Fourier-Mukai partners of elliptic ruled surfaces over arbitrary characteristic fields

Hokuto Uehara and Tomonobu Watanabe

Abstract

The first author explicitly describes the set of Fourier-Mukai partners of elliptic ruled surfaces over the complex number field in [30]. In this article, we generalize it over arbitrary characteristic fields. We also obtain a partial evidence of the Popa-Schnell conjecture in the proof.

1 Introduction

Let us consider the derived category of coherent sheaves $D^{b}(X)$ for a smooth projective variety X over an algebraically closed field k of $p:=\operatorname{ch} k \geq 0$. We call a smooth projective variety Y a Fourier-Mukai partner of X if there exists an equivalence $D^{b}(X) \cong D^{b}(Y)$ as k-linear triangulated categories. We let $\operatorname{FM}(X)$ denote the set of isomorphism classes of Fourier-Mukai partners of X. It is a fundamental question to describe the set $\operatorname{FM}(X)$ explicitly. It is known that $|\operatorname{FM}(C)|=1$ for any smooth projective curves C (see [133, Corollary 5.46]). On the other hand, smooth projective surfaces S may have non-trivial Fourier-Mukai partners: Namely, $|\operatorname{FM}(S)| \neq 1$ may occur. Bridgeland, Maciocia and Kawamata show in [6] and [[6] that if a smooth projective surface S over \mathbb{C} has a non-trivial Fourier-Mukai partner T, then both are abelian surfaces, K3 surfaces or elliptic surfaces with nonzero Kodaira dimension. There exist several known examples of surfaces S with $|\operatorname{FM}(S)| \neq 1([19,[20,[2.2])$.

2020 Mathematics subject classification: 14F08, 14J27, 18G80.

In this article, we study the set $\mathrm{FM}(S)$ of elliptic ruled surfaces S defined over k. Here, an elliptic ruled surface means a smooth projective surface with a \mathbb{P}^{1}-bundle structure over an elliptic curve. We obtain the following theorem, which is a generalization of the result for $k=\mathbb{C}$ in [30] to an arbitrary algebraically closed field k.

Theorem 1.1. Let S be an elliptic ruled surface defined over k and $\pi: S \rightarrow E$ be a \mathbb{P}^{1}-bundle over an elliptic curve E. If $|\operatorname{FM}(S)| \neq 1$, then S is of the form

$$
S=\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)
$$

for some $\mathcal{L} \in \operatorname{Pic}^{0} E$ of order $m \geq 5$. Furthermore we have

$$
\operatorname{FM}(S)=\left\{\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{i}\right) \mid i \in \mathbb{Z} \text { with }(i, m)=1 \text { and } 1 \leq i<m\right\} / \cong
$$

and

$$
|\operatorname{FM}(S)|=\varphi(m) /\left|H_{\hat{E}}^{\mathcal{L}}\right| .
$$

Here, φ is the Euler function, and we define

$$
\begin{equation*}
H_{\hat{E}}^{\mathcal{L}}:=\left\{i \in(\mathbb{Z} / m \mathbb{Z})^{*} \mid \exists \phi \in \operatorname{Aut}_{0}(E) \text { such that } \phi^{*} \mathcal{L} \cong \mathcal{L}^{i}\right\} \tag{1}
\end{equation*}
$$

as a subgroup of $(\mathbb{Z} / m \mathbb{Z})^{*}$. We also have $\left|H_{\hat{E}}^{\mathcal{L}}\right|=2,4$ or 6 , depending on the choice of E and \mathcal{L}.

In the case $k=\mathbb{C}$, it is known (cf. [30, Equation (3.4)]) that $S=\mathbb{P}\left(\mathcal{O}_{E} \oplus\right.$ $\mathcal{L})$ is a quotient of $F_{0} \times \mathbb{P}^{1}$ by a cyclic group action, where F_{0} is an elliptic curve, and the first author uses this fact to describe the set $\operatorname{FM}(S)$ in [30]. On the other hand, in the case $p:=\operatorname{ch} k>0$, elliptic ruled surfaces $S=$ $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)$ with $p \mid m$ do not admit a similar construction (see [[28, §5.1]). Therefore, we need more general treatment to show Theorem I.D.

In the proof of Theorem [.]. , we obtain some evidence of the Popa-Schnell conjecture in [24], which states that for any Fourier-Mukai partners X^{\prime} of a given smooth projective variety X, there exists an equivalence $D^{b}\left(\operatorname{Alb}\left(X^{\prime}\right)\right) \cong$ $D^{b}(\operatorname{Alb}(X))$ of derived categories of their albanese varieties.

Proposition 1.2 (=Corollary 4.7). Let $X \rightarrow A$ and $X^{\prime} \rightarrow A^{\prime}$ be \mathbb{P}^{n}-bundles over abelian varieties A and A^{\prime} for $n=1,2$. If X and X^{\prime} are Fourier-Mukai partners, then so are A and A^{\prime}. Furthermore, the Popa-Schnell conjecture holds true in this case.

The plan of this article is as follows. In § \mathbb{Z}, we explain some results and notation of relative moduli spaces of stable sheaves on elliptic fibrations, a main tool for the study of Fourier-Mukai partners of elliptic surfaces. We obtain a characterization of Fourier-Mukai partners of elliptic surfaces with non-zero Kodaira dimensions in Theorem [2.2 for arbitrary $p=\operatorname{ch} k$, which was originally proved by Bridgeland in the case $p=0$.

In §國, we show several results on automorphisms of elliptic curves.
In $\S(\mathbb{}$, we first explain Theorem 4.3$]$ by Pirozhkov, and then we apply it to show Proposition [.2. .

Finally, in \S, we first narrow down the candidates of elliptic ruled surfaces with non-trivial Fourier-Mukai partners by Proposition $\mathbb{L 2}$ and the main result in [28], and then prove Theorem [.].

This article is a part of the second author's doctoral thesis.

Notation and conventions All algebraic varieties X are defined over an algebraically closed field k of characteristic $p \geq 0$. A point $x \in X$ means a closed point unless otherwise specified.

For an elliptic curve $E, \operatorname{Aut}_{0}(E)$ is the group of automorphisms fixing the origin.

By an elliptic surface, we will always mean a smooth projective surface S together with a smooth projective curve C and a relatively minimal projective morphism $\pi: S \rightarrow C$ whose general fiber is an elliptic curve. An elliptic ruled surface means a smooth projective surface with a \mathbb{P}^{1}-bundle structure over an elliptic curve.

For a morphism $\pi: X \rightarrow Y$ between algebraic varieties, the symbol Aut (X / Y) stands for the group of automorphisms of X preserving π.

Acknowledgements We would like to thank Professor Shinnosuke Okawa for invaluable suggestions. We also appreciate the referee's insightful comments. H.U. is supported by the Grants-in-Aid for Scientific Research (No. 18K03249, 23K03074).

2 Relative moduli spaces of sheaves on elliptic fibrations

2.1 Fourier-Mukai partners of elliptic surfaces

For a smooth projective variety X defined over an algebraically closed field k of characteristic $p \geq 0$, we denote by $D^{b}(X)$ the bounded derived categories of coherent sheaves on X. We call a smooth projective variety Y a FourierMukai partner of X if $D^{b}(X)$ is k-linear triangulated equivalent to $D^{b}(Y)$. We denote by $\operatorname{FM}(X)$ the set of isomorphism classes of Fourier-Mukai partners of X.

We study the set $\operatorname{FM}(S)$ for elliptic surfaces S. Let $\pi: S \rightarrow C$ be an elliptic surface and denote a general fiber of π by F_{π}. We define

$$
\begin{equation*}
\lambda_{\pi}:=\min \left\{D \cdot F_{\pi} \mid D \text { is a horizontal effective divisor on } S\right\} . \tag{2}
\end{equation*}
$$

Fix a polarization on S and consider the relative moduli scheme $\mathcal{M}(S / C) \rightarrow$ C of stable purely 1-dimensional sheaves ${ }^{\text {W }}$ on the fibers π, whose existence is assured by Simpson in the case $p=0$ in [[26], and by Langer in the case of arbitrary p in [17]. For integers $a>0$ and i with i coprime to $a \lambda_{\pi}$, let $J_{S}(a, i)$ be the union of those components of $\mathcal{M}(S / C)$ which contains a point representing a rank a, degree i vector bundle on a smooth fiber of π. Bridgeland shows in [4] that $J_{S}(a, i)$ is actually a smooth projective surface and the natural morphism $J_{S}(a, i) \rightarrow C$ is a minimal elliptic fibration.

Put $J^{i}(S):=J_{S}(1, i)$. We can also define an elliptic surface $J^{j}(S) \rightarrow C$ for arbitrary $j \in \mathbb{Z}$, which is not necessarily fine but the coarse moduli space of a suitable functor (see [14, §11.4]). We have $J^{0}(S) \cong J(S)$, the Jacobian surface associated to $S, J^{1}(S) \cong S$ and

$$
\begin{equation*}
J^{i}\left(J^{j}(S)\right) \cong J^{i j}(S) \tag{3}
\end{equation*}
$$

for $i, j \in \mathbb{Z}$. See the argument after ($\mathbb{(})$ for the proof of ((3)).
It is well-known that the following statement holds in the case $p=0$ by [4 , Theorem 1.2]. We state that it is also true for arbitrary p.

Proposition 2.1. Elliptic surfaces S and $J^{i}(S)$ for some integer i with $\left(i, \lambda_{\pi}\right)=1$ are derived equivalent via an integral functor $\Phi^{\mathcal{P}}:=\Phi_{J^{i}(S) \rightarrow S}^{\mathcal{P}}$ for a universal sheaf \mathcal{P} on $J^{i}(S) \times S$.

[^0]Proof. To prove the statement for $p=0$, Bridgeland first applies the BondalOrlov's criterion [2] (see also [[13, Proposition 7.1]) for the functor $\Phi^{\mathcal{P}}$ to be fully faithful, namely he checks the strongly simpleness of \mathcal{P}. Then it is easy to show $\Phi^{\mathcal{P}}$ is an equivalent by checking the Bridgeland's criterion [5] for $\Phi^{\mathcal{P}}$ to be equivalent. But the Bondal-Orlov's criterion is false in the case $p>0$ [II, Remark 1.25]. Instead, if we put an extra assumption that the Kodaira-Spencer map $\operatorname{Ext}_{J^{i}(S)}^{1}\left(\mathcal{O}_{x}, \mathcal{O}_{x}\right) \rightarrow \operatorname{Ext}_{S}^{1}\left(\mathcal{P}_{x}, \mathcal{P}_{x}\right)$ is injective, we see the proof of [2] works, and so the criterion holds (see also [[33, Step 5 in the proof of Proposition 7.1]). Actually, the map is an isomorphism in our case because \mathcal{P} is a universal family. This completes the proof.

We have a nice characterization of Fourier-Mukai partners of elliptic surfaces with non-zero Kodaira dimensions.

Theorem 2.2. Let $\pi: S \rightarrow C$ be an elliptic surface and T a smooth projective variety. Assume that the Kodaira dimension $\kappa(S)$ is non-zero. Then the following are equivalent.
(i) T is a Fourier-Mukai partner of S.
(ii) T is isomorphic to $J^{i}(S)$ for some integer i with $\left(i, \lambda_{\pi}\right)=1$.

Proof. It follows from Proposition [2.] that (ii) implies (i). The opposite direction was proved in [6, Proposition 4.4] when $p=0$ and S has no (-1)curves. The most of the proof there works even for $p>0$. So we give only a sketch of the proof.

As the proof in [6, Proposition 4.4], we can show that there exists an equivalent functor $\Phi^{\mathcal{U}}: D^{b}(T) \rightarrow D^{b}\left(J^{i}(S)\right)$ for some integer i with $\left(i, \lambda_{\pi}\right)=1$ such that $\Phi^{\mathcal{U}}\left(\mathcal{O}_{t}\right)=\mathcal{O}_{y}$ for some $t \in T, y \in J^{i}(S)$. Then as in [6], Lemma 2.5], we see that there exists a rational map $f: T \rightarrow J^{i}(S)$ such that the kernel \mathcal{U} is supported on the graph of f near the point (t, y). Because $\Phi^{\mathcal{U}}$ is an equivalence, we can avoid the possibility that f is inseparable, and hence f is a birational map. Then the proof of [6, Proposition 4.4] works in the rest (including the case that S is not minimal).

As a consequence of Theorem [2.2, we obtain

$$
\operatorname{FM}(S)=\left\{J^{i}(S) \mid i \in \mathbb{Z},\left(i, \lambda_{\pi}\right)=1\right\} / \cong
$$

Moreover we see that there exist natural isomorphisms

$$
\begin{equation*}
J^{i}(S) \cong J^{i+\lambda_{\pi}}(S) \cong J^{-i}(S) \tag{4}
\end{equation*}
$$

Hence, in order to count the cardinality of the set $\operatorname{FM}(S)$, we often regard an integer i as an element of the unit group $\left(\mathbb{Z} / \lambda_{\pi} \mathbb{Z}\right)^{*}$. It follows from the isomorphisms (3) and (\#) that the set

$$
\begin{equation*}
H_{\pi}:=\left\{i \in\left(\mathbb{Z} / \lambda_{\pi} \mathbb{Z}\right)^{*} \mid J^{i}(S) \cong S\right\} \tag{5}
\end{equation*}
$$

forms a subgroup of $\left(\mathbb{Z} / \lambda_{\pi} \mathbb{Z}\right)^{*}$. Moreover, we see from (\mathbb{B}) that $J^{i}(S) \cong J^{j}(S)$ for $i, j \in\left(\mathbb{Z} / \lambda_{\pi} \mathbb{Z}\right)^{*}$ if and only if $(S \cong) J^{1}(S) \cong J^{i^{-1} j}(S)$. Combining all together, we have the following.

Lemma 2.3. For an elliptic surface $\pi: S \rightarrow C$ with $\kappa(S) \neq 0$, the set $\operatorname{FM}(S)$ is naturally identified with the group $\left(\mathbb{Z} / \lambda_{\pi} \mathbb{Z}\right)^{*} / H_{\pi}$.

Since H_{π} contains the subgroup $\{ \pm 1\}$ if $\lambda_{\pi} \geq 3$, we see

$$
\begin{equation*}
|\operatorname{FM}(S)| \leq \varphi\left(\lambda_{\pi}\right) / 2 \tag{6}
\end{equation*}
$$

where φ is the Euler function.
Lemma 2.4. Let $\pi: S \rightarrow C$ be an elliptic surface. Then we have the following.
(i) For $i \in \mathbb{Z}$ with $\left(i, \lambda_{\pi}\right)=1$, consider the elliptic fibration $\pi_{i}: J^{i}(S) \rightarrow C$. The multiplicities of the fibers F_{x} and F_{x}^{\prime} of π and π_{i} over a fixed point $x \in C$ coincide. Furthermore, if the fiber F_{x} is smooth, then it is isomorphic to F_{x}^{\prime}.
(ii) Let S be an elliptic ruled surface, and take $S^{\prime} \in \operatorname{FM}(S)$. Then S^{\prime} is also an elliptic ruled surface with an elliptic fibration.

Proof. (i) The first statement will be explained by using Weil-Châtelet group in $\$[2.2]$. See the argument around ([2). By the property of the relative moduli scheme, the fiber F_{x}^{\prime} is the fine moduli space of line bundles of degree i on a smooth elliptic curve F_{x}. Consequently, the second statement follows.
(ii) Theorem $\mathbb{2 . 2}$ implies that there exists an integer i with $\left(i, \lambda_{\pi}\right)=1$ such that $J^{i}(S) \cong S^{\prime}$, which implies that S^{\prime} has an elliptic fibration π^{\prime}. The Kodaira dimension is derived invariant by [27, Corollary 4.4], hence S^{\prime} is a rational elliptic surface or an elliptic ruled surface. Then, [12), Theorem B] implies that S^{\prime} is also an elliptic ruled surface.

2.2 Weil-Châtelet group

In this subsection, we recall the definition of the Weil-Châtelet group. For more details, see [25, Ch.X.3] and [14, Ch.11.5].

Let E_{0} be an elliptic curve over a field K. A homogeneous space for E_{0} is a pair (E, μ), where E is a smooth curve over K, and μ is a simply transitive algebraic group action

$$
\mu: E \times E_{0} \rightarrow E
$$

We say that two homogeneous spaces (E, μ) and $\left(E^{\prime}, \mu^{\prime}\right)$ are equivalent if there exists an isomorphism $\theta: E \rightarrow E^{\prime}$ defined over K which is compatible with the action of E_{0}. The collection $W C\left(E_{0}\right)$ of equivalence classes of homogeneous spaces for E_{0} has a natural group structure (cf. [255, Theorem X.3.6], [14, Proposition 11.5.1]), and it is called the Weil-Châtelet group.

Let $\pi: S \rightarrow C$ be an elliptic surface (over an algebraically closed field k). We denote the generic fiber of $\pi_{i}: J^{i}(S) \rightarrow C$ by J_{η}^{i} for $i \in \mathbb{Z}$. Then J_{η}^{0} is an elliptic curve over the function field of C, and we have a natural homogeneous space structure

$$
\mu_{i}: J_{\eta}^{i} \times J_{\eta}^{0} \rightarrow J_{\eta}^{i} \quad(\mathcal{L}, \mathcal{M}) \mapsto \mathcal{L} \otimes \mathcal{M}
$$

and hence we can regard $\left(J_{\eta}^{i}, \mu_{i}\right) \in W C\left(J_{\eta}^{0}\right)$. We define

$$
\begin{equation*}
\xi:=\left(J_{\eta}^{1}, \mu_{1}\right) \in W C\left(J_{\eta}^{0}\right), \tag{7}
\end{equation*}
$$

then, we have

$$
\begin{equation*}
i \xi=\left(J_{\eta}^{i}, \mu_{i}\right) \tag{8}
\end{equation*}
$$

(cf. [14, Remark 11.5.2]) and thus

$$
\begin{equation*}
\operatorname{ord} \xi \mid \lambda_{\pi} \tag{9}
\end{equation*}
$$

It follows from (8) that the generic fibers of $J^{i}\left(J^{j}(S)\right) \rightarrow C$ and $J^{i j}(S) \rightarrow C$ are isomorphic to each other, and taking the relative smooth minimal models of compactifications of generic fibers, we obtain $J^{i}\left(J^{j}(S)\right) \cong J^{i j}(S)$ as in ([3) .

Take a closed point $x \in C$ and consider the henselization of the local ring $\mathcal{O}_{C, x}$ and denote it by $\mathcal{O}_{C, x}^{h}$. We also denote the base change of $\pi_{0}: J^{0}(S) \rightarrow C$ by the morphism $\operatorname{Spec} \mathcal{O}_{C, x}^{h} \rightarrow C$ by

$$
J_{x}^{0} \rightarrow \operatorname{Spec} \mathcal{O}_{C, x}^{h} .
$$

Then it is known by [$\mathbf{7}$, Proposition 5.4.3 in p.314, Theorem 5.4.3 in p.321] that there exists an exact sequence:

$$
\begin{array}{rlcc}
0 \rightarrow \operatorname{Br}\left(J^{0}(S)\right) & \rightarrow W C\left(J_{\eta}^{0}\right) & \rightarrow & \bigoplus_{x \in C} \underset{\Psi}{W} C\left(J_{x}^{0}\right) \\
\xi & \mapsto & \left(\xi_{x}\right)_{x \in C} \tag{10}
\end{array}
$$

Here, we denote the image of ξ (given in ($\mathbb{Z})$) in $W C\left(J_{x}^{0}\right)$ by ξ_{x}. It follows from [[, Proposition 5.4.2] that $m_{x}=$ ord ξ_{x}, where m_{x} is the multiplicity of the fiber of π over the point $x \in C$. Define

$$
\begin{equation*}
\lambda_{\pi}^{\prime}:=\text { l.c.m. } \cdot x \in C \text { }\left(m_{x}\right)=\operatorname{ord}\left(\left(\xi_{x}\right)_{x \in C}\right) . \tag{11}
\end{equation*}
$$

Since ord ξ is divided by ord $\left(\left(\xi_{x}\right)_{x \in C}\right)$, we see from ((\$) that

$$
\lambda_{\pi}^{\prime} \mid \lambda_{\pi} .
$$

In particular, if $i \in \mathbb{Z}$ is coprime to λ_{π}, then i is coprime to each m_{x}, and thus we have

$$
\begin{equation*}
\operatorname{ord}(i \xi)_{x}=\operatorname{ord} i\left(\xi_{x}\right)=\operatorname{ord}\left(\xi_{x}\right)=m_{x} . \tag{12}
\end{equation*}
$$

Combining ([2]) with ($\mathbb{(8)}$), we know that the multiplicity of the fiber of π_{i} over the point x is also m_{x}. This shows the first statement of Lemma [2.4 (i).

Define a subgroup H_{π}^{\prime} of the group $H_{\pi}\left(:=\left\{i \in\left(\mathbb{Z} / \lambda_{\pi} \mathbb{Z}\right)^{*} \mid J^{i}(S) \cong S\right\}\right.$ given in (國)) to be

$$
\begin{equation*}
H_{\pi}^{\prime}:=\left\{i \in H_{\pi} \mid i \equiv 1\left(\bmod \lambda_{\pi}^{\prime}\right)\right\} \tag{13}
\end{equation*}
$$

We use the following lemma to obtain a lower bound of the cardinality of the set $\operatorname{FM}(S)$.

Lemma 2.5. Let $\pi: S \rightarrow C$ be an elliptic surface with $\operatorname{Br}\left(J^{0}(S)\right)=0$. Then we have

$$
\left|H_{\pi} / H_{\pi}^{\prime}\right| \leq\left|\operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)\right|
$$

Proof. For each $i \in H_{\pi}$, fix an isomorphism $\theta_{i}: J_{\eta}^{1} \rightarrow J_{\eta}^{i}$ over the generic point $\eta \in C$. Then we obtain a structure of a homogeneous space on J_{η}^{1} by the action

$$
\mu_{i}^{\prime}:=\theta_{i}^{-1} \circ \mu_{i} \circ\left(\theta_{i} \times \operatorname{id}_{J_{\eta}^{0}}\right): J_{\eta}^{1} \times J_{\eta}^{0} \rightarrow J_{\eta}^{1}
$$

such that $\left(J_{\eta}^{i}, \mu_{i}\right)=\left(J_{\eta}^{1}, \mu_{i}^{\prime}\right)$ holds in $W C\left(J_{\eta}^{0}\right)$ by the definition．On the other hand，by［25］，Exercise 10．4］，$\left(J_{\eta}^{1}, \mu_{i}^{\prime}\right)=\left(J_{\eta}^{1}, \mu_{1} \circ\left(\mathrm{id}_{J_{\eta}^{1}} \times \phi\right)\right)$ for some $\phi \in \operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)$ ．We define an equivalence relation \sim of $\operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)$ such that

$$
\phi_{1} \sim \phi_{2}
$$

for $\phi_{i} \in \operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)$ when

$$
\left(J_{\eta}^{1}, \mu_{1} \circ\left(\operatorname{id}_{J_{\eta}^{1}} \times \phi_{1}\right)\right)=\left(J_{\eta}^{1}, \mu_{1} \circ\left(\operatorname{id}_{J_{\eta}^{1}} \times \phi_{2}\right)\right) .
$$

Then we can define a map

$$
f: H_{\pi} \rightarrow \operatorname{Aut}_{0}\left(J_{\eta}^{0}\right) / \sim \quad i \mapsto \phi
$$

We see that $i j^{-1} \in H_{\pi}^{\prime}$ if and only if $f(i)=f(j)$ as follows．First note that we have an injection

$$
W C\left(J_{\eta}^{0}\right) \hookrightarrow \bigoplus_{x \in C} W C\left(J_{x}^{0}\right) \quad \xi=\left(J_{\eta}^{1}, \mu_{1}\right) \mapsto\left(\xi_{x}\right)_{x \in C}
$$

by the vanishing of the Brauer group $\operatorname{Br}\left(J^{0}(S)\right)$ and（［⿴囗⿰丿㇄），and hence

$$
\begin{equation*}
\operatorname{ord} \xi=\lambda_{\pi}^{\prime}\left(:=\operatorname{ord}\left(\left(\xi_{x}\right)_{x \in C}\right)\right) \tag{14}
\end{equation*}
$$

We observe that for $i, j \in H_{\pi}$ ，the condition $f(i)=f(j)$ is equivalent to the equality $i \xi=j \xi$ by（ \mathbb{B} ），which is also equivalent to $i^{-1} j \in H_{\pi}^{\prime}$ by（［4］）．

Consequently，we obtain an inclusion

$$
H_{\pi} / H_{\pi}^{\prime} \hookrightarrow \operatorname{Aut}_{0}\left(J_{\eta}^{0}\right) / \sim
$$

and the conclusion．

3 Elliptic curves and automorphisms

Let F be an elliptic curve over an algebraically closed field k with $p=\operatorname{ch} k \geq$ 0 ．The explicit description of the automorphism group $\operatorname{Aut}_{0}(F)$ fixing the origin O is well－known，and is given as follows．

Theorem 3.1 (cf. Appendix A in [25]). The automorphism group $\mathrm{Aut}_{0}(F)$ is

$$
\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} & \text { if } j(F) \neq 0,1728, \\
\mathbb{Z} / 4 \mathbb{Z} & \text { if } j(F)=1728 \text { and } p \neq 2,3, \\
\mathbb{Z} / 6 \mathbb{Z} & \text { if } j(F)=0 \text { and } p \neq 2,3, \\
\mathbb{Z} / 3 \mathbb{Z} \rtimes \mathbb{Z} / 4 \mathbb{Z} & \text { if } j(F)=0=1728 \text { and } p=3, \\
Q \rtimes \mathbb{Z} / 3 \mathbb{Z} & \text { if } j(F)=0=1728 \text { and } p=2 .
\end{array}
$$

Note that in the last second case, $\mathbb{Z} / 4 \mathbb{Z}$ acts on $\mathbb{Z} / 3 \mathbb{Z}$ in the unique nontrivial way, and in the last case, the group is so called a binary tetrahedral group, and Q is the quaternion group. In the last two cases F is necessarily supersingular.

For points $x_{1}, x_{2} \in F$, to distinguish the summation of divisors and of elements in the group scheme F, we denote by $x_{1} \oplus x_{2}$ the sum of them by the operation of F, and

$$
i \cdot x_{1}:=x_{1} \oplus \cdots \oplus x_{1} \quad(i \text { times }) .
$$

Furthermore, we use the symbol T_{a} to stand for the translation by $a \in F$:

$$
T_{a}: F \rightarrow F \quad x \rightarrow a \oplus x
$$

We also denote by

$$
i x_{1}:=x_{1}+\cdots+x_{1} \quad(i \text { times })
$$

the divisors on F of degree i. We denote the dual abelian variety $\operatorname{Pic}^{0} F$ of F by \hat{F}. It is well-known that there exists a group scheme isomorphism

$$
\begin{equation*}
F \rightarrow \hat{F} \quad x \mapsto \mathcal{O}_{F}(x-O) \tag{15}
\end{equation*}
$$

where O is the origin of F.
We will use the following lemma several times.
Lemma 3.2. Take a point $a \in F$ with $\operatorname{ord}(a) \geq 4$, and $\phi \in \operatorname{Aut}_{0}(F)$. If $\phi(a)=a$, then $\phi=\operatorname{id}_{F}$.

Proof. In any of the cases in Theorem [3.D, we have $\operatorname{ord}(\phi) \in\{1,2,3,4,6\}$. Let us first consider the case $\operatorname{ord}(\phi)=2,4$ or 6 . In this case, $\phi^{i}=-\mathrm{id}_{F}$ for some $i \in \mathbb{Z}$, and hence we get $-1 \cdot a=a$. The condition $\operatorname{ord}(a) \geq 4$ yields a contradiction. Next, consider the case $\operatorname{ord}(\phi)=3$. Then we have

$$
\left(\phi-\mathrm{id}_{F}\right)\left(\phi^{2}+\phi+\mathrm{id}_{F}\right)=0
$$

in the domain $\operatorname{End}(F)$, which implies that $\phi^{2}+\phi+\mathrm{id}_{F}=0$, and hence $\phi^{2}(a) \oplus \phi(a) \oplus a=O$. By the assumption $\phi(a)=a$, we see that $3 \cdot a=O$. This is absurd by $\operatorname{ord}(a) \geq 4$.

For a non-zero integer m, we define the m-torsion subgroup of F to be

$$
F[m]:=\{a \in F \mid m \cdot a=O\} .
$$

Equivalently, $F[m]$ is the kernel of the multiplication map by m. Recall that

$$
F[m]= \begin{cases}\mathbb{Z} / p^{e} \mathbb{Z} & \text { if } F \text { is ordinary, } m=p^{e}, e>0 \\ \{O\} & \text { if } F \text { is supersingular, } m=p^{e}, e>0 \\ \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z} & \text { if } p \nmid m .\end{cases}
$$

(See [255, Corollary III.6.4].) Note that these 3 cases do not exhaust all possibilities (i.e., cases where m is divisible by p but is not power of p is not covered.)

Take $a \in F$ with $\operatorname{ord}(a)=m$. In order to count Fourier-Mukai partners of elliptic ruled surfaces, we need to study the subgroup

$$
\begin{equation*}
H_{F}^{a}:=\left\{i \in(\mathbb{Z} / m \mathbb{Z})^{*} \mid \exists \phi \in \operatorname{Aut}_{0}(F) \text { such that } \phi(a)=i \cdot a\right\} \tag{16}
\end{equation*}
$$

of $(\mathbb{Z} / m \mathbb{Z})^{*}$. Note that the definition of $H_{\hat{E}}^{\mathcal{L}}$ given in (\mathbb{T}) is compatible with ([6]). We obtain the following result as a direct consequence of Lemma 3.2.

Lemma 3.3. Take $a \in F$ with $\operatorname{ord}(a) \geq 4$.
(i) We have an injective group homomorphism

$$
\begin{equation*}
\iota: H_{F}^{a} \hookrightarrow \operatorname{Aut}_{0}(F) \tag{17}
\end{equation*}
$$

Furthermore, we have $\left|H_{F}^{a}\right|=2,4$ or 6.
(ii) Suppose that $p>0$ and $\operatorname{ord}(a)=p^{e}$. Then ($\mathbb{\boxed { 7 })}$ is an isomorphism.

Proof. (i) Take $i \in H_{F}^{a}$. Then there exists $\phi \in \operatorname{Aut}_{0}(F)$ such that $\phi(a)=i \cdot a$, and define $\iota(i)$ to be ϕ. The well-definedness of ι follows from Lemma [3.2, and ι is injective by the definition. Since H_{F}^{a} is regarded as an abelian subgroup of $\operatorname{Aut}_{0}(F)$ described in Theorem [...ل, and H_{F}^{a} contains $\{ \pm 1\}$ as a subgroup, we obtain the second assertion.
(ii) The existence of an order p^{e} element in F implies that F is ordinary. Since $F\left[p^{e}\right]=\mathbb{Z} / p^{e} \mathbb{Z}=\langle a\rangle$, for any $\phi \in \operatorname{Aut}_{0}(F)$ we see that $\phi(a)=i \cdot a$ for some $i \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$. Hence the injective homomorphism in ($\mathbb{\square}$) is surjective, and then we can confirm the statement.

From now on, by ([7) we often regard H_{F}^{a} as a subgroup of $\operatorname{Aut}_{0}(F)$ when ord $a \geq 4$.

4 Pirozhkov's result and its application

In this section, we summarize some definitions and results in [23], and give their application to the Popa-Schnell conjecture. We also refer to [2T] for fundamental notions of ∞-categories.

For a Noetherian scheme S over k, we denote by $\operatorname{Perf}(S)$ the full subcategory of $D^{b}(S)$ consisting of perfect complexes. A stable k-linear ∞-category \mathcal{D} is said to be S-linear if there exists an action functor

$$
a_{\mathcal{D}}: \mathcal{D} \times \operatorname{Perf}(S) \rightarrow \mathcal{D}
$$

together with associativity data.
For a morphism $f: X \rightarrow S$ between smooth projective varieties X and S over k, the category $D^{b}(X)$ has a natural S-linear structure via the functor

$$
D^{b}(X) \times D^{b}(S) \rightarrow D^{b}(X) \quad(\mathcal{E}, \mathcal{F}) \mapsto \mathcal{E} \mathbb{\otimes}_{X}^{\mathbb{L}} \mathbb{L} f^{*} \mathcal{F}
$$

Definition 4.1 ([2.3]). Let S be a Noetherian scheme over a field k. We say that S is noncommutatively stably semiorthogonally indecomposable, or NSSI for brevity, if for arbitrary choices of
(i) \mathcal{D}, a S-linear category which is proper ${ }^{[D}$ over S and has a classical generator, and

[^1](ii) \mathcal{A}, a left admissible subcategory of \mathcal{D} which is linear over k, the subcategory \mathcal{A} is closed under the action of $\operatorname{Perf}(S)$ on \mathcal{D}.

Remark 4.2. For a quasi-compact and quasi-separated scheme S, the category $\operatorname{Perf}(S)$ has a classical generator by [3, Corollary 3.1.2]. In particular, for a smooth projective variety S, the category $D^{b}(S)$ has a classical generator.

Theorem 4.3 (Lemma 6.1 in [2.3]). Let $\pi: X \rightarrow S$ be a smooth projective morphism which is an étale-locally trivial fibration with fiber X_{0}. Assume that S is a connected excellent scheme ${ }^{31}$. Then for any point $s \in S$ the base change map

$$
\left\{\begin{array}{c}
S \text {-linear admissible } \\
\text { subcategories } \\
\mathcal{A} \subset D^{b}(X)
\end{array}\right\} \xrightarrow{\text { restriction to } X_{s} \cong X_{0}}\left\{\begin{array}{c}
\text { admissible subcategories } \\
\mathcal{A}_{0} \subset D^{b}\left(X_{0}\right)
\end{array}\right\}
$$

is an injection.
Definition 4.4. Let $\pi: X \rightarrow S$ be a smooth projective morphism of Noetherian schemes.
(i) An object $\mathcal{E} \in \operatorname{Perf}(X)$ is π-exceptional if $\mathbb{R} \pi_{*} \mathbb{R} \mathcal{H}$ om ${ }_{X}(\mathcal{E}, \mathcal{E}) \cong \mathcal{O}_{S}$.
(ii) A collection of π-exceptional objects $\mathcal{E}_{1}, \ldots, \mathcal{E}_{N} \in \operatorname{Perf}(X)$ is a π exceptional collection if $\mathbb{R} \pi_{*} \mathbb{R} \operatorname{Hom}\left(\mathcal{E}_{j}, \mathcal{E}_{i}\right)=0$ for any $1 \leq i<j \leq N$.
(iii) A π-exceptional pair is a π-exceptional collection of length 2 .

For a π-exceptional pair \mathcal{E}, \mathcal{F}, the left π-mutation $L_{\mathcal{E}} \mathcal{F}$ of \mathcal{F} through \mathcal{E} and the right π-mutation $R_{\mathcal{F}} \mathcal{E}$ of \mathcal{E} through \mathcal{F} are defined by the following distinguished triangles:

$$
\begin{array}{r}
\pi^{*} \mathbb{R} \pi_{*} \mathbb{R} \mathcal{H o m} m_{X}(\mathcal{E}, \mathcal{F}) \otimes_{\mathcal{O}_{X}} \mathcal{E} \xrightarrow{\varepsilon} \mathcal{F} \rightarrow L_{\mathcal{E}} \mathcal{F} \\
R_{\mathcal{F}} \mathcal{E} \rightarrow \mathcal{E} \xrightarrow{\eta} \pi^{*} \mathbb{R} \pi_{*} \mathbb{R} \mathcal{H o m}_{X}(\mathcal{E}, \mathcal{F})^{\vee} \otimes_{\mathcal{O}_{X}} \mathcal{F}
\end{array}
$$

We see that mutations commute with base change.

[^2]Lemma 4.5 (Lemma 2.22 in [[15]). Consider the following Cartesian square of finite dimensional Noetherian schemes, where π is smooth projective.

For any π-exceptional pair $(\mathcal{E}, \mathcal{F})$, it follows that $\left(f^{*} \mathcal{E}, f^{*} \mathcal{F}\right)$ is an φ-exceptional pair and we have the following isomorphisms:

$$
\begin{aligned}
L_{f^{*} \mathcal{E}}\left(f^{*} \mathcal{F}\right) & \simeq f^{*}\left(L_{\mathcal{E}} \mathcal{F}\right) \\
R_{f^{*} \mathcal{F}}\left(f^{*} \mathcal{E}\right) & \simeq f^{*}\left(R_{\mathcal{F}} \mathcal{E}\right)
\end{aligned}
$$

We apply Theorem 4.3 and Lemma 1.5 to obtain the following.
Proposition 4.6. Let $\pi: X \rightarrow S$ be a \mathbb{P}^{n}-bundle $(n=1,2)$ over a smooth projective variety S. Then any non-trivial S-linear admissible subcategory of $D^{b}(X)$ is of the following form:
(i) (Case $n=1)$

$$
D^{b}(S)(i)\left(:=\pi^{*} D^{b}(S) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(i)\right)
$$

for some $i \in \mathbb{Z}$.
(ii) (Case $n=2$)

$$
\pi^{*} D^{b}(S) \otimes_{\mathcal{O}_{X}}\left\langle\mathcal{E}_{1}, \ldots, \mathcal{E}_{l}\right\rangle
$$

where $\mathcal{E}_{1}, \ldots, \mathcal{E}_{l}(1 \leq l \leq n+1)$ is a π-exceptional collection.
Proof. (i) Any non-trivial admissible subcategory in $D^{b}\left(\mathbb{P}^{1}\right)$ is known to be of the form $\left\langle\mathcal{O}_{\mathbb{P}^{1}}(i)\right\rangle$ for some $i \in \mathbb{Z}$. Since the restriction of the admissible category $D^{b}(S)(i)$ to a fiber is $\left\langle\mathcal{O}_{\mathbb{P}^{1}}(i)\right\rangle$, the injective base change map in Theorem 4.3 is surjective. Hence the result follows.
(ii) [22, Theorem 4.2] states that any non-trivial admissible subcategory \mathcal{A} in $D^{b}\left(\mathbb{P}^{2}\right)$ is generated by a subcollection of successive mutations of the standard exceptional collection $\mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{\mathbb{P}^{2}}(2)$. Lemma 4.5 yields an S-linear admissible subcategory \mathcal{A}_{X} of $D^{b}(X)$, which is generated by a π-exceptional subcollection obtained by successive π-mutations of the π-exceptional collection $\mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)$, and its derived restriction on a fiber is \mathcal{A}. This means that the injective base change map in Theorem 4.3 is surjective, hence we obtain the result.

The Popa-Schnell conjecture in [24] states that for any Fourier-Mukai partners X^{\prime} of a given smooth projective variety X, there exists an equivalence $D^{b}\left(\operatorname{Alb}\left(X^{\prime}\right)\right) \cong D^{b}(\operatorname{Alb}(X))$ of derived categories.

From Proposition 4.6, we deduce that the Popa-Schnell conjecture holds true in certain situations.

Corollary 4.7. Let $X \rightarrow A$ and $X^{\prime} \rightarrow A^{\prime}$ be \mathbb{P}^{n}-bundles over abelian varieties A and A^{\prime} for $n=1,2$. If X and X^{\prime} are Fourier-Mukai partners, then so are A and A^{\prime}. Furthermore, the Popa-Schnell conjecture holds true in this case.

Proof. Put $D^{b}(A)(i)=\pi^{*} D^{b}(A) \otimes \mathcal{O}_{X}(i)$, where π is the \mathbb{P}^{1}-bundle $X \rightarrow$ A. Since abelian varieties are NSSI by [2.3, Theorem 1.4], any admissible category of $D^{b}(X)$ is A-linear. Proposition 4.6 implies that any non-zero indecomposable admissible subcategory of $D^{b}(X)$ is equivalent to $D^{b}(A)$. This completes the proof of the first assertion. We see that $A \cong \operatorname{Alb}(X)$ and $A^{\prime} \cong \operatorname{Alb}\left(X^{\prime}\right)$, and hence obtain the second.

If X is an elliptic ruled surface over \mathbb{C}, namely $n=1$ and $k=\mathbb{C}$, in Corollary [.7. the statement follows from [30, Theorem 1.1]. The proof given above for $n=1,2$ and arbitrary k is more direct and natural.

Remark 4.8. Let $X \rightarrow E$ and $X^{\prime} \rightarrow E^{\prime}$ be \mathbb{P}^{n}-bundles over elliptic curves E and E^{\prime} for $n=1,2$. As a consequence of Corollary $\mathbb{1 . 7}$, if X and X^{\prime} are Fourier-Mukai partners, then $D^{b}(E) \cong D^{b}\left(E^{\prime}\right)$, and hence $E \cong E^{\prime}$ by [13], Corollary 5.46].

5 Fourier-Mukai partners of elliptic ruled surfaces

5.1 Singular fibers of elliptic ruled surfaces

In this subsection, we recall a result in [2Z]. Let \mathcal{E} be a normalized, in the sense of [【0, Ch. 5. §2], rank 2 vector bundle on an elliptic curve E and

$$
f: S=\mathbb{P}(\mathcal{E}) \rightarrow E
$$

be a \mathbb{P}^{1}-bundle on E defined by \mathcal{E}. Let us put $e:=-\operatorname{deg} \mathcal{E}$. If S has an elliptic fibration, then $-K_{S}$ is nef. Then we can easily deduce $e=0$ or -1 from [iTI, Corollary V.2.11, Theorems V.2.12, V.2.15]).

Theorem 5.1 (Theorem 1.1 in [28]). Let us consider the above situation.
(i) For $e=0$, we have the following possibilities:

	\mathcal{E}	\exists an elliptic fibration on S ?	p
$(i-1)$	$\mathcal{O}_{E} \oplus \mathcal{O}_{E}$	no multiple fibers	$p \geq 0$
$(i-2)$	$\mathcal{O}_{E} \oplus \mathcal{L}$, ord $\mathcal{L}=m>1$	(m, m)	$p \geq 0$
$(i-3)$	$\mathcal{O}_{E} \oplus \mathcal{L}$, ord $\mathcal{L}=\infty$	no elliptic fibrations	$p \geq 0$
$(i-4)$	indecomposable	no elliptic fibrations	$p=0$
$(i-5)$	indecomposable	$\left(p^{*}\right)$	$p>0$

Here \mathcal{L} is an element of $\operatorname{Pic}^{0} E$. In the case S has an elliptic fibration π, for example, the notation (m, m) in (i-2) means that π has exactly two multiple fibers of multiplicities m.
(ii) Suppose that $e=-1$. Then the isomorphism class of such vector bundle \mathcal{E} on E is unique, and S has an elliptic fibration. The list of singular fibers are as follows:

	multiple fibers	E	p
(ii-1)	$(2,2,2)$		$p \neq 2$
(ii-2)	$\left(2^{*}\right)$	supersingular	$p=2$
(ii-3)	$\left(2,2^{*}\right)$	ordinary	$p=2$

The symbol * stands for a wild fiber in the tables.
By [6] and [[6], we know that if S has non-trivial Fourier-Mukai partners, S has an elliptic fibration. Hence, from now on, we suppose that S has an elliptic fibration $\pi: S \rightarrow \mathbb{P}^{1}$. Theorem 5.1$]$ says that the multiplicities of all multiple fibers of π are the same number m.

When $e=0$ (resp. $e=-1$), we see

$$
\begin{equation*}
F_{\pi} \cdot F_{f}=m C_{0} \cdot F_{f}=m \quad\left(\text { resp. } F_{\pi} \cdot C_{0}=m\left(2 C_{0}-F_{f}\right) \cdot C_{0}=m\right) \tag{18}
\end{equation*}
$$

by [28, Remark 4.2], and hence

$$
\begin{equation*}
\lambda_{\pi}=m=\lambda_{\pi}^{\prime} \tag{19}
\end{equation*}
$$

for both cases (recall the definitions of λ_{π} and λ_{π}^{\prime} in (지) and ([II) respectively). Here F_{π} (resp. F_{f}) is a fiber of π (resp. f), and C_{0} stands for a section of f satisfying $C_{0}^{2}=-e$.

Consider the case $|\operatorname{FM}(S)| \neq 1$. Then the inequality (G) yields $m=\lambda_{\pi} \geq$ 5. Hence, S fits into either (i-2), $m \geq 5$ or (i-5), $p \geq 5$ in Theorem 5.l. Then $S^{\prime} \in \operatorname{FM}(S)$ is also an elliptic ruled surface admitting an elliptic fibration π^{\prime} fitting into the same case as S by Lemma [2.4].

Lemma 5.2. Suppose that $|\operatorname{FM}(S)| \neq 1$. Then S fits into the case (i-2).
Proof. It suffices to show that $|\mathrm{FM}(S)|=1$ in the case (i-5). Suppose that S fits into the case (i-5). As we explained above, $S^{\prime} \in \operatorname{FM}(S)$ is also an elliptic ruled surface in the case (i-5). In other words, S^{\prime} has a \mathbb{P}^{1}-bundle structure $f^{\prime}: \mathbb{P}\left(\mathcal{E}^{\prime}\right) \rightarrow E^{\prime}$, where \mathcal{E}^{\prime} is the indecomposable vector bundle of rank 2 , degree 0 on an elliptic curve E^{\prime}. By Corollary 4.7, we have $E \cong E^{\prime}$. Then, we see $S \cong S^{\prime}$ by [III, Theorem V.2.15], in other words, $|\operatorname{FM}(S)|=1$.

The purpose of this paper is to describe the set $\operatorname{FM}(S)$ for elliptic ruled surfaces. Hence in the sequel, we will concentrate on the case (i-2), the unique candidate of S admitting non-trivial Fourier-Mukai partners.

5.2 Case (i-2).

Take $\mathcal{L} \in \operatorname{Pic}^{0} E$ with $1<m:=\operatorname{ord} \mathcal{L}<\infty$, and set

$$
S:=\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)
$$

The following lemma is elementary and useful.
Lemma 5.3. (i) There exists an isomorphism $S \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{M}\right)$ over E if and only if $\mathcal{L} \cong \mathcal{M}^{ \pm 1}$.
(ii) For $\phi_{E} \in \operatorname{Aut}(E)$, we have an isomorphism $f^{*} \phi_{E}$ in the fiber product diagram:

(iii) For some $\mathcal{M} \in \operatorname{Pic}^{0} E$, let $f_{T}: T:=\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{M}\right) \rightarrow E$ be the \mathbb{P}^{1}-bundle over E. Suppose that we are given an isomorphism $\phi: T \rightarrow S$. Then, if we replace ϕ appropriately, we can take $\phi_{E} \in \operatorname{Aut}_{0}(E)$, which makes the diagram

commutative. Moreover we have an isomorphism

$$
\begin{equation*}
T \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \phi_{E}^{*} \mathcal{L}\right) \tag{22}
\end{equation*}
$$

over E, and an isomorphism

$$
\begin{equation*}
\mathcal{M} \cong \phi_{E}^{*} \mathcal{L} \tag{23}
\end{equation*}
$$

Proof. (i) This fact directly follows from [III, Exercise II.7.9(b)].
(ii) This assertion must be well-known. We leave the proof to readers. (For example, use [III, Proposition II.7.12].)
(iii) Since S has a unique \mathbb{P}^{1}-bundle structure, the existence of $\phi_{E} \in \operatorname{Aut}(E)$ fitting in (2]) is assured. Next, write $\phi_{E}=T_{a} \circ \phi_{E}^{0}$ for some $\phi_{E}^{0} \in \operatorname{Aut}_{0}(E)$ and $a \in E$. Since $T_{a}^{*} \mathcal{L} \cong \mathcal{L}$, the isomorphism $f^{*} T_{a}$ (given as $f^{*} \phi_{E}$ in (20])) gives an automorphism of S. Then, if necessary, replace ϕ with $\left(f^{*} T_{a}\right)^{-1} \circ \phi$, we may assume that $\phi_{E} \in \operatorname{Aut}_{0}(E)$. By the universal property of the fiber product in ([20]), we obtain an isomorphism (2π) over E. Then by (i) there exists an isomorphism $\mathcal{M}^{ \pm 1} \cong \phi_{E}^{*} \mathcal{L}$. Since $\left(-\mathrm{id}_{E}\right)^{*} \mathcal{L} \cong \mathcal{L}^{-1}, f^{*}\left(-\mathrm{id}_{E}\right)$ also gives an automorphism of S. Thus, replace ϕ with $f^{*}\left(-\mathrm{id}_{E}\right) \circ \phi$ if necessary, we may assume that $\phi_{E} \in \operatorname{Aut}_{0}(E)$ and (2.3) holds simultaneously.

Lemma 5.4. For $i \in(\mathbb{Z} / m \mathbb{Z})^{*}, S \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{i}\right)$ if and only if there exists an automorphism $\phi_{E} \in \operatorname{Aut}_{0}(E)$ such that $\phi_{E}^{*} \mathcal{L} \cong \mathcal{L}^{i}$. Consequently, the set

$$
\left\{\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{i}\right) \mid i \in(\mathbb{Z} / m \mathbb{Z})^{*}\right\} / \cong
$$

is naturally identified with the group

$$
(\mathbb{Z} / m \mathbb{Z})^{*} / H_{\hat{E}}^{\mathcal{L}} .
$$

Here, recall that $H_{\tilde{E}}^{\mathcal{L}}:=\left\{i \in(\mathbb{Z} / m \mathbb{Z})^{*} \mid \exists \phi \in \operatorname{Aut}_{0}(E)\right.$ such that $\left.\phi^{*} \mathcal{L} \cong \mathcal{L}^{i}\right\}$.

Proof. "If" part follows from Lemma 5.3 (ii). "Only if" part follows from Lemma 5.3 (iii).

Consider the dual morphism

$$
\begin{equation*}
q_{1}: F_{0}:=\widehat{\hat{E} /\langle\mathcal{L}\rangle} \rightarrow E \tag{24}
\end{equation*}
$$

of the quotient morphism $\hat{E} \rightarrow \hat{E} /\langle\mathcal{L}\rangle$. Then it follows from the definition of q_{1} that $q_{1}^{*} \mathcal{L} \cong \mathcal{O}_{F_{0}}$ holds. Thus we have a diagram

where the left square diagram is a fiber product, and the right one is obtained by the Stein factorization of $\pi \circ q_{S}$. The reason why $\pi \circ q_{S}$ factors through p_{2} is as follows. First, we have $q_{S}^{*} \omega_{S} \cong \omega_{F_{0} \times \mathbb{P}^{1}}$ by [[Z8, Lemma 2.14]. On the other hand, the elliptic fibration p_{2} (resp. π) are defined by the linear system of some multiple of $-K_{F_{0} \times \mathbb{P}^{1}}\left(\right.$ resp. $\left.-K_{S}\right)$. Therefore $\pi \circ q_{S}$ factors through p_{2}.

Recall that the elliptic fibration π has exactly two multiple fibers.
Convention. By the action of $\operatorname{PGL}(1, k)$ on \mathbb{P}^{1}, we always assume below that in the case (i-2), the elliptic fibration π has multiple fibers over the points 0 and ∞ in \mathbb{P}^{1}. Furthermore, we also assume that $q_{2}(0)=0$ and $q_{2}(\infty)=\infty$.

For $y_{0} \in \mathbb{P}^{1}$ with $y:=q_{2}\left(y_{0}\right) \in \mathbb{P}^{1} \backslash\{0, \infty\}$, we denote by F_{y} the non-multiple fiber of π over the point y. Then it follows from $f \circ q_{S}=q_{1} \circ p_{1}$ that the restriction of q_{S} induces the isomorphism

$$
\begin{equation*}
\left.q_{S}\right|_{F_{0} \times y_{0}}: F_{0} \times y_{0} \cong F_{y}, \tag{26}
\end{equation*}
$$

since we see from (■区) that $\left.f\right|_{F_{y}}$ is finite morphism of degree m. We tacitly identify F_{0} and F_{y} by this isomorphism.

Take $x_{0} \in F_{0}$ and set $x:=q_{1}\left(x_{0}\right) \in E$. Then in a similar way to (26), we have an isomorphism

$$
\begin{equation*}
\left.q_{S}\right|_{x_{0} \times \mathbb{P}^{1}}: x_{0} \times \mathbb{P}^{1} \cong F_{x} \tag{27}
\end{equation*}
$$

where F_{x} is the fiber of f over the point x. We identify \mathbb{P}^{1} and F_{x} by ([27). By our convention above, we see that the two multiple fibers of π intersect with each fiber \mathbb{P}^{1} of f at 0 and ∞ respectively.

Recall that f has two minimal sections, let's say C_{0} and C_{1}, corresponding to the projections

$$
\begin{equation*}
\mathcal{O}_{E} \oplus \mathcal{L} \rightarrow \mathcal{O}_{E} \quad \text { and } \quad \mathcal{O}_{E} \oplus \mathcal{L} \rightarrow \mathcal{L} \tag{28}
\end{equation*}
$$

Then the multiple fibers of π are given exactly $m C_{0}$ and $m C_{1}$ (see [28, Remark 4.2]).

We use the following lemma to show Claim 5.7.
Lemma 5.5. Let us regard the multiplicative group \mathbb{G}_{m} as a subgroup of $\operatorname{Aut}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)\left(\cong \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$ by the diagonal embedding. Then there exists an injective homomorphism

$$
\iota: \mathbb{G}_{m} \cong \operatorname{Aut}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right) / \mathbb{G}_{m} \hookrightarrow \operatorname{Aut}(S / E)
$$

Here, for $\lambda \in \mathbb{G}_{m}$, the automorphism $\iota(\lambda)$ of S induces the action on each fiber \mathbb{P}^{1} of f fixing the points 0 and ∞.

Proof. The existence of the injection ι is assured in [9, p.202]. ${ }^{\text {. }}$ Note that since any elements of $\operatorname{Aut}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)$ preserve the projections in ([Z8), any $\beta \in \operatorname{Im} \iota$ preserves the minimal sections C_{0} and C_{1}, and hence it gives an automorphism on each fiber \mathbb{P}^{1} of f fixing the points 0 and ∞.

5.3 Proof of Theorem 1.7.

Let S be an elliptic ruled surface and suppose $|\operatorname{FM}(S)| \neq 1$. Lemma 5.2 implies that

$$
S \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)
$$

for some $\mathcal{L} \in \operatorname{Pic}^{0} E$ with ord $\mathcal{L}=m \geq 5$. Now if $S^{\prime} \in \operatorname{FM}(S)$, by the same reason we get $S^{\prime} \cong \mathbb{P}\left(\mathcal{O}_{E^{\prime}} \oplus \mathcal{L}^{\prime}\right)$ for some $\mathcal{L}^{\prime} \in \mathrm{Pic}^{0} E^{\prime}$ with

$$
m=\lambda_{\pi}=\operatorname{ord} \mathcal{L}=\operatorname{ord} \mathcal{L}^{\prime}
$$

Moreover, by Corollary 4.7, we see that $E \cong E^{\prime}$.

[^3]We divide the proof of Theorem [.] into two cases: The case $m=p^{e} \geq 5$ for some $e>0$, and the case arbitrary $m \geq 5$ with $m \neq p^{e}$. In both cases, first we define an injective map

$$
\begin{equation*}
\left\{J^{i}(S) \mid i \in(\mathbb{Z} / m \mathbb{Z})^{*}\right\} / \cong \hookrightarrow\left\{\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{i}\right) \mid i \in(\mathbb{Z} / m \mathbb{Z})^{*}\right\} / \cong \tag{29}
\end{equation*}
$$

and secondly we shall see

$$
\begin{equation*}
\left|H_{\pi}\right| \leq\left|H_{\tilde{E}}^{\mathcal{L}}\right| . \tag{30}
\end{equation*}
$$

The cardinality of the L.H.S in (2.9) is $\varphi(m) /\left|H_{\pi}\right|$ by Lemma [2.3], and the cardinality of the R.H.S. in (299) is $\varphi(m) /\left|H_{\hat{E}}^{\mathcal{L}}\right|$ by Lemma 5.4. Therefore, combining (2.प) with (30), we can conclude that (2प) is a bijection, and hence Theorem 2.2 yields

$$
\operatorname{FM}(S)=\left\{\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{i}\right) \mid i \in(\mathbb{Z} / m \mathbb{Z})^{*}\right\} / \cong
$$

as required in Theorem .l.
Case: $m=p^{e} \geq 5$ for some $e>0$. Theorem ind implies that $J^{i}(S) \cong$ $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}_{i}\right)$ for some $\mathcal{L}_{i} \in \operatorname{Pic}^{0} E$ with ord $\mathcal{L}_{i}=p^{e}$. But in this case, E is necessarily ordinary, and hence $\hat{E}\left[p^{e}\right]$ is a cyclic group generated by \mathcal{L}. So in this case, $\mathcal{L}_{i} \cong \mathcal{L}^{\beta(i)}$ for some $\beta(i) \in(\mathbb{Z} / m \mathbb{Z})^{*}$, and thus we can define an injective map (2प) by $J^{i}(S) \mapsto \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{\beta(i)}\right)$.

Denote by F_{0} the elliptic curve satisfying $\hat{F}_{0}=\hat{E} /\langle\mathcal{L}\rangle$ as in $\S 5.2$. Then by (261), a general fiber of the elliptic fibration $\pi: S \rightarrow \mathbb{P}^{1}$ is isomorphic to F_{0}.

Claim 5.6. The inequality (BOD) holds (if $m=p^{e} \geq 5$).
Proof. [$\left[7\right.$, Propositions 5.3.3, 5.3.6] implies that $\kappa\left(J^{0}(S)\right)=-\infty$. Combining this fact with [7 , Corollary 5.3.5], we see that $J^{0}(S)$ is an elliptic ruled surface with a section. Therefore, by the classification in Theorem 5.$]$ and [$[7$, Theorem 5.3.1 (i)], we have $J^{0}(S) \cong F_{0} \times \mathbb{P}^{1}$. Then we have $\operatorname{Br}\left(J^{0}(S)\right)=0$ by [$\mathbb{8}$, Proposition 2.1]. Moreover we have $\lambda_{\pi}=p^{e}=\lambda_{\pi}^{\prime}$ by (\mathbb{T}) , and hence the group H_{π}^{\prime} in Lemma $[2.5$ is trivial. Therefore Lemma $[2.5$ yields

$$
\left|H_{\pi}\right| \leq\left|\operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)\right|
$$

Recall that $H_{\hat{E}}^{\mathcal{L}}=\operatorname{Aut}_{0}(E)$ by Lemma 3.3 (ii) in the case $m=p^{e} \geq 5$. Hence, to obtain the conclusion, it suffices to check that $\left|\operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)\right| \leq\left|\operatorname{Aut}_{0}(E)\right|$.

Thus we may assume $2<\left|\operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)\right|$. Note that we have a surjective homomorphism

$$
\operatorname{Aut}_{0}\left(J^{0}(S) / \mathbb{P}^{1}\right) \rightarrow \operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)
$$

where $\operatorname{Aut}_{0}\left(J^{0}(S) / \mathbb{P}^{1}\right)$ means the automorphism group of $J^{0}(S)\left(\cong F_{0} \times \mathbb{P}^{1}\right)$ over \mathbb{P}^{1}, fixing the 0 -section. Thus, we have an isomorphism $\operatorname{Aut}_{0}\left(J^{0}(S) / \mathbb{P}^{1}\right) \cong$ $\operatorname{Aut}_{0}\left(F_{0}\right)$, and moreover obtain

$$
2<\left|\operatorname{Aut}_{0}\left(J_{\eta}^{0}\right)\right|=\left|\operatorname{Aut}_{0}\left(J^{0}(S) / \mathbb{P}^{1}\right)\right|=\left|\operatorname{Aut}_{0}\left(F_{0}\right)\right| .
$$

This yields $j\left(F_{0}\right)=0$ or 1728. Since the morphism $q_{1}: F_{0} \rightarrow E$ obtained in (241) is a composition of relative Frobenius morphisms (cf. [255, Theorem V.3.1]), [10 , Exercise IV.4.20(a)] produces the isomorphism $E \cong F_{0}$, which completes the proof.

Claim [5.6] completes the proof of Theorem [.]] in the case $m=p^{e} \geq 5$.
Case: Arbitrary $m \geq 5$ with $m \neq p^{e}$ for any $e>0$. We may put $m=n p^{e}$ with $e \geq 0, n>1, p \nmid n$. We generalize the method of [30] below.

Recall that $S \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)$, and define elliptic curves F_{0} and F as $\hat{F}_{0}:=$ $\hat{E} /\langle\mathcal{L}\rangle$ and $\hat{F}:=\hat{E} /\left\langle\mathcal{L}^{p^{e}}\right\rangle$. Denote by

$$
q_{E}: F \rightarrow E
$$

the dual morphism of the quotient morphism $\hat{E} \rightarrow \hat{F}=\hat{E} /\left\langle\mathcal{L}^{p^{e}}\right\rangle$. Set

$$
\mathcal{M}:=q_{E}^{*} \mathcal{L} \text { and } T:=\mathbb{P}\left(\mathcal{O}_{F} \oplus \mathcal{M}\right)
$$

Then we see $\hat{F}_{0}=\hat{F} /\langle\mathcal{M}\rangle$ and ord $\mathcal{M}=p^{e}$. Moreover if $e>0$, the existence of a non-zero element \mathcal{M} of $\hat{F}\left[p^{e}\right]$ implies that F is ordinary, and the dual morphism of the quotient morphism

$$
\hat{F} \rightarrow \hat{F}_{0}=\hat{F} /\langle\mathcal{M}\rangle
$$

is the e-th iteration of the relative Frobenius morphisms (cf. [255, Theorem V.3.1]). Then we obtain the following commutative diagram:

Both of the left squares are fiber product diagrams，and the right squares are obtained by the Stein factorizations of $\pi_{1} \circ h_{1}$ and $\pi \circ q$ respectively．Moreover we have

$$
\operatorname{deg} q_{E}=\operatorname{deg} q=\operatorname{deg} q_{\mathbb{P}^{1}}=n
$$

Take

$$
\begin{equation*}
i \in \mathbb{Z} \text { with } 1 \leq i<m, \quad(i, m)=1 \tag{32}
\end{equation*}
$$

Note that this condition implies that $\left(i, p^{e}\right)=(i, n)=1$ ，and hence we sometimes regard $i \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$ or $i \in(\mathbb{Z} / n \mathbb{Z})^{*}$ below．

Recall that we have already proved Theorem $\mathbb{L D}$ for line bundles whose order is p－th power．By applying it to \mathcal{M} ，we obtain

$$
\begin{equation*}
J^{i}(T) \cong \mathbb{P}\left(\mathcal{O}_{F} \oplus \mathcal{M}^{\beta(i)}\right) \tag{33}
\end{equation*}
$$

for some $\beta(i) \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$ ．Moreover，since $\left(\operatorname{Fr}^{e}\right)^{*} \mathcal{M} \cong \mathcal{O}_{F_{0}}$ ，we have a diagram

as in（2．5）．Here f_{i} is a \mathbb{P}^{1}－bundle defined by using the \mathbb{P}^{1}－bundle structure on $\mathbb{P}\left(\mathcal{O}_{F} \oplus \mathcal{M}^{\beta(i)}\right)$ and the isomorphism（B33）．

Fix an n－th primitive root of unity ζ ．Consider the multiplication on \mathbb{G}_{m} by ζ ，and extend it to the automorphism of \mathbb{P}^{1} ．Denote it by $g_{\mathbb{P}^{1}}$ ．Because we see that $q_{\mathbb{P}^{1}}$ in（5⿴囗⿰丿㇄ ）fixes points 0 and ∞ in \mathbb{P}^{1} ，it turns out that the morphism $q_{\mathbb{P}^{1}}$ is the quotient morphism by the action of the group $\left\langle g_{\mathbb{P}^{1}}\right\rangle \cong \mathbb{Z} / n \mathbb{Z}$ on \mathbb{P}^{1} ．

Take $a \in F$ such that $E \cong F /\langle a\rangle$ and $\operatorname{ord} a\left(=\operatorname{ord} \mathcal{L}^{p^{e}}\right)=n$ ．Then we can construct an action of the group $G:=\mathbb{Z} / n \mathbb{Z}$ on $J^{i}(T)$ as follows．

Claim 5．7．For each $s \in(\mathbb{Z} / n \mathbb{Z})^{*}$ and $t \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$ ，there exists an au－ tomorphism g_{s} of $J^{t}(T)$ which induces the translation $T_{s \cdot a}$ of F and the automorphism $g_{\mathbb{P}^{1}}$ of \mathbb{P}^{1} ．

Proof．Since $T_{s \cdot a}^{*} \mathcal{M} \cong \mathcal{M}$ ，there exists an automorphism

$$
\alpha \in \operatorname{Aut}\left(J^{t}(T)\right)\left(\stackrel{(333)}{\cong} \operatorname{Aut}\left(\mathbb{P}\left(\mathcal{O}_{F} \oplus \mathcal{M}^{\beta(t)}\right)\right)\right)
$$

compatible with $T_{s \cdot a}$ on F. Note that $T_{s \cdot a}$ lifts a translation $T_{s \cdot b}$ on F_{0} for some $b \in F_{0}$ with $\operatorname{Fr}^{e}(b)=a$, and hence α lifts to $T_{s \cdot b} \times \operatorname{id}_{\mathbb{P}^{1}}$ on $F_{0} \times \mathbb{P}^{1}$.

Therefore, α respects the elliptic fibration π_{t}, i.e. $\alpha \in \operatorname{Aut}\left(J^{t}(T) / \mathbb{P}^{1}\right)$.
Next take an integer q with $p^{e} q=1$ in $(\mathbb{Z} / n \mathbb{Z})^{*}$. It follows from Lemma 5.5 that there exists an automorphism $\beta \in \operatorname{Aut}\left(J^{t}(T) / F\right)$ which induces the automorphism $g_{\mathbb{P}^{1}}^{q}$ on each fiber $F_{f_{t}}$ (which we identify with \mathbb{P}^{1} by (27)) of the \mathbb{P}^{1}-bundle f_{t}. Combining (27) with the commutativity of the right square in (B4), we see that $\left.\pi_{t}\right|_{F_{f_{t}}}: F_{f_{t}} \rightarrow \mathbb{P}^{1}$ coincides with $\operatorname{Fr}_{\mathbb{P}^{1}}^{e}$, and then β induces the automorphism $\left(g_{\mathbb{P}^{1}}\right)^{p^{e} q}=g_{\mathbb{P}^{1}}$ on \mathbb{P}^{1}, the base space of π_{t}.

Hence, the automorphism $g_{s}:=\alpha \circ \beta$ has the desired property.
Denote by g a generator of the cyclic group $G=\mathbb{Z} / n \mathbb{Z}$, and define the action of G on $J^{t}(T)$ by

$$
\begin{equation*}
\rho_{s, t}: G \rightarrow \operatorname{Aut}\left(J^{t}(T)\right) \quad g \mapsto g_{s} . \tag{35}
\end{equation*}
$$

For the integer i given in (B2), regard $i \in(\mathbb{Z} / n \mathbb{Z})^{*}$ and $i \in\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)^{*}$, and set $\rho_{i}:=\rho_{i, i}$. We define the quotient variety to be

$$
\begin{equation*}
S_{i}:=J^{i}(T) /{ }_{\rho_{i}} G \tag{36}
\end{equation*}
$$

by the action ρ_{i}, and denote the quotient morphism by

$$
q_{i}: J^{i}(T) \rightarrow S_{i} .
$$

It is easy to see that S is the quotient of $T=J^{1}(T)$ by the action $\rho_{s, 1}$ for some s. Replace $a \in F$ with $s \cdot a$, and redefine g_{s} and $\rho_{s, t}$ by this new a, so that $S=S_{1}$ holds. After this replacement, we consider only the action ρ_{i}, but not general $\rho_{s, t}$.

We set

$$
g_{i}^{0}:=T_{i \cdot b} \times g_{\mathbb{P}^{1}}^{q} \in \operatorname{Aut}\left(F_{0} \times \mathbb{P}^{1}\right)
$$

Then we see that ord $g_{i}^{0}=\operatorname{ord} T_{i \cdot b}=$ ord $g_{\mathbb{P}^{1}}^{q}=n$ and it is compatible with $g_{i} \in \operatorname{Aut}\left(J^{i}(T)\right)$ defined in Claim 5.7:

$$
\begin{equation*}
h_{i} \circ g_{i}^{0}=g_{i} \circ h_{i} . \tag{37}
\end{equation*}
$$

We also define the action on $F_{0} \times \mathbb{P}^{1}$ by

$$
\begin{equation*}
\rho_{i}^{0}: G \rightarrow \operatorname{Aut}\left(F_{0} \times \mathbb{P}^{1}\right) \quad g \mapsto g_{i}^{0} \tag{38}
\end{equation*}
$$

for each i.
Take an integer j with $1 \leq j<m,(j, m)=1$ and $i j=1$ in $(\mathbb{Z} / m \mathbb{Z})^{*}$. For the projection

$$
p_{13}: F_{0} \times \Delta_{\mathbb{P}^{1}} \times F_{0} \rightarrow F_{0} \times F_{0}
$$

define a line bundle

$$
\mathcal{U}_{0}:=p_{13}^{*} \mathcal{O}_{F_{0} \times F_{0}}\left(\Delta_{F_{0}}+(j-1) F_{0} \times O+(i-1) O \times F_{0}\right)
$$

on

$$
F_{0} \times \Delta_{\mathbb{P}^{1}} \times F_{0}\left(\cong\left(F_{0} \times \mathbb{P}^{1}\right) \times_{\mathbb{P}^{1}}\left(F_{0} \times \mathbb{P}^{1}\right)\right) .
$$

Then $F_{0} \times \mathbb{P}^{1}$ in the second factor in R.H.S. serves as $J^{i}\left(F_{0} \times \mathbb{P}^{1}\right)$ where \mathcal{U}_{0} plays the role of a universal sheaf, and moreover it is shown in [30, page 3229] that it satisfies

$$
\begin{equation*}
\left(\rho_{1}^{0}(g) \times \rho_{i}^{0}(g)\right)^{*} \mathcal{U}_{0} \cong \mathcal{U}_{0} . \tag{39}
\end{equation*}
$$

On the other hand, it follows from [4, Theorem 5.3] that we can take a universal sheaf \mathcal{U}^{\prime} on $T \times \times_{\mathbb{P}^{1}} J^{i}(T)$, which satisfies that $\left.\mathcal{U}^{\prime}\right|_{z \times J^{i}(T)}$ is a line bundle of degree j on F_{0} for general $z \in T$. For a point $(x, y) \in F_{0} \times$ $\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right)$, there exists an isomorphism

$$
\begin{equation*}
\left.\left.\left(\left(h_{1} \times h_{i}\right)^{*} \mathcal{U}^{\prime}\right)\right|_{\left(F_{0} \times \mathbb{P}^{1}\right) \times_{\mathbb{P} 1}(x, y)} \cong \mathcal{U}^{\prime}\right|_{T \times_{\mathbb{P}^{1}} h_{i}((x, y))}, \tag{40}
\end{equation*}
$$

since the restriction of $h_{1} \times h_{i}$ gives

$$
\left(F_{0} \times \mathbb{P}^{1}\right) \times_{\mathbb{P}^{1}}(x, y) \cong F_{0} \times y \cong F_{y} \cong T \times_{\mathbb{P}^{1}} h_{i}((x, y)),
$$

where the second isomorphism comes from (266). Hence, we see that the L.H.S. in (401) is a line bundle of degree i on F_{0}. Then, by the universal property of \mathcal{U}_{0}, there exists an automorphism $\phi_{0} \in \operatorname{Aut}\left(F_{0}\right)$ such that

$$
\left(\mathrm{id}_{F_{0} \times \Delta_{\mathbb{P} 1}} \times \phi_{0}\right)^{*} \mathcal{U}_{0} \cong\left(h_{1} \times h_{i}\right)^{*} \mathcal{U}^{\prime} \otimes p_{3}^{*} \mathcal{N}_{0}
$$

for some $\mathcal{N}_{0} \in \mathrm{Pic}^{0} F_{0}$.
We shall construct an elliptic ruled surface T^{\prime} and (iso)morphisms $\phi_{F}, \phi, h^{\prime}$ which make the following diagrams commutative:

First, ϕ_{0} descends to $\phi_{F} \in \operatorname{Aut}(F)$ via $\mathrm{Fr}^{e}: F_{0} \rightarrow F$ by [[25., Corollary II.2.12], and ϕ_{F} induces an isomorphism

$$
\phi: J^{i}(T) \cong \mathbb{P}\left(\mathcal{O}_{F} \oplus \mathcal{M}^{\beta(i)}\right) \rightarrow T^{\prime}:=\mathbb{P}\left(\mathcal{O}_{F} \oplus \phi_{F *} \mathcal{M}^{\beta(i)}\right)
$$

Note that $\phi_{F *} \in \operatorname{Aut}_{0}(\hat{F})$ preserves the subgroup ker $\widehat{\operatorname{Fr}^{e}}=\hat{F}\left[p^{e}\right]=\langle\mathcal{M}\rangle$ of \hat{F}, and thus $\phi_{F *} \mathcal{M}^{\beta(i)} \in\langle\mathcal{M}\rangle$. Hence we obtain a morphism

$$
h^{\prime}: F_{0} \times \mathbb{P}^{1} \cong \mathbb{P}\left(\mathcal{O}_{F_{0}} \oplus \mathcal{O}_{F_{0}}\right) \rightarrow T^{\prime} \cong \mathbb{P}\left(\mathcal{O}_{F} \oplus \phi_{F *} \mathcal{M}^{\beta(i)}\right),
$$

which fits into the diagram in ([1]). Moreover we have the following commutative diagram:

Take $\mathcal{N} \in \operatorname{Pic}^{0} F$ such that $\left(\operatorname{Fr}^{e}\right)^{*} \mathcal{N}=\mathcal{N}_{0}$, and define a line bundle

$$
\mathcal{U}:=\left(\mathrm{id}_{T} \times \phi\right)_{*}\left(\mathcal{U}^{\prime} \otimes\left(f_{i} \circ p_{2}\right)^{*} \mathcal{N}\right)
$$

on $T \times \mathbb{P}^{1} T^{\prime}$ so that

$$
\begin{equation*}
\mathcal{U}_{0} \cong\left(h_{1} \times h^{\prime}\right)^{*} \mathcal{U} \tag{42}
\end{equation*}
$$

holds. The pair $\left(T^{\prime}, \mathcal{U}\right)$ serves as $J^{i}(T)$ and its universal sheaf, ane thus we redefine T^{\prime} to be $J^{i}(T)$.

Claim 5.8. The universal sheaf \mathcal{U} on $T \times_{\mathbb{P}^{1}} J^{i}(T)$ satisfies

$$
\left(\rho_{1}(g) \times \rho_{i}(g)\right)^{*} \mathcal{U} \cong \mathcal{U}
$$

Proof. Take $y_{0} \in \mathbb{P}^{1} \backslash\{0, \infty\}$ with $y:=\operatorname{Fr}^{e}\left(y_{0}\right) \in \mathbb{P}^{1} \backslash\{0, \infty\}$. Denote by $F_{y} \times F_{y}^{\prime}$ the fiber of $\pi_{1} \times \pi_{i}: T \times{ }_{\mathbb{P}^{1}} J^{i}(T) \rightarrow \mathbb{P}^{1}$ over the point y. Pull back the isomorphism (42) to the subscheme $F_{0} \times y_{0} \times F_{0}$, which is isomorphic to $F_{y} \times F_{y}^{\prime}$ by (266), and combine (37) and (397) with it, then we have isomorphisms

$$
\begin{aligned}
& \left.\left.\left.\left.\left(\left(\rho_{1}(g) \times \rho_{i}(g)\right)^{*} \mathcal{U}\right)\right|_{F_{y} \times F_{y}} \cong\left(\left(\rho_{1}^{0}(g) \times \rho_{i}^{0}(g)\right)^{*} \mathcal{U}_{0}\right)\right|_{F_{0} \times y_{0} \times F_{0}} \cong \mathcal{U}_{0}\right|_{F_{0} \times y_{0} \times F_{0}} \cong \mathcal{U}\right|_{F_{y} \times F_{y}} . \\
& F_{0} \times y_{0} \times F_{0} \longleftrightarrow F_{0} \times \Delta_{\mathbb{P}^{1}} \times F_{0} \xrightarrow{p_{2}} \mathbb{P}^{1} \ni y_{0}
\end{aligned}
$$

This yields that the line bundle $L:=\left(\rho_{1}(g) \times \rho_{i}(g)\right)^{*} \mathcal{U} \otimes \mathcal{U}^{-1}$ is trivial over the open set $\left(\pi_{1} \times \pi_{i}\right)^{-1}\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right)$ by [$\mathbb{1 0}$, Exercise III.12.4]. We also see by (37), (39) and (422) that $\left(h_{1} \times h_{i}\right)^{*} L$ is trivial over $\mathbb{P}^{1} \backslash\{0, \infty\}$, and thus

$$
\begin{equation*}
L \cong \mathcal{O}_{T \times_{P^{1}} J^{i}(T)}\left(b\left(D_{0} \times D_{0}^{\prime}-D_{\infty} \times D_{\infty}^{\prime}\right)\right) \tag{43}
\end{equation*}
$$

for some $b \in \mathbb{Z}$, where $p^{e} D_{0}$ and $p^{e} D_{0}^{\prime}\left(\right.$ resp. $p^{e} D_{\infty}$ and $\left.p^{e} D_{\infty}^{\prime}\right)$ are the multiple fibers over $0 \in \mathbb{P}^{1}($ resp. $\infty)$ of π_{1} and π_{i}. Note that ord L divides p^{e}, the multiplicity of the multiple fibers. Since $\operatorname{ord}\left(\rho_{1}(g) \times \rho_{i}(g)\right)=n$ and the R.H.S. in (4.3) is $\left(\rho_{1}(g) \times \rho_{i}(g)\right)$-invariant, we see that

$$
\mathcal{U} \cong\left(\rho_{1}(g) \times \rho_{i}(g)\right)^{n *} \mathcal{U} \cong\left(\rho_{1}(g) \times \rho_{i}(g)\right)^{(n-1) *} \mathcal{U} \otimes L \cong \ldots \cong \mathcal{U} \otimes L^{\otimes n}
$$

and hence ord $L \mid n$. Since $p \nmid n$, we have ord $L=1$, as it is required.

Recall that we have the following commutative diagram by the definition of S_{i} in (36):

Here, q_{E} and $q_{\mathbb{P}^{1}}$ are the same one appeared in (3T), and $\pi_{S_{i}}$ is an elliptic fibration.

Claim 5.9. For each i, there exists $\alpha(i) \in(\mathbb{Z} / m \mathbb{Z})^{*}$ such that we have an isomorphism

$$
S_{i} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{\alpha(i)}\right)
$$

over E.
Proof. First of all, we know by Theorem 5.1] that there exisits an isomorphism $S_{i} \cong \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}_{i}\right)$ over E for some $\mathcal{L}_{i} \in \operatorname{Pic}^{0} E$ with ord $\mathcal{L}_{i}=m$. Then the result follows from

$$
\mathcal{L}_{i} \in \operatorname{ker}\left(\widehat{\operatorname{Fr}^{e}} \circ \widehat{q_{E}}\right)=\langle\mathcal{L}\rangle \cong \mathbb{Z} / m \mathbb{Z}
$$

Recall that $S=S_{1}$ below.
Claim 5.10. There exists an isomorphism $J^{i}(S) \cong S_{i}$.
Proof. First, we shall show that there exists a coherent sheaf \mathcal{U}_{i} on $S \times S_{i}$ such that

$$
\begin{equation*}
\left(q_{1} \times \operatorname{id}_{J^{i}(T)}\right)_{*} \mathcal{U} \cong\left(\operatorname{id}_{S} \times q_{i}\right)^{*} \mathcal{U}_{i} \tag{44}
\end{equation*}
$$

for the morphisms

$$
T \times J^{i}(T) \xrightarrow{q_{1} \times \mathrm{id}_{J_{i j}(T)}} S \times J^{i}(T) \xrightarrow{\mathrm{id}_{S \times q_{i}}} S \times S_{i}
$$

Claim 5.8 implies that

$$
\left(\rho_{1}(g) \times \operatorname{id}_{J^{i}(T)}\right)^{*} \mathcal{U} \cong\left(\operatorname{id}_{T} \times \rho_{i}(g)^{-1}\right)^{*} \mathcal{U}
$$

Push forward the both sides by the morphism $q_{1} \times \operatorname{id}_{J^{i}(T)}$. Then we obtain

$$
\left(q_{1} \times \operatorname{id}_{J^{i}(T)}\right)_{*} \mathcal{U} \cong\left(\operatorname{id}_{S} \times \rho_{i}(g)^{-1}\right)^{*}\left(q_{1} \times \operatorname{id}_{J^{i}(T)}\right)_{*} \mathcal{U}
$$

that is, the sheaf $\left(q_{1} \times \mathrm{id}_{J^{i}(T)}\right)_{*} \mathcal{U}$ is G-invariant with respect to the diagonal action of G on $S \times J^{i}(T)$, where G acts on S trivially. Since $G=\langle g\rangle$ is a finite cyclic group, the G-invariance of coherent sheaves is equivalent to the G-equivariance, and hence there exists a coherent sheaf \mathcal{U}_{i} on $S \times S_{i}$ satisfying (474).

For $z \in J^{i}(T)$, we have

$$
\left.\left.\mathcal{U}_{i}\right|_{S \times q_{i}(z)} \cong\left(\left(q_{1} \times \operatorname{id}_{J^{i}(T)}\right)_{*} \mathcal{U}\right)\right|_{S \times z} \cong q_{1 *}\left(\left.\mathcal{U}\right|_{T \times z}\right)
$$

Here, the second isomorphism follows from [Z, Lemma 1.3] and the smoothness of q_{1}. Suppose that z is not contained in multiple fibers of π_{i}, that is, $y:=\pi_{i}(z) \in \mathbb{P}^{1} \backslash\{0, \infty\}$ by the convention stated in $\S[5.2]$. Then $\left.\mathcal{U}\right|_{T \times z}$ is actually a sheaf on $F_{y} \times z$, and the restriction $\left.q_{1}\right|_{F_{y} \times z}$ is an isomorphism by ([26). It turns out that $\left.\mathcal{U}_{i}\right|_{S \times q_{i}(z)}$ is also a line bundle of degree i on $F_{q_{\mathrm{p}^{1}}(y)} \times q_{i}(z)$.

Then, by the universal property of $J^{i}(S)$, there exists a morphism from

$$
\pi_{S_{i}}^{-1}\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right)\left(\subset S_{i}\right) \rightarrow \pi_{J^{i}(S)}^{-1}\left(\mathbb{P}^{1} \backslash\{0, \infty\}\right)\left(\subset J^{i}(S)\right)
$$

over $\mathbb{P}^{1} \backslash\{0, \infty\}$, where $\pi_{S_{i}}$ and $\pi_{J^{i}(S)}$ are the elliptic fibrations on S_{i} and $J^{i}(S)$ respectively. Since $\left.\mathcal{U}_{i}\right|_{S \times q_{i}\left(z_{1}\right)} \neq\left.\mathcal{U}_{i}\right|_{S \times q_{i}\left(z_{2}\right)}$ on F_{y} for $z_{1} \neq z_{2} \in J^{i}(T)$, this morphism is injective, and hence S_{i} and $J^{i}(S)$ are birational over \mathbb{P}^{1}. Then, [[I, Proposition III.8.4] implies that $S_{i} \cong J^{i}(S)$.

Combining Claims 5.9 and 5.50 , we obtain the inclusion (2.9) by the map

$$
J^{i}(S) \mapsto \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{\alpha(i)}\right)
$$

The next aim is to show (${ }^{3} \mathrm{BO}$).
Claim 5.11. There exists an injective group homomorphism

$$
\bar{\alpha}: H_{\pi} /\{ \pm 1\} \rightarrow H_{\hat{E}}^{\mathcal{L}} /\{ \pm 1\}
$$

Proof. Take $i \in H_{\pi}\left(:=\left\{i \in(\mathbb{Z} / m \mathbb{Z})^{*} \mid J^{i}(S) \cong S\right\}\right)$. We have $\alpha(i) \in$ $(\mathbb{Z} / m \mathbb{Z})^{*}$ so that there exists an isomorphism

$$
\psi: \mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}^{\alpha(i)}\right) \stackrel{\cong}{\rightrightarrows} S_{i} \xlongequal{\cong} J^{i}(S)
$$

by Claims 5.9 and 5.70 . We use ψ and the \mathbb{P}^{1}-bundle structure on $\mathbb{P}\left(\mathcal{O}_{E} \oplus\right.$ $\mathcal{L}^{\alpha(i)}$) to fix a \mathbb{P}^{1}-bundle structure on $J^{i}(S)$:

$$
f_{J^{i}(S)}: J^{i}(S) \rightarrow E
$$

Then Lemma 5.3 (iii) implies that there exist an isomorphism φ and an automorphism $\varphi_{E} \in \operatorname{Aut}_{0}(E)$ fitting in the commutative diagram

and $\varphi_{E}^{*} \mathcal{L} \cong \mathcal{L}^{\alpha(i)}$ is satisfied.
Take another isomorphism $\varphi^{\prime}: J^{i}(S) \rightarrow S$. Then since $\varphi^{\prime} \circ \varphi^{-1}$ is an automorphism of $\mathbb{P}\left(\mathcal{O}_{E} \oplus \mathcal{L}\right)$, we have $\left(\varphi_{E}^{\prime} \circ \varphi_{E}^{-1}\right)^{*} \mathcal{L} \cong \mathcal{L}^{ \pm 1}$ by Lemma 5.3 (i) and (ii). Thus we obtain the group homomorphism

$$
\alpha: H_{\pi} \rightarrow H_{\tilde{E}}^{\mathcal{L}} /\{ \pm 1\}\left(:=\left\{i \in(\mathbb{Z} / m \mathbb{Z})^{*} \mid \exists \phi \in \operatorname{Aut}_{0}(E) \text { s.t. } \phi^{*} \mathcal{L} \cong \mathcal{L}^{i}\right\} /\{ \pm 1\} .\right)
$$

Thus it suffices to prove $\operatorname{Ker} \alpha=\{ \pm 1\}$. Suppose $i \in \operatorname{Ker} \alpha$. Since $\varphi_{E}^{*} \mathcal{L} \cong \mathcal{L}^{ \pm 1}$ holds in this case, Lemma ${ }^{2} 2$ implies that φ_{E} fitting in the diagram (4.5) is either id_{E} or $-\mathrm{id}_{E}$. Replace φ with $f^{*}\left(-\mathrm{id}_{E}\right) \circ \varphi$ (see the notation in Lemma 5.3 (ii) and the proof of ibid. (iii)) if necessary, then we may assume that $\varphi_{E}=\mathrm{id}_{E}$. We have the following commutative diagram ${ }^{\text {T }}$:

Because the front and the back squares in (461) are the fiber product diagrams, there exists an isomorphism $\phi: J^{i}(T) \rightarrow T$ which makes the right square the fiber product.

Since ϕ descends to $\varphi: S_{i}=J^{i}(T) /{ }_{\rho_{i}} G \rightarrow S=T / \rho_{1} G$ for $G=\mathbb{Z} / n \mathbb{Z}=$ $\langle g\rangle$, we have

$$
\rho_{1}(g) \circ \phi=\phi \circ \rho_{i}(g)^{l}
$$

for some l. Recall that both of $\rho_{1}(g)$ and $\rho_{i}(g)$ induce the same automorphism $g_{\mathbb{P}^{1}}$ on the base curve \mathbb{P}^{1} of the elliptic fibrations on T and $J^{i}(T)$ (see Claim

[^4]5.7 and (355)), then we see $l= \pm 1$. Next recall $\rho_{1}(g)$ (resp. $\left.\rho_{i}(g)\right)$ induces the automorphism T_{a} (resp. $T_{i \cdot a}$) on F, the base curve of the \mathbb{P}^{1}-bundle f_{1} (resp. f_{i}). Then we know that
$$
T_{a}=\left(T_{i \cdot a}\right)^{l}=T_{l i \cdot a},
$$
and hence, $1=i l$ in $(\mathbb{Z} / n \mathbb{Z})^{*}$. Therefore we have $i= \pm 1$, and hence Ker $\alpha \subset$ $\{ \pm 1\}$. The other direction is obvious.

By Claim [5.]D, we conclude that $\left|H_{\pi}\right| \leq\left|H_{E}^{\mathcal{L}}\right|$ as is required in (30)).
Therefore, we complete the proof of the first statement in Theorem ㄸ.. for arbitrary $m \geq 5$. The second follows from Lemma 5.31 (ii).

References

[1] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 2004.
[2] A. Bondal and D. Orlov. Semiorthogonal decomposition for algebraic varieties, 1995. arXiv:alg-geom/9506012.
[3] A. Bondal and M. van den Bergh. Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J., 3(1):1-36, 258, 2003.
[4] T. Bridgeland. Fourier-Mukai transforms for elliptic surfaces. J. Reine Angew. Math., 498:115-133, 1998.
[5] T. Bridgeland. Equivalences of triangulated categories and FourierMukai transforms. Bull. London Math. Soc., 31(1):25-34, 1999.
[6] T. Bridgeland and A. Maciocia. Complex surfaces with equivalent derived categories. Math. Z., 236(4):677-697, 2001.
[7] F. R. Cossec and I. V. Dolgachev. Enriques surfaces. I, volume 76 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1989.
[8] T. J. Ford. Every finite abelian group is the Brauer group of a ring. Proc. Amer. Math. Soc., 82(3):315-321, 1981.
[9] A. Grothendieck. Géométrie formelle et géométrie algébrique. In Séminaire Bourbaki, Vol. 5, pages Exp. No. 182, 193-220, errata p. 390. Soc. Math. France, Paris, 1995.
[10] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
[11] D. Hernández Ruipérez, A. C. López Martín, and F. Sancho de Salas. Fourier-Mukai transforms for Gorenstein schemes. Adv. Math., 211(2):594-620, 2007.
[12] K. Honigs. Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties. Proc. Amer. Math. Soc., 146(3):10051013, 2018. With an appendix by Jeffrey D. Achter, Sebastian CasalainaMartin, Katrina Honigs, and Charles Vial.
[13] D. Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2006.
[14] D. Huybrechts. Lectures on K3 surfaces, volume 158 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016.
[15] A. Ishii, S. Okawa, and H. Uehara. Exceptional collections on $\Sigma_{2}, 2021$. arXiv:2107.03051.
[16] Y. Kawamata. D-equivalence and K-equivalence. J. Differential Geom., 61(1):147-171, 2002.
[17] A. Langer. Semistable sheaves in positive characteristic. Ann. of Math. (2), 159(1):251-276, 2004.
[18] M. Maruyama. On automorphism groups of ruled surfaces. J. Math. Kyoto Univ., 11:89-112, 1971.
[19] S. Mukai. Duality between $D(X)$ and $D(\hat{X})$ with its application to picard sheaves. Nagoya Math. J. , 81:101-116, 1981.
[20] K. Oguiso. K3 surfaces via almost-primes. Math. Res. Lett., 9(1):47-63, 2002.
[21] A. Perry. Noncommutative homological projective duality. Adv. Math., 350:877-972, 2019.
[22] D. Pirozhkov. Admissible subcategories of Del Pezzo surfaces, 2020. arXiv:2006.07643.
[23] D. Pirozhkov. Stably semiorthogonally indecomposable varieties, 2020. arXiv:2011.12743.
[24] M. Popa and C. Schnell. Derived invariance of the number of holomorphic 1-forms and vector fields. Ann. Sci. Éc. Norm. Supér. (4), 44(3):527-536, 2011.
[25] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
[26] C. T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math., (79):47-129, 1994.
[27] Y. Toda. Fourier-Mukai transforms and canonical divisors. Compos. Math., 142(4):962-982, 2006.
[28] T. Togashi and H. Uehara. Elliptic ruled surfaces over arbitrary characteristic fields, 2022. arXiv:2212.00304.
[29] H. Uehara. An example of Fourier-Mukai partners of minimal elliptic surfaces. Math. Res. Lett. , 11:371-375, 2004.
[30] H. Uehara. Fourier-Mukai partners of elliptic ruled surfaces. Proc. Amer. Math. Soc., 145(8):3221-3232, 2017.

Hokuto Uehara
Department of Mathematical Sciences, Graduate School of Science, Tokyo
Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan e-mail address: hokuto@tmu.ac.jp

Tomonobu Watanabe

Hosoda Gakuen Junior and Senior High School, 2-7-1, Honcho, Shiki, Saitama, 353-0004, Japan
e-mail address : ttkk.8128@gmail.com

[^0]: ${ }^{1}$ Here we consider the Gieseker stability, equivalently the slope stability for 1dimensional sheaves. Moreover, the stability does not depend on the choice of polarizations for such sheaves.

[^1]: ${ }^{2}$ See [2I] for this notion.

[^2]: ${ }^{3}$ In [233, Lemma 6.1], Pirozhkov assumes that S is a scheme over \mathbb{Q}, but it is not needed in its proof.

[^3]: ${ }^{4}$ See also [[8, Lemma 3]). Because Δ in ibid. is trivial, we actually see that ι gives an isomorphism.

[^4]: ${ }^{5}$ Here, we identify S_{i} and $J^{i}(S)$ by Claim 5.

