
ON BOREL’S STABLE RANGE
FOR THE TWISTED COHOMOLOGY OF GL(n,Z)

KAZUO HABIRO AND MAI KATADA

Abstract. Borel’s stability and vanishing theorem gives the sta-
ble cohomology of GL(n,Z) with coefficients in algebraic GL(n,Z)-
representations. We compute the improved stable range that Borel
suggested. In order to further improve Borel’s stable range, we
adapt the method of Kupers–Miller–Patzt to any algebraic GL(n,Z)-
representations.

1. Introduction

Borel proved the stability of the rational cohomology of GL(n,Z)
and computed the stable cohomology [1]. He also proved the vanishing
of the stable cohomology of GL(n,Z) with coefficients in non-trivial al-
gebraic GL(n,Z)-representations [2]. He gave constants for the stable
ranges and suggested improved stable ranges, but he did not compute
these stable ranges explicitly except for a few families of representa-
tions.

Li and Sun [12] improved Borel’s stable ranges and obtained stable
ranges that are independent of coefficients. For coefficients in polyno-
mial GL(n,Z)-representations, Kupers, Miller and Patzt [11] improved
the stable ranges by using arguments on polynomial VIC-modules.

In this paper, we compute the improved stable range that Borel
suggested. We also adapt Kupers, Miller and Patzt’s argument to co-
efficients in algebraic GL(n,Z)-representations indexed by bipartitions,
i.e., pairs of partitions. Our results are weaker than Li and Sun’s. How-
ever, the methods are very different and we think that it is still worth
publishing these results.

1.1. Stable range for the cohomology of GL(n,Z). The improved
stable range given by Li and Sun [12] is as follows.
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Theorem 1.1 (Borel [1, 2], Li–Sun [12]). (1) For each integer n ≥ 1,
the algebra map

H∗(GL(n+ 1,Z),Q)→ H∗(GL(n,Z),Q)

induced by the inclusion GL(n,Z) ↪→ GL(n + 1,Z) is an isomorphism
for ∗ ≤ n− 2. Moreover, we have an algebra isomorphism

lim←−
n

H∗(GL(n,Z),Q) ∼=
∧

Q
(x1, x2, . . .), deg xi = 4i+ 1

in degrees ∗ ≤ n− 2.

(2) Let V be an algebraic GL(n,Q)-representation such that V GL(n,Q) =
0. Then we have

Hp(GL(n,Z), V ) = 0 for p ≤ n− 2.

Kupers, Miller and Patzt’s stable range [11] for the rational coho-
mology is wider by 1 than that of Li and Sun.

Theorem 1.2 (Borel [1, 2], Kupers–Miller–Patzt [11]). We have

H∗(GL(n,Z),Q) ∼=
∧

Q
(x1, x2, . . .), deg xi = 4i+ 1

in degree ∗ ≤ n− 1.

We now state our main result. For a bipartition λ = (λ, λ′), let
Vλ denote the (irreducible or zero) algebraic GL(n,Z)-representation
corresponding to λ (see Section 2).

Theorem 1.3 (Corollary 3.4 and Theorem 4.20, weaker than Theorem
1.1). Let λ ̸= (0, 0) be a bipartition. Then we have

Hp(GL(n,Z), Vλ) = 0

for n ≥ n0(λ, p).

Here the constant n0(λ, p) is defined as follows. For a partition λ, let
|λ| and l(λ) denote the size and length of λ, respectively. Let λ = (λ, λ′)
be a bipartition and p a non-negative integer. Let |λ| = |λ| + |λ′| and
deg λ = |λ| − |λ′|, and set

n0(λ, p) = min{nKMP(λ, p), nB(λ, p)},
where

nKMP(λ, p) =

{
p+ 1 + |λ| if λ = 0 or λ′ = 0

p+ 1 + 2|λ| otherwise

and
nB(λ, p) = max{2p+ 2, 2| deg λ|+ 1, 2l(λ), 2l(λ′)}.
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Remark 1.4. Let us compare the value of nKMP(λ, p) and nB(λ, p).
For a fixed λ, we have nKMP(λ, p) < nB(λ, p) for all but finitely many
p. If p is relatively small with respect to λ then we sometimes have
nB(λ, p) < nKMP(λ, p). For example, we have nKMP((4, 4), 1) = 18 and
nB((4, 4), 1) = 4. Note that Theorem 1.1 gives a better bound 3 in this
case.

Remark 1.5. This paper stemmed from the first version of [7] (with a
different title), which included the two approaches to improve Borel’s
stable ranges described in this paper. In [7], we combined the improved
version of Borel’s theorem with the Hochschild–Serre spectral sequence
associated to the short exact sequence of groups

1→ IAn → Aut(Fn)→ GL(n,Z)→ 1,

where Aut(Fn) is the automorphism group of a free group Fn of rank
n, and IAn is the IA-automorphism group of Fn, in order to study
the stable cohomology of Aut(Fn) and IAn possibly with twisted co-
efficients. After the first version of [7] appeared on the arXiv, Oscar
Randal-Williams informed us of the result of Li and Sun about the
improvement of the Borel theorem [12]. Since our results for Borel’s
stable range turned out to be weaker than Li and Sun’s, we have de-
cided to remove these results from [7] and to rely on Li and Sun’s result
there.

1.2. Organization of the paper. The rest of this paper is organized
as follows. In Section 2, we recall some facts about the representation
theory of GL(n,Q). In Section 3, we recall Borel’s stability and vanish-
ing theorem for GL(n,Z) and compute the improved stable range that
Borel suggested for irreducible algebraic representations. In Section 4,
we improve the stable range by using the arguments of Kupers, Miller
and Patzt [11].

Acknowledgements. The authors thank Geoffrey Powell and Oscar
Randal-Williams for helpful comments. The authors also thank the
referee for many useful comments. K.H. was supported in part by
JSPS KAKENHI Grant Number 18H01119 and 22K03311. M.K. was
supported in part by JSPS KAKENHI Grant Number JP22J14812.

2. Algebraic GL(n,Z)-representations

Let n ≥ 1 be an integer. A polynomial GL(n,Q)-representation is
a finite-dimensional Q[GL(n,Q)]-module V such that after choosing
a basis for V , the (dimV )2 coordinate functions are polynomial in
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the n2 variables. A GL(n,Q)-representation is called algebraic if the
coordinate functions are rational functions. See [6] for some facts from
representation theory.

As is well known, irreducible polynomial GL(n,Q)-representations
are classified by partitions with at most n parts. A partition λ =
(λ1, λ2, . . . , λl) is a weakly decreasing sequence of non-negative integers.
The length l(λ) of λ is defined by l(λ) = max{{0} ∪ {i | λi > 0}} and
the size |λ| of λ is defined by |λ| = λ1 + · · ·+ λl(λ).

We denote by H = H(n) = Qn the standard representation of
GL(n,Q). In the following, we usually omit (n). For a partition λ,
the Specht module Sλ for λ is an irreducible representation of S|λ|
defined by using the Young symmetrizer associated to λ. Define the
GL(n,Q)-representation

Vλ = Vλ(n) = H⊗|λ| ⊗Q[S|λ|] S
λ.

If l(λ) ≤ n, then Vλ is an irreducible polynomial GL(n,Q)-representation.
Otherwise, we have Vλ = 0.

The GL(n,Q)-representation H∗ dual to H is not polynomial but
algebraic since the action of GL(n,Q) on H∗ is given by A 7→ (tA)−1.
Let p, q ≥ 0 be integers. We set Hp,q = H⊗p ⊗ (H∗)⊗q. We have an
isomorphism (Hq,p)∗ = (H⊗q ⊗ (H∗)⊗p)∗ ∼= H⊗p ⊗ (H∗)⊗q = Hp,q. For
a pair (i, j) ∈ {1, . . . , p} × {1, . . . , q}, we define the contraction map

ci,j : H
p,q → Hp−1,q−1(2.0.1)

by

ci,j((v1 ⊗ · · · ⊗ vp)⊗ (f1 ⊗ · · · ⊗ fq))

= ⟨vi, fj⟩(v1 ⊗ · · · v̂i · · · ⊗ vp)⊗ (f1 ⊗ · · · f̂j · · · ⊗ fq)

for v1, . . . , vp ∈ H and f1, . . . , fq ∈ H∗, where the dual pairing ⟨−,−⟩ :
H⊗H∗ → Q is defined by ⟨v, f⟩ = f(v). Note that ⟨−,−⟩ is GL(n,Q)-
equivariant.

The traceless part H⟨p,q⟩ of Hp,q is defined by

H⟨p,q⟩ =
⋂

(i,j)∈{1,...,p}×{1,...,q}

ker ci,j ⊂ Hp,q,

which is a GL(n,Q)-subrepresentation of Hp,q.

A bipartition is a pair λ = (λ, λ′) of two partitions λ and λ′. The
length l(λ) of the bipartition λ is defined by l(λ) = l(λ) + l(λ′). The
degree of λ is defined by deg λ = |λ| − |λ′| ∈ Z, and the size of λ by
|λ| = |λ|+ |λ′|. We define the dual of λ by λ∗ = (λ′, λ).



BOREL’S STABLE RANGE FOR TWISTED COHOMOLOGY 5

We associate to each bipartition λ = (λ, λ′) the GL(n,Z)-representation

Vλ = Vλ(n) = H⟨p,q⟩ ⊗Q[Sp×Sq ] (S
λ ⊗ Sλ′

),(2.0.2)

where p = |λ| and q = |λ′|. If l(λ) ≤ n, then Vλ is an irreducible
algebraic GL(n,Q)-representation with highest weight

(λ1, . . . , λl(λ), 0 . . . , 0,−λ′
l(λ′), . . . ,−λ′

1).

Otherwise, we have Vλ = 0. It is well known that irreducible algebraic
GL(n,Q)-representations are classified by bipartitions λ with l(λ) ≤ n
(see [6, 9]).

The traceless part H⟨p,q⟩ of Hp,q admits the following direct-sum
decomposition as a Q[GL(n,Q)× (Sp ×Sq)]-module

H⟨p,q⟩ =
⊕

λ=(λ,λ′):bipartition with
l(λ)≤n, |λ|=p, |λ′|=q

Vλ ⊗ (Sλ ⊗ Sλ′
).(2.0.3)

(See [9, Theorem 1.1]. See also Lemma 4.12 for the statement as VIC-
modules.)

Note that we have GL(n,Q)-isomorphisms det ∼=
∧n V ∼= V1n , where

det denotes the determinant representation, and 1n = (1, . . . , 1) con-
sists of n copies of 1. For any bipartition λ = (λ, λ′) with l(λ) ≤ n, we
have an isomorphism

Vλ
∼= Vµ ⊗ detk,

for some partition µ with at most n parts and an integer k such that

(λ1, . . . , λl(λ), 0, . . . , 0,−λ′
l(λ′), . . . ,−λ′

1) = (µ1 + k, . . . , µn + k).

By an algebraic GL(n,Z)-representation, we mean the restriction
of an algebraic GL(n,Q)-representation to GL(n,Z). Note that det2

is trivial as a GL(n,Z)-representation. It follows that any irreducible
algebraic GL(n,Z)-representation is obtained from an irreducible poly-
nomial GL(n,Q)-representation by restriction to GL(n,Z).

3. Borel’s improved stable range

In [1, 2], Borel computed the cohomology Hp(Γ, V ) of an arithmetic
group Γ with coefficients in an algebraic Γ-representation V in a stable
range

p ≤ N(Γ, V ) = min{M(Γ(R), V ), C(Γ(Q), V )},
where M(Γ(R), V ) and C(Γ(Q), V ) are constants depending only on Γ
and V . For Γ = SL(n,Z), we have M(SL(n,R), V ) ≥ n− 2. Borel did
not compute the constant C(SL(n,Q), V ) explicitly except for a few
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families of representations. Recently, Krannich and Randal-Williams
[10] gave an estimate of C(SL(n,Q), V ).

Borel remarked that one can replace the constant C(Γ(Q), V ) by
an improved constant C ′(Γ(Q), V ) ≥ C(Γ(Q), V ) [2, Remark 3.8]. In
this section, we give an estimate of Borel’s improved constant for Γ =
SL(n,Z). The constant C ′(SL(n,Q), V ) depends not only on n but
also on V , unlike the cases of Sp(2n,Z) and SO(n, n;Z) which were
determined by Tshishiku [21].

3.1. Borel’s stable range for the cohomology of SL(n,Z). Here
we recall Borel’s result. Let

N ′(SL(n,Z), V ) = min{M(SL(n,R), V ), C ′(SL(n,Q), V )},
where the constant C ′ is defined below.

Theorem 3.1 (Borel [1, 2]). (1) For each integer n ≥ 1, the algebra
map

H∗(SL(n+ 1,Z),Q)→ H∗(SL(n,Z),Q)

induced by the inclusion SL(n,Z) ↪→ SL(n + 1,Z) is an isomorphism
for ∗ ≤ N ′(SL(n,Z),Q). Moreover, we have an algebra isomorphism

lim←−
n

H∗(SL(n,Z),Q) ∼=
∧

Q
(x1, x2, . . .), deg xi = 4i+ 1

in degrees ∗ ≤ N ′(SL(n,Z),Q).

(2) Let V be an algebraic SL(n,Q)-representation such that V SL(n,Q) =
0. Then we have

Hp(SL(n,Z), V ) = 0 for p ≤ N ′(SL(n,Z), V ).

3.2. Preliminaries from representation theory. Before defining
Borel’s constant, we recall necessary facts from representation theory.
See [6] for details.

Let n ≥ 2 be an integer. Let h ⊂ sln(C) denote the Cartan subalge-
bra

h = {a1H1 + · · ·+ anHn | a1 + · · ·+ an = 0},
where Hi is the matrix whose (i, i)-th entry is 1 and other entries are
0. We write the dual vector space h∗ as

h∗ = C{L1, . . . , Ln}/C(L1 + · · ·+ Ln),

where Li is the linear map from the space of diagonal matrices to C
satisfying Li(Hj) = δi,j. The set of roots of sln(C) is {Li −Lj | i ̸= j},
that of positive roots is {Li − Lj | i < j} and that of simple roots is
{αi = Li − Li+1 | 1 ≤ i ≤ n− 1}.
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An element u = u1L1 + · · · + unLn with
∑

ui = 0 will be denoted
by [u1, . . . , un]. For an element ϕ ∈ h∗, we write ϕ > 0 if ϕ =

∑
i ciαi

with ci > 0 for all i. Note that ϕ = [ϕ1, . . . , ϕn] ∈ h∗ satisfies ϕ > 0 if
and only if ϕ1 + · · ·+ ϕi > 0 for any i = 1, . . . , n− 1.

TheWeyl group W of sln(C) is the symmetric groupSn = ⟨s1, . . . , sn−1⟩.
The generator si permutes Li and Li+1 and fixes the other Lk. The
length l(σ) of an element σ ∈ W is the minimum length of the words in
the si representing σ. Set W q = {σ ∈ W | l(σ) = q}, which consists of
elements that send exactly q positive roots to negative roots. We have

W =
∐l(w0)

q=0 W q, where l(w0) =
1
2
n(n − 1) is the length of the longest

element w0 of W = Sn.

3.3. The constant C ′(SL(n,Q), V ). Here we define Borel’s improved
constants C ′.

For a bipartition λ with l(λ) ≤ n, let

µλ = (µ1, . . . , µn) = (λ1, . . . , λl(λ), 0, . . . , 0,−λ′
l(λ′), . . . ,−λ′

1)(3.3.1)

be the highest weight of Vλ. Let ρ ∈ h∗ be half the sum of the positive
roots. Then we have

ρ = [
n− 1

2
,
n− 3

2
,
n− 5

2
, . . . ,−n− 1

2
].

Since we have µ1 + . . . µn = deg λ, it follows that

ρ+ µλ = [
n− 1

2
− α + µ1,

n− 3

2
− α + µ2, . . . ,−

n− 1

2
− α + µn],

where α = 1
n
deg λ. Define

C ′(SL(n,Q), Vλ) = max{q ∈ {0, . . . , l(w0)} | σ(ρ+ µλ) > 0 for all σ ∈ W q} ≥ 0.

Then we can easily check that

(3.3.2) C ′(SL(n,Q), Vλ) = C ′(SL(n,Q), Vλ∗),

where λ∗ is the dual partition of λ.

For an algebraic SL(n,Q)-representation V , we set

C ′(SL(n,Q), V ) = min
λ

C ′(SL(n,Q), Vλ),

where λ runs through all bipartitions such that Vλ is isomorphic to a
direct summand of V .
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3.4. Estimate of C ′(SL(n,Q), Vλ). For each bipartition λ, we define
the integer nB(λ) ≥ 0 by

nB(λ) := max{2| deg λ|+ 1, 2l(λ), 2l(λ′)}.

Theorem 3.2. Let n ≥ 2. Let λ = (λ, λ′) be a bipartition. Then for
every n ≥ l(λ), we have

C ′(SL(n,Q), Vλ) ≤ ⌊n/2⌋ − 1.(3.4.1)

Equality holds if n ≥ nB(λ).

Proof. We first prove (3.4.1). If n is odd and (ρ + µλ)n+1
2

= −α +

µn+1
2
≥ 0, then for σ− = sn−1 · · · sn+1

2
∈ W , the coefficient of Ln in

σ−(ρ + µλ) is (ρ + µλ)n+1
2
≥ 0. If n is odd and (ρ + µλ)n+1

2
< 0,

then for σ+ = s1 · · · sn−1
2
∈ W , the coefficient of L1 in σ+(ρ + µλ)

is (ρ + µλ)n+1
2

< 0. If n is even, then we have either (ρ + µλ)n
2
=

1/2−α+µn
2
≥ 0 or (ρ+µλ)n

2
+1 = −1/2−α+µn

2
+1 ≤ 0. If the former

holds, then for σ− = sn−1 · · · sn
2
∈ W , the coefficient of Ln in σ−(ρ+µλ)

is (ρ + µλ)n
2
≥ 0. If the latter holds, then for σ+ = s1 · · · sn

2
∈ W , the

coefficient of L1 in σ+(ρ + µλ) is (ρ + µλ)n
2
+1 ≤ 0. Therefore, in each

case, we have σ±(ρ+ µλ) ̸> 0, which implies (3.4.1).

By (3.3.2), we have only to consider the case where α ≥ 0, that is,
when |λ| ≥ |λ′|. Suppose that we have n ≥ nB(λ). Thus, we have 0 ≤
α < 1/2. We first prove C ′(SL(n,Q), Vλ) = ⌊n/2⌋ − 1 for 2 ≤ n ≤ 4.
For n = 2, 3, this is obvious since we have ⌊n/2⌋ − 1 = 0. For n = 4,
since we have l(λ), l(λ′) ≤ 2, it follows that

ρ+ µλ = [3/2 + λ1 − α, 1/2 + λ2 − α,−1/2− λ′
2 − α,−3/2− λ′

1 − α].

Since 0 ≤ α < 1/2, the first two coefficients are positive and the
others are negative. For σ = s1, s3 ∈ W 1, it is easily checked that
σ(ρ + µλ) > 0. For σ = s2, we also have σ(ρ + µλ) > 0 since we have
λ1 ≥ λ′

2 and thus

(3/2 + λ1 − α) + (−1/2− λ′
2 − α) = 1− 2α + λ1 − λ′

2 ≥ 1− 2α > 0.

Therefore, we have C ′(SL(n,Q), Vλ) = ⌊n/2⌋ − 1 for n = 4.

In what follows, we will prove that for n ≥ 5, σ(ρ+ µλ) > 0 for any
σ ∈ W of length ⌊n/2⌋ − 1. Let k ∈ {1, . . . , n − 1}. By the definition
of l(σ), we have

(σ−1(1)− 1) + (σ−1(2)− 2) + · · ·+ (σ−1(k)− k) ≤ ⌊n/2⌋ − 1.
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Therefore, the sum of the first k coefficients of σ(ρ+ µλ) is(
n− 1

2
− (σ−1(1)− 1)− α + µσ−1(1)

)
+ · · ·+

(
n− 1

2
− (σ−1(k)− 1)− α + µσ−1(k)

)
=

k∑
i=1

(
n− 1

2
− (i− 1)

)
−

k∑
i=1

(σ−1(i)− i) +
k∑

i=1

(µσ−1(i) − α)

≥ (n− k)k

2
− (⌊n/2⌋ − 1) +

k∑
i=1

(µσ−1(i) − α).

Let T (k) denote the right hand side of this inequality. It suffices to
show that T (k) > 0 for each k ∈ {1, . . . , n−1}. For k = n−1, we have

T (n− 1) ≥ 1/2 +
n−1∑
i=1

µσ−1(i) − (n− 1)α

= 1/2 + (|λ| − |λ′| − µσ−1(n))− (n− 1)α

= 1/2 + (nα− µσ−1(n))− (n− 1)α

= 1/2 + α− µσ−1(n) ≥ 1/2 > 0.

For 1 ≤ k ≤ n− 2, we have

T (k) =
(n− k)k

2
− (⌊n/2⌋ − 1)− kα+

k∑
i=1

µσ−1(i)

>
(n− k)k − n+ 2− k

2
+

k∑
i=1

µσ−1(i) ≥
k∑

i=1

µσ−1(i).

Therefore, it suffices to show that
∑k

i=1 µσ−1(i) ≥ 0. Let J = {j ∈
{1, . . . , ⌊n/2⌋} | σ(n + 1 − j) ≤ k}. If J = ∅, then

∑k
i=1 µσ−1(i) ≥ 0

follows directly from the definition of J . Otherwise, let J = minJ .
Since the length of σ is ⌊n/2⌋ − 1, by the hypothesis that l(λ) ≤ n/2
and l(λ′) ≤ n/2, we have

k∑
i=1

µσ−1(i) ≥ (µ1 + · · ·+ µ⌊n/2⌋+1−J) + (µn+1−J + · · ·+ µn+1−⌊n/2⌋).

Let a = µ1 + · · ·+ µ⌊n/2⌋+1−J . Then we have a ≥ ⌊n/2⌋+1−J
⌊n/2⌋ |λ| since we

have

|λ| = a+(µ⌊n/2⌋+2−J+· · ·+µ⌊n/2⌋) ≤ a+
J − 1

⌊n/2⌋+ 1− J
a =

⌊n/2⌋
⌊n/2⌋+ 1− J

a.
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Let b = µn+1−J + · · · + µn+1−⌊n/2⌋. In a similar way, we have b ≥
− ⌊n/2⌋+1−J

⌊n/2⌋ |λ′|. Therefore, we have

k∑
i=1

µσ−1(i) ≥ a+ b ≥ ⌊n/2⌋+ 1− J

⌊n/2⌋
(|λ| − |λ′|) = ⌊n/2⌋+ 1− J

⌊n/2⌋
nα ≥ 0.

This completes the proof. □

Note that Theorem 3.2 does not give any information for the value of
C ′(SL(n,Q), Vλ) if n < nB(λ). Some computations suggest the follow-
ing conjecture, which would completely determine C ′(SL(n,Q), Vλ).

Conjecture 3.3. Let λ be a bipartition and let n ≥ l(λ) be an integer.
For i = 1, . . . , n, set a(i) = n+1

2
−i−α+µi, where µi is given in (3.3.1).

Then we have

C ′(SL(n,Q), Vλ) = min{i ∈ {1, . . . , n} | a(i) ≤ 0 or a(n+ 1− i) ≥ 0} − 2.

3.5. Stable range for the cohomology of GL(n,Z). Now we regard
Vλ as an irreducible algebraic GL(n,Z)-representation. We obtain a
stable range for the cohomology of GL(n,Z) with coefficients in Vλ.

For a bipartition λ and a non-negative integer p, set

nB(λ, p) = max{nB(λ), 2p+ 2} ≥ 2.

Borel’s result (Theorem 3.1) and the estimate of Borel’s constant C ′(SL(n,Q), Vλ)
(Theorem 3.2) imply the following.

Corollary 3.4 (weaker than Theorem 1.1). Let λ be a bipartition, and
let p ≥ 0 and n ≥ nB(λ, p) be integers. Then we have the following.

(1) If λ = (0, 0), i.e., Vλ = Q, then we have

H∗(SL(n,Z),Q) ∼= H∗(GL(n,Z),Q) ∼=
∧

Q
(x1, x2, . . .), deg xi = 4i+ 1

in cohomological degrees ∗ ≤ p.
(2) If λ ̸= (0, 0), then we have

Hp(SL(n,Z), Vλ) = Hp(GL(n,Z), Vλ) = 0.

Proof. Since we have n ≥ nB(λ, p) ≥ nB(λ) ≥ 2, by Theorem 3.2, we
have C ′(SL(n,Q), Vλ) = ⌊n/2⌋ − 1. Therefore, we have

C ′(SL(n,Q), Vλ) = ⌊n/2⌋ − 1 ≤ n− 2 ≤M(SL(n,R), Vλ).

Since we have n ≥ nB(λ, p) ≥ 2p+ 2, we have

p ≤ ⌊n/2⌋ − 1 = C ′(SL(n,Q), Vλ) = N ′(SL(n,Z), Vλ).

Therefore, the case of SL(n,Z) follows from Theorem 3.1.
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The case of GL(n,Z) follows from the case for SL(n,Z) and the
Hochschild–Serre spectral sequence for the short exact sequence

1→ SL(n,Z)→ GL(n,Z)→ Z/2Z→ 1.

□

4. Kupers, Miller and Patzt’s method

Kupers, Miller and Patzt [11] improved Borel’s original stable range
for coefficients in polynomial GL(n,Z)-representations indexed by par-
titions. Here we adapt their arguments to the case of coefficients in
algebraic GL(n,Q)-representations indexed by bipartitions.

4.1. Polynomial VIC-modules. There are mutually related theories
that can be used in the study of stability of sequence of GL(n,Z)-
representations such as coefficient systems [5, 22, 18], representation
stability [3], central stability [15] and VIC-modules [16]. The notion
of polynomiality was introduced by van der Kallen [22] for coefficient
systems, and was generalized by Randal-Williams and Wahl [18]. See
also [13, 11]. Their definition is stronger than Djament and Vespa’s
strong polynomial functors [4].

Here we recall the notions of VIC-modules and polynomial VIC-
modules.

Let VIC = VIC(Z) denote the category of finitely generated free
abelian groups and injective morphisms with chosen complements. The
Hom-set for a pair of objects M and N is given by

HomVIC(M,N) = {(f, C) | f : M ↪→ N, C ⊂ N, N = im(f)⊕ C}.

A VIC-module is a functor from VIC to the categoryVectQ of Q-vector
spaces and linear maps. A morphism (also called a VIC-module map)
f : V → V ′ of VIC-modules V and V ′ is a natural transformation.
The VIC-modules and morphisms form an abelian category VIC-mod,
as is the case for the category of C-modules for any essentially small
category C. The category VIC-mod also has a symmetric monoidal
category structure whose tensor product is defined objectwise, i.e., (V ⊗
V ′)(M) = V (M)⊗V ′(M) for M ∈ Ob(VIC), and whose monoidal unit
is given by the constant functor with value Q.

For each VIC-module V and an integer n ≥ 0, the vector space
V (Zn) is naturally equipped with a GL(n,Z)-module structure.
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Let V be a VIC-module. Define VIC-modules kerV and cokerV by

kerV (M) := ker(V (M)→ V (M ⊕ Z)),
cokerV (M) := coker(V (M)→ V (M ⊕ Z))

for any object M of VIC, where V (M)→ V (M ⊕Z) is induced by the
canonical morphism M ↪→M ⊕ Z of VIC.

Define the polynomiality of VIC-modules inductively as follows.

Definition 4.1. Let m ≥ −1. We call V polynomial of degree −1 in
ranks > m if V (M) = 0 for any object M ∈ Ob(VIC) with rank > m.
For r ≥ 0, we call V polynomial of degree ≤ r in ranks > m if kerV = 0
in ranks > m− r− 1 and if cokerV is polynomial of degree ≤ r− 1 in
ranks > max{m − 1,−1}. We call V polynomial of degree (exactly) r
in ranks > m if V is polynomial of degree ≤ r in ranks > m and if V
is not polynomial of degree ≤ r− 1 in ranks > m. If m = −1, then we
usually omit “in ranks > −1” and just write polynomial of degree ≤ r.

For a VIC-module V , the truncation V≥k of V at k is the VIC-
submodule of V such that V≥k(n) = V (n) for n ≥ k and V≥k(n) = 0
otherwise.

Example 4.2. (1) The constant functor with value Q is polyno-
mial of degree 0 in ranks > −1.

(2) For k ≥ 0, let Qk denote the VIC-module such that Qk(Zk) = Q
andQk(Zn) = 0 for n ̸= k. Then we have kerQk = Qk, cokerQk =
Qk−1. Therefore, Qk is polynomial of degree 0 in ranks > k+1.

(3) For the truncation Q≥k of Q at k, we have kerQ≥k = 0 and
cokerQ≥k = Qk−1. Therefore, Q≥k is polynomial of degree 0 in
ranks > k.

Remark 4.3. Our definition of polynomial VIC-modules is slightly
stronger than that in [11] for a technical reason. We need this strength-
ened definition to have Lemma 4.6. In [11], they required the condition
that if V is polynomial of degree ≤ r in ranks > m, then kerV = 0 in
ranks > m instead of in ranks > m−r−1. Patzt [13] used a still weaker
condition in which cokerV is polynomial of degree ≤ r − 1 in ranks
> m. If m = −1, then all of the three definitions of polynomiality
coincide.

Let V be a polynomial VIC-module of degree ≤ r in ranks > m.
The polynomiality of finite-dimensional VIC-modules imply the poly-
nomiality of dimensions, that is, if dim(V (Zn)) is finite for each n > m,
then there is a polynomial f(x) such that we have dim(V (Zn)) = f(n)
for any n > m. Therefore, we obtain the following lemma.
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Lemma 4.4. Let V be a polynomial VIC-module of degree ≤ r in ranks
> m. If there exists a polynomial P (x) of degree r such that for each
n > m, dim(V (Zn)) = P (n), then V is polynomial of degree r in ranks
> m.

By the definition of polynomiality, we can always increase ranks m
if we fix degrees r. Moreover, we have the following lemma.

Lemma 4.5. Let s ≥ r and n ≥ m+ s− r. If V is a polynomial VIC-
module of degree ≤ r in ranks > m, then V is polynomial of degree ≤ s
in ranks > n.

Proof. If V is polynomial of degree ≤ r in ranks > m, then kerV = 0
in ranks > m− r− 1. Since we have n− s− 1 ≥ m− r− 1, kerV = 0
in ranks > n − s − 1. Also cokerV is polynomial of degree ≤ r − 1
in ranks > m − 1. Since we have s ≥ r and n ≥ m + (s − r) ≥ m,
cokerV is polynomial of degree ≤ s − 1 in ranks > n − 1. Therefore,
V is polynomial of degree ≤ s in ranks > n. □

It follows from Lemma 4.5 that a polynomial VIC-module V of degree
≤ −1 in ranks > m is polynomial of degree ≤ s in ranks > m + s + 1
for any s ≥ −1.

One can see that polynomiality of degree r in ranks > m is not
closed under subquotient VIC-modules by Example 4.2. However, we
have the following properties of polynomial VIC-modules, in which we
adapt Patzt’s lemma to our definition of polynomiality.

Lemma 4.6 (Cf. Patzt [13, Lemma 7.3]). (a) Let m, r ≥ −1 be in-
tegers. Let V ′ → V and V → V ′′ be morphisms of VIC-modules such
that the truncations form the following short exact sequence

0→ V ′
≥m−r → V≥m−r → V ′′

≥m−r → 0.(4.1.1)

If two of V, V ′ and V ′′ are polynomial of degree ≤ r in ranks > m, then
so is the third.

(b) Let V and W be polynomial VIC-modules of degrees ≤ r and
≤ s, respectively. Then the tensor product V ⊗ W has polynomial
degree ≤ r + s.

Proof. (b) is essentially a special case of [13, Lemma 7.3. (b)].

Let us prove (a) by adapting the proof of [13, Lemma 7.3 (a)]. The
case of r = −1 is obvious. We use induction on r. Suppose that the
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case of degree ≤ r − 1 holds. From (4.1.1), by the Snake Lemma, we
have an exact sequence

0→ kerV ′ → kerV → kerV ′′ → cokerV ′ → cokerV → cokerV ′′ → 0

(4.1.2)

in ranks > m− r − 1.

We first show that it suffices to verify that the exact sequence (4.1.2)
splits into two short exact sequences in ranks > m− r − 1

0→ kerV ′ → kerV → kerV ′′ → 0,(4.1.3)

0→ cokerV ′ → cokerV → cokerV ′′ → 0.(4.1.4)

Since two of kerV ′, kerV and kerV ′′ are zero in ranks > m − r − 1,
the other is also zero in ranks > m − r − 1 by (4.1.3). Since two of
cokerV ′, cokerV and cokerV ′′ are polynomial of degree ≤ r − 1 in
ranks > m − 1, and since we have an exact sequence (4.1.4) in ranks
> m− r−1, we can use the induction hypothesis, which completes the
proof of (a).

We will show that (4.1.2) splits into (4.1.3) and (4.1.4). If V ′′ is
polynomial of degree ≤ r in ranks > m, then we have kerV ′′ = 0 in
ranks > m − r − 1, which implies the splitting of the exact sequence
(4.1.2). Suppose V and V ′ are polynomial of degree ≤ r in ranks
> m. Then cokerV ′ is polynomial of degree ≤ r− 1 in ranks > m− 1.
Therefore, we have ker cokerV ′ = 0 in ranks > m − r − 1. By the
following commutative diagram in ranks > m− r − 1

kerV ′′ // cokerV ′

ker2 V ′′ //

=

OO

ker cokerV ′ = 0,

OO

the exact sequence (4.1.2) splits.

□

We also need the following lemma.

Lemma 4.7. Let V and V ′ be VIC-modules such that V ⊕V ′ is polyno-
mial of degree ≤ r in ranks > m. Then both V and V ′ are polynomial
of degree ≤ r in ranks > m.

Proof.

Since we have a short exact sequence of VIC-modules

0→ V → V ⊕ V ′ → V ′ → 0,
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the statement follows from the proof of Lemma 4.6 (a). □

4.2. Polynomial VIC-module V ⟨p,q⟩ of traceless tensors. For a
free abelian group M , let MQ = M ⊗Z Q. Associating MQ to each
object M of VIC forms a VIC-module V 1,0. We have another VIC-
module V 0,1 such that V 0,1(M) = M∗

Q for an object M of VIC. For a
morphism (f, C) : M → N of VIC, if we choose a basis {xi} for MQ
and {zj} for CQ, then {f(xi)} ∪ {zj} forms a basis for NQ. Then the
linear map V 0,1((f, C)) : M∗

Q → N∗
Q sends xi to yi, where {xi} is the

dual basis for M∗
Q and yi is dual to f(xi) for each i. The VIC-modules

V 1,0 and V 0,1 are polynomial of degree 1 by [17, Definition 3.3]. For
p, q ≥ 0, let

V p,q = (V 1,0)⊗p ⊗ (V 0,1)⊗q, M 7→Mp,q
Q = M⊗p

Q ⊗ (M∗
Q)

⊗q

denote the tensor product of copies of VIC-modules V 1,0 and V 0,1. By
Lemma 4.6, the VIC-module V p,q is polynomial of degree ≤ p+q, which
is actually of degree p+ q by Lemma 4.4 since we have dim(V p,q(n)) =
np+q for n ≥ 0.

The construction of the GL(n,Q)-module H⟨p,q⟩ in Section 2 can be
extended into a VIC-module since there is a VIC-module map

c : V 1,1 → V 0,0,

such that for each M ∈ Ob(VIC), the map cM : V 1,1(M) → V 0,0(M)
is the evaluation map MQ⊗M∗

Q → Q, v⊗ f 7→ f(v). Let V ⟨p,q⟩ denote

the VIC-module consisting of H⟨p,q⟩(n), which we call the traceless part
of V p,q.

For 0 ≤ l ≤ min{p, q}, let

Λp,q(l) = {((i1, j1), . . . , (il+1, jl+1)) ∈ ([p]× [q])l+1 | 1≤i1<i2<···<il+1≤p,
j1,j2,...,jl+1: distinct

}.

For I = ((i1, j1), . . . , (il+1, jl+1)) ∈ Λp,q(l), let

cI : V
p,q → V p−l−1,q−l−1

denote the VIC-module map that is obtained as the composition of
contraction maps defined by

(v1 ⊗ · · · ⊗ vp)⊗ (f1 ⊗ · · · ⊗ fq)

7→

(
l+1∏
r=1

⟨vir , fjr⟩

)
(v1 ⊗ · · · v̂i1 · · · v̂il+1

· · · ⊗ vp)⊗ (f1 ⊗ · · · f̂j1 · · · f̂jl+1
· · · ⊗ fq).

Let k = min{p, q}. Define an increasing filtration F ∗ = {F l}0≤l≤k

V ⟨p,q⟩ = F 0 ⊂ F 1 ⊂ · · · ⊂ F l ⊂ F l+1 ⊂ · · · ⊂ F k = V p,q
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of the VIC-module V p,q by

F l = ker

 ⊕
I∈Λp,q(l)

cI : V p,q →
⊕

I∈Λp,q(l)

V p−l−1,q−l−1

 .(4.2.1)

Lemma 4.8. For 1 ≤ l ≤ k, consider the following sequence of VIC-
modules

0→ F l−1 i−→F l π−→
⊕

I∈Λp,q(l−1)

V ⟨p−l,q−l⟩ → 0,(4.2.2)

where i is the inclusion and π is the restriction of the map
⊕

I∈Λp,q(l−1) cI

to F l and
⊕

I∈Λp,q(l−1) V
⟨p−l,q−l⟩. If n ≥ p+q, then the sequence (4.2.2)

evaluated on Zn is exact.

Proof.

By the definition of F l, (4.2.2) is exact at F l−1 and F l.

By the definition of F l ⊂ V p,q, it follows from Lemma 4.9 below that
π : F l →

⊕
I∈Λp,q(l−1) V

⟨p−l,q−l⟩ is surjective when evaluated on Zn for
n ≥ p+ q. □

Note that the map from F l in (4.2.2) is not always surjective in small
ranks. For example, (4.2.2) is not exact when l = p = q since we have
F p(0) = 0 and V ⟨0,0⟩(0) = Q.

Lemma 4.9. If n ≥ p+ q, then the image of the VIC-module map⊕
I∈Λp,q(l−1)

cI : V
p,q →

⊕
I∈Λp,q(l−1)

V p−l,q−l

evaluated on Zn contains
⊕

I∈Λp,q(l−1) V
⟨p−l,q−l⟩(Zn).

Proof. Let {ei | i = 1, . . . , n} be a basis of Qn = (Zn)Q and {e∗i } the
dual basis of (Qn)∗. Since n ≥ p + q ≥ (p − l) + (q − l), the traceless
part V ⟨p−l,q−l⟩(Zn) ⊂ V p−l,q−l(Zn) is generated by the element

ep−l,q−l := e1 ⊗ e2 ⊗ . . .⊗ ep−l ⊗ e∗n ⊗ e∗n−1 ⊗ . . .⊗ e∗n−(q−l)+1 ∈ V p−l,q−l(Zn)

as an GL(n,Z)-module (see [8, Lemma 2.2]). Since n ≥ p + q, for
each I ∈ Λp,q(l − 1), we have an element ep−l,q−l;I ∈ V p,q(Zn) such
that cI(ep−l,q−l;I) = ep−l,q−l and cI′(ep−l,q−l;I) = 0 for I ′ ̸= I. Indeed,
ep−l,q−l;I is the permutation of the tensor ep−l,q−l ⊗ (ep−l+1 ⊗ e∗p−l+1)⊗
. . . ⊗ (ep ⊗ e∗p) obtained as follows. For each k = 1, . . . , l, the tensors
ep−l+k, e

∗
p−l+k are placed at the positions specified by (ik, jk) ∈ I, re-

spectively, and the tensor factors of ep−l,q−l are placed at the other
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positions in an order-preserving way. For example, if p = 3, q =
5, l = 2, n = 10 and I = {(1, 2), (3, 5)}, then we have ep−l,q−l;I =
e2 ⊗ e1 ⊗ e3 ⊗ e∗10 ⊗ e∗2 ⊗ e∗9 ⊗ e∗8 ⊗ e∗3. □

By using (4.2.2), we can easily check that for n ≥ p+ q

dim(V ⟨p,q⟩(n)) =

min{p,q}∑
i=0

(−1)i
(
p

i

)(
q

i

)
i! np+q−2i,(4.2.3)

which is a monic polynomial in n of degree p+ q.

Proposition 4.10. The VIC-module V ⟨p,q⟩ is polynomial of degree p+q
in ranks > 2(p+ q).

Proof. By symmetry, we may assume p ≥ q. We prove that V ⟨p,q⟩ is
polynomial of degree ≤ p+ q in ranks > 2(p+ q) by induction on q. If
q = 0, then for any i ≥ 0, the VIC-module V ⟨i,0⟩ = V ⊗i is polynomial
of degree ≤ i in ranks > −1, hence in ranks > 2i. Suppose that V ⟨i,j⟩

is polynomial of degree ≤ i + j in ranks > 2(i + j) for any j ≤ q − 1
and i ≥ j. Then we have a filtration F ∗ = {F l}0≤l≤q of V ⟨p,q⟩ defined
in (4.2.1). Here we use descending induction on l. For l = q, we have
F l = F q = V p,q, which is polynomial of degree ≤ p + q. Suppose that
F l is polynomial of degree ≤ p + q in ranks > 2(p + q). Then from
(4.2.2), we have an exact sequence

0→ F l−1 → F l → (V ⟨p−l,q−l⟩)⊕(
p
l)(

q
l)l! → 0

in ranks > p+q−1 = 2(p+q)−(p+q)−1. By the induction hypothesis,
V ⟨p−l,q−l⟩ is polynomial of degree ≤ p+ q− 2l in ranks > 2(p+ q− 2l).
By Lemma 4.5, V ⟨p−l,q−l⟩ is also polynomial of degree ≤ p+ q in ranks

> 2(p+ q). Hence, by Lemma 4.6, (V ⟨p−l,q−l⟩)⊕(
p
l)(

q
l)l! is polynomial of

degree ≤ p + q in ranks > 2(p + q). Since F l is polynomial of degree
≤ p + q in ranks > 2(p + q), by Lemma 4.6, so is F l−1. Therefore,
by induction, we see that V ⟨p,q⟩ is a polynomial VIC-module of degree
≤ p+q in ranks > 2(p+q). By Lemma 4.4 and (4.2.3), the polynomial
degree of V ⟨p,q⟩ is p+ q. □

Remark 4.11. (1) The range “> 2(p+ q)” in the statement of Propo-
sition 4.10 is not optimal. For example, if p = 0 or q = 0, then we have
V ⟨p,q⟩ = V p,q, which is polynomial of degree p+ q in ranks > −1.

(2) Proposition 4.10 holds also with the definitions of polynomiality
given in Patzt [13] and Kupers–Miller–Patzt [11], since our definition
of polynomiality is stronger than theirs. The range “> 2(p+ q)” could
be improved if we use their definitions. If we use Patzt’s definition, we
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see that the range is > p+ q− 1 by the same argument as the proof of
Proposition 4.10.

4.3. The polynomial VIC-module Vλ. Here we construct a polyno-
mial VIC-module Vλ for each bipartition λ.

For a bipartition λ = (λ, λ′), let p = |λ| and q = |λ′|. Define the
VIC-module Vλ as

Vλ(M) = V ⟨p,q⟩(M)⊗Q[Sp×Sq ] (S
λ ⊗ Sλ′

)

for M ∈ Ob(VIC), where Q[Sp×Sq] acts on V ⟨p,q⟩(M) on the right by
permutation of tensor factors. Note that the GL(n,Z)-module Vλ(Zn)
is isomorphic to the GL(n,Z)-module Vλ(n) defined in (2.0.2).

The direct sum decomposition (2.0.3) of GL(n,Z)-modules can be
extended to the following.

Lemma 4.12. We have a direct sum decomposition of V ⟨p,q⟩ as a VIC×
(Sp ×Sq)-module

V ⟨p,q⟩ =
⊕

λ=(λ,λ′)
|λ|=p, |λ′|=q

Vλ ⊗ (Sλ ⊗ Sλ′
).(4.3.1)

Proof. In the category of VIC× (Sp ×Sq)-modules, we have

V ⟨p,q⟩ ∼= V ⟨p,q⟩ ⊗Q[Sp×Sq ] (Q[Sp]⊗Q[Sq])

∼= V ⟨p,q⟩ ⊗Q[Sp×Sq ]

⊕
|λ|=p

Sλ ⊗ Sλ

⊗
⊕

|λ′|=q

Sλ′ ⊗ Sλ′


∼=

⊕
|λ|=p, |λ′|=q

(
V ⟨p,q⟩ ⊗Q[Sp×Sq ] (S

λ ⊗ Sλ′
)
)
⊗ (Sλ ⊗ Sλ′

)

∼=
⊕

|λ|=p, |λ′|=q

Vλ ⊗ (Sλ ⊗ Sλ′
).

□

The following lemma should be well known, but we sketch a proof
here since we could not find a suitable reference.

Lemma 4.13. For each bipartition λ, there is a polynomial fλ(x) of
degree |λ| such that dim(Vλ(n)) = fλ(n) for n ≥ |λ|.
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Proof. Let n ≥ |λ|. The dimension of Vλ,0(n) ⊗ V0,λ′(n) is polynomial
of degree |λ|. We can obtain the lemma by using induction, since we
have a decomposition

Vλ,0(n)⊗ V0,λ′(n) ∼= Vλ,λ′(n)⊕
⊕

|µ|<|λ|, |µ′|<|λ′|

Vµ,µ′(n)⊕cµ,µ′ ,

where the constants cµ,µ′ , not depending on n, are determined by the
Littlewood–Richardson coefficients (see [9]). □

Proposition 4.14. Let λ = (λ, λ′) be a bipartition. If either λ = 0 or
λ′ = 0, then the VIC-module Vλ is polynomial of degree |λ| (in ranks
> −1). Otherwise, the VIC-module Vλ is polynomial of degree |λ| in
ranks > 2|λ|.

Proof. Let p = |λ| and q = |λ′|.
Suppose p = 0 or q = 0. Then V ⟨p,q⟩ = V p,q is polynomial of degree

≤ p+q. Since Vλ is a direct summand of V p,q by Lemma 4.12, it follows
from Lemma 4.7 that Vλ is polynomial of degree ≤ p+ q = |λ|.

Suppose p, q ̸= 0. By Proposition 4.10, V ⟨p,q⟩ is polynomial of degree
≤ p+ q in ranks > 2(p+ q). By Lemma 4.12, Vλ is a direct summand
of V ⟨p,q⟩. Hence, by Lemma 4.7, it follows that Vλ is a polynomial
VIC-modules of degree ≤ p+ q in ranks > 2(p+ q). □

4.4. Irreducibility of Vλ in the stable category of VIC-modules.
In this subsection, we make a digression and observe that the VIC-
module Vλ is an irreducible object in the stable category of VIC-
modules, which is independently known to Powell [14].

The functor Vλ is not an irreducible object in the category VIC-mod
of VIC-modules since any irreducible object V in VIC-mod is concen-
trated at one rank, i.e., there is an integer r ≥ 0 such that we have
V (n) = 0 for all n ̸= r. Thus the VIC-module Vλ has infinitely many
irreducible subquotients.

We here consider the stable category of VIC-modules defined by Dja-
ment and Vespa [4], which is defined as follows. (See also [19, 20]
and Remark 4.16 below.) A VIC-module F is called stably zero if for
any element x ∈ F (n), n ≥ 0, there is N ≥ n such that we have
F (in,N)(x) = 0, where in,N : Zn ↪→ ZN is the canonical inclusion. Let
Sz denote the full subcategory of VIC-mod whose objects are stably
zero VIC-module. Then Sz is a Serre subcategory of VIC-mod. The
stable category of VIC-modules, St, is the quotient abelian category
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St = VIC-mod/Sz. Let π : VIC-mod → St denote the canonical func-
tor.

Proposition 4.15 (independently known to Powell [14]). For each
bipartition λ, the object π(Vλ) is irreducible in St.

Proof. Recall that the GL(n,Z)-module Vλ(Zn) given by the VIC-
module structure coincides with the irreducible GL(n,Z)-module Vλ(n)
defined in (2.0.2). If V is any VIC-submodule of Vλ such that V ̸= 0,
then there is an integer N ≥ l(λ) such that we have

V (Zn) =

{
0 (0 ≤ n < N)

Vλ(Zn) (N ≤ n).

Since the quotient VIC-module Vλ/V is stably zero, we have an iso-
morphism V ∼= Vλ in the stable category St. Hence π(Vλ) is irreducible
in St. □

Remark 4.16. Proposition 4.15 could also be proved by adapting Sam
and Snowden’s results on VIC(C)-modules [19, 20]. In [19], they proved
that simple objects of the category Rep(GL) of algebraic GL∞(C)-
modules are classified by bipartitions, and in [20] they proved that
Rep(GL) is equivalent to the stable category of algebraic VIC(C)-
modules. These results seem to imply that the VIC(C)-variant of the
VIC-module Vλ is a simple object in the stable category of VIC(C)-
modules.

Remark 4.17. In the stable category St, one can check that π(V p,q)
admits a composition series with composition factors of the form π(Vλ)
for bipartitions λ by using the exact sequence (4.2.2) and Lemma 4.12.

4.5. Improvement of Borel’s vanishing theorem. In this subsec-
tion, we improve Borel’s vanishing range for coefficients in the VIC-
modules Vλ by adapting the proof of the following result of Kupers,
Miller and Patzt [11].

Theorem 4.18 (Kupers–Miller–Patzt [11, Theorem 7.6]). Let λ ̸= 0
be a partition. Then we have

Hp(GL(n,Z), Vλ,0) = 0

for p < n− |λ|. For trivial coefficients, we have an isomorphism

Hp(GL(n,Z),Q) ∼= Hp(GL(n+ 1,Z),Q)

for p < n.
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In order to prove Theorem 4.18, Kupers, Miller and Patzt used
the homology Hp(GL(n,Z),GL(n − 1,Z);V (Zn), V (Zn−1)) of the pair
(GL(n−1,Z),GL(n,Z)) with coefficients in VIC-modules V defined as
follows. (See [5] for details of the construction.) Let Ri be a projective
resolution of Z over Z[GL(i,Z)] for i = n− 1, n. There is a chain map
Rn−1 → Rn induced by idZ, which is unique up to chain homotopy.
Then we have a chain map

Φ : Rn−1 ⊗GL(n−1,Z) V (Zn−1)→ Rn ⊗GL(n,Z) V (Zn)

induced by the chain mapRn−1 → Rn and the structure map V (Zn−1)→
V (Zn). The homology Hp(GL(n,Z),GL(n − 1,Z);V (Zn), V (Zn−1)) is
defined as the homology of the mapping cone C∗(Φ) of the chain map
Φ. We have the following.

Theorem 4.19 (Kupers–Miller–Patzt [11, Theorem 7.3]). Let V be a
polynomial VIC-module of degree r in ranks > m in the sense of [11].
Then we have

Hp(GL(n,Z),GL(n− 1,Z);V (Zn), V (Zn−1)) = 0

for p < n − max{r,m}. Consequently, the inclusion GL(n − 1,Z) →
GL(n,Z) induces an isomorphism

Hp(GL(n− 1,Z), V (Zn−1))
∼=−→ Hp(GL(n,Z), V (Zn))

for p < n− 1−max{r,m}.

Here we adapt Theorem 4.19 and generalize Theorem 4.18 to the
VIC-module Vλ. For a bipartition λ = (λ, λ′) and a non-negative inte-
ger p, set

nKMP(λ, p) =

{
p+ 1 + |λ| (if λ = 0 or λ′ = 0)

p+ 1 + 2|λ| (otherwise).

Theorem 4.20 (weaker than Theorem 1.1). Let λ ̸= (0, 0) be a bipar-
tition. Then we have

Hp(GL(n,Z), Vλ) = 0

for n ≥ nKMP(λ, p).

Proof. Recall from Remark 4.3 that our definition of polynomiality is
stronger than that in [11]. By Proposition 4.14 and Theorem 4.19, we
have

Hp−1(GL(n− 1,Z), Vλ(Zn−1)) ∼= Hp−1(GL(n,Z), Vλ(Zn))
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for p < n− |λ| if λ = 0 or λ′ = 0, and for p < n− 2|λ| otherwise. Con-
sidering the dual vector space, we obtain Hp−1(GL(n,Z), Vλ(Zn))∗ ∼=
Hp−1(GL(n,Z), Vλ∗(Zn)). By Corollary 3.4, we haveHp(GL(n,Z), Vλ) =
0 for n ≥ p+ 1+ |λ| if λ = 0 or λ′ = 0, and for n ≥ p+ 1+ 2|λ| other-
wise. □
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