〈〈 〉〉
,〈〈 〉〉

= A−1

〈〈 〉〉
+ A

〈〈 〉〉
Note that in addition to the usual state curves of a virtual knot diagram, an arrow state
involving at least one unoriented smoothing contains some added symbols ↱. Furthermore,
the curves between the endpoints of these symbols are oriented in the manner shown above.
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The added symbols ↱ are called poles. The evaluation ⟨S⟩ for a arrow state S is now
determined as follows. First, we reduce the poles ↱ along all the state curves in S. If two
neighboring poles are on the same side of the component on which they sit (or equivalently,
they point in the same direction), cancel the two poles and adjust the alternating orientation.
See Figure 19. This rule is continually applied until no additional reductions are possible.
For a loop C in a state S, set a(C) ∈ N ∪ {0} to be half of the number of poles on C and
set K0 = 1. Define the evaluation [S] of the arrow state S to be:

[S] =
∏
C∈S

Ka(C)

Definition 4.1.1 (DKM-polynomial). Let D be an oriented virtual link diagram. For an arrow
state S of D, let α(S) be the number of A-smoothings, β(S) the number of B-smoothings,
|S| is the number of loops in the state. Let w(D) denote the writhe of D. Then the
DKM-polynomial VDKM(D) is the virtual isotopy invariant of D determined by the following
normalized state sum:

⟨⟨D⟩⟩ =
∑
S

Aα(S)−β(S)(−A2 − A−2)|S|−1[S], VDKM(D) = (−A)−3·w(D)⟨⟨D⟩⟩

For a proof that this defines a virtual isotopy invariant, the reader is referred to [11]. Example
calculations and a tabulation can be found in Bhandari-Dye-Kauffman [2].

⇌

Figure 19. The rule for canceling poles.

Example 4.1.2. Let D be the right-handed virtual trefoil shown on the left in Figure 20. The
right side in Figure 20 shows the four arrow states. Then ⟨⟨D⟩⟩, VDKM(D) are given by:

⟨⟨D⟩⟩ = A2 + (1− A−4)K1, VDKM(D) = (−A)−6(A2 + (1− A−4)K1).

A2 K1 K1 A−2 · d ·K1

Figure 20. The arrow states for the right handed virtual trefoil (where d =
−A2 − A−2).
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4.2. The �-polynomial. Next we define the �-bracket, whose normalized �-polynomial
will be shown to be equal to the DKM-polynomial in the following section. Unlike the DKM-
polynomial, the �-bracket is defined using the standard state expansion. Let D be a virtual
link diagram and begin by constructing �op(D). A �-state of D is obtained by choosing
the A- or B-smoothing at a classical crossing of D and expanding according to the Kauffman
bracket skein relation:〈〈 〉〉

�
= A

〈〈 〉〉
�

+ A−1

〈〈 〉〉
�
.

In the construction of the �-state, observe that all crossings involving the ωop-component
are ignored. Hence, a �-state consists of the usual state curves of D for the same choice
of A- or B-smoothing at each crossing of D, together with the ωop-component. The ωop-
component only has over-crossings with the state curves of D. The ωop-component retains
its orientation, but note that the state curves of D are unoriented. Two �-states are con-
sidered the same if they may be obtained from one another by semi-welded equivalence.

For each �-state S, define a term [S] � in the variables Z1, Z2, . . . as follows. First, give

each state curve C in S, C ̸= ωop, an arbitrary orientation. This will be denoted C⃗. Let
vℓk(J, J ′) denote the virtual linking number which counts, with sign, the number of times J

over-crosses J ′. Assign to each state curve C the variable Z| vℓk(ωop,C⃗)|/2. Note that vℓk(ω, C⃗)
must indeed be even because ωop has two classical crossings with D near each classical cross-
ing ofD. If either the A- or B-smoothing is performed at a crossing ofD, the number of times
ωop crosses each component remains even. See Figure 22. In the case that vℓk(ωop, C⃗) = 0,
set Z0 = 1. Then define for each �-state S of D a term [S] � as follows:

[S] � =
∏
C∈S

Z| vℓk(ωop,C⃗)|/2

Definition 4.2.1 ( �-bracket & �-polynomial). Let D be an oriented virtual link diagram.
For a �-state S of D, let α(S) be the number of A-smoothings, β(S) the number of B-
smoothings, |S| is the number of loops in the state, excluding the ωop-component. Let w(D)
denote the writhe of D. The �-bracket ⟨⟨D⟩⟩ � and �-polynomial V �(D) are defined by
the following expressions:

⟨⟨D⟩⟩ � =
∑

�-states S

Aα(S)−β(S)(−A2 − A−2)|S|−1[S] �, V �(D) = (−A)−3·w(D)⟨⟨D⟩⟩ �.

Proposition 4.2.2. The �-polynomial is a well-defined invariant of oriented virtual links.

Proof. The virtual linking number vℓk(J, J ′) is an invariant of welded links (see e.g. [8],
Proposition 4.1.2). Since the subscripts of the variables Zi are absolute values of virtual
linking numbers, the value of the invariant is independent of the chosen orientation of the
�-state curves. The value of the invariant is also independent of order of the over-crossing
arcs of the ωop-component. This follows from the fact that ⟨⟨D⟩⟩ is invariant under the semi-
welded move. Indeed, the classical crossings of ωop are not smoothed in the state expansion.
Hence, the �-states on the left-hand side of the move are semi-welded equivalent to the
corresponding �-states on the right-hand side of the move. The claim then follows since
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the virtual linking number is a welded link invariant.

Lastly, it must be shown that the �-polynomial is invariant under virtual Reidemeister
equivalence. Clearly, the �-polynomial is unaffected by detour moves. For the classical
Reidemeister moves, observe that the ωop-component can always be pulled off of both sides
of the move using semi-welded equivalence (see [3], Figures 13, 14, and 15). Invariance under
moves Ω1, Ω2, and Ω3 then follows as in the classical case of the Kauffman bracket. □

Example 4.2.3. Let D again be the right-handed virtual trefoil. Figure 21 shows the four �-
states of D and their corresponding weights. For the leftmost �-state, we have [S] � = 1.
For the last three �-states, [S] � = Z1. Then we have:

⟨⟨D⟩⟩ � = A2 · 1 + (2 + A−2 · (−A2 − A−2))Z1

= A2 + (1− A−4)Z1, and

V �(D) = (−A)−6(A2 + (1− A−4)Z1).

A2 1 1 A−2 · d

Figure 21. The �-states and weights for the right-handed virtual trefoil
(where d = −A2 − A−2).

4.3. The �-polynomial & the DKM-polynomial. Example 4.2.3 is generic. Here we
show that the �-polynomial is equal to the DKM-polynomial after the obvious substitution
Zi → Ki for all i. This is an immediate consequence of the following lemma.

Lemma 4.3.1. Let D be a virtual link diagram. Let C simultaneously denote a closed
curve in the �-state S for the �-bracket and the corresponding arrow state in the DKM-
bracket. Give C an arbitrary orientation C⃗. Then the contribution of C to [S] in ⟨⟨D⟩⟩ is
K| vℓk(ωop,C⃗)|/2.

Theorem 4.3.2. The �- and DKM-polynomials are equivalent virtual link invariants.

Proof. First we place the ωop-component in a useful position relative to D. As discussed
in Section 2.3, it may be assumed that the ωop-component has been drawn so that the only
crossings involving ωop are classical over-crossings with D and virtual crossings with D.
Thus, there is a well-defined right and left side of ωop. Furthermore, it may be supposed
that ωop has been drawn so that all classical crossing of D are to the right of ω (see Figure 6).

Now, let S be a �-state of the diagram D. Observe that the poles and over-crossings
of D by ωop can be placed in one-to-one correspondence. For an oriented smoothing at a
crossing of D, the ωop-component can be pulled off of D using an Ω2 move. See Figure 22,
left. Hence, all such over-crossing arcs can be removed in pairs. This leaves only over-crossing
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Figure 22. The correspondence between ωop over-crossings and poles.

arcs at the unoriented smoothings of S. At an unoriented smoothing, there is exactly one
over-crossing arc of ωop for each pole. See Figure 22, right. This gives the desired bijection
between poles and ωop over-crossings.

Now consider two consecutive poles as one walks along a fixed component C of the �-state
S. Due to the alternating orientation of the arcs between poles in the state of ⟨⟨D⟩⟩, there
are only four possible configurations of consecutive canceling poles. These are shown in
Figure 23, where the consecutive poles on C are connected by a dotted black arc. Let C⃗ be
an arbitrary orientation on C. From Figure 23, we see that for any orientation C⃗ of C, the
contribution to vℓk(ωop, C⃗) for the two over-crossing arcs is zero. Similarly, following the
alternating orientation, there are four configurations of consecutive oriented poles that do
not cancel. These are shown in Figure 24. In this case, the contribution to vℓk(ωop, C⃗) from
the over-crossing arcs is ±2. Hence, the total contribution of C to [S] is K| vℓk(ωop,C⃗)|/2. This
completes the proof of the Lemma 4.3.1 and, consequently, the proof of Theorem 4.3.2. □

Figure 23. The four configurations of canceling poles.

4.4. Applications. Now we apply the identification of the �-bracket and the DKM-
bracket to give simple proofs of several well-known facts about the DKM-polynomial. Recall
that a summand of ⟨⟨D⟩⟩ is called a surviving state. Each surviving state has the form
AmKj1

i1
. . . Kjn

in
. The k-degree of a surviving state is defined to be the integer

∑n
l=1 il · jl. The

k-degree corresponds to the half number of oriented poles on some arrow state curve after
reduction. For a virtual knot diagram D, let AS(D) be the set of k-degrees of the surviving
states of D.

Example 4.4.1. For the virtual trefoil D, Example 4.2.3 implies that AS(D) = {0, 1}.
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Figure 24. The four configurations of non-canceling poles.

Now consider the following result, which states that the DKM-polynomial is an extension
of the Jones polynomial. Note that the extension is proper since, for example, the DKM-
polynomial of the right-handed trefoil is not equal to its Jones polynomial.

Theorem 4.4.2 (Dye-Kauffman [11], Miyazawa [24]). For any virtual link diagram D, if D
is classical then AS(D) = {0}. Hence, if D is classical, VDKM(D) is equal to the normalized
Kauffman bracket polynomial of D (i.e. the Jones polynomial).

Since every classical knot is almost classical, this result is an immediate corollary of the
following stronger theorem which is easily proved using the �-bracket. This well-known
result was first obtained by Nakamura et. al. [25] using a different method (see also Miller
[23]).

Theorem 4.4.3. For any virtual link diagram D, if D is almost classical then AS(D) = {0}
and VDKM(D) is equal to the normalized Kauffman bracket polynomial of D.

Proof. If D is almost classical, then �op(D) is semi-welded equivalent to the split link

D⊔⃝ (see Theorem 2.3.5). Then for each �-state curve C, vℓk(ωop, C⃗) = 0. All surviving
states of ⟨⟨D⟩⟩ � must therefore have k-degree 0. The result follows from Theorem 4.3.2. □

For a virtual link diagram D, let v(D) denote the minimum number of virtual crossings
among all virtual link diagrams equivalent toD. A useful application of the DKM-polynomial
is that it gives a lower bound on v(D). Here we give a simple proof of this fact using the
�-construction.

Theorem 4.4.4 (Dye-Kauffman [11], Miyazawa [24]). For any virtual link diagram D,

max(AS(D)) ≤ v(D).

Proof. Choose a diagram D′ ⇋ D that realizes the minimum number of virtual crossings.
Then construct the virtual Alexander system (D′, υ,Υ) forD′ (see Definition 3.1.5 and Figure
13). By Theorem A, this is equivalent to the Alexander system for �op(D). Hence, the
virtual Alexander system can be used instead of �op(D) to compute the DKM-polynomial.
The total number of classical crossings between D′ and υ is twice the number of virtual
crossings of D. Hence, the k-degree of any surviving state can be at most v(D). □
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5. Extending quandles with �

5.1. The Extended Fundamental Quandle. Joyce [19] proved that the fundamental
quandle of a classical knot is complete a knot invariant, up to mirror images. Quandles
have played a central role in virtual knot theory ever since its inception (see Kauffman [21]).
Virtual knot invariants can be extracted from the fundamental quandle by counting the
number of colorings of D by a finite quandle. These can be computationally time consuming
even when the size of the quandle is small. For the related problem of the coloring invari-
ants derived from the fundamental group, we refer the reader to [22]. Thus, it is useful
to strengthen the coloring invariants obtained from a fixed finite quandle. The aim of this
section is to show that the counting and 2-cocycle invariants for a finite quandle can both
be strengthened by applying the �-construction.

Recall that a quandle is a set X with a binary operation ∗ : X ×X → X such that:

(I) For all x ∈ X, x ∗ x = x.
(II) For all x, y ∈ X, there is a unique z ∈ X such that z ∗ y = x.
(III) For all x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

In Axiom (II), we will write z = x ∗̄ y. For any virtual link diagram D, the fundamental
quandle Q(D) of D is defined as follows. The generators of Q(D) are in one-to-one corre-
spondence with the arcs of D. The relations of Q(D) are in one-to-one correspondence with
the classical crossings of D. The classical crossing relations are shown in Figure 25.

b a

b∗̄a

a b

b ∗ a

Figure 25. Crossing relations for the fundamental quandle.

Definition 5.1.1. The extended fundamental quandle of a virtual knot diagram D is the fun-
damental quandle of �(D):

Q̃(D) := Q( �(D)).

Theorem 5.1.2. If D0 ⇋ D1, then Q̃(D0) ∼= Q̃(D1) as quandles.

Proof. Since �(D0) and �(D1) are semi-welded equivalent and the fundamental quandle
of a knot is invariant under all extended Reidemeister and detour moves, it is sufficient to
show that the fundamental quandle is invariant under the semi-welded move. That is, it must
be checked that Q is invariant under the ωOCC move (see Figure 5). There are essentially
two cases, as shown in Figure 26. Both sides of the semi-welded move on the left in Figure 26
yield the equations a∗v = c, b∗v = d. On the right in Figure 26, both sides of the semi-welded
move yield the equations b ∗ v = d, c ∗̄ v = a. Thus, Q( �(D0)) ∼= Q( �(D1)). □

For the remainder of this subsection, we discuss the extent to which Q̃(D) can be interpreted
as an extension of Q(D). Recall that the fundamental group G(D) of a virtual knot dia-
gram D is the group generated by the arcs of D and having one Wirtinger relation for every
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Figure 26. Extended fundamental quandles and semi-welded equivalence.

classical crossing of D. The fundamental group of �(D), denoted G̃(D), is an extension

of G(D). The surjective homomorphism G̃(D) → G(D) sends the generator v for the the
ω component to the identity in G(D) (see [8], Section 2.4). Note that there is no similar

quandle map Q̃(D) → Q(D) for the simple reason that quandles do not in general posses an
element acting as a multiplicative identity. Thus, in order to define a surjective homomor-

phism with domain Q̃(D), we must add an image element for v in Q(D). This can be done
as follows.

Let (X, ∗) be a quandle and v a symbol not in X. Define a new quandle Xv with underlying
set X ⊔ {v} and operation ∗v : Xv × Xv → Xv. The operation is given by ∗v|X × X = ∗,
x ∗v v = x for all x ∈ X, v ∗v x = v for all x ∈ X, and v ∗v v = v.

Lemma 5.1.3. If (X, ∗) is a quandle, so also is (Xv, ∗v).

Proof. Axioms (I),(II),(III) hold for (Xv, ∗v) whenever x, y, z ∈ X. All that remains is to
check axioms (II) and (III) when at least one of the elements in each formula is v. Let x ∈ X.
For axiom (II), note that the unique element z such that z ∗v x = v is v and the unique
element z such that z ∗v v = x is x. For axiom (III), let x, y ∈ Xv. Then we have:

(x ∗v y) ∗v v = x ∗v y = (x ∗v v) ∗v (y ∗v v)
(x ∗v v) ∗v y = x ∗v y = (x ∗v y) ∗v (v ∗v y)
(v ∗v x) ∗v y = v = (v ∗v y) ∗v (x ∗v y)

Hence, self-distributivity is satisfied when one or more of the involved elements is v. □

Now we apply this construction to the fundamental quandle of a virtual knot diagram. If
X = Q(D) is the fundamental quandle of a virtual knot diagram D and v is a symbol

not in X, define Qv(D) = Xv. Set v to be the generator of Q̃(D) corresponding to the ω
component.

Theorem 5.1.4. The extended quandle Q̃(D) is an extension of the fundamental quandle
Q(D) in the following sense.

(1) There is an injective homomorphism ιDv : Q(D) ↪→ Qv(D) with v ̸∈ ιDv (Q(D)).

(2) There is a surjective homomorphism φD
v : Q̃(D) ↠ Qv(D) such that φD

v (v) = v.

Proof. For (1), note that Qv(D) = Q(D) ⊔ {v} as sets. Define ιDv : Q(D) → Qv(D) by
ιDv (x) = x. This is a homomorphism by definition of the operation ∗v. If x0, x1 ∈ Q(D)
and x0 ̸= x1, then the image of these elements lies in the subset Q(D) of Qv(D). Hence
ιDv (x0) = x0 ̸= x1 = ιDv (x1). This completes the proof of the first claim.
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For (2), Figure 27 shows two pictures of the form A → B. The A part depicts the generators

near a classical crossing of D for the group Q̃(D). Note that for the A in the left-hand pair,
the generator d can be removed from the presentation. Indeed, we have the relations c∗b = d
and d ∗ v = e. Similarly, for the A in the right-hand pair, the generator b can be removed

from the presentation for Q̃(D). After the removal of all such generators from Q̃(D), we find

that that there is a presentation for Q̃(D) generated by v and the short arcs of D. Now,
every short arc s of D is contained in a unique arc us of D. Define φD

v by φD
v (v) = v and for

every short arc s of D, set φD
v (s) = us. This has the effect of relabeling the arcs of �(D) at

a crossing as depicted in Fig 27. The relabeled picture is the “target” B for the arrow A → B.

Clearly, the function φD
v : Q̃(D) → Qv(D) is surjective. To show it is a homomorphism

of quandles, we check the crossing relations. On the left-hand side of Figure 27, we have
φD
v (d ∗ v) = φD

v (e) = e = e ∗v v = φD
v (d) ∗v φD

v (v), φD
v (a∗̄v) = φD

v (b) = a = a∗̄vv =
φD
v (a)∗̄vφD

v (v), and φD
v (c ∗ b) = φD

v (d) = e = c ∗v a = φD
v (c) ∗v φD

v (b). On the right-hand
side of Figure 27, we have φD

v (d ∗ v) = φD
v (e) = d = d ∗v v = φD

v (d) ∗v φD
v (v), φ

D
v (a∗̄v) =

φD
v (b) = a = a∗̄vv = φD

v (a)∗̄vφD
v (v), and φD

v (b∗̄d) = φD
v (c) = c = a∗̄vd = φD

v (b)∗̄vφD
v (d).

This completes the proof of (2). □

d
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d

e
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Figure 27. The homomorphism φD
v : Q̃(K) → Qv(K) from Theorem 5.1.4.

5.2. Coloring and cocycle invariants. If X is any quandle and D is a virtual knot di-
agram, a coloring by X is a quandle homomorphism from the fundamental quandle Q(D)
to X. A coloring of D by a quandle labels the arcs of D so that the relations at each
classical crossing of D are valid when interpreted in X. Let X be a finite quandle and let
ColX(D) = Hom(Q(D), X) be the set of colorings of D by X. Then the cardinality of the
finite set |ColX(D)| is a virtual knot invariant. Define the set of extended colorings of D by

X to be C̃olX(D) = ColX( �(D)).

Theorem 5.2.1. If D0, D1 are equivalent virtual knot diagrams and X is a finite quandle,

|C̃olX(D0)| = |C̃olX(D1)|.
Proof. It is well-known that there is a one-to-one correspondence between the colorings by X
of any two virtual knot diagrams related by Reidemeister or detour moves. It follows from the
coloring in Figure 26 that there is a one-to-one correspondence between the colorings byX for
any two diagrams related by an ωOCC move. Thus, |ColX( �(D0)) = |ColX( �(D1))|. □

Corollary 5.2.2. Let X be a finite quandle and D a virtual link diagram. If D is al-

most classical, then |C̃olX(D)| = |ColX(D)| · |X|. In particular, if D is unknotted, then

|C̃olX(D)| = |X|2.
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Proof. By Theorem 3.3.5, �(D) is semi-welded equivalent to the split diagram D ⊔ ⃝.

Hence, by Theorem 5.2.1, we have that |C̃olX(D)| = |ColX(D)| · |X|. □

� //

v

f

cb

a
d

e

Figure 28. A labeling the arcs of the extended fundamental quandle of the
positive virtual trefoil.

Example 5.2.3. This example will show that the extended colorings by a finite quandle can
distinguish virtual knot types even in the case that the coloring invariants for all finite quan-
dles cannot. Let D be the positive virtual trefoil knot diagram in Figure 28, left. Then it
is easy to see that Q(D) is the trivial one element quandle. For any finite quandle X, it
follows that |ColX(D)| = |X| and hence D cannot be distinguished from the unknot using
this invariant.

A presentation for the extended fundamental quandle can be calculated from Figure 28:

Q̃(D) = ⟨a, b, c, d, e, f, v|c ∗ e = d, a ∗ b = c, e ∗ v = a, f ∗ v = b, d ∗ v = b, e ∗ v = f⟩.

Here v is the generator corresponding to ω. Let (X, ∗) be the Alexander quandle on Z7 with
t = 3. In other words, x ∗ y = 3x+5y for all x, y ∈ Z7. The relation matrix is then given by:

0 0 3 6 5 0 0
3 5 6 0 0 0 0
6 0 0 0 3 0 5
0 6 0 0 0 3 5
0 6 0 3 0 0 5
0 0 0 0 3 6 5

 .

Over Z7, this matrix has nullity 1, which means that the system of linear equations over Z7

has one free variable. This implies that C̃olX(K) = |X|1 = 7. Then Corollary 5.2.2 implies
that the positive virtual trefoil is not equivalent to the unknot.

y x

xyϕ(x, y)

ϕ(x, y)−1

Figure 29. The Boltzmann weights for each classical crossing type.
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Next we will show that the 2-cocycle counting invariants of �(D) are also invariants of D.
ForX a finite quandle and A an abelian group, recall that a 2-cocycle is a map ϕ : X×X → A
satisfying:

ϕ(x, z)ϕ(x ∗ z, y ∗ z) = ϕ(x ∗ y, z)ϕ(x, y), and ϕ(x, x) = 1 ∀x, y, z ∈ X,

where the operation in A is written as multiplication. If ϕ is a 2-cocycle of X, D is a virtual
link diagram, and χ is a coloring of D by X, assign a Boltzmann weight B(τ, χ) to each
classical crossing τ of D according to Figure 29. The cocycle counting invariant of D is
defined to be:

Φϕ
X(D) =

∑
χ∈ColX(D)

∏
τ

B(τ, χ) ∈ Z[A]

This was proved to be an invariant of classical links by Carter et al. [5]. The same argument
works for virtual links.

Definition 5.2.4. For X a finite quandle, ϕ a 2-cocycle of X, and D a virtual link diagram,

the extended cocycle counting invariant is defined to by Φ̃ϕ
X(D) = Φϕ

X( �(D)).

Theorem 5.2.5. If D0, D1 are equivalent virtual knot diagrams, then Φ̃ϕ
X(D0) = Φ̃ϕ

X(D1).

Proof. Since D0 ⇋ D1, �(D0) ⇋sw �(D1). Since Φϕ
X is invariant under Reidemeister

moves and detour moves, it needs only be shown that Φ̃ϕ
X is invariant under the ωOCC

move. Suppose then that �(D0) and �(D1) are related by an ωOCC move. By the proof
of Theorem 5.1.2, it follows that there is a one-to-one correspondence between the extended
colorings of �(D0) and �(D1). From Figure 26, left, the contribution of Boltzmann
weights from the two classical crossings is ϕ(a, v)ϕ(b, v) on each side of the move. Similarly,
Figure 26, right, gives a contribution of ϕ(a, v)−1ϕ(b, v) on each side of the move. Thus,

Φ̃ϕ
X(D0) = Φ̃ϕ

X(D1) and the theorem is proved. □

Corollary 5.2.6. Let X be a finite quandle, D a virtual link diagram, and ϕ : X ×X → A

a 2-cocycle. If D is almost classical, then Φ̃ϕ
X(D) = |X| · Φϕ

X(D). In particular, if D is

equivalent to the unknot, then Φ̃ϕ
X(D) = |X|2 · 1 ∈ Z[A].

Proof. By Theorem 3.3.5, �(D) is semi-welded equivalent to the split diagram D ⊔ ⃝.

Hence, by Theorem 5.2.5, we have that Φ̃ϕ
X(D) = |X| · Φϕ

X(D). □

Example 5.2.7. Again consider the virtual trefoil in Figure 28. Since its fundamental quandle
is the trivial one element quandle, any finite quandle X and 2-cocycle ϕ : X × X → A of
X will have Φϕ

X(D) = |X| · 1 ∈ Z[A]. Hence, D cannot be distinguished from the unknot
using any coloring invariant or cocycle counting invariant. We will show that D can be

distinguished from the unknot using an extended 2-cocycle invariant Φ̃ϕ
X(D), even when the

extended coloring invariant |C̃olX(D)| does not. Let (X, ∗) be the dihedral quandle on Z4.
Then X = Z4 and x ∗ y = −x+ 2y (mod 4) for all x, y ∈ Z4. The multiplication table is:

0 2 0 2
3 1 3 1
2 0 2 0
1 3 1 3


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In this case, there are 16 colorings of �(K) by X, so that |C̃olX(K)| = |X|2 and the
extended coloring invariant does not distinguish K from the unknot. The colorings are:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
b 0 0 2 2 1 1 3 3 0 0 2 2 1 1 3 3
c 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
d 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
e 0 0 2 2 1 1 3 3 0 0 2 2 1 1 3 3
f 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
v 0 2 1 3 1 3 0 2 1 3 0 2 0 2 1 3

We will use the 2-cocycle ϕ : X ×X → A from Carter et al. [5] (see also Elhamdadi-Nelson
[14], Example 130):

ϕ(x, y) =

{
u if (x, y) = (0, 1) or (0, 3)
1 else

Each extended coloring χ gives a term
∏

τ B(τ, χ):

ϕ(f, v)−1ϕ(a, b)ϕ(e, v)ϕ(c, e)ϕ(e, v)−1ϕ(d, v).

Calculating this product for each coloring above gives Φ̃ϕ
X(K) = 14 + 2u. As claimed, ex-

tended 2-cocycle invariants can distinguish virtual knot types even when the quandle coloring
invariants, quandle 2-cocycle invariants, and the extended quandle coloring invariants are
unable to do so. The Mathematica [18] code for the this calculation can be found at at this
link.

6. Further Discussion

6.1. Quantum invariants & categorification. As is well-known, the Jones polynomial
can be expressed as the normalized quantum invariant associated to Uq(sl2). The DKM-
polynomial is an extension of the Jones polynomial in the sense that the DKM-polynomial
of a classical knot is equal to its Jones polynomial. In Theorem 4.3.2, it was shown that the
DKM-polynomial can be naturally obtained from the �-construction. Is there a general
method for extending quantum or skein theoretic invariants to virtual links using the �-
construction?

A categorification of the DKM-polynomial was given by Dye-Kauffman-Manturov [12]. In
[30], Tagami showed how to categorify a two-variable version of the DKM-polynomial via
a generalization of the Bar-Natan geometric complex. Note that both of these categorifi-
cations require coefficients in the field Z2. Theorem 4.3.2 realizes the additional variables
in the DKM-polynomial with virtual linking numbers. In particular, the variables for each
state can be calculated without reducing the poles in the state curves. This simplification
suggests that the �-bracket might allow for a more straightforward categorification of the
DKM-polynomial.
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6.2. Comparing quandle extensions. Extensions of quandles have been heavily studied

in the literature. How is the extension φD
v : Q̃(D) ↠ Qv(D) related to the general theory of

extensions of quandles? We mention just two comparisons with other types of quandle exten-
sions. Carter-Kamada-Saito [6] defined for each quandle (X, ∗) and 2-cocycle ϕ : X×X → A
a quandle E(X,A, ϕ) with underlying set A×X and operation ◦ : (A×X)×(A×X) → A×X
given by (a1, x1) ◦ (a2, x2) = (a1 + ϕ(x1, x2), x1 ∗ x2). Here, (A,+) is an abelian group. This
is called a central abelian extension. Projection onto the second factor π1 : E(X,A, ϕ) → X

is a surjective quandle homomorphism. Is Q̃(D) a central abelian extension E(Qv(D), A, ϕ)
for some abelian group A and 2-cocycle ϕ : Qv(D)×Qv(D) → A?

Eisermann [13], considered the more general situation of extending quandles by a group

G, with G not necessarily abelian. Can the extended quandle Q̃(D) be realized as a quan-
dle extension of Qv(D) in this sense? Note that all such extensions are necessarily quandle
coverings p : Q′ → Q (see [13], Proposition 4.15). Recall that a quandle covering is a
surjective quandle homomorphism p : Q′ → Q such that p(x′) = p(y′) implies that x′, y′

are behaviorally equivalent : a′ ∗ x′ = a′ ∗ y′ for all a′, x′, y′ ∈ Q′. For example, a cen-
tral abelian extension is a quandle covering. In this case, the behaviorally equivalent ele-
ments take the form (a1, x), (a2, x) for a1, a2 ∈ A and x ∈ X. If (a, y) ∈ E(X,A, ϕ), then

(a, y) ◦ (a1, x) = (a + ϕ(y, x), y ∗ x) = (a, y) ◦ (a2, x). Is the surjection φD
v : Q̃(D) → Qv(D)

even a quandle covering?
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