THE BETTI NUMBERS OF REAL TORIC VARIETIES ASSOCIATED TO WEYL CHAMBERS OF TYPES E_{7} AND E_{8}

SUYOUNG CHOI, YOUNGHAN YOON, AND SEONGHYEON YU

Abstract

We compute the rational Betti numbers of the real toric varieties associated to Weyl chambers of types E_{7} and E_{8}, completing the computations for all types of root systems.

1. Introduction

It is known that a root system of type R generates a non-singular complete fan Σ_{R} by its Weyl chambers and co-weight lattice [10], and that Σ_{R} corresponds to a smooth compact (complex) toric variety X_{R} by the fundamental theorem for toric geometry. In particular, the real locus of X_{R} is called the real toric variety associated to the Weyl chambers, denoted by $X_{R}^{\mathbb{R}}$.

It is natural to ask for the topological invariants of $X_{R}^{\mathbb{R}}$. By [6], the \mathbb{Z}_{2}-Betti numbers of $X_{R}^{\mathbb{R}}$ can be completely computed from the face numbers of Σ_{R}. In general, however, computing the rational Betti numbers of a real toric variety is much more difficult. In 2012, Henderson [8] computed the rational Betti numbers of $X_{A_{n}}^{\mathbb{R}}$. The computation of other classical and exceptional types has been carried out using the formulae for rational Betti numbers developed in [13] or [5]. At the time of writing this paper, results have been established for $X_{R}^{\mathbb{R}}$ of all types except E_{7} and E_{8}.

For the classical types $R=A_{n}, B_{n}, C_{n}$, and D_{n}, the k th Betti numbers β_{k} of $X_{R}^{\mathbb{R}}$ are known to be as follows (see [8], [4], [3]):

$$
\begin{aligned}
& \beta_{k}\left(X_{A_{n}}^{\mathbb{R}} ; \mathbb{Q}\right)=\binom{n+1}{2 k} a_{2 k}, \\
& \beta_{k}\left(X_{B_{n}}^{\mathbb{R}} ; \mathbb{Q}\right)=\binom{n}{2 k} b_{2 k}+\binom{n}{2 k-1} b_{2 k-1}, \\
& \beta_{k}\left(X_{C_{n}}^{\mathbb{R}} ; \mathbb{Q}\right)=\binom{n}{2 k-2}\left(2^{n}-2^{2 k-2}\right) a_{2 k-2}+\binom{n}{2 k}\left(2 b_{2 k}-2^{2 k} a_{2 k}\right), \text { and } \\
& \beta_{k}\left(X_{D_{n}}^{\mathbb{R}} ; \mathbb{Q}\right)=\binom{n}{2 k-4}\left(2^{2 k-4}+(n-2 k+2) 2^{n-1}\right) a_{2 k-4}+\binom{n}{2 k}\left(2 b_{2 k}-2^{2 k} a_{2 k}\right),
\end{aligned}
$$

where a_{r} is the r th Euler zigzag number (A000111 in [11]) and b_{r} is the r th generalized Euler number (A001586 in [11]).

For the exceptional types $R=G_{2}, F_{4}$, and E_{6}, the Betti numbers of $X_{R}^{\mathbb{R}}$ are as in Table 1 (see [2, Proposition 3.3]).

The purpose of this paper is to compute the Betti numbers for the remaining exceptional types E_{7} and E_{8}. The reason these cases have remained unsolved to date is that, as

[^0]| $\beta_{k}\left(X_{R}^{\mathbb{R}}\right)$ | $R=G_{2}$ | $R=F_{4}$ | $R=E_{6}$ |
| :---: | :---: | :---: | :---: |
| $k=0$ | 1 | 1 | 1 |
| $k=1$ | 9 | 57 | 36 |
| $k=2$ | 0 | 264 | 1,323 |
| $k=3$ | 0 | 0 | 4,392 |

Table 1. Nonzero Betti numbers of $X_{G_{2}}^{\mathbb{R}}, X_{F_{4}}^{\mathbb{R}}$, and $X_{E_{6}}^{\mathbb{R}}$
remarked in [2], the corresponding fans are too large to be dealt with. We provide a technical method to decompose all facets of the Coxeter complex; using this method, we obtain explicit subcomplexes K_{S} that play an important role in our main computation. Furthermore, we obtain a smaller simplicial complex by removing vertices in K_{S} without changing its homology groups so that the Betti numbers can be computed.
Theorem 1.1. The k th Betti numbers β_{k} of $X_{E_{7}}^{\mathbb{R}}$ and $X_{E_{8}}^{\mathbb{R}}$ are as follows.

$$
\begin{aligned}
& \beta_{k}\left(X_{E_{7}}^{\mathbb{R}} ; \mathbb{Q}\right)= \begin{cases}1, & \text { if } k=0 \\
63, & \text { if } k=1 \\
8,127, & \text { if } k=2 \\
131,041, & \text { if } k=3 \\
122,976, & \text { if } k=4 \\
0, & \text { otherwise. }\end{cases} \\
& \beta_{k}\left(X_{E_{8}}^{\mathbb{R}} ; \mathbb{Q}\right)= \begin{cases}1, & \text { if } k=0 \\
120, & \text { if } k=1 \\
103,815, & \text { if } k=2 \\
6,925,200, & \text { if } k=3 \\
23,932,800, & \text { if } k=4 \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

2. Real toric varieties associated to the Weyl chambers

We recall some known facts about the real toric varieties associated to the Weyl chambers, following the notation in [2] unless otherwise specified.

Let Φ_{R} be an irreducible root system of type R in a finite dimensional Euclidean space and W_{R} its Weyl group. The connected components of the complement of the reflection hyperplanes are called the Weyl chambers. We fix a particular Weyl chamber, called the fundamental Weyl chamber Ω, and the fundamental co-weights $\omega_{1}, \ldots, \omega_{n}$ form the set of its rays. Then, $\mathbb{Z}\left(\left\{\omega_{1}, \ldots, \omega_{n}\right\}\right)$ has a lattice structure, called the co-weight lattice. Consider the set of Weyl chambers as a nonsingular complete fan Σ_{R} with the co-weight lattice. From the set $V=\left\{v_{1}, \ldots, v_{m}\right\}$ of rays spanning Σ_{R} we obtain the simplicial complex K_{R}, called the Coxeter complex of type R on V, whose faces in K_{R} are obtained via the corresponding faces in Σ_{R} (see [1] for more details). The directions of rays on the co-weight lattice give a linear map $\lambda_{R}: V \rightarrow \mathbb{Z}^{n}$. In addition, the composition map $\Lambda_{R}: V \xrightarrow{\lambda_{R}} \mathbb{Z}^{n} \xrightarrow{\text { mod }}{ }^{2} \mathbb{Z}_{2}^{n}$ can be expressed as an $n \times m(\bmod 2)$ matrix, called a $(\bmod 2)$ characteristic matrix. Let S be an element of the row space $\operatorname{Row}\left(\Lambda_{R}\right)$ of Λ_{R}, the vector space spanned by the row vectors of Λ_{R}. Since each column of Λ_{R} corresponds to a vertex $v \in V, S$ can be regarded as a subset of V. Let us consider the induced subcomplex K_{S}
of K_{R} with respect to S. It is known that the reduced Betti numbers of K_{S} related to the Betti numbers of X_{R}^{R}.
Theorem 2.1. [2] For any root system Φ_{R} of type R, let W_{R} be the Weyl group of Φ_{R}. Then, there is a W_{R}-module isomorphism

$$
H_{*}\left(X_{R}^{\mathbb{R}}\right) \cong \bigoplus_{S \in \operatorname{Row}\left(\Lambda_{R}\right)} \widetilde{H}_{*-1}\left(K_{S}\right)
$$

where K_{S} is the induced subcomplex of K_{R} with respect to S.
The definition of the W_{R}-action on $\operatorname{Row}\left(\Lambda_{R}\right)$ is explained in Lemma 3.1 in [2], and implies that

$$
\begin{equation*}
K_{S} \cong K_{g S} \text { for } S \in \operatorname{Row}\left(\Lambda_{R}\right) \text { and } g \in W_{R} \tag{2.1}
\end{equation*}
$$

Combining Theorem 2.1 with (2.1), we need only investigate representatives K_{S} of the W_{R}-orbits in $\operatorname{Row}\left(\Lambda_{R}\right)$.

Proposition 2.2. [2] For type E_{7}, there are 127 nonzero elements in $\operatorname{Row}\left(\Lambda_{E_{7}}\right)$. In addition, there are exactly three orbits (whose representatives are denoted by S_{1}, S_{2}, and S_{3}), and the numbers of elements for each orbit are 63,63, and 1, respectively.

For type E_{8}, there are 255 nonzero elements in Row $\left(\Lambda_{E_{8}}\right)$. There are only two orbits (whose representatives are denoted by S_{4} and S_{5}), and the numbers of elements for each orbit are 120 and 135, respectively.

Thus, for our purpose, it is enough to compute the (reduced) Betti numbers of $K_{S_{i}}$ for $1 \leq i \leq 5$. For practical reasons such as memory constraints and high time complexity, it is not easy to obtain K_{S} directly by computer programs. The remainder of this section is devoted to introducing an effective way to obtain K_{S}.

For a fixed fundamental co-weight ω, let H_{ω} be the isotropy subgroup of ω in W_{R}, and let K_{ω} be the subcomplex of K_{R} such that the set of facets of K_{ω} is $\left\{h \cdot \Omega \mid h \in H_{\omega}\right\}$, where Ω is the fundamental Weyl chamber.

Lemma 2.3. The set of facets of K_{R} is decomposed as the union of the sets of all facets of $K^{g}=g \cdot K_{\omega}$ for all $g \in W_{R} / H_{\omega}$.

Proof. For each facet $\sigma \in K_{R}$, there uniquely exists $g_{\sigma} \in W_{R}$ such that $g_{\sigma} \cdot \Omega=\sigma$ by Propositions 8.23 and 8.27 in [7]. Thus, there is exactly one $g_{\sigma} \cdot H_{\omega} \in W_{R} / H_{\omega}$ such that σ is a facet of $K^{g_{\sigma}}$ as desired.

Obviously, the set of facets of K_{S} is then obtainable as the union of the sets of all facets of K_{S}^{g} for all $g \in W_{R} / H_{\omega}$.

In this paper, we fix the fundamental co-weight ω to correspond to α_{1} for type E_{7}, and to correspond to α_{8} for type E_{8} in Figure 1.

Figure 1. The Dynkin diagrams for types E_{7} and E_{8}

However, since K^{g} still has many facets, it is not easy to obtain K_{S}^{g} from K^{g} directly; see Table 2.

	$R=E_{7}$	$R=E_{8}$
\# vertices of K_{R}	17,642	881,760
\# facets of K_{R}	$2,903,040$	$696,729,600$
$\left\|W_{R} / H_{\omega}\right\|$	126	240
\# facets of K^{g}	23,040	$2,903,040$

Table 2. Statistics for K_{R} when $R=E_{7}$ and E_{8}

Hence, we establish a lemma to improve the time complexity. Denote by V_{S}^{g} the set of vertices in K_{S}^{g}.

Lemma 2.4. Let $g, h \in W_{R} / H_{\omega}$. If $g \cdot V_{S}^{h}=V_{S}^{g h}$, then $g \cdot K_{S}^{h}=K_{S}^{g h}$.
Proof. For $g \in W_{R} / H_{\omega}$, we naturally consider g a simplicial isomorphism from K^{h} to $K^{g h}$. If $g \cdot V_{S}^{h}=V_{S}^{g h}$, then the restriction of g to K_{S}^{h} is well-defined. Thus, g is also regarded as a simplicial isomorphism between K_{S}^{h} and $K_{S}^{g h}$.

By the above lemma, when $g \cdot V_{S}^{h}=V_{S}^{g h}, K_{S}^{g h}$ is obtainable without any computation. Since checking the hypothesis of the lemma is much easier than forming K_{S}^{g} from K^{g}, a good deal of time can be saved. Using this method, one can obtain K_{S} within a reasonable time with standard computer hardware.

3. Simplicial complexes for types E_{7} and E_{8}

Since each K_{S} for the types E_{7} or E_{8} is too large for direct computation, it is impossible to compute their Betti numbers directly using existing methods. In this section, we introduce the specific smaller simplicial complex \widehat{K}_{S} whose homology group is isomorphic as a group to that of K_{S}.

Let K be a simplicial complex. The $\operatorname{link} L k_{K}(v)$ of v in K is a set of all faces $\sigma \in K$ such that $v \notin \sigma$ and $\{v\} \cup \sigma \in K$, while the (closed) star $S t_{K}(v)$ of v in K is a set of all faces $\sigma \in K$ such that $\{v\} \cup \sigma \in K$. For a vertex v of K_{S} satisfying $L k_{K}(v) \neq \emptyset$, we consider the following Mayer-Vietoris sequence:

$$
\cdots \rightarrow \widetilde{H}_{k}\left(L k_{K}(v)\right) \rightarrow \widetilde{H}_{k}(K-v) \oplus \widetilde{H}_{k}\left(S t_{K}(v)\right) \rightarrow \widetilde{H}_{k}(K) \rightarrow \widetilde{H}_{k-1}\left(L k_{K}(v)\right) \rightarrow \cdots,
$$

where $K-v=\{\sigma \backslash\{v\} \mid \sigma \in K\}$ and k is a positive integer. We note that $\widetilde{H}_{k}\left(S t_{K}(v)\right)=0$ for $k \geq 0$ since $S t_{K}(v)$ is a topological cone. Therefore, for $k \geq 0$, if $\widetilde{H}_{k}\left(L k_{K}(v)\right)$ is trivial, then $\widetilde{H}_{k}(K-v) \cong \widetilde{H}_{k}(K)$ as groups. In this case, we call v a removable vertex of K.

Let us consider the canonical action of the Weyl group W_{R} on the vertex set V_{R} of K_{R}. It is known that there are exactly n vertex orbits V_{1}, \ldots, V_{n} of K_{R}, where n is the number of simple roots of W_{R}.

Theorem 3.1. For a subcomplex L of K_{R}, the simplicial complex obtained by the algorithm below has the same homology group as L.

```
Algorithm
    \(K \leftarrow L\)
    for \(i=1, \ldots, n\) do
        \(W \leftarrow \emptyset\)
        for each \(v \in V_{i}\) do
            if \(v\) is removable in \(K\) then
                \(W \leftarrow W \cup\{v\}\)
                end if
        end for
        \(K \leftarrow K-W:=\{\sigma \backslash W \mid \sigma \in K\}\)
    end for
    Return \(K\)
```

Proof. By Proposition 8.29 in [7], for each facet \mathcal{C} of K_{R}, every vertex orbit of K_{R} contains exactly one vertex of \mathcal{C}. That is, for any $v, w \in V_{i}, v$ and w are not adjacent. Then, for any subcomplex K of K_{R} and $v, w \in V_{i}, v$ is not contained in $L k_{K}(w)$.

Note that, for removable vertices v and w of K, w is still removable in $K-v$ if w is not in the link of v in K, whereas there is no guarantee that w is removable in $K-v$ in general. Thus, we can remove all removable vertices of K in V_{i} from K at once without changing their homology groups. We do this procedure inductively for every vertex orbit to obtain K, and obviously, that $H_{*}(K) \cong H_{*}(L)$ as groups.

If line 5 of the algorithm above is replaced with 'if $L k_{K}(v)$ forms a cone then', simplicial complex K returned in line 11 is unique up to isomorphism, regardless of any changes in the order of vertex orbits 9. However, Theorem 3.1 is enough to compute the Betti numbers of $K_{S_{i}}$ for $1 \leq i \leq 5$.

In this paper, we fix the order by size of orbit, with $\left|V_{i}\right|<\left|V_{i+1}\right|$. Let \widehat{K}_{S} be the complex resulting from K_{S} as obtained by the algorithm in Theorem 3.1. Then, the sizes of \widehat{K}_{S} obtained as in Table 3 are dramatically smaller than the sizes of K_{S}.

E_{7}	$S=S_{1}$	$S=S_{2}$	$S=S_{3}$
K_{S}	9,176	8,672	4,664
\widehat{K}_{S}	408	928	4,664

E_{8}	$S=S_{4}$	$S=S_{5}$
K_{S}	432,944	451,200
\widehat{K}_{S}	9,328	15,488

TABLE 3. Numbers of vertices of K_{S} and \widehat{K}_{S}
The following proposition establishes some properties of K_{S} and \widehat{K}_{S}.

Proposition 3.2.

(1) $K_{S_{1}}$ and $K_{S_{4}}$ have two connected components; the other K_{S} are connected.
(2) For $S=S_{1}, S_{4}$, two components of K_{S} are isomorphic.
(3) All \widehat{K}_{S} are pure simplicial complexes.
(4) Each component of $\widehat{K}_{S_{1}}$ is isomorphic to some induced subcomplex of $K_{D_{6}}$.
(5) Each component of $\widehat{K}_{S_{4}}$ is isomorphic to $\widehat{K}_{S_{3}}$.

The above proposition was checked by a computer program. The Python codes used for validation are available at https://github.com/Seonghyeon-Yu/E7-and-E8, Note that to verify the correctness of these codes, we computed the Betti numbers for the types already known in Table 1 using the codes.

In conclusion, by Proposition 3.2, we only need to compute the Betti numbers of K_{S} for $S=S_{2}, S_{3}$, and S_{5}, since the Betti numbers of K_{S} of $K_{D_{6}}$ are already computed in [3] for all $S \in \operatorname{Row}\left(\Lambda_{D_{6}}\right)$.

Remark 3.3.

(1) Each isomorphism in Proposition 3.2 (2) can be represented as one of simple roots; see Figure 1. For the type E_{7}, the simple root α_{3} represents the isomorphism between the components of $\widehat{K}_{S_{1}}$; for the type E_{8}, the simple root α_{2} represents the isomorphism between the components of $\widehat{K}_{S_{4}}$.
(2) Denote by \bar{K}_{S} a connected component of \widehat{K}_{S}. The f-vectors $f\left(\bar{K}_{S}\right)$ of \bar{K}_{S} as follows:

$$
\begin{array}{ll}
f\left(\bar{K}_{S_{1}}\right)=(204,1312,1920) & f\left(\bar{K}_{S_{4}}\right)=(4664,36288,60480) \\
f\left(\bar{K}_{S_{2}}\right)=(928,6848,15360,11520) & f\left(\bar{K}_{S_{5}}\right)=(15488,193536,645120) \\
f\left(\bar{K}_{S_{3}}\right)=(4664,36288,60480) &
\end{array}
$$

As seen, the f-vectors of $\bar{K}_{S_{3}}$ and $\bar{K}_{S_{4}}$ are the same because of Proposition 3.2 (5). From the f-vectors, we can compute the Euler characteristic of K_{S}.

4. Computation of the Betti numbers

In this section, we shall use a computer program SageMath 9.3 [12], to compute the Betti numbers of the given simplicial complexes. From Proposition 3.2, we already know the Betti numbers of $\widehat{K}_{S_{1}}$. For S_{2} and S_{3}, we can compute the Betti numbers of \widehat{K}_{S} within a reasonable time; see Table 4.

$\widetilde{\beta}_{k}\left(K_{S}\right)$	$S=S_{1}$	$S=S_{2}$	$S=S_{3}$
$k=0$	1	0	0
$k=1$	0	129	0
$k=2$	1,622	0	28,855
$k=3$	0	1,952	0
$\#$ orbit	63	63	1

Table 4. Nonzero reduced Betti numbers of K_{S} for S in $\operatorname{Row}\left(\Lambda_{E_{7}}\right)$
From Table 4, we can immediately conclude the following theorem.
Theorem 4.1. The kth Betti numbers β_{k} of $X_{E_{7}}^{\mathbb{R}}$ are as follows:

$$
\beta_{k}\left(X_{E_{7}}^{\mathbb{R}}\right)= \begin{cases}1, & \text { if } k=0 \\ 63, & \text { if } k=1 \\ 8,127, & \text { if } k=2 \\ 131,041, & \text { if } k=3 \\ 122,976, & \text { if } k=4 \\ 0, & \text { otherwise. }\end{cases}
$$

By Proposition 3.2 and the above result, we now have the Betti numbers of $\widehat{K}_{S_{4}}$. For any vertex v of $\widehat{K}_{S_{5}}$, we can check $\widetilde{H}_{0}\left(L k_{\widehat{K}_{S_{5}}}(v)\right)=\widetilde{H}_{1}\left(L k_{\widehat{K}_{S_{5}}}(v)\right)=0$ by the program.

Hence, we have the Mayer-Vietoris sequence

$$
0=\widetilde{H}_{1}\left(L k_{\widehat{K}_{S_{5}}}(v)\right) \rightarrow \widetilde{H}_{1}\left(\widehat{K}_{S_{5}}-v\right) \oplus \widetilde{H}_{1}\left(S t_{\widehat{K}_{S_{5}}}(v)\right) \rightarrow \widetilde{H}_{1}\left(\widehat{K}_{S_{5}}\right) \rightarrow \widetilde{H}_{0}\left(L k_{\widehat{K}_{S_{5}}}(v)\right)=0 .
$$

Since $\widetilde{H}_{1}\left(S t_{\widehat{K}_{S_{5}}}(v)\right)$ is trivial, $\widetilde{H}_{1}\left(\widehat{K}_{S_{5}}-v\right)$ is isomorphic to $\widetilde{H}_{1}\left(\widehat{K}_{S_{5}}\right)$. For the largest vertex orbit V of $\widehat{K}_{S_{5}}$, by the same proof argument as for Theorem 3.1, $\widetilde{H}_{1}\left(\widehat{K}_{S_{5}}-V\right)$ is isomorphic to $\widetilde{H}_{1}\left(\widehat{K}_{S_{5}}\right)$. Note that the size of $\widehat{K}_{S_{5}}-V$ is much smaller than $\widehat{K}_{S_{5}}$. Thus, $\widetilde{\beta}_{1}\left(K_{S_{5}}\right)$ can be computed within a reasonable time from $\widehat{K}_{S_{5}}-V$ instead of $\widehat{K}_{S_{5}}$. However, there is no vertex of $\widehat{K}_{S_{5}}$ such that $\widetilde{H}_{2}\left(L k_{\widehat{K}_{S_{5}}}(v)\right)=0$. Thus, for $k=2,3$ we must compute $\widetilde{\beta}_{k}\left(\widehat{K}_{S_{5}}\right)$ directly, which takes a few days of run time. See Table 5 for the results.

$\widetilde{\beta}_{k}\left(K_{S}\right)$	$S=S_{4}$	$S=S_{5}$
$k=0$	1	0
$k=1$	0	769
$k=2$	57,710	0
$k=3$	0	177,280
$\#$ orbit	120	135

Table 5. Nonzero reduced Betti numbers of K_{S} for S in $\operatorname{Row}\left(\Lambda_{E_{8}}\right)$

Table 5 implies the following theorem.
Theorem 4.2. The kth Betti numbers β_{k} of $X_{E_{8}}^{\mathbb{R}}$ are as follows:

$$
\beta_{k}\left(X_{E_{8}}^{\mathbb{R}}\right)= \begin{cases}1, & \text { if } k=0 \\ 120, & \text { if } k=1 \\ 103,815, & \text { if } k=2 \\ 6,925,200, & \text { if } k=3 \\ 23,932,800, & \text { if } k=4 \\ 0, & \text { otherwise. }\end{cases}
$$

The Euler characteristic number $\chi(X)$ of a topological space X is equal to the alternating sum of the Betti numbers $\beta_{k}(X)$ of X. We can use this fact as a confidence check for our results.

Remark 4.3. The \mathbb{Z}_{2}-cohomology ring of a real toric variety is completely determined by its fan [6], and then, it can be obtained that $\chi\left(X_{E_{7}}^{\mathbb{R}}\right)=0$ and $\chi\left(X_{E_{8}}^{\mathbb{R}}\right)=17,111,296$. Obviously, the alternating sums of the Betti numbers based on our results match $\chi\left(X_{E_{7}}^{\mathbb{R}}\right)$ and $\chi\left(X_{E_{8}}^{\mathbb{R}}\right)$, respectively.

References

[1] A. Björner: Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. in Math. 52(3) (1984), 173-212.
[2] S. Cho, S. Choi, and S. Kaji: Geometric representations of finite groups on real toric spaces, J. Korean Math. Soc. 56(5) (2019), 1265-1283.
[3] S. Choi, S. Kaji, and H. Park: The cohomology groups of real toric varieties associated with Weyl chambers of types C and D, Proc. Edinb. Math. Soc. (2) 62(3) (2019), 861-874.
[4] S. Choi, B. Park, and H. Park: The Betti numbers of real toric varieties associated to Weyl chambers of type B, Chin. Ann. Math. Ser. B 38(6) (2017), 1213-1222.
[5] S. Choi and H. Park: On the cohomology and their torsion of real toric objects, Forum Math. 29(3) (2017), 543-553.
[6] M.W. Davis and T. Januszkiewicz: Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(2) (1991), 417-451.
[7] B. Hall: Lie groups, Lie algebras, and representations, Springer, 2015.
[8] A. Henderson: Rational cohomology of the real Coxeter toric variety of type A, In: Configuration Spaces, Geometry, Combinatorics, and Topology, Pisa, 2012, pp.313-326.
[9] J. Matoušek: LC reductions yield isomorphic simplicial complexes, Contributions to Discrete Mathematicse 3(2) (2008), 37-39.
[10] C. Procesi: The toric variety associated to Weyl chambers, In: Mots, Lang. Raison. Calc., Hermès, Paris, 1990, pp.153-161.
[11] N.J.A. Sloane: The on-line encyclopedia of integer sequences, http://oeis.org.
[12] W.A. Stein et al: Sage Mathematics Software (Version 9.3), The Sage Development Team 2023, http://www.sagemath.org.
[13] A.I. Suciu and A. Trevisan: Real toric varieties and abelian covers of generalized Davis-Januszkiewicz spaces, 2012.

Department of mathematics, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea

Email address: schoi@ajou.ac.kr
Department of mathematics, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea

Email address: younghan300@ajou.ac.kr
Department of mathematics, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea

Email address: yoosh0319@ajou.ac.kr

[^0]: Date: October 26, 2023.
 2020 Mathematics Subject Classification. 57S12, 14M25, 55U10, 57N65.
 Key words and phrases. homology group, toric topology, real toric variety, root system, Weyl group, E_{7}-type, E_{8}-type, Coxeter complex.

 The authors were supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1A2C2010989).

