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Abstract

We investigate some geometric properties of orbits of the isotropy group action
on quaternionic irreducible symmetric spaces of compact type. We show that such
orbits, except for a one-point set, satisfy one of some four properties and classify which
orbits satisfy which properties in each such symmetric space. In a symmetric space,
a connected component of the fixed point set of a geodesic symmetry, except for a
one-point set, is called a polar. A polar is a totally geodesic submanifold and an orbit
of the isotropy group action. By the classification, we show that an orbit which is
a quaternionic submanifold or the image of a totally complex immersion is a polar,
and a polar becomes a quaternionic submanifold or the image of a totally complex

Immersion.

1 Introduction

We study some geometric properties of orbits of the isotropy group action on quaternionic
irreducible symmetric spaces of compact type with respect to the quaternionic structure. In
[8], Enoyoshi and Tsukada show that a polar is the image of a totally complex immersion in
the associative Grassmann manifold which is a quaternionic symmetric space. In a symmetric

space, a polar is a connected component, except for a one-point set, of the fixed point set of
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a geodesic symmetry and it is known that a polar is a totally geodesic submanifold and an
orbit of the isotropy group action [7]. In [12], the author studies orbits of the isotropy group
action in the associative Grassmann manifold. In the present paper, we study orbits of the
isotropy group action in each quaternionic irreducible symmetric space of compact type.

First, recall the definition of a quaternionic Kahler manifold. Let M be a 4n-dimensional
(n > 2) Riemann manifold and g be the Riemann metric and Q be a 3-dimensional subbundle
of End T'M satisfying the following conditions:

(1) For any x € M, there is a local frame field {I, J, K} defined in a neighborhood U of
x such that for any p € U

2 2 2
2= J2 = K2 = —1dg,u,
LJ, = —Jl, = Ky, J,K,=-K,J, =1, Kl,=—-LK,=1J,

(2) For any x € M, I € Q, and X,Y € T, M,

J(I(X).Y) + g(X. 1)) =0,

(3) @ is parallel with respect to the Riemann connection of g.
Then, we call (M, g, Q) a quaternionic Kéhler manifold and Q a quaternionic structure of M.
Usenid € Q. ; J? = —Idp, ) is denoted by Q. Then, Q is an S2-bundle over M and called
the twistor space of M. It is known that @) is a complex manifold and has a holomorphic

contact structure [11]. In @, we define an inner product ( , ) g as follows:
1 -
A B)s =——tr(AB A, B z)-
< ) >Q 4An 1“( ) ( ) € Q )

Then, Q = {A € Q; (A, A) g = 1}. Also, the Riemann connection of g is metric with respect
to (, )o-

Next, we recall some submanifolds of a quaternionic Kahler manifold. Let /N be a manifold
and f: N — M be an immersion. We denote by f*() the pullback bundle of @) by f. If there
is I € I'(f*Q) such that [(df(TxN)) C df(T,N) for any x € N, we call f an almost complex
immersion and I the almost complex structure of f. We set Q' = {J € f*Q ; (J, I =0}=
{J € fQ; IJ=—JI}. Then, Q" is an S'-bundle over N. If J(df(T,N)) L df(T,N) for
any p € N and J € QII,, then we call f a totally complex immersion. It is known that if f is
totally complex, then the almost complex structure of f is integrable [16]. Totally complex
submanifolds are studied well by several authors ([2],[10],[13],[15]).



In an almost Hermitian manifold, C'R submanifolds are defined as an analogy of almost
complex submanifolds [3]. Let L be an almost Hermitian manifold. We denote the almost
complex structure of L by I. Let U be a submanifold of L. If there is a distribution H on U
such that I(H) C H and the orthogonal complemental distribution H+ of H in TU satisfies
I(HY) c (T,U)* for any z € U, we call U a CR submanifold of L [3]. U is an almost
complex submanifold if H = TU and U is a totally real submanifold if H+ = TU.

We naturally consider an analogy of an almost complex immersion of a quaternionic
Kahler manifold. Let M be a quaternionic Kahler manifold, N be a manifold and f : N — M
be an immersion. If there is a section I € I'(f*@) and a distribution V, W of N such that

VW =TN, df(V)Ldf(W), I(df(V))Cdf(V), I(df(W))C (T(F(N)".

where (T(f(N )))L is the normal bundle of f(N) in T'M, then we call f a C'R immersion
and I a CR structure of f. We denote the dimension of V by ¢;. If V =TN, then f is an
almost complex immersion. Moreover, if for any p € N and J € (Q), there are subspaces
Vy,W; C T, N such that

Vi+Wy;=T,N, df(Vy) Ldf(Wy), J(df(Vy) Cdf(Vy), J(df(W;))C (T(JP(N)»L

and dim V} is independent of the choice of p € N and J € (Qy),, then we call f a totally CR
immersion. We denote dim V; by ¢}. A totally complex immersion is a totally C'R immersion.

We recall QR submanifolds [4]. Let N C M be a submanifold and (T'N)* be the normal
bundle of N. If there are subbundles p, v C (T'N)* such that

p+v= (TN, plv, Jyu CTN, Jy)Cv

for any J € @, (r € N), then we call N a QR submanifold. A typical example of a QR
submanifold is a hypersurface. QR submanifolds are studied in [4], [5]. We say that a QR
submanifold is a quaternionic submanifold if x4 = {0}, that is TN is invariant under the
quaternionic structure. It is known that a quaternionic submanifold of a quaternionic Kahler
manifold is totally geodesic [1]. Moreover, we say that a submanifold N is totally real if
J(X) € (T,N)* for any p e N, X € T,N, J € Q,.

We obtain Theorem 1.1 as the main result of the present paper.

Theorem 1.1. Let M be a quaternionic irreducible symmetric space of compact type, @ be

the twistor space of M and G be the identity component of the isometry group of M. Fix



o€ M andlet K ={g € G; g(o) =o0}. Foreachpe M, weset K, ={k € K ; k(p) =p}
and denote the identity component of K, by (K,)o. Then, each K-orbit K(p), except for a
one-point set, satisfies one of the following properties.

(i) Let f: K/(K,)o = K(p) ; k(K)o — k(p). Then, f is a K-equivariant totally CR
immersion by each K-invariant section I of the induced bundle f*@ of Q) by f. Moreover,
all K-invariant sections correspond to each point of the 2-dimensional sphere one-to-one and
¢r, ¢y are independent of the choice of I. Also, K(p) is a QR submanifold.

(ii) f is a K-equivariant totally C'R immersion by each K-invariant section of f*@) and
K-invariant sections are unique up to the sign.

(iii) For any x € K(p) and J € Q,, there are subspaces V, W C T, K (p) such that

VAW =T,K(p), VLW, JV)CV, JW)cC (T.K(p)"

Moreover, K acts on the restricted bundle of @) to K (p) transitively.
(iv) For any x € K(p) and J € @Q,, there are no subspaces of T,K(p) satisfying the
property of (iii). K acts on the restricted bundle of ) to K(p) transitively.

In the present paper, we classify which orbits satisfy which properties of Theorem 1.1 in
each quaternionic irreducible symmetric space of compact type (Table 2, 3, 4, 5, 6). By this

classification, we obtain Theorem 1.2.

Theorem 1.2. If a K-orbit K(p) is a quaternionic submanifold or f : K/(K,)o — K(p)
is a totally complex immersion, then K(p) is a polar. Conversely, a polar is a quaternionic

submanifold or the image of a totally complex immersion.

This paper is organized as follows. In Section 2, we observe some results of quaternionic
symmetric spaces classified by Wolf [17]. It is known that the rank of a quaternionic irre-
ducible symmetric space is 1,2,3, or 4. Also, we observe some facts of orbits of the isotropy
group action on a compact symmetric space. Moreover, we study orbits of the quaternionic
projective space HP™ (n > 2). In Section 3, we study orbits of a quaternionic symmetric space
M in the case of rankM = 4, that is M = SO(n)/SO(4) x SO(n—4) (n > 38), Fy/((Sp(1) x
Sp(3))/Zs), Es/((Sp(1) x SU(6))/Zs), E7/((Sp(1) x Spin(12))/Z>), Es/((Sp(1) x E7)/Zs).
In subsection 3.7, we classify which orbits satisfy which properties of Theorem 1.1. In Sec-
tion 4, we consider the case of rankM = 2, that is M = SU(n)/S(U((2) x U(n — 2)) (n >
4) and G2/SO(4). We only consider M = SU(n)/S(U(2) x U(n — 2)). In the case of



M = G5/SO(4), we refer to [12]. In Section 5, we consider the case of rank = 3, that is
M = SO(7)/SO(4) x SO(3).
The author thanks the referee for reading carefully the original version of the manuscript

and for the suggestions for improvement.

2 Preliminaries

2.1 Quaternionic symmetric spaces

Let (M, g,Q) be a quaternionic Kéhler manifold. We call M a quaternionic symmetric
space if M is a symmetric space and Qp is contained in the linear holonomy group J, of (M, g)
for each p € M. In the present paper, we consider quaternionic irreducible symmetric spaces
of compact type. By Wolf [17], all quaternionic irreducible symmetric spaces of compact and
noncompact type are constructed from complex simple Lie algebras. We shall review this
construction in this section.

Let g be a complex simple Lie algebra which is not of type Ay, Ay, By. Let 7 be a complex
conjugation of g and g be the compact real form of g corresponding to 7. Let b be a maximal
abelian subalgebra of g and h be the complexification of h. Then, b is a Cartan subalgebra
of §. Denote the root system of § with respect to h by . Let (, ) be an invariant non-

degenerate symmetric bilinear form of g. Set hy = ih. For each v € X, we set H, € by

such that (H,, H) = v(H) for any H € hy. Let A, = ﬁHﬂy. For any o, 3 € X, we
set the Cartan integer a, 3 = (Aq, Hg) = 2(%“’55)) € Z. Take some linear order on hy and

let 8 be the highest root of ¥ and X" be the set of all positive roots. For n € Z, we set
Y, ={y€X;as,=n} Then, ¥y = {8}, X 5 ={—-F}and £ = ¥_,UX_1US UX;UE,. Let
§ = exp(admiAg). Then, 6 is an involutive automorphism of g. Set ¢ = {X € g; 0(X) = X}
andm={X e€g; 0(X)=—X}. Then, g =€+ m.

Let G be the simply connected compact Lie group whose Lie algebra is g. Moreover, we
denote by the same symbol the induced involutive automorphism of G by 6. Let K = {g €
G ; 0(g) = g}. Since G is simply connected, K is connected. Let M = G/K and 7 : G — M
be the natural projection. Denote o = w(e). Then, T,M = m. Let (, ) be the G-invariant
Riemann metric on M induced by ¢( , )|mxm, Where ¢ is a negative constant. Then, (M, (, ))
is a simply connected irreducible symmetric space of compact type.

For v € ¥, let X, be a root vector of v, that is X, satisfies [H, X,| = v(H)X,, for H € .



Let Z, =X, +7(X,) and W, = i(X, — 7(X,)) for vy € ¥*. Then, Z,,W,, € g and
vy v v vy 0 v v Wy

g=b+ > (RZ,+RW,).

yeXLT

Moreover, by the definition of 0

E=b+(RZ;+RWs)+ > (RZ,+RW,), m= ) (RZ,+RIW,).
yeXHTNo YEX
Let s = R(iAg) + RZs + RWjs. Then, s is a 3-dimensional ideal of ¢ and Ad(k)(s) C s for
any k € K because K is connected. By the restriction of the linear isotropy representation
of £ on m to s, we may consider s C Endm = End7,M. Then, G X g s defines a quaternionic
structure Q on M, where G xx 5 = (G x 5)/ ~ and (g1, X1) ~ (g2, X3) € G x s if and
only if (g1, X1) and (go, X») satisfy g;'gs € K and X; = Ad(g; *g2)X2. Let S(s) = {X €
s; ((adX)|w)? = —Id} = {a(idp)+bZs+cW5 ; a,b,c € R, a*+b?+c* = 1}. Then, G X S(s)
is the twistor space of M since the action of K on s is isometric and Ad(K)(S(s)) C S(s).
Thus, we construct a quaternionic irreducible symmetric space of compact type. Conversely,
any quaternionic irreducible symmetric space of compact type is given by this method. All

quaternionic irreducible symmetric spaces of compact type are classified as Table 1.

] G I K | dimM  [rankM | [ G ] K | dimM | rankM |
Sp(n + 1) Sp(1) x Sp(n) | 4n (n > 2) 1 Go SO(4) 8 2
SUMn+2) || SWUE@) xUMm) | 4n (n>2) 2 Fy (Sp(1) x Sp(3))/Z2 28 4

50(7) SO(4) x SO(3) 12 3 Eg (Sp(1) x SU(6))/Z2 40 4
SO(n+4) || SO(4) x SO(n) | 4n (n>4) 4 E7 || (Sp(1) x Spin(12))/Z2 64 4
Es (Sp(1) x Eq)/Zs 112 4

Table 1: quaternionic irreducible symmetric spaces of compact type

2.2  Orbits of the isotropy group action

Let a be a maximal abelian subspace of m and R be the restricted root system with
respect to a. For w € R, weset g, = {X € g; [4,X] =w(A)X (A € a)}. Remark that
a(H) € iR for any @ € R and H € a. Take a linear order on ia and the set of all positive

roots is denoted by RT. For each w € R™, we set

B = EN (G +50) = {S €t (adA)2S = —w(A)%S (A € a)},
m,=mN(§,+0w) ={Tem; (adA)*T = —w(A)*T (A € a)}.
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It is obvious that adA(m,) C ¢, and adA(t,) C m, for any A € a. Let € be the set of all

centralizers of a in €. Then,
E:EO—FZEM m:a—i—me.
weRt weRt

Lemma 2.1. [14] For each w € R*, there is an orthonormal basis Sy, -+, Sy of £, and
Ty, - Ty of my, such that

[H,8,) = ia(H)T;, [H,T) = —ia(H)S;
Ad(expH)S; = cos(ia(H))S; + sin(ia(H))T;,
Ad(expH)T; = —sin(ia(H))S; + cos(ia(H))T;

for any H € a and 1 <i < n(w), where n(w) is the multiplicity of w.

For each H € a, we denote 7(exp(—H)KexpH) by Og. Let Ky ={k € K ; w(kexpH) =
m(expH)} and ty = {X € t; Ad(expH)X € t}. Then, the Lie algebra of Ky is £5. Denote
the identity component of Ky by (Kpg)o. Define a K-action on Og such that K x Oy >
(k,m(p)) — m(exp(—H)k(expH)p) € Op. Then, Oy = K/Ky. For each H € a, we set

R}, ={a € R ; ia(H) € nZ}. Then, the following direct sum decompositions are true.

EH = EO‘i‘ Z Ew, TOOH = Z my, (TOOH)J_ =a+ Z my,

weRY, wERY, wgR}; weRY,

where (T,05)" is the orthogonal complement of 7,0y in m = T,M.
Let F' = {w;. - ,w,} be the set of all simple roots of R* and 7 be the highest root. Let
F =FU{n}. Set
Q={Heca; 0<iNH)<m(ANeF)}

Then, each K-orbit intersects 7(exp@) at only one point. For any subset A C F such that
A # {n}, we set

— 0<iNH)(AeANF), in(H)<7 (neAq),
Qa=qH€eQ; , :
0=iu(H) (ne F—A), in(H)=m(n¢A).
Then, Q = Uac F.ar{n@a and R}, is independent of the choice of H € QA and depends on
the choice of A.
Let s : € — s be the orthogonal projection. Then, 7,(£y) is a subalgebra of s for any

H € a. Since s = sp(1), dimm,(ty) = 0,1,3. If dim7s(ty) = 0, then 7s(€y) is trivial. If
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dim ms(8y) = 1, then m(€y) is isomorphic to u(1). If dimms(¢y) = 3, then 7s(ty) = 5. We
say H € ais type I if dimmy(ty) = 0, H is type Il if dim7(ty) = 1, and H is type III
if dim7s(y) = 3. Remark that (Kpg)o acts on s and S(s) since K acts on them. Because
(Kg)o is connected and s is an ideal of £, it is ture that (Kg)o acts on S(s) trivially if H is
type 1, acts on as rotations if H is type II, and acts on transitively if H is type III.

We consider the following immersion:
fr: K/(Ku)o — On 5 k(K)o — m(exp(—H)kexpH).

Let f;;Q be the pull-back bundle of @ by fug. Set o' = e(Kpg)o. Then, (Kg)o acts on
(f5Q)o. If H is type I, then (Kp)o acts on (f;Q), trivially, so for any A € S(s) a section
J: K/(Kg)o — [3Q ; kK(Kg)y — dko Aodk™ (A € S(s)) is a K-invariant section of
fi®@. Thus, we can construct K-invariant sections of f;,() corresponding to each point of
S(s) = 52 If H is type II, then (K)o acts on S(s) as rotations, so there is unique B € S(s)
such that +B is fixed by (Kg)o. By the similar way, we can construct the K-invariant
section [ of f;;Q) by £B. In particular, K-invariant sections of f}() are unique up to sign.
Let Qr :=={J € f;Q ; 1J = —JI}. Then, Q; is given by Sg(s) := {C € S(s) : C L B}.
Since (K)o acts on Sp(s) transitively, K acts on @ transitively. Let Qg be the restricted
bundle of @ to Oy. If H is type III, then Ky acts on S(s) transtively, so K acts on Qy

transitively. Summarizing these arguments, we obtain Proposition 2.2.

Proposition 2.2. Let H € a and fy : K/(Kn)o — On ; k(Kp)o — m(exp(—H )kexpH).

(i) If H is type I, then there is a K-invariant section of f};@ and all K-invariant sections
correspond to each point of S(s) = S? one-to-one.

(ii) If H is type 11, then there is a K-invariant section of f};Q) and K-invariant sections are
unique up to sign. Let I be a K-invariant section of f;;Q and Q; :={J € f;,Q ; 1J = —JI}.
Then, K acts on (); transitively.

(iii) Let Qg be the restricted bundle of @ to Og. If H is type III, then K acts on Qg

transitively.

We say that Oy and 7(KexpH) are type I (resp. ILIII) if H is type I (resp. ILIII). In the
present paper, for each quaternionic irreducible symmetric space of compact type, we study
that each orbit of the isotropy group action becomes which of type I, type II, and type III
and has what properties these K-invariant sections have.

At the end of this section, we consider the quaternionic irreducible symmetric space M

of compact type whose rank is 1, that is the quaternionic projective space HP" (n > 2). In
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HP™, it is known that orbits of the isotropy group action become one of the following: the
trivial point, principal orbits, or HP"~! which is a polar [7]. We see easily that the polar
is type III and a quaternionic totally geodesic submanifold. In general, if O is a principal
orbit, then (T,0f)* = a and 7,(¢y) = {0}, so Og is type L. Since rankHP" = 1, each
principal orbit Oy is a hypersurface of HP"™. Thus, principal orbits are QR submanifolds.
For each X € s, set subspaces Vx, Wx of T,0p as follows: Wx = adX(a) and Vy is the
orthogonal complement of Wy in T,0g. Then, Vyx, Wx satisfy

Vy L Wx, Vx + Wx = TOOH, adX(Vx) C Vx, adX(Wx) C (TOOH)L.

Thus, fg is a K-equivariant totally C'R immersion by each K-invariant section of f};Q).

Summarizing these arguments, we obtain Theorem 2.3.

Theorem 2.3. In HP" (n > 2), an orbit of the isotropy group action is one of the following.:
(i) the trivial point,
(i) HHP™! which is a quaternionic totally geodesic submanifold,
(iii) a principal orbit which is a () R-submanifold.
If Oy is a principal orbit, the immersion fg is a K-equivariant totally C'R immersion by
any K-invariant section I of fj,() and all K-invariant sections correspond to each point of

S? one-to-one. Moreover, cr, ¢; are independent of the choice of 1.

3 The case of rankM =4

In this section, we consider the case of rankM = 4, that is G = SO(n) (n > 8), Fy, Fs, Fr, Ex
and g = s0(n, C), {5, ¢S, ¢S, ¢S, In subsection 3.1, 3.2, and 3.3, we consider an explicit descri-
pion of the restricted root system and some preparations for this description. In subsection
3.4, we consider adX|, : m — m (X € s) for studying the quaternionic structure. In
subsection 3.5, we study H € a satisfying w(H) € inZ for some restricted roots w and in
subsection 3.6, we study orbits of the action of the isotropy group of the isometry group.
In subsection 3.7, we summarize properties of each orbit with respect to the quaternionic

structure.



3.1 H-orbit

Let (, ) be the Killing form of g and {X, ; o € X} be a Chevalley basis, that is X,
satisfies
(i) [XaaX*a] = Aa,
(i) [H Xo] = a(H)Xa (H €h),
(i) Forany a,v€ X, [Xo, X, =0if a+~v ¢ X and [X,, X,] = Ny Xoyy ifa+7 €L,
where N, , = £(p+ 1) and p is the greatest positive number such that v — pa € X.

Take a linear order in by and denote the set of all positive roots by ¥ and let 3 be the
highest root. For each n € Z, we set Y, as section 1. Set the complex conjugation 7 such
that
T(Ay) = —As, 7(Xo)=-X_,o (aeXh).

Let Z, = Xo+7(Xo) = Xo — X g and W, = (X, —7(X,)) = i(Xo + X_4) for each a € 3.
Then, g ={X € g; 7(X) = X} is a compact real from and

g=bh+ > (RZ,+RW,).

aext

By simple computations, we obtain Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Nog3 = —Ngo = —N_,_p for o, € ¥. Moreover, is a, 8,7 € X satisfy
a+B+v=0and |8 = |],Ja| = VK|B| (k € N), then it follows that Ny 5 = t Nz, = N, 4.

Lemma 3.2. For any o, 5 € ¥ (f # —a),

[Za, Zs] = NapZatp = N-a,sZ—atp;
[Za, Ws] = NagWars — NeagW-ais,
[Wa, Wsl = =NapZass = NoapZ-a+s;
(Wa, Zp] = NasWars + NeagW-ais.

Set # = exp(ad(midp)) and €, m as section 2. Since the rank of M is 4, there are
ai, -+ ,aq € X such that they are longest roots and o; £ a; € ¥ (1 < i # j < 4) and
the subspace a = 2?21 RZ,, is a maximal abelian subspace of m. In by, the reflection with
respect to H, (v € ¥) is denoted by 7, that is 7,(X) = X — ?S?H)j; H, (X € by). Let H be the
subgroup of the Weyl group generated by 7,,,- -, Ta,. Since (Hq,, Ho,) =0 (1 <1 # j < 4),

Tays" " »Ta, commute to each other and H = (Zy)*. We consider the action of H on X.
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Obviously, the H-orbit through «; is {«a;} for each 1 < i < 4. For an H-orbit 3’ such that
YN #¢and ¥ # {a;} (1 <i<4), set my and £y as follows:

my= >  (RZ,+RW,), tw= >  (RZ,+RW,).

YyE(XI1UX_1)NY/ YE(XoUX2)NX/

Then, ad(a)(my/) C £y and ad(a)(tyx) C my. In the following, we study H-orbits intersect-

ing 21.
Denote by X3 the H-orbit through f, that is
( B, ‘
6_0‘17 B_a% 5—0{3, ﬁ_a47
v B — (o1 + az), B — (a1 + a3), B — (o1 + ou),
’ 8- (a2 +a3), B—(oa+as), B (az+au),
B — (o1 + az +az), B— (a1 +az+aq), B—(a1+az+as), B—(x+az+ay),
\/5—(041—5-0[2-*-0!34-0!4) J
By the definition of f§,aq, -+, a4, it is obvious that 8 — (ag + -+- + a4) = —f since
A8 3—(ar+tas) = —2. Thus, any v € X satisfies —y € ¥ and XgU {*aq, Tay, *agz, *ays} is

a subsystem of ¥ which is isomorphic to D4. Set
E+:{ﬂ—041, B — ag, B — as, B — au, }
g B,  B-(aita), B-(n+taz), B—(m+a)
Then, X7 U (=X7) = ¥, where for any subset A C ¥ we set —A = {—7; v € A}. We see
ZgﬂEl ={8—-q;; 1§2’§4},E}'ﬂ22 = {ﬁ},EEﬂEO ={8— (1 +a;); 2<i<A4}.
Thus,

4 4
My, = Z(RZ,B*O@ + RWﬁ*“i)’ EEB = (RZB + RW/D’) + (RZB—(al+ai) + RWﬁ—(al-i-ai))'
=2

i=1 i
Let v € ¥; be a longest root and v ¢ 3. Denote by X, the H-orbit through ~.
Then, we see that an,, = Ga;, = 1 for some 1 < i < j < 4 and aq, 5, = 0o, = 0 for
1 <k <l < 4such that k,1 #4,j. Also, Ga, 5y = Aoy p—y = 1 and aq; 54 = da; 5 = 0.
Hence, ¥, = {v,v — a;,7 — aj,7 — (i + a;)}. Then, ¥_(,_(q,4a,)) = —X,. Because
S0 ={hE N ={y—(ai+ao)}hZ,NE = {y— a7 — o},
My, = (RZV + RW’Y) + (RZ'Y*(aiJraj) + RWV*(G#%’))’
by, = (RZya, + RW,_0,) + (RZy_a, + RW,_q,).

We say that an H-orbit through such v € ¥ is type L(i, j) or simply type L. Let § € ¥ be a
shortest root and denote by ¥ the H-orbit through 4. It is easily seen that as, 5 = aa,;5 = 1
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for some 1 <i < j <4anda,, s = s =0for1 <k <l <4suchthat k,[ #1i,j. Moreover,
oy, -5 = Oay -5 = 1 and aq, g5 = Ao, -5 = 0. Thus, X5 = {8,0 — a;,0 — a;,0 — (o + ;) }.
We see that § — (o + @) = —0 since 56— (aita;) = —2 and s is a subsystem of % and
isomorphic to A; U Ay. Because X5 NY; = {0} and 5N YEg = {£(0 — o)},

My, = RZ(s + RW(;, Ezé = ]RZ(S_%. + RWg_ai.

We say that an H-orbit through such § € ¥ is type S(¢,j) or simply type S.
Let XL(1),- -+, X%(n) be H-orbits of type L such that (1), —=XE(1),--- , XL (n), —XL(n)
are all H-orbits of type L. Moreover, let ¥(1),---,%°(m) be all H-orbits of type S. Then,

the following direct sum decomposition follows:

m=a+RW,, + - +RW,, +mg, + ZmzL(a) + ZmZS(b).
b=1

a=1

3.2 Structure coefficient N, g

In the Chevalley basis {X, ; o € X}, the sign of the structure coeflicient NV, 3 depends
on an orientation of each X,. In the following, we fix orientations of some X, and decide the
sign of some structure coefficients. First, we fix an orientation of Xz, X,,, X4,, Xo, and set
w; = exp5 Za, (i =1,2,3). For each v =  — (o + e200 +€303) € XF (6, = 0,1, i =1,2,3),

we set an orientation of X, such that
Xﬁ*(€1a1+€2a2+630¢3) = Ad(w?w?wzﬁf)Xﬁ

By the commutativity of w;, ws, w3, these orientations are well-defined. For any v € > and
t €R,

vy, eXand v+ a; €Y = Ad(exptZ,,)X, = costX, — N_,, ,sintX,_,,,
vy—opgXand v+ o € ¥ = Ad(exptZ,,) X, = costX, + N, ,sint X, 1,,.

Hence, N_o,, = =1if y —oy € Y and v+ € ¥, and N,,, = —1if v —a; € ¥ and
v+ a; € X. Next, we fix an orientation of X,, such that Ad(w; ---ws)Xp = —X_3.

Lemma 3.3. N o, 3= N_0, 8 (arta;) = —L and N_o, 50, = N_0, - (a1+astas) = 1 for any
1<i#75<3.
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Proof. First,
—N_0, 3Xp—a, = Ad(wy) X = —Ad(wlwgwg)_lX_ﬂ = Ad(wlwg’IUg)_lT(Xﬁ)
= T(Ad<w1w2w3)ilxﬁ) = T(_Xﬁ—(a1+a2+oc3)) = X—B+(a1+a2+a3) = Xﬁ*aw

so we obtain N_,, g = —1. Moreover, N_u, 3—(a1+as+as) = 1 8ince N_q, 3 = N_giay—as =
—N_a, 8—(a1+as+as) Dy Lemma 3.1. Next, we will show N_,, g_o, = 1. The other cases are

proved by the similar way.
—N_ay -1 Xp—(ar1+as) = Ad(w1wy) X = —Ad(wgwg)_lX_ﬁ = Ad(wgwg)_lT(Xﬁ)
= T(Ad(U)ng)*ng) = T<X,3—(a2+a3)) = _X—ﬁ+(a2+a3) = _XB—(Oé1+a4)7

S0 N—a4ﬁ—a1 = 1. Also, N—Oé4ﬁ—(042+063) = —1 because N—Ot4,,3—a1 = N—O¢47—ﬁ+(a2+a3+a4) =

Nﬂf(aeras)ﬁm; = _N*a4757(a2+a3)' O

By Lemma 3.1 and Lemma 3.3, we obtain Corollary 3.4 immediately.

Corollary 3.4. For any 1 < ¢ # j < 3, N, 8-ay = Nayp—(aitas) = Noaif—(aj+au) =
NO&475—(OL,L'+O(4) - 1’ and NO(4,B—OL4 = _1‘

Let ¥ be an H-orbit of type L(i,7) (1 < i < j < 4) and X' NY; = {y}. Fix an

orientation of X, and set an orientation of X, ., X\, o, X, (a;1a,) such that
Xy = Ad(wi) Xy, Xya; = Ad(w)) Xy, Xy_(aitay) = Ad(wiw;) X,

Then, we can prove that for any € € X and k € {i, j} it is true that N,, = —1ife+a; € 2

and N_,, . = —1 if € — oy, € ¥ by the similar way to the above arguments.
Let ¥ be an H-orbit of type S(i,7) (1 < i < j < 4) and ' N X% = {§}. Then,
d — (a; + oj) = —0. Fix an orientation of X; and set an orientation of X;s_,, such that

Xs5—o, = Ad(w;) X5. Then, we easily see N_o, 5 = —1 and N_o, 50, = Nj—q;-

3.3 Restricted root system

It is known that the restricted root system of quaternionic irreducible symmetric space
of compact type whose rank is 4 is type Dy, By or F; [9]. In this subsection, using the
Chevalley basis {X, ; a € ¥} and the structure coefficient N, g, we describe the restricted
root system explicitly. Let R be the restricted root system of (g, %) with respect to a. Let
A=3"NZ,, €a (N €R). If the linear form w of a satisies w(A) = 3>+ a;\; (a; € R),
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then we often denote w by 2?21 a;\;. Conversely, Zle a;\; often means the linear form
w of a such that w(A) = .7, a;\;. For any linear form w of a, we denote the extension
of w as complex linearly to a® by the same symbol. Moreover, for any subset W C a*,
{+iw € (a%)* ; w € W} is denoted by £iWW, where for any vector space V' the dual space of
V' is denoted by V*.

First, we study ad(A)|m2B my, — £y, and ad(A4)

as follows:

|32ﬁ t by, — myg,. We set a basis of mg,
Ty 2042840 = ZB—ar + ZB—as T Zp—a3 T Z—au;
T 4x0-23—2s = ZB—ay T ZB—cs — ZB—az — LB—ays
TNy~ do4rs—2i = ZB—cy — ZLB—cs + ZB—ay — LB—aus
TNy —xo—d3+xs = —ZB—oy T Z—cy + ZB—a3 — LB—ay-
Txi4r04x3-2 = Wa_a, + Wa_ay + Wa_oy — Wi_q,,
Thitxe-2s+x = Woay + Waay = Waay + Wa—ay,
TN, xotrs+xas = Wa_a, — Wa_ay, + Wa_ny + Wa_q,,
Thi-xo—23—xg = —Wa_a, + Wa_a, + Wa_oy + Wa_q,.
and Ty, := Wy, (1 <i < 4). Next, we define a basis of 5, as follows:

Shitdetatda = —Z8 + Zp—(ar+an) T Zs—(artas) ~ Zp—(a1tau)s
Shtre—rs—M = L8+ Zg_(ar+az) ~ Zp—(ar+as) T Za—(ar+au)s
Sh=datds=Aa = —Zp — Zp—(art+az) T ZB—(artas) T Za—(ar+aa);
Sxi—de=Xs+da 7= 28+ Zp(artaz) T Zp—(artas) T ZB—(ontou):
Saretrs—r = —Wa + Wa_(ar4a5) T Wa—(ar+as) T Wa—(ar+as)
Satre-rstha = W+ Wi (ar4as) = Wa—(a1+as) = Wo—(a1+as):

Sxi-Aatrgtrs = —Wp — Wﬂ—(aﬁ-az) + WB—(a1+a3) - W/B—(a1+a4)?

Sxni—de-2s-Aa = Wo+ Wai(ar4an) T Wa—(ar+as) = Wa—(ar+as)-
and Ssy, = iA,, (1 <i<4). Set

AMFA+ A3+ A, A+ —A3— g, A=A+ A3 — Ay, A1 — Ao — A3+ Ay,
ngz AMFAFA3 =, A1+ Ad—A3+ XA, A — Ao+ A3+, A1 — o — A3 — Ay,
2A1, 29, 2A3, 24

Lemma 3.5. ad(A4)(7,) = w(A)S, and ad(A)(S,) = —w(A)T,, for any w € Rg.
Proof. By results of the structure coefficient in subsection 2.2,
adA(Zs—a,) = MNay p-a1 Zs = M2 N_ay,8-01 Zp—(a1-+a2)
— A3N_qy,8-01 ZB—(a1+as) — MN_a,,8-01 Z—(01+04)

= (=M)Zs + X2 (artaz) T A3Z5—(a1+as) + (= M) Zs—(artau)-
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Similarly, we obtain

adA(Zp—a,) = (—A2)Z5 + MZs—(a14a2) T+ MZp—(ar1+as) T (—A3) Za—(a1+aa);
Zp-o3) = (=X3)Zp + MZp—(ar+a2) + MZp—(ar+as) T (—A2) Zp—(a1+0u);

Zg—ay) = (A1) Zg + A3Z5—(a1+as) T A2Zp—(ar+as) T (—A1) ZB—(a1+au)s

Z8) = MZg—ay + A2 Zg—ay + A3 Zp_gy + MZs_ay,

) = —(MoZp_ay + MZs_ay + MZs_ay + X3Z5_a,),

) = —(MsZ5-0r + MZ5-ar + M Z5a5 + X275 0s),

) = MZs_oy + A3Zp—y + Ao Zpny + M Zp_ay,

—ar) = (=A)Ws + Ao Wp_(a1+az) T AWs—(ar+ag) + (= A)Ws—(a1+a4),
= (=A2)W5 + MWis_(a14as) + (= A)Ws—(a1+as) + AW (a1+as);
= (=2a)Ws + (=A) Wi (a1 +a2) + MWi—(artas) + AW (ar14au);

= (=2M)Wp + (= A3)Wa—(a1+a2) + (= A2)Wp—(a11a5) T (A1) Wa—(a1+a4);

) = MWiay + A2 Waiay + A3 Wiy + MWs_ass

Ws_(ar4as)) = (= A2)Wp—a, + (=A1) Wa_g, + A Wi_ay + AsWs_a,,

Wi—(ar+as) = (=A3)Ws—a, + s Wsa, + (=21) Wiy + XoWp—as,

We—(ar+as) = AMaWs—a, + (=A3) Wp_a, + (=A2) Wa_ay + MiWp_a,.

)
)
)
)

Moreover, adA(W,,) = 2\;(iAy,),adA(iA,,) = —2M\W,, (1 < i < 4). By these results, we
obtain the statement.
H

Thus, £iRg C R because C(T,, £iS,) C giw = {X € g; adA(X) = Fiw(A)X} for each
w € Rg. Moreover, we can easily check that iRz is a subsystem of type Dj.
Let X be an H-orbit of type L(i,7) (1 < i < j < 4) and X* N'Y; = {y}. Then,

E={vy,y—ai,v—aj,7— (; + a;)}. Set a basis of mg. as follows:

1 1
T)T +X) =2y = Zy—(aitay)r T - T = Zy + Zy—(aitay)s

Y
Xi
2 2
T;H =Wy =W, (ai+ay) TN, 2 =W A Wo(aitay)-
Moreover, we set a basis of €y as follows:

751 Lo
Sxin, = Lrvai Y Zymays SN = Ly = Dy-ay;

V7,2 V52 _
SAi"‘)\j = Wy,ai + Wy,a]., S)\i_)\j = W’Y*Oli — Wv,aj.

Set REL = {)\z + /\]}
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Lemma 3.6. adA(T7*) = w(A)SY* and adA(ST*) = —w(A)T* for any w € Rye and
k=1,2.

Proof. By the simialr way to the proof of Lemma 3.5, we obtain the followings and the

statement is true.

adA(Zy) = NiZya;, + A2y, adA(Zy (o r0) = =2 Zyar = NiZyays
adA(Zy ) = =MiZy + AN Zy (e AAA(Zya,) = =N Zy + NiZy(rta),
adA(W,) = MW,y + AW, adAW, (o 10) = =AWsa; = AWy _a),
adA(W,_0,) = =AWy + M Wo(iray), adAW, o)) = =NW + AW, a1y

]

Let ¥ be an H-orbit of type S(i,7) (1 < i < j < 4) and ¥ N Y, = {§}. Then,
Y5 ={§,0 — a;}. Set c5:= N_q,; 5. Then, c; = £1. Set a basis of mys as follows:

9 — 5 — W
T)\i+cg)\j T Z§7 T)\i_cé)\j — S5
Moreover, we set a basis of £xs as follows:
g = s — W
SA@"*‘C&)‘J' T Z‘s*ai’ S&'—cakj = WWé—ay-

Set Rys = {\i£csA;j} = {\ £ A;}. By the similar way to Lemma 3.5, we obtain Lemma 3.7.
Lemma 3.7. adA(T?) = w(A)SS and adA(S?) = —w(A)T? for any w € Rys.

For an H-orbit XX of type L, if 5¥N%; = {~}, then we denote myz, xr, Ryr by m,, &, R.,.
Similarly, for an H-orbit X% of type S, if ¥ NS, = {4}, then we denote mys, tys, Rys by
ms, €5, Rs. Let X2(1),--- ,X%(n) be H-orbits of type L such that X*(1), =X(1),--- , %L (n),
—%L(n) are all H-orbits of type L. Moreover, let $°(1),--- ,%%(m) be all H-orbits of type
S. Let XE(p)NEy ={v,} (1 <p<n)and X%(¢) N, = {§,} (1 <qg<m). Forw e iR, we
set m, = {T em; (adA)?T = —w(A)*T (A € a)}. We denote a + >

the following direct sum decomposition is true.

n m
m= m5+2m% +Zm5q
p=1 q=1

Moreover, the restricted root system R with respect to a is given by

weRy M by mg. Then,

R = +i(RyU O R, U O Rs,).
p=1 g=1
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3.4 The representation of s on m

In this subsection, we study adX|, : m — m for each X € s. Since iAg, Z5, W5 is a
basis of s, we consider ad(iAg),ad(Zs),ad(Wps). Remark that (ad(ids)|m)? = (ad(Zs)|m)?* =
(ad(Ws)|m)?* = —idu.

We easily see adX(mg) C mg for any X € s since mg = 3.+ (RZ,, + RW,,) +
S (RZs_a, + RWs_4,). Denote each element of Rz as follows:

F=2)\ (1<i<4),

wi=AF+d+A+A, wi=A4+d—A3—A, wi=A—Xdo+A3— A, wi=A—A— A3+ N,
W=AMF+AtA3— A, wWI=A4+A—A3+N, wi=A -+t wi=A—A—A3— A\
Set R = {w; ; 1 < i < 4} and mf = ZweRgRTw for each 1 < k£ < 3. Then, mg =
a+mp + m3 + mj. By direct computations and using N_gg o, = Ng o, (1 <i < 4), we

obtain Lemma 3.8, Lemma 3.9, Lemma 3.10.

Lemma 3.8. ad(iAg)a C mé and ad(iAg)m% C m?ﬁ’. Moreover, the representation matrices
of ad(iAs)|s with respect to Z,, (1 <7 < 4) and T, (1 <i < 4) and of ad(iA5)|m% with
respect to T2 (1 <4 <4)and T,p (1 <@ <4) are

1

—
—_
— = =
—_
|
—
|
—

where empty components are 0.

Lemma 3.9. ad(Zs)a C m} and ad(Zs)mj C m}. Moreover, the representation matrices of
ad(Zg)|a with respect to Z,, (1 <1 <4) and T2 (1 <i < 4) and of ad(Zs)|m with respect
to T, (1<i<4)and T (1 <i<4)are

1111 111 -1
11 -1 1
4 1 -1 1 -1 and 4 1 -1 1 1
-1 1 1 -1 -1 1 1 1
Lemma 3.10. ad(W3)a C m% and ad(Wg)mé C m%. Moreover, the representation matrice
of ad(Wp)[s with respect to Z,, (1 < i < 4) and T3 (1 <4 < 4) and of ad(W5)|m}3 with
respect to T, (1 <i<4)and T,z (1 <i<4) are
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Let XX be an H-orbit of type L(i,j) (1 < i < j < 4) and ' NY; = {v}. Then,
we see that the H-orbit through 8 — v is type L(k,l) (1 < k # 1 < 4, k,I # i,7) and
adX(m, + mg_,) C m, + mg_, for any X € s. For each w € iR, we denote (m,), =
m, Nm,. Then, m, = (m,)4x, + (My)x,_x, and (my)y1x, = RT]Z};M + RTJZ};J,. By direct

computations, we obtain Lemma 3.11 immediately.

Lemma 3.11. ad(iAg)(m,)x, 1, C (my)x,—x, The representation matrix of ad(iA4s)|(m.,)

with respect to T34y (a=1,2) and T% (e = 1,2) is
0 -1
r oo )

Proof. Since Ad(wy - - w4) Xy = X\ (a;4q;) and Ad(w; ---wy)X_g = —Xp, we obtain

Xt

Lemma 3.12. N 5, = —Ng, (a;+a;)

Ad(wy -+ wg)[X 5, X5 = Nog,Ad(wr - wa) X gy = —N_pg,7(Ad(wy - - - ws) X))

= =NopyT(Xp—(ayta) = Nopr X piyi(antan)
Ad(wy -+ w)[X_g, Xy] = [Ad(wy -+ wa) X, Ad(wy - - - wa) Xy ] = =X, Xy (a,4a0)]

= —Ngy—(aita) Xgtr—(aita;) = ~NBy—(aita;) X g+ (axtar)-
Thus, N—ﬁﬂ = _Nﬁ,v—(ai—i-aj)'
O

Remark N_g., = £1. By direct computations and Lamme 3.12, we obtain Lemma 3.13,
Lemma 3.14.

Lemma 3.13. ad(Zg)(my)x+x, C (Mp—y)r,4n, and ad(Zg)(my)a,—x, C (Mp_y)r,—x,- More-
over, the representation matrix of ad(Zg)|(m.)
1)1, (@=1,2) and of ad(Zs)|

1S

aia, With respect to TV, (@ = 1,2) and

with respect to 7%\ (e =1,2) and T\)%, (a = 1,2)

Moy) ;=

N_g.~ 0
0 —N_p '

Lemma 3.14. ad(Wp)(m,)x,4x, C (my)x,—x and ad(Ws)(m,)x,—x, C (My)x, 45, Moreover,
aia; With respect to TV, (a=1,2)and )% (a =

with respect to T3%, (e =1,2) and 7%, (a =1,2) is

0 N_p~
N_g~ 0 ’
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Let ¥% be an H-orbit of type S(i,5) (1 < i < j < 4) and X9 NY; = {6}. Then, we
see that the H-orbit through g — ¢ is type S(k,l) (1 < k #1<4, k,I,# 1,5, k <) and
adX (ms +mp_s) C ms+ my_s for any X € s. Let ¢5 = N_,, 5 and ¢s_s = N_q, 3—s5. Then, c;
and cg_s are £1. For each w € iR, we set (ms), = ms Nm,. Then, (Ms)x+e5n, = RT)iic(;/\j
and ms = (Mg)x, 1, + (Ms)x,—x,. Since T/{Sﬁcé/\j = Zs and Tf\i_c‘;,\j = W;, we obtain Lemma

3.15 by direct computations.

Lemma 3.15. It is true that ad(z'Ag)(m(;),\iﬂj C (m(;),\#,\j, ad(Zg)(m(;),\iicM]. C (m(;),\kicﬁfé,\l

and ad(Wpg)(ms)x2esn, C (M) 55
Summarizing the above arguments we obtain Proposition 3.16.

Proposition 3.16. Let 1 <i: < j <4 and 1 <k <[ <4 such that k,[ # 7,5. Then,

ad(iAp) (M) C My,
ad(Zﬁ)(m)\r‘r)\j + m>\i—>\j) C My, T My -y,

ad(Wa)(my, 1a, +my,n;) Cmypn, + My oy

3.5 Root system Dy, C By C F}

For H € a and any subset A C a*, set Ay = {w € A ; w(H) € 7Z}. We easily check

that the following are true.

—wl+w?+wi=0 —wi+twl—wi=0
1 2 3 _ 1 2 3 _
—wi +ws +ws =0 —wy +ws —wy =0
) )

—wi+wi+wi=0 witwi—wi=0

—wi+wi+wi=0 witwl-—wi=0 )
...... %

—witwl—wi=0 —wit+wl—wi=0

witwi—wi=0 witwi—-wi=0

9

—wi +wi—wi=0 wi+wi—wi=0

wi +wi —wi=0 —wj +wi —wf=0
Lemma 3.17. Let H € a. If #(Rg)y = 1, then #(R3)y = #(R%)n = 0 or #(R%)y =
#(R%)y = 1.
Proof. If #(R3)y > 2, then we obtain #(Rj)y > 2 by (), but this contradicts to the

assumption. (For example, we assume wi € (Rj)p and w},wj € (R3)n. By (%), —w] —wi —

wi =0, —w; + w3 — wi = 0 and we obtain wj € (Rj)y.) Thus, #(R3)m, #(R})y = 0,1, and
#(R3)g = 1 if and only if #(R})y = 1, and #(R3)y = 0 if and only if #(R})y = 0. Thus,

the statement follows. O
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Lemma 3.18. Let H € a. If #(Rj)n = 2, then #(R3)n = #(R3)y = 0 or #(R3)n
#(R3)m = 2.

Proof. #(R3)n # 1 by (). (For example, we assume w{,w; € (Rj)y and wi € (R3)y. By
(%), —wi —wi —wi = 0,—w; +wj —wi = 0and wj € (R3)n.) Moreover, #(R3)y < 2
by (x). (For example, we assume wi,w; € (Rj)g and wi, w3, w3 € (R3)y. By (¥), —wj —
wi —wi =0, —wi +wi —wi = 0 and wy € (R})y. This contradicts to the assumption.)
Thus, #(R3)n = 0,2. We see #(R3)y = 0 if and only if #(R})y = 0. Also, #(R3)y = 2
if and only if #(R})y = 2. In particular, if #(R5)x = #(R3)n = #(R})n = 2, then
((Rp)u, (R3)m, (R})n)) is one of the following:

{wh wah ol w3} {wi wit ), ({whwah {wf, it {wt w3} ), ({wd wid {of, w3} {wt Wi} ),
{whwst {wt Wit {wd wit ), ({wi,wsh {wh, il {wf,wi} ), ({ws wit {o? wit {w? wi}),
{wh wit {wd, wil {wd,wil ), ({wg,wzh {of, wit {wdwd} ), ({wd wid {wd, wit {wf, @i} ),
{whwidAwt wit {wf wi} ), ({ws,wi} o, wit {wd i} ), ({wd wid {wd, wit {wd, @i} ).
[l

Lemma 3.19. Let H € a. If #(Rj)y = 3, then #(R3) i = #(R3)m = 0.

Proof. By (), the statement follows. (For example, we assume w;,ws,ws € (Ré) g and
? € (R3)u. Then, by (), —wj —w} —wi =0, —w; +wj —wi =0, —wj +wj —w} =0 and
w3, w3 € (R3)y. Moreover, we see (R})y = R}. Hence, (R3)y = Rj and (Rj)y = Rj. This

contradicts to the assumption.)
[

By similar arguments to the proof of Lemma 3.19, we obtain Lemma 3.20.

Lemma 3.20. Let H € a. If #(Rj)y = 4, then #(R3)g = #(R3)n = 0 or #(R3)n
#(R})mg = 4.

Summarizing the above arguments, we obtain Proposition 3.21 by the homogeneity of Dj,.

Proposition 3.21. For each H € a, (#(R})u, #(R3)u, #(R%)r) is one of the following:

(0,0,0),(1,1,1),(2,2,2), (4,4, 4),
(1,0,0),(0,1,0),(0,0,1),(2,0,0),(0,2,0),(0,0,2),
(3,0,0),(0,3,0),(0,0,3),(4,0,0), (0,4,0), (0,0,4).
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If H € asatisfies (#(Rp)u, #(R3)u, #(R%)r) = (0,0,0), then wesay H istype LIf H € a
satisfies (#(Rb)m, #(R3)u, #(R3)r) = (n,0,0),(0,n,0),(0,0,n) (n =1,2,3,4), then we say
H is type IL If H € a satisfies (#(R})m, #(R3)u, #(R3)n) = (n,n,n) (n =1,2,4), then we
say H is type IIL. Let 7, : £ — s be the orthogonal projection. Set £§ = [a, m“ﬁ] (a=1,2,3).
Then, 7,(85) = R(iAg), 7s() = RZs, ms(t]) = RWj. Moreover, since £y = & + > cp+ tu
for each H € a and 7,(X) = {0} for any X € ¢ which is orthogonal to [a, mg], we see that
H € ais type a (a = LILIII) if and only if the K-orbit through 7(expH) is type a.

3.6 Orbits of the isotropy group action

We consider properties of each K-orbit with respect to the quaternionic structure. Let
mjy = mp +m3 +m}. Then, mg = a+mj. Set Ry =iRN{\+);; 1<i<j <4} and
My = D e, Mw- Moreover, for each 1 < i < j < 4, set Ry = {\ £ Aj, A, = A}, where
1 <k<l<4, kl#1ij. Then, Ry C Ri2URi3U Ryy. We set m;; = ZweR” m,,. Then,
my C Myg + My3 + Myy.

Let H € a be type I. Recall the immersion fy : K/(Kg)o — Op. Then, my(ty) = {0}
and each X € S(s) defines the K-invariant section J of f;;Q. We study each K-invariant
section J of f5;Q).

Lemma 3.22. Foreach 1 <i < j <4, #(R;;)m < 1.

Proof. We see a+b,a —b € £Rp for any a,b € R;; (a # b). Since (Rg)g = ¢, the statement
follows. 0

Lemma 3.23. For any X € s, there are subspaces V,, W, of T,0g N mq such that
Vo LW,, Vot Wo=T,0nNmg, adX(Vp) C Vo, adX(Wo) C (T,0n)"

Proof. By Proposition 3.16, ad X (my;) C my; (i = 2,3,4). By Lemma 3.22, for each 1 < i < 3,

there is some w; € (Ry;)y such that

7,0y Nmy; = Z me, (T,0p)* Nmy; =m,
wE Ry ;,wH#w;
or T,05 Nmy; = my;, (T,0)F Nmy; = {0}. In any case, adX ((T,0y)* Nmy) C T,05 Nmy,.
Set W, = adX ((T,0x)* Nmy) and let V4 be the orthogonal complement of Wy in 1,0 Nmy.
Then, Vy, Wy satisfy the statement. O]
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Since H is type I, we see 1,0y N'mg = mj, (T,05)* Nmz = a and adX(a) C mjy =
1,0 Nmg for any X € s by Lemma 3.8, Lemma 3.9, Lemma 3.10. Set W3 = adX (a) and
let V5 be the orthogonal complement of Wg in 7,0y Nmg. Then, Vi, W5 satisty

Vs LWs, Ve+Ws=mg, ad(X)(Vs) C Vs, ad(X)(Ws) C (L,0m)"
Summarizing these arguments and subsection 1.3, we obtain Proposition 3.24.

Proposition 3.24. Let H € a be type [ and fy : K/(Kpy)o — Opy be the immersion. Then,
Oy is type I and fg is a K-equivariant totally C'R immersion by any K-invariant section of

Q. Moreover, for any K-invariant section I, ¢; = ¢; and ¢; is independent of the choice of

1. Also, Oy is a QR submanifold.

Let H € s be type II. We can assume (#(R})n, #(R3)u, #(R3)u) = (a,0,0) (a =
1,2,3,4). Then, ms(ty) = R(iAg) and ad(iAg) defines the K-invariant section of f;Q. Set
s’ =RZz +RWps. (Kg)o acts on 8" as U(1)-action.

Lemma 3.25. Let X € R(:A3) Us’. There are subspaces Vy, Wy of 1,05 Nmg such that
Vo LWy, Vo+Wy=T,05Nmy, adX(Vy) CVy, adX(Wy) C (T,0x)".
Proof. For each 1 < i < j <4, since H is type 11, (T,05)* Nm;; is one of the following:
{0}, myny,  Maga, Mo By, Mo, Mgy, Moy Mgy, Mg,

where 1 <k <1<4, k,l#1,j. Set Wy = adX(Z?ZQ((TOOH)LﬂmU)) NT,O0x and let V) be
the orthogonal complement of Wy in Z?ZQ(TOC’)H Nmy;). Then, Vj, Wy satisty the statement.
[

We remark

T,0pNmg=mi+mi+ >  m,, (LOx)' Nmg=at+ » m,
UJGR%*(R%)H WE(RE)H

Let Vy = m3 + m} and Wy = ZweR}B—(R}g)H m,,. Since ad(idg)(a) C mp, Vy and Wy satisfy
VA 1 WA, VA + WA = TOOH N mg, ad(ZAg)(VA) C VA, ad(zAﬁ)(WA) C (TOOH)J'.

Let X € ¢'. Then, adX (a 4+ mj) C m3 + m}. Set Wx = adX ((T,0y)" Nmg) and let Vx be
the orthogonal complement of Wx in 7,0y Nmg. Then, Vx, Wx satisty

Vx LWy, Vx4+Wx=T,0pNmy, adX(Vx)cCVyx, adX(Wyx)cC (T,0n)".

Summarizing these arguments we obatin Proposition 3.26.
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Proposition 3.26. Let H € a be type Il and fy : K/(Kp)o — Opg be the immersion. Then,

Oy is type Il and fg is a K-equivariant totally C'R immersion by the K-invariant section [

of f;Q.

Let H € a be type III. Then, since 7,(¢y) = s and (K g )o acts on s as SO(3)-action. Thus,
we only consider ad(iAg). Let (#(Rb)u, #(R3)m, #(R%)r) = (4,4,4). Then, mg C (T,0p)".
Moreover, for each 1 < i < j <4, (Rij)ug = ¢ or (Rij)u = R;j since a £ b € £Rp for any
a,b € R;; (a #b). Hence, T,0y Nm;; = {0} or 7,0y Nm;; = my;. Since ad(idg)m;; C my;,

we obtain Proposition 3.27 immediately.

Proposition 3.27. Let H € a be type Il and (#(Rj)u, #(R3)u, #(R}) ) = (4,4,4). Then,

Oy is a one-point set or a quaternionic submanifold.

Next, let H € a satisfy (#(Rg)u, #(R3)m, #(R3)n) = (2,2,2). Then, by the proof of
Lemma 3.18, ((R})u, (R3)m, (R%)g) is one of the following:

{wnwab {wt, wil {wg,wit ), ({wi,wo} {wd,wit {wtwd} ), ({wd wid {wf wit {wf, @i} ),
{whwsh {wt wit {wd, wit ), ({wi,wsh {w,wid ol wi} ), ({wgwid {w?, wit {w? wil),
{whwit {wd Wit {wd wi}t), ({wy,wih {wl,wit {wdwi}), ({wz wih {wd Wit {w? wi}),
{whwid Awf wil {wl wil),  ({ws,wi} {wd,wit {wd wi} ), ({wd wid, {wf, wit {wf, @i} ).

Let (R%)H = {ntllﬂﬁ} (a = 1,2, 3) and R% - (Rg)H = {77%7772}' Then,

3 3
T,0g Nmg = Z(m"? + Mye ), (T,0n)" Nmg = Z(mng + Mye).

a=1 a=1
By Lemma 3.8, ad(iAg)(m,; +m,) C a C (T,On)*t. Moreover, we see that unique vy €
{T,2 £ Tz} satisfies ad(iAg)vy € mys +m,s C T,0p and the other wy € {T,2 & T2} satisfies
ad(idg)wy € myg +mys C (T,0p)". Similarly, unique vz € {73 + T3} satisfies ad(iAg)vs €
m,2+m,2 C T,0x and the other ws € {T,s£T,5} satisfies ad(iAg)ws € mp4+m,2 C (T,0x)".
In particular, ad(iAg)(w2) € Rws. Thus, V3 = Ruy + Ruz and Wi = m, +my + Rwsp + Ruws
satisfy

Vg 1 Wg, Vg + Wﬁ =T1,0g N mg, ad(ZAg)(Vg> C Vﬁ, ad(2A5)<W5) C (TOOH)J'.
Because ((Rj)u, (R3)m, (R})r) is one of the above, we obtain Lemma 3.28.

Lemma 3.28. Let H € a satisfy (#(Rj)n, #(R3)u, #(R3)n) = (2,2,2). Then, for each
1<i<j<d4, #(R)u#2.
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Thus, by some w € R;;, we obtain

T,0p Nm;; = {0} and (7,0p)* Nm;; =my;,
or 1,0y Nm;; =m,; and (T,05)* Nmy; = {0},
or T,0p Nm;; =m, and (T,0p)* Nmy; = ZneRZ’#w m,,
or ToOn OMi; =32 cpt s, My and (T,0x)*t Nmy; =m,.

In any case of the above, there are subspaces V;, W;; of T,0x Nm;; such that
‘/z‘j 1 Wz‘j, ‘/ij + Wij = TOOH N my;, ad(ZAg)(V;j) C V;'j, ad(ZA5)<WU) C (TOOH)J'.
Summarizing these arguments we obtain Proposition 3.29.

Proposition 3.29. Let H € a be type Il and (#(Rj)u, #(R3)u, #(R}) ) = (2,2,2). Then,
for any p € Oy and J € @Q),, there are subspaces V, W of 7,0 such that

VIW, V4W=T,0y JV)CV, JW)C (T,0n)".

Let H € a be type Il and (#(Rg)u, #(R3) m, #(R})u) = (1,1,1). Then, ((R})u, (R3),
(R})n) is one of the following:

{wib {wih {wid), ({wid {wih {ws}), (wih {wth {w3}), (wil, {wi} {oi}),
{wib Awit {ws}), (wad {wih {wi}), (wsh {wih {wi}), (wit {wi} {wi}),
o} {wid {ws}), (oo} {wi} {ai}), (wsh {wi} {wi}), (wi}, {wi}, {w5}),
{wih {wit e}, (wad {wit {ws}), (wsh {wil {ws}), ({wil {wil {wi}).

By Lemma 3.8, we see that there are no subspaces V, W of T,0y N mg such that
VIW, V4+W=T,05Nmg ad(ids)(V)CV, ad(idg)(W) C (T,0x)" Nmg.
Summarizing results in this subsection, we obtain Theorem 3.30.

Theorem 3.30. Let H € a.

(i) If O is type I, then the immersion fy : K/(Kg)o — Op is a K-equivariant totally CR
immersion by each K-invariant section I of f};¢) and such K-invariant sections correspond to
each point of the 2-dimensional sphere one-to-one. Moreover, ¢; = ¢} and ¢y is independent
of the choice of I. Also, Oy is a QR submanifold.

(i) If Op is type II, then the immersion fg : K/(Kp)o — Og is a K-equivariant totally
C'R immersion by the K-invariant section of f;;(). Such K-invariant sections are unique up

to the sign.
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(iii) If Op is type 111, then Op satisfies one of the following:
(ili-1) Og is a one-point set or a quaternionic submanifold.
(ili-2) For any p € Oy and J € @Q,, there are subspaces V,W of T,0py such that
V1IWV+W=T,0y4,JV)CV and JW) C (T,0x)*.
(ili-3) For any p € Oy and J € @, there are no subspaces V, W of 17,0y such that
VIWV+W=T,0gJ(V)CV and J(W) C (T,0x)*.

3.7 Classification

In this subsection, we decide what each K-orbit become one of (i), (ii), (iii-1), (iii-2),
(iii-3) in Theorem 3.30. Since rank M = 4, G is one of G = SO(n) (n > 8), Fy, Eg, E7, Es.

In this subsection, we shall follow the notations of irreducible root systems in [6], that is

B, ={xe,; 1<p<n}U{xe,te;; 1 <p<qg<n},
D, ={%e,te;; 1 <p<q<n},

4
1
Fy={*e,; 1<p<4}U{de,+e,; 1<p<q<4}u{2zapep; apil},

8 8
1
Es = {te, teq; 1<p<q<5}U{22;apep; ap:tl,l_[lapl,aﬁcwag},
p= p=

8
1
E; ={te,teq; 1<p<q<6}U{:|:(e7+eg)}U{ZZapep; ap:tl,Hapl,cwag},
p=1 p=1

8 8
1
Eg = {£e, teg; 1<p<q<8}U{2z:lapep; ap:jzl,Hap: }
—

Take some linear order in each type such that the highest root is § = e; + e3. Let oy =
e1+es, a0 =e;—e3, a3 = eateq, aq = ex—ey. Then, oy € Eyand oyto; X (1 <i#j <4).

In the case of G = SO(8), ¥ is type D4. Then, we see ¥ = X3 and R = £iRg. Thus, R
is type Dj.

In the case of G = SO(2n) (n > 5), then ¥ is type D,. Then, ¥; — (X5 N %) =
{e1 £ em,ea £ e, 5 5 <m < n}. Thus, Ry is {\; = Ao} or {A\3 £ \y} for each H-orbit .
Hence, R = +i(Rz U Ry2) and R is type Bj.

In the case of G = SO(2n + 1) (n > 4), then ¥ is type B,. Then, ¥; — (X5 NX;) =
{e1 £ em,eat ey, ; 5 <m < npU{e,e}. Thus, Ry is {A\ £ Ao} or {A\3 = Ay} for each
H-orbit ¥'. Thus, R = £i(Rg U Ry2) and R is type Bjy.
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In the case of G = Fy, then X is type Fj. Then,
Y- (EsnE) ={erten,eaten; 5<m<n}U{e,e}

1 1 1 1
U {5(041 + ag), §(a1 + ay), 5(052 + as), 5(042 + a4)} .

We see that for any 1 < ¢ < j < 4 there is some H-orbit ¥ such that Ry, = {\; £ \;}. Thus,
R = :l:Z(RB U U2§i§4 Rlz) and R iS type F4.
In the case of G = E,, (n =6,7,8), then

Y1 — (Z/g N 21)

={e1tem,eaten; 5<m<n}

8
1 1 1 1
U<{2(a1+a3)+5, 5(0&14-6%4)-1-(5, 5(0&2—1-0&3)4—(5, 5(0@—!—@4)—1—(5; 56;5Rem}02)

and R = Fi(Rs U Jye;cy R1i). Hence, R is type Fj.

If R = iR, we take some linear order such that wy = 2idg, wo = i(A1—Aa—A3—\y), w3 =
213, wy = 1Ay are simple roots. Then, the highest root 7 is 2¢)\,.

If R ==+i(RsU Ry2), we take some linear order such that wy = 20\, wy = i(—A; + Ay —
A3+ Ay), w3 = 2iA3,wy = i(—A3 — A\y) are simple roots. Then, the highest root 7 is 2i),.

If R=+i(RsUUycicy R1i), we take some linear order such that w; =i(=A; — Ay — A3 +
Ag),wa = 2iAg,w3 = i(Ay — A3),wq = i(A; — A\2) are simple roots. Then, the highest root 7 is
2iMy.

Recall arguments of subsection 2.2. Each K-orbit intersects m(exp@) at only one point
and Q = Uacranrzs@Qa. Moreover, for H € Qa, it is true that Rj; is independent of
the choice of H and only depend on A. In Table 2,3,4, we summarize that each K-orbit
through m(expH) (H € Qa) becomes one of (i),(ii),(iii-1),(iii-2),(iii-3) in Theorem 3.30 in
each G. In the list, A implies a subset of F. For example (1,2, 3) implies {wy,ws, w3} and
(2,m) implies {wq,n}. The “type” implies the type of the K-orbit through m(expH) (H €
Qa), that is (i),(ii),(iii-1),(iii-2),(iii-3). The “dim” implies the dimension of K-orbit through
w(expH) (H € Qa). If H € Qa is type (i), then “¢” implies ¢; of the CR immersion
fo: K/(Ky)o — Oy and a K-invariant section I of f;;Q. If H € Qa is type (ii), then “¢”
and “c’” implies ¢; and ¢} of the totally CR immersion fy : K/(Kg)o — Og and the CR
structure I of fy. If H € Q4 is type (iii-2), then “¢” implies the dimension of V' in Theorem
3.30. If the K-orbit becomes a principal orbit, a polar, a pole, a quaternionic submanifold or

the image of a totally complex immersion, then we specify this in “remark”, where a pole is
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a polar which is a one-point set [7]. In Table 2 of the case of G = Fy, Fg, E7, Es, set m € Z
asm=11G=F,m=2ifG=Fg, m=4if G = FE;, m =8 if G = Fs. In Table 3 of the

case of G = SO(n) (n > 8), set m =n — 3 if n is odd and m =n — 4 if n is even.

’ A H type ‘ dim ‘ c ‘ c ‘ remark ‘
(1,2) (i) Im + 12 6m +8
(1,2,3,71) G) | 11m+12 | 10m+8
(1,2,4,n) () | 11m+12 | 10m+8
(1,2,3,4,n) (i) 12m+12 | 12m + 8 principal orbit
(1) (ii) 6m + 8 6m + 8 0 polar, fg is totally complex
(1,7) (i) 6m+9 | 6m+8 2
(1,2) (i) | 9m+11 | 6m+8 | 6m+6
(2,7m) (ii) Im + 11 6m +8 6m + 6
(1,4) (i) | 10m+9 | 10m+8 | 8m+2
(1,4,7) (i) | 10m+10 | 10m+8 | 8m+4
(1,2) (i) | 1lm+10 | 10m+8 | 10m+4
(1,2,3) (i) | 1lm—+11 | 10m+8 | 10m+6
(1,2,4) (i) | 11m+11 | 10m+8 | 10m+6
(1,3,1) (i) | 1lm+11 | 10m+8 | 10m+6
(2,3,1) (i) | 1lm—+11 | 10m+8 | 10m+6
(2,4,7) (i) | 1lm—+11 | 10m+8 | 10m+6
(1,3,4) (ii) 12m+10 | 12m+8 | 12m +4
(1,2,3,4) (i) | 12m+11 | 12m+8 | 12m+6
(1,3,4,7m) (i) | 12m+11 | 12m+8 | 12m+6
(2,3,4,71) (i) | 12m+11 | 12m+8 | 12m+6
(4) (iii-1) 8m polar, quaternionic
(3) (iii-2) | 1lm+6 | 10m +2
(3,4) (iii-2) | 12m+6 | 12m+2
(4,7) (iii-2) | 12m+6 | 8m+2
(2) (iii-3) | 9m +9
(2,3) (iii-3) | 1lm+9
(2,4) (iii-3) | 11m+9
(3,1) (iii-3) | 11m +9
(2,3,4) (iii-3) | 12m+9
(3,4,7) (iii-3) | 12m+9

Table 2: K-orbits in the case of G = F}, Fg, F7, Fy
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A [ wpe [ dim | ¢ | ¢ ] remark

(1,2,3,n) (i) | 3m+12 | 2m+38
(1,2,3,4,7n) i) dm+12 | 4m + 8 principal orbit
(2) (ii) 2m+8 | 2m+ 8 0 polar, fg is totally complex
(2,7m) (ii) 2m+9 | 2m+8 2
(1,2) (i) | 2m+9 | 2m+8 2
(1,2,1) () | 2m+10 | 2m+8 4
(2,3) () | 3m+10 | 2m+8 | 2m+4
(1,2,3) () | 3m+11|2m+8 | 2m+6
(1,3,n) () | 3m+11|2m+8 | 2m+6
(2,3,1) () | 3m+11 | 2m+8 | 2m+6
(2,4) (i) | 4m—+9 | 4m+8 | 4m+2
(1,2,4) (i) | 4m+10 | 4m+8 | 4m+4
(2,3,4) (i) | 4m—+10 | 4m+8 | 4m+4
(2,4,7m) (ii) 4m 410 | 4m +8 | 4m + 4
(1,2,3,4) (i) | 4m+11 | 4m+8 | 4m+6
(1,2,4,n) (ii) 4m+11 | 4m+8 | 4m +6
(1,3,4,n) () | 4m+11 | 4m+8 | 4m+6
(2,3,4,n) (i) |[4m+11 | 4m+8 | 4m+6
(1) (iii-1) 0 pole
(4) (iii-1) dm 4m polar, quaternionic
(1,7) (iii-2) | m+6 2
(3) (iii-2) | 3m+6 | 2m+2
(1,4) (ii-2) | 4m+6 | 4m+2
(3,4) (iii-2) | 4m+6 | 4m +2
(4,7) (iii-2) | 4m+6 | 4m +2
(1,3) (iii-3) | 3m +9
(3,m) (iii-3) | 3m+9
(1,3,4) (iti-3) | 4m+9
(1,4,n) (iii-3) | 4m+9
(3,4,7) (iii-3) | 4m +9

Table 3: K-orbits in the case of G = SO(n) (n # 8).
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’ A ‘ type ‘ dim ‘ c ‘ c ‘ remark H A ‘ type ‘ dim ‘ c ‘ c ‘ remark ‘

(1,2,3,4,7n) (i) 12 | 8 principal orbit (1) (iii-1) 0 pole
(1,2,3,7) | Gi) | 11 | 8|6 (3) (ii-1) | 0 pole
(1,2,4,7m) (ii) 11 | 8] 6 (4) (iii-1) 0 pole
(1,3,4,7) | @Gi) | 11 | 8|6 (1,3) | (ii-2) | 6
(2,3,4,7) | Gi) | 11 | 8|6 (1,4) | Gii2) | 6
(1,2,3,4) | Gi) | 11 | 8| 6 (3,4,m) | (ii-2) | 9

(1,2,4) (ii) 10 | 8] 4 (1,m) (iii-2) 6

(1,2,3) G) | 10 [ 8] 4 (3,n) | Gii2) | 6

(2,3,4) G) | 10 | 8] 4 (4,n) | Gi2) | 6

(1,2,7) G) | 10 | 8] 4 (1,3,4) | (iii-3) | 9

(2,3,7) G) | 10 [ 8] 4 (1,3,7) | (ii-3) | 9

(2,4,7) G) | 10 |84 (1,4,m) | (iii-3) | 9

(1,2) G [ 9 |82 (3,4,m) | (ii-3) | 9

(2,3) G | 9 |82

(2,4) (ii) 9 81| 2

(2,n) (ii) 9 8| 2

(2) (i1) 8 8 | 0 | polar, fg is totally complex

Table 4: K-orbits in the case of G = SO(8).

4 The case of rankM = 2

In this section, we consider the case of rankM = 2, that is M is a complex Grass-
mann manifold SU(n)/S(U(2) x U(n — 2)) (n > 4) or the associative Grassmann manifold
G2/SO(4). In the present paper, we only consider the complex Grassmann manifold. We
cite [12] about the associative Grassmann manifold.

Let E;; be the n x n matrix whose (7, j)-component is 1 and the others are 0. Let
§=slnC) ={X e MnC); rX =0} and h = {H = 37, %Ey ; z € C,trH = 0},
Set a complex conjugation 7 such that 7(X) = —*X. Then, g = {X € s5l(n,C) ; 7(X) =
X} =su(n)and h = hbng = {H = > (izy) By € h; z; € R}. Let G = SU(n).
Define a linear form ¢; (1 <4 < n) of b such that (37, z;Ej;) = zi. Then, ¥ = {£(e; —
€;) ; 1 <i < j <mn}. Setan invariant nondegenerate symmetric bilinear form ( , ) such
that (X,Y) = tr(XY) (X,Y € sl(n,C)). Then, H,,_, = E;; — Ej; and A.,_, = H,_, for
each 1 < i # j < n. Take some linear order on if such that § = ¢; — €5 is the highest root.
Let T be the set of all positive roots. We see 31 = {e; — ey, —€a + € ; 3 < k < n}, 3y =
—e; = Ey for each 1 < i # j < n. Let
= i(Xe,—e, — T(X¢;—e;)) = i(Eyy + Ej;) for

{e, —€¢ ; 3<i<j<n} Setaroot vector X,
Zei—ej = X€i—€j + T(Xej—e,-) = Eij - Eji and Wei

—€j
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1 <i#j<n. Let § =exp(ad(miAg)). Then, # is an involutive automorphism of g and

m = {X €9; Q(X) = _X} - Z(szl—fi + RWEl_Ei + RZEi_EZ + RWQ’—Q)?

i=3
t={Xe€g; 0(X)=X}=h+RZ; +RWs+ >  (RZ, o, +RW, ).
3<i<j<n
In particular, € = s(u(2) x u(n—2)). Denote by the same symbol the involution of G induced
by 6. Then, K ={g € G ; 0(g9) = g} = S(U(2) x U(n —2)).
Set iy = €1 — €3,a0 = —€2 + €4 € ¥;. Then, a = RZ,, + RZ,, is a maximal abelian
subspace of m. Let A = A\ Z4, + AoZa, (A1, A2 € R). We easily check that the followings are

true.
adA(Zp-a1 & Zp-0,) = (M F 22)(Z5 F Zp—(ar+a2))5

(
adA(Zs F Zp—(a1+a2)) = —(M F A2)(Zp—ay £ Zg—as),
adA(Wp—a, £ Wp—a,) = (M F A2)(Ws F Ws—(a1+as)):
adA(Ws F Wi—(a1+a2) = —(M F A2) (Wp—ay £ Wp—ay),
adA(W,,) =20 (1As,), adA(ids,) = (—2M)Wa,,
adA(W,,) = 2X2(iAs,), adA(ida,) = (—2X)W,,.

Moreover, for each 5 < k < n

dA(Zey—e,) = M(=Zes—)s adA(—Zey—¢,) = (—M)Zey -y
dAWe —¢,) = M(—We—e,),  adA(=We—q) = (=A)We ¢,
dA(Z_cyre,) = MNo(Zeyte,)s adA

AdAW _yrer) = Aae(W_ryre), adAW_yre,) = (X)) W_gyie,. -

o

Q

Q

Q

Set elements of m as follows:

T)}1—x\2 - Zﬁ_al + Zﬁ_a27 T)\zl—/\z - Wﬁ_al + Wﬁ_a27
T)%1+)\2 = Zﬁ—al - Zﬁ—aw T>%1+/\2 - Wﬁ—al - Wﬁ—dw TQ/\i - Wai (Z = 172)

k1 k.2 k1 k2
and Ty = Ze, ¢, T3" = Wei o, T\ = Z cyie, Ty = Weeyye,, for each 5 < k < n. Set

elements of £ as follows:

S)l\lf)\z - Z/B - Zﬁ*(a1+a2)7 S)Q\lf)\z - WB - WB*(al‘i’aQ)’
Shire = 28T Zo—(ar+az)s Sxine = Wo+ Wo_(artas)s San, = i4a; (= 1,2)

and S’;’ll = -7

€3—€L)

S =W,

€3—€L

Sf\zl =2 _eyters Sl/\“f = W_¢ 4, foreach 5 <k < n. Let
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Rg = {1 £X2,2)1,2X2} and Ry = {1, A2}. Then, for any A € a,w € {\; £ X2} and n € Ry,

adA(T}) = w(A)S adA(S)) = —w(A)TE,
adA(T;") = n(A )SkZ adA(Sﬁ’i) = —n(A)T,]f’i (i=1,2and 5 < k <n),
adA( ) 20, ( )SQ)\J., adA(;SQ/\j) = _2)\jT2)\j (] = 1, 2)

Thus, the restricted root system R is given by +i(Rz U Ry). For each w € Rz U Ry, we set
m, ={X em; (adA)*(X) = —w(A)’X (A € a)}. Let mg =my, _», +my, 15, + Moy, + Moy,
and my = RTY' + RTY? + RTY +RTY? for each 3 < k < n. Then, m = a+mg + 3y, my.
By direct computations, we see adX (a + mg) C a + mg and adX (my) C my, for any X € s

and 5 < k < n. Moreover, we obtain Lemma 4.1 and Lemma 4.2.
Lemma 4.1. Set subspaces m_ and my of a + mg as follows:
mM_ =My, +R(Zoc1 - Zocz) +R<T2)\1 _T2>\2)7 My =My 4, +R(Zoq + Zaz) +R(TQ>\1 +T2>\2)'

Then, ads(m_) C (m_) and ads(m;) C (m;). The representation matrices of ad(iAg)|m_,
adZg|m_, adWps|m_ with respect to T3, 5., T%, _x,s Zar — Zas, Tor, — Ton, are

where empty components are 0. Also, the representation matrices of ad(iAg)|m,, adZg|m, ,

adWslw, with respect to T\ .. T% 1, Zay + Zag, Tor, + Ton, are

Lemma 4.2. For each 5 < k < n, ads(my) C my. Moreover, the representation matrices of
ad(iA43)|m,, adZs|m,, adWps|m, with respect to Tfl’l,Tfl’Q,TfQ’I,Tff are

where empty components are 0.
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For H € a, we set (Rpg)y = {w € Rp ; w(H) € nZ}. If H € a satisfies (Rg)y = ¢ for
cach w € Rg, we say that H is type I. We easily see that if H is type I, then m,(ty) = {0}
and Oy is type 1. If H satisfies (Rg)g C {2A1,2\2}, then we say that H is type II. We easily
see that if H is type II, then 7s(¢y) = R(iAp) and Op is type II. If H is not type I and type
I1, then we say that H is type III. We see that if H is type III, then 7,(ty) = s and Oy is
type III.

Let H be type I. Then, \;(H) & nZ (i = 1,2) and

T,0g Nm_ =my,_», + R(Ton, — Ton,),
TOOH N My = My, 4+, + R<T2)\1 + TZ)\Q)J

TOOHﬂmk:mk (5§k§n)

For any X € s, let Wx = adX(a) and Vx be the orthogonal complement of Wx in T,0.
Then Vx, Wy satisfy

Vx L Wx, Vx + Wx = TOOH, adX(Vx) C VX, adX(Wx) C (TOO)L.

Thus, the immersion fy : K/(Kg)o — Og is a K-equivariant totally C'R immersion by each
K-invariant section of f};(). Moreover, Oy is a QR submanifold. Thus, we obtain Lemma
4.3.

Lemma 4.3. Let H € a be type I. Then, fy : K/(Kg)o — Opg is a K-equivariant totally
C'R immersion by each K-invariant section I of f;;() and K-invariant sections correspond
to each point of the 2-dimensional sphere. Moreover, ¢; = ¢} and c¢; is independent of the
choice of I. Also, Oy is a R submanifold.

Let H be type II. Then, 7;(¢y) = R(iAp) and ad(iAg) defines the K-invariant section of
[5Q. If (Rg)y = {2\1}, then T,05 Nmg = my, _», + My, 1n, + Moy, and (7,05)t Nmg =
a+moy, . If (Rg)g = {2X\2}, then T,05 Nmg = my, _y, + My, 1, + Moy, and (7,0x)F Nmg =
a+moy,. If (Rg)m = {2\1,2)2}, then 7,05 Nmg = my,_y, + My, 45, and (1,0x)F Nmg =
a+ myy, + myy,. By Lemma 4.1, ad(idg)(a + may, + may,) C a+ myy, + may,. Moreover,
ad(iAg)(my;) C my; (j = 1,2) by Lemma 4.2. Thus, there are subspaces V4 and W of 7,0y
such that

Vi L Wa, Va+ Wa =T,0p, ad(iAs)(Va) C Va, ad(ids)(Wa) C (T,0)*.
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Also, for any X € RZg + RWj since adX (my, _y, +my,+»,) C a+mgy, +myy, by Lemma 4.1
and adX (m,,) C m,, by Lemma 4.2, we see that there are subspaces Vx, Wx of 7,0y such
that

Vx L Wy, Vx + Wx =T,0, adX (Vyx) C Vx, adX(Wx) C (T,0)*.

Thus, we obtain Lemma 4.4.

Lemma 4.4. Let H € a be type II. Then, fg : K/(Kg)o — Og is a K-equivariant totally
C'R immersion by the K-invariant section of f};¢) and such K-invariant sections are unique

up to sign.

Let H be type III. Since (Kp)o acts on s as SO(3), we only consider ad(iAg). Then,
(Rg)m = {M — A2}, {\1 + A2} or Rs. In the case of (Rg)y = {A — Ao}, then \,(H) &
7Z (i = 1,2). Thus, T,05 = my, 1x, + 3o (Mgy, +my,) and (T,0x)" = a+ my, _y,. Let
W, = ad(iAg)a and V4 be the orthogonal complement of W, in T,0g. Then, V4 and Wy
satisfy

Va LWy, Va+ Wy =T,0p, ad(iAg)VA C Va, ad(iAﬁ)WA C (TOOH)J‘.

In the case of (Rg)g = {A\1 + A2}, we can prove that there are such subspaces by similar
way. In the case of (Rg)y = Rp, we see 1,0y = {0} or my, + m,,. In the former case, Oy
is a one-point set. In the latter case, Oy is a quaternionic submanifold. Summarizing these

arguments, we obtain Lemma 4.5.

Lemma 4.5. Let H € a be type III. Then, Oy is type IIL. If (Rg) g = {A1 — A2} or {A1 + A2},
then for any p € Oy and J € ), there are subspaces V' and W such that

VLIW, V4+W=T,0y, JV)CV, JW)cC (T,0n)*.
If (Rg)m = Rp, then Oy is a one-point set or a quaternionic submanifold.

Summarizing Lemma 4.3, Lemma 4.4, Lemma 4.5, we obtain Theorem 4.6.

Theorem 4.6. Let H € a.
(i) If Og is type I, fg : K/(Kg)o — Oy is a K-equivariant totally C'R immersion by
each K-invariant section [ of f}() and K-invariant sections correspond to each point of the

2-dimensional sphere one-to-one. Moreover, ¢; = ¢} and ¢; is independent of the choice of I.
Also, O is a QR submanifold.
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(i) If Op is type II, then the immersion fg : K/(Kp)o — Og is a K-equivariant totally
C'R immersion by a K-invariant section of f;;¢). Such K-invariant sections are unique up to
the sign.

(iii) If Oy is type 111, Oy satisfies one of the following:

(ili-1) Og is a one-point set or a quaternionic submanifold.
(iii-2) For any p € Oy and J € @Q,, there are subspaces V,W of 7,0y such that
V1IW,V4+W=T,0yJV)CVand JW) C (T,0n)".

We summarize that each K-orbit becomes one of (i),(ii),(iii-1),(iii-2) as Section 3. Let
wi = (A — Ag),wy = iAy. Then, wy,wy are simple roots with respect to some linear order of
ia and the highest root 7 is 2i\;. Let F = {wy,wq,n}. As the table in Section 3, we make
Table 5 in the following.

’ A ‘ ‘ type ‘ dim c ‘ c ‘ remark
(1,2,m) (i) 4n —10 | 4n —12 principal orbit
(1) (ii) 2n —4 2n —4 0 polar, fg is totally complex
(1,m) (ii) 2n—3 2n —4 2
(1,2) (i) | 4n—3 | 4n—4 | 4n—6
(2) (iii-1) | 4n—16 | 4n — 16 pole (n = 4), polar and quaternionic (n > 4)
(2,7m) (1ii-2) | 4n—12 | 4n —14

Table 5: K-orbits in G = SU(n) (n > 4)

5 The case of rankM = 3

In this section, we consider the case of rankM = 3, that is M is the oriented real
Grassmann manifold as the set of all oriented 3-dimensional subspaces of R7. In this
case, § = 50(7,C) = {X € M(7,C) ; 'X = —X}. Let7:9g — g; X — X and
g={X e€g; 7(X) =X} =50(7). Set F;; = E;; — Ej; for each 1 < i # j < n. Let
h={H =21 Fia+2Fu+2Fs; z € C}. Then, h = hNg = {z Fia+ 29 F3u+13F5 ; 7 € R}
and h is a maximal abelian subspace of g. Let ¢; be the linear form of b such that
€j(z1F12 + 22F54 + 23F5) = iz; (1 < j < 3). The root system of g with respect to b is
given by ¥ = {£e;, ¢, +e, ; 1 <i < j < 3,1 <k <3} Set an invariant nondegener-
ate symmetric bilinear form ( , ) of g such that (X,Y) = tr(XY) for X,Y € g. For each
v € ¥, we set the element H, of the real part by = i by (H,, H) = v(H), that is H,_., =
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— 2 (Faic12i—Faj195), Heppe, = —5(Foic10i+Foj195), He, = —5Fpi19ifor 1 <i # j < 3. Let
A, = ﬁ[—[y; that is Ae,—; = —1(Fi1,2i — Faj_125), Aejre; = —1(Foim1,2i + Foj_125), Ae, =
—2iFy;_;9; for 1 < # j < 3. Take some linear order such that the highest root 3 is €; + €2
and the set of all positive roots £t is {¢; £ €j,¢, ; 1 < i < j < 3,1 < k < 3}. Then,
Y1 ={e, 6,61 L6360t €3} and g = {*(eg —€2), £e3}. For 1 <i<j<3and 1<k <3,

we set root vectors
Keimey = —(Fyim19j-1 + Foioj) + 1(Foic12j — Fainj—1),
Xeite; = (Faic1,2j-1 — Foig) +i(Foic125 + Fhigj-1),
Xe, = Fop_17 + il 7.

For cach v € ©7, set Z, = $(X,+7(X,)) and W, = (X, —7(X,)), that is for 1 <i < j <3,

Zei—Ej = _FQi—l,Qj—l - FQi,Qja Zei—i-e]' = FQi—l,Qj—l - FQi,Qja
Wei—e]- = _FQi—l,Qj + FQi,Qj—la Weﬁ-e]- = _FQi—l,Qj - FQi,Qj—l?
Zek = F2k’71777 Wek = _FQk,'?'

Let 6 = exp(miAg). Then,

t={Xeg; 0X)=X}=h+RZz;+RWs3+RZ,_., + RW, _, + RZ,, + RW,,,
m={Xeg; 0(X)=-X} =) (RZ, +RW,).
YED)
Let G = SO(7) and denote by the same symbol the involution of G induced by 6. Let K be
the identity component of {g € G ; 0(g) = g}, that is K = SO(4) x SO(3).
Let Uy = Fiypy (1 <i<3)anda={A=37" AU ; \ € R}. Then, a is a maximal
abelian subspace of m. We set elements of m as follows:
Ty, = 5Weyey = Wertes) = Fus, Toy, = =3(Zey—ey + Zestes) = Fas, Thy = —We, = Fur,
Tri4r; = Wey—ey = Fo5 — Fig, Tri—xo = —Weigey = Fos5 + [,

Taitrs = 5(—Zeymey + Zeytey) — Zey = Fss — Fiz,  Toyoxg = 3(—Zey—ey + Zeytes) + Zey = Fa5 + Fiz,
Trotrs = 5(—Weymey = Wegtey) + Wey = Fig — For, Toyony = —2(Weymey + Wegtey) — Wey = Fo + For,
These vectors give a basis of the orthogonal complement of a in m. Moreover, we set a basis

of ¢ as follows:
Sai = 5(Weimep + Wertes) = —Fuay Sxy = 5(Zey—ey + Zeytey) = —Foa, Say = —2iH,, = —Fy,

SAlJr)\Q = _2iH61763 = _F12 + F567 S)q*)\Q = 22'H€1+63 = F12 + F567
S>\1+)\3 = %(Zelfez _Z€1+62)+Z63 = _F13+F577 S/\17A3 = _%<Z€1762 _Z€1+62)+Z€3 :F13+F577
Skg-{-/\g = _%(W€1—€2 - W€1+€2) - W€3 = _F23 + F677 S)\g—kg = %(Wel—eg - Wel-‘rez) - W€3 = F23 + FG?-
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We use the notations used in the previous two sections. Let Rg = {\;, i), ; 1 <i < j < 3}
Then, for any w € Rz and A € a,

adA(T,) = w(A)S,, adA(S,) = —w(A)T,

and the restricted root system of (g,€) with respect to a is given by £iRz. We set P; €
m (1 <i<3,1< 7 <4) as follows:

Pl=Y—Z o+ Zetey) = Fis, Pd=2%Tair, — To—ny) = Fos,
Py = L(Thyns + Toyong) = F35,  Pf =Ty, = Fis,

PP = 5T + Trnne) = Fioy, 3= —5(Zei e + Zeytes) = Fosy
P} = 5(Tagiag + Tayony) = Fss, PP =Ty, = Pug,

P} = —%(TAIJF)@ — Ty on) = Fir, P = _%(TA2+>\3 —Th,—xy) = For,
P} =7, = Fy, P} =T, = Fur.

Remark that P/ € a (1 < <3). Let m’ = Y7 | RP! (i = 1,2,3). We obtain Lemma 5.1

Lemma 5.1. For any X € 5, adX (m?) C m’ (i = 1,2, 3). Moreover, for each i = 1,2,3, the

wi and adZs|y: and adWg|y: with respect to Py, -+, Pj

representation matrices of ad(iAg)

are

where empty components are 0.

Set subsets R', R?, R* C Ry as follows: R' = {1, A2 + A3}, R? = {Do, M1 £ N3}, R? =
{3, A1 £ Ao}, If H € a satisfies (Rg)y = ¢, we say that H is type I. If H € a satisfies
(Rg)i # ¢ and (Rg)y C R’ for some 1 < i < 3, we say that H is type II. In the other
cases, we say that H is type III. Then, we see that Oy and H have the same type because
ms(RS,) = RWj if and only if w € R' and 7,(RS,) = RZ; if and only if w € R? and
ms(RS,) = R(iAp) if and only if w € R3.

If H is type I, then T,0 = ZMGRB m, and (7,05)% = a. By Lemma 5.1, we see that
for each X € s there are subspaces Vx,Wx of T,Op such that Vx L Wx,Vx + Wx =
T,0n,adX (Vx) C Vx,adX (Wx) C (T,0y)*. Thus, the immersion fy : K/(Ky)o — On
is a K-equivariant totally C'R immersion by each K-invariant section of f7() and such K-
invariant section corresponds to each point of the 2-dimensional sphere. In particular, Op is
a QR submanifold.
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Let H be type II. We may assume (Rg)y C R'. Then, 7,(€y) = RWj. We see that there
are subspaces V, W of 7,0y such that V- L W,V + W = T,0y,adWs(V) C V,adW3(W) C
(T,0p)*. Moreover, we see that for each X € R(iAg) + RZs there are subspace Vy, Wx of
T,0y such that Vy L Wy, Vx +Wx = T,0y,ad X (Vyx) C Vx,adX (Wx) C (T,0x)*. Thus,
fu is a totally CR immersion by the K-invariant section of f};Q. In particular, (Rg)y = R
if and only if fy is a totally complex immersion.

Let H be type III. By the definition, we see #((Rg) g N{A1, A2, A3}) = 0,2,3. If #((Rg)uN
{A\1, A2, A3}) = 3, then obviously (Rg)y = Rs. Then, 7,0y = {0} and Oy is a one-point
set. If #((Rg)m N {A1, A2, As}) = 2, then (Rg)y is one of {1, Aa, A1 £ Ao}, { A2, A3, Aa £
Ash { A3, A1, A1 £ A3}, In this case, for any p € Oy and J € @), there are subspaces V, W
of T,0p such that V. L W,V + W = T,0y,J(V) C V,J(W) C (T,0n)*. If #((Rg)u N
{1, A2, A3}) = 0, we see that (Rg)y is one of {N\; £ X, ; 1 < i <j <3} {\ — A, N +
Agy Ao+ Ash {1+ Ao, At — Az, Aa+ Mgt {1+ Ao, Ar+ s, Aa — Mgk {1 — Ao, A — Az, Aa — Ast
If (Rg)w ={N\ixtA;; 1<i<j <3}, then Oy is a totally real submanifold. In the other
cases, then for any p € Oy and J € @, there are no subspaces V, W of 7,0y such that
V1IWV+W=T,0y4,JV)CV,J(W)C(T,0n)"

Summarizing these arguments, we obtain Theorem 5.2.

Theorem 5.2. Let H € a.

(i) If Oy is type I, then fy : K/(Kpg)o — Op is a K-equivariant totally C'R immersion
by each K-invariant section I of f;;() and K-invariant sections correspond to each point of
the 2-dimensional sphere one-to-one. Moreover, ¢; = ¢} and ¢; is independent of the choice
of I. Also, Op is a QR submanifold.

(i) If Oy is type II, then the immersion fg : K/(Kp)o — Oy is a K-equivariant totally
C' R immersion by the K-invariant section of f;;(). Such K-invariant sections are unique up
to the sign.

(iii) If Op is type 111, then Op satisfies one of the following:

(ili-1) Og is a one-point set or a totally real submanifold.

(ili-2) For any p € Oy and J € @Q,, there are subspaces V,W of T,0py such that
V1IWV+W=T,0y4JV)CV,J(W)C (T,0n)"

(ili-3) For any p € Oy and J € @,, there are no subspaces V, W of 17,0y such that
VIWV+W=T,0y4JV)CV,J(W)C (T,0r)".

We summarize what type (i), (ii), (iii-1), (iii-2), (iii-3) each K-orbit becomes as Section

3. Let wy = (A — A2),ws = i(Ay — A3),ws = iA3. Then, wy,wq, w3 are simple roots with
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respect to some linear order of ia and the highest root 7 is 2iA;. Let F = {wy,wq, w3, n}. As
the table in Section 3, we make Table 6.

’ A H type ‘ dim ‘ c ‘ c ‘ remark ‘
(1,2,3,n) i) 9 6 principal orbit
(2) (ii) 6 6 | 0 | polar, fg is totally complex
(1,2) (ii) 7 16| 2
(2,3) (ii) 7 6| 2
(2,m) (ii) 7 6 | 2
(1,2,3) (ii) 8 | 6|4
(1,2,1) (ii) 8 |64
(1,3,7) (ii) 8 | 6|4
(2,3,7) (ii) 8 |64
(1) (iii-1) 0 pole
(3) (iii-1) 3 0 totally real
(1,7) (iii-2) | 5
(3,7m) (iii-3) 6
(1,3) (iii-3) | 6

Table 6: K-orbits in G = SO(7)

References

[1] D. V. Alekseevsky, Compact quaternion spaces, Functional Anal. Appl. 2(1968), 109-114.

[2] D. V. Alekseevsky, S. Marchiafava, Hermitian and Kihler submanifolds of a quaternionic
Kahler manifold, Osaka J. Math. 38(2001), 869-904

[3] A. Bejancu, CR submanifolds of a Kahler manifold I, Proc. Amer. Math. Soc. 69-
1(1978), 135-142

[4] A. Bejancu, QR-submanifold of quaternion Kaehlerian maifolds, Chinese J. Math.
14(1986), 81-94

[5] A. Bejancu, H. R. Farran, On totally umbilical Q R-submanifolds of quaternion Kaehle-
rian manifolds, Bull. Austral. Math. Soc. 62 (2000), 95-103

[6] N. Bourbaki, Lie groups and Lie algebras. Chapters 46. Elements of Mathematics
(Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by
Andrew Pressley.

[7] B. Y. Chen, T. Nagano, Totally geodesic submanifolds of symmetric spaces II, Duke.
Math. J. 45-2(1978), 405-425.

38



8]

[9]

[10]

[11]

K. Enoyoshi, K. Tsukuda, Examples of transversally complex submanifolds of the asso-
ciative Grassmann manifold, Tsukuba J. Math. vol.43, No.1(2019), 23-36

S. Helgason, Differential Geometry, Lie groups, and Symmetric spaces, Academic Press,
New York, 1978

M. Kimura, Hopf hypersurfaces in complex projective space and half-dimensional to-
tally complex submanifolds in complex 2-plane Grassmannians I, Differ. Geom. Appl.
35(2014), 156-163

S. Salamon, Quaternionic Kdahler manifolds, Invent. Math. 67(1982), 143-171

[12] Y. Sasaki, Some submanifolds of the associative Grassmann manifold, to appear in Tokyo

[13]

[14]

[15]

[16]

J. Math.

M. Takeuchi, Totally complexr submanifolds of quaternionic symmetric spaces, Japan J.
Math. Vol. 12, No. 1(1986), 161-189

M. Takeuchi, Modern spherical functions, Translations of Mathematical Monographs
135(1994), Amer. Math. Soc.

K. Tsukada, Parallel submanifolds in a quaternionic projective space, Osaka J. Math.
22(1985), 187-241

K. Tsukada, Transversally complex submanifolds of a quaternion projective space, in
Hermitian-Grassmannian submanifolds, edited by Y. J. Suh, Y. Ohnita, J. Zhou, B. H.
Kim, H. Lee, Springer Proceedings in Mathematics and Statistics 203(2017), 223-233

J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces,
J. Math. Mech. 14(1965), 1033-1047

Yuuki Sasaki

Cooperative Faculty of Education,

Utsunomiya University,

350, Mine-machi, Utsunomiya, 321-8505, Japan

e-mail address : y_sasaki@cc.utsunomiya-u.ac.jp

39



