
THE BETTI NUMBERS OF REAL TORIC VARIETIES ASSOCIATED
TO WEYL CHAMBERS OF TYPES E7 AND E8

SUYOUNG CHOI, YOUNGHAN YOON, AND SEONGHYEON YU

Abstract. We compute the rational Betti numbers of the real toric varieties associated
to Weyl chambers of types E7 and E8, completing the computations for all types of root
systems.

1. Introduction

It is known that a root system of type R generates a non-singular complete fan ΣR

by its Weyl chambers and co-weight lattice [10], and that ΣR corresponds to a smooth
compact (complex) toric variety XR by the fundamental theorem for toric geometry. In
particular, the real locus of XR is called the real toric variety associated to the Weyl
chambers, denoted by XR

R.
It is natural to ask for the topological invariants of XR

R. By [6], the Z2-Betti numbers
of XR

R can be completely computed from the face numbers of ΣR. In general, however,
computing the rational Betti numbers of a real toric variety is much more difficult. In
2012, Henderson [8] computed the rational Betti numbers of XR

An
. The computation of

other classical and exceptional types has been carried out using the formulae for rational
Betti numbers developed in [13] or [5]. At the time of writing this paper, results have
been established for XR

R of all types except E7 and E8.
For the classical types R = An, Bn, Cn, and Dn, the kth Betti numbers βk of XR

R are
known to be as follows (see [8], [4], [3]):

βk(X
R
An ;Q) =

(
n+ 1

2k

)
a2k,

βk(X
R
Bn ;Q) =

(
n

2k

)
b2k +

(
n

2k − 1

)
b2k−1,

βk(X
R
Cn ;Q) =

(
n

2k − 2

)(
2n − 22k−2

)
a2k−2 +

(
n

2k

)
(2b2k − 22ka2k), and

βk(X
R
Dn ;Q) =

(
n

2k − 4

)(
22k−4 + (n− 2k + 2)2n−1

)
a2k−4 +

(
n

2k

)
(2b2k − 22ka2k),

where ar is the rth Euler zigzag number (A000111 in [11]) and br is the rth generalized
Euler number (A001586 in [11]).

For the exceptional types R = G2, F4, and E6, the Betti numbers of XR
R are as in

Table 1 (see [2, Proposition 3.3]).
The purpose of this paper is to compute the Betti numbers for the remaining exceptional

types E7 and E8. The reason these cases have remained unsolved to date is that, as
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βk(X
R
R) R = G2 R = F4 R = E6

k = 0 1 1 1
k = 1 9 57 36
k = 2 0 264 1,323
k = 3 0 0 4,392

Table 1. Nonzero Betti numbers of XR
G2

, XR
F4

, and XR
E6

remarked in [2], the corresponding fans are too large to be dealt with. We provide a
technical method to decompose all facets of the Coxeter complex; using this method, we
obtain explicit subcomplexes KS that play an important role in our main computation.
Furthermore, we obtain a smaller simplicial complex by removing vertices in KS without
changing its homology groups so that the Betti numbers can be computed.

Theorem 1.1. The kth Betti numbers βk of XR
E7

and XR
E8

are as follows.

βk(X
R
E7

;Q) =



1, if k = 0

63, if k = 1

8,127, if k = 2

131,041, if k = 3

122,976, if k = 4

0, otherwise.

βk(X
R
E8

;Q) =



1, if k = 0

120, if k = 1

103,815, if k = 2

6,925,200, if k = 3

23,932,800, if k = 4

0, otherwise.

2. Real toric varieties associated to the Weyl chambers

We recall some known facts about the real toric varieties associated to the Weyl cham-
bers, following the notation in [2] unless otherwise specified.

Let ΦR be an irreducible root system of type R in a finite dimensional Euclidean space
and WR its Weyl group. The connected components of the complement of the reflection
hyperplanes are called the Weyl chambers. We fix a particular Weyl chamber, called the
fundamental Weyl chamber Ω, and the fundamental co-weights ω1, . . . , ωn form the set
of its rays. Then, Z({ω1, . . . , ωn}) has a lattice structure, called the co-weight lattice.
Consider the set of Weyl chambers as a nonsingular complete fan ΣR with the co-weight
lattice. From the set V = {v1, . . . , vm} of rays spanning ΣR we obtain the simplicial
complex KR, called the Coxeter complex of type R on V , whose faces in KR are obtained
via the corresponding faces in ΣR (see [1] for more details). The directions of rays on
the co-weight lattice give a linear map λR : V → Zn. In addition, the composition map

ΛR : V
λR→ Zn mod 2−→ Zn2 can be expressed as an n ×m (mod 2) matrix, called a (mod 2)

characteristic matrix. Let S be an element of the row space Row(ΛR) of ΛR, the vector
space spanned by the row vectors of ΛR. Since each column of ΛR corresponds to a vertex
v ∈ V , S can be regarded as a subset of V . Let us consider the induced subcomplex KS
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of KR with respect to S. It is known that the reduced Betti numbers of KS related to
the Betti numbers of XR

R.

Theorem 2.1. [2] For any root system ΦR of type R, let WR be the Weyl group of ΦR.
Then, there is a WR-module isomorphism

H∗(X
R
R) ∼=

⊕
S∈Row(ΛR)

H̃∗−1(KS),

where KS is the induced subcomplex of KR with respect to S.

The definition of the WR-action on Row(ΛR) is explained in Lemma 3.1 in [2], and
implies that

(2.1) KS
∼= KgS for S ∈ Row(ΛR) and g ∈ WR.

Combining Theorem 2.1 with (2.1), we need only investigate representatives KS of the
WR-orbits in Row(ΛR).

Proposition 2.2. [2] For type E7, there are 127 nonzero elements in Row(ΛE7). In
addition, there are exactly three orbits (whose representatives are denoted by S1, S2, and
S3), and the numbers of elements for each orbit are 63, 63, and 1, respectively.
For type E8, there are 255 nonzero elements in Row(ΛE8). There are only two orbits

(whose representatives are denoted by S4 and S5), and the numbers of elements for each
orbit are 120 and 135, respectively.

Thus, for our purpose, it is enough to compute the (reduced) Betti numbers of KSi for
1 ≤ i ≤ 5. For practical reasons such as memory constraints and high time complexity, it
is not easy to obtain KS directly by computer programs. The remainder of this section
is devoted to introducing an effective way to obtain KS.

For a fixed fundamental co-weight ω, let Hω be the isotropy subgroup of ω in WR, and
let Kω be the subcomplex of KR such that the set of facets of Kω is {h · Ω | h ∈ Hω},
where Ω is the fundamental Weyl chamber.

Lemma 2.3. The set of facets of KR is decomposed as the union of the sets of all facets
of Kg = g ·Kω for all g ∈ WR/Hω.

Proof. For each facet σ ∈ KR, there uniquely exists gσ ∈ WR such that gσ · Ω = σ by
Propositions 8.23 and 8.27 in [7]. Thus, there is exactly one gσ ·Hω ∈ WR/Hω such that
σ is a facet of Kgσ as desired. �

Obviously, the set of facets of KS is then obtainable as the union of the sets of all facets
of Kg

S for all g ∈ WR/Hω.
In this paper, we fix the fundamental co-weight ω to correspond to α1 for type E7, and

to correspond to α8 for type E8 in Figure 1.

E7 α1

α2

α3 α4 α5 α6 α7

E8 α1

α2

α3 α4 α5 α6 α7 α8

Figure 1. The Dynkin diagrams for types E7 and E8
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However, since Kg still has many facets, it is not easy to obtain Kg
S from Kg directly;

see Table 2.

R = E7 R = E8

# vertices of KR 17,642 881,760

# facets of KR 2,903,040 696,729,600

|WR/Hω| 126 240

# facets of Kg 23,040 2,903,040

Table 2. Statistics for KR when R = E7 and E8

Hence, we establish a lemma to improve the time complexity. Denote by V g
S the set of

vertices in Kg
S.

Lemma 2.4. Let g, h ∈ WR/Hω. If g · V h
S = V gh

S , then g ·Kh
S = Kgh

S .

Proof. For g ∈ WR/Hω, we naturally consider g a simplicial isomorphism from Kh to Kgh.

If g · V h
S = V gh

S , then the restriction of g to Kh
S is well-defined. Thus, g is also regarded

as a simplicial isomorphism between Kh
S and Kgh

S . �

By the above lemma, when g · V h
S = V gh

S , Kgh
S is obtainable without any computation.

Since checking the hypothesis of the lemma is much easier than forming Kg
S from Kg, a

good deal of time can be saved. Using this method, one can obtain KS within a reasonable
time with standard computer hardware.

3. Simplicial complexes for types E7 and E8

Since each KS for the types E7 or E8 is too large for direct computation, it is impossible
to compute their Betti numbers directly using existing methods. In this section, we

introduce the specific smaller simplicial complex K̂S whose homology group is isomorphic
as a group to that of KS.

Let K be a simplicial complex. The link LkK(v) of v in K is a set of all faces σ ∈ K
such that v /∈ σ and {v} ∪ σ ∈ K, while the (closed) star StK(v) of v in K is a set of
all faces σ ∈ K such that {v} ∪ σ ∈ K. For a vertex v of KS satisfying LkK(v) 6= ∅, we
consider the following Mayer-Vietoris sequence:

· · · → H̃k(LkK(v))→ H̃k(K − v)⊕ H̃k(StK(v))→ H̃k(K)→ H̃k−1(LkK(v))→ · · · ,

where K−v = {σ\{v} | σ ∈ K} and k is a positive integer. We note that H̃k(StK(v)) = 0

for k ≥ 0 since StK(v) is a topological cone. Therefore, for k ≥ 0, if H̃k(LkK(v)) is trivial,

then H̃k(K − v) ∼= H̃k(K) as groups. In this case, we call v a removable vertex of K.
Let us consider the canonical action of the Weyl group WR on the vertex set VR of KR.

It is known that there are exactly n vertex orbits V1, . . . , Vn of KR, where n is the number
of simple roots of WR.

Theorem 3.1. For a subcomplex L of KR, the simplicial complex obtained by the algo-
rithm below has the same homology group as L.
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Algorithm

1: K ← L
2: for i = 1, . . . , n do
3: W ← ∅
4: for each v ∈ Vi do
5: if v is removable in K then
6: W ← W ∪ {v}
7: end if
8: end for
9: K ← K −W := {σ \W | σ ∈ K}

10: end for
11: Return K

Proof. By Proposition 8.29 in [7], for each facet C of KR, every vertex orbit of KR contains
exactly one vertex of C. That is, for any v, w ∈ Vi, v and w are not adjacent. Then, for
any subcomplex K of KR and v, w ∈ Vi, v is not contained in LkK(w).

Note that, for removable vertices v and w of K, w is still removable in K − v if w is
not in the link of v in K, whereas there is no guarantee that w is removable in K − v in
general. Thus, we can remove all removable vertices of K in Vi from K at once without
changing their homology groups. We do this procedure inductively for every vertex orbit
to obtain K, and obviously, that H∗(K) ∼= H∗(L) as groups. �

If line 5 of the algorithm above is replaced with ‘if LkK(v) forms a cone then’, simplicial
complex K returned in line 11 is unique up to isomorphism, regardless of any changes
in the order of vertex orbits [9]. However, Theorem 3.1 is enough to compute the Betti
numbers of KSi for 1 ≤ i ≤ 5.

In this paper, we fix the order by size of orbit, with |Vi| < |Vi+1|. Let K̂S be the complex

resulting from KS as obtained by the algorithm in Theorem 3.1. Then, the sizes of K̂S

obtained as in Table 3 are dramatically smaller than the sizes of KS.

E7 S = S1 S = S2 S = S3

KS 9,176 8,672 4,664

K̂S 408 928 4,664

E8 S = S4 S = S5

KS 432,944 451,200

K̂S 9,328 15,488

Table 3. Numbers of vertices of KS and K̂S

The following proposition establishes some properties of KS and K̂S.

Proposition 3.2.

(1) KS1 and KS4 have two connected components; the other KS are connected.
(2) For S = S1, S4, two components of KS are isomorphic.

(3) All K̂S are pure simplicial complexes.

(4) Each component of K̂S1 is isomorphic to some induced subcomplex of KD6.

(5) Each component of K̂S4 is isomorphic to K̂S3.

The above proposition was checked by a computer program. The Python codes used
for validation are available at https://github.com/Seonghyeon-Yu/E7-and-E8. Note
that to verify the correctness of these codes, we computed the Betti numbers for the types
already known in Table 1 using the codes.

https://github.com/Seonghyeon-Yu/E7-and-E8
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In conclusion, by Proposition 3.2, we only need to compute the Betti numbers of KS

for S = S2, S3, and S5, since the Betti numbers of KS of KD6 are already computed in [3]
for all S ∈ Row(ΛD6).

Remark 3.3.

(1) Each isomorphism in Proposition 3.2 (2) can be represented as one of simple roots;
see Figure 1. For the type E7, the simple root α3 represents the isomorphism

between the components of K̂S1 ; for the type E8, the simple root α2 represents

the isomorphism between the components of K̂S4 .

(2) Denote by K̄S a connected component of K̂S. The f -vectors f(K̄S) of K̄S as
follows:

f(K̄S1) = (204, 1312, 1920) f(K̄S4) = (4664, 36288, 60480)

f(K̄S2) = (928, 6848, 15360, 11520) f(K̄S5) = (15488, 193536, 645120)

f(K̄S3) = (4664, 36288, 60480)

As seen, the f -vectors of K̄S3 and K̄S4 are the same because of Proposition 3.2
(5). From the f -vectors, we can compute the Euler characteristic of KS.

4. Computation of the Betti numbers

In this section, we shall use a computer program SageMath 9.3 [12], to compute the
Betti numbers of the given simplicial complexes. From Proposition 3.2, we already know

the Betti numbers of K̂S1 . For S2 and S3, we can compute the Betti numbers of K̂S within
a reasonable time; see Table 4.

β̃k(KS) S = S1 S = S2 S = S3

k = 0 1 0 0

k = 1 0 129 0

k = 2 1,622 0 28,855

k = 3 0 1,952 0

# orbit 63 63 1

Table 4. Nonzero reduced Betti numbers of KS for S in Row(ΛE7)

From Table 4, we can immediately conclude the following theorem.

Theorem 4.1. The kth Betti numbers βk of XR
E7

are as follows:

βk(X
R
E7

) =



1, if k = 0

63, if k = 1

8,127, if k = 2

131,041, if k = 3

122,976, if k = 4

0, otherwise.

By Proposition 3.2 and the above result, we now have the Betti numbers of K̂S4 . For

any vertex v of K̂S5 , we can check H̃0(LkK̂S5
(v)) = H̃1(LkK̂S5

(v)) = 0 by the program.
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Hence, we have the Mayer-Vietoris sequence

0 = H̃1(LkK̂S5
(v))→ H̃1(K̂S5 − v)⊕ H̃1(StK̂S5

(v))→ H̃1(K̂S5)→ H̃0(LkK̂S5
(v)) = 0.

Since H̃1(StK̂S5
(v)) is trivial, H̃1(K̂S5−v) is isomorphic to H̃1(K̂S5). For the largest vertex

orbit V of K̂S5 , by the same proof argument as for Theorem 3.1, H̃1(K̂S5−V ) is isomorphic

to H̃1(K̂S5). Note that the size of K̂S5 − V is much smaller than K̂S5 . Thus, β̃1(KS5) can

be computed within a reasonable time from K̂S5−V instead of K̂S5 . However, there is no

vertex of K̂S5 such that H̃2(LkK̂S5
(v)) = 0. Thus, for k = 2, 3 we must compute β̃k(K̂S5)

directly, which takes a few days of run time. See Table 5 for the results.

β̃k(KS) S = S4 S = S5

k = 0 1 0

k = 1 0 769

k = 2 57,710 0

k = 3 0 177,280

# orbit 120 135

Table 5. Nonzero reduced Betti numbers of KS for S in Row(ΛE8)

Table 5 implies the following theorem.

Theorem 4.2. The kth Betti numbers βk of XR
E8

are as follows:

βk(X
R
E8

) =



1, if k = 0

120, if k = 1

103,815, if k = 2

6,925,200, if k = 3

23,932,800, if k = 4

0, otherwise.

The Euler characteristic number χ(X) of a topological space X is equal to the alter-
nating sum of the Betti numbers βk(X) of X. We can use this fact as a confidence check
for our results.

Remark 4.3. The Z2-cohomology ring of a real toric variety is completely determined by
its fan [6], and then, it can be obtained that χ(XR

E7
) = 0 and χ(XR

E8
) = 17,111,296.

Obviously, the alternating sums of the Betti numbers based on our results match χ(XR
E7

)
and χ(XR

E8
), respectively.
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