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Abstract. In this paper, we extend Zakeri’s result in [27] on boundaries of bounded type Siegel
disks of some entire functions to some transcendental meromorphic functions as follows: We con-
sider a one parameter family of some transcendental meromorphic functions with one pole, two
critical points, one finite asymptotic value zero, and bounded type fixed Siegel disks centered at
the origin. We show that if two critical values coincide, then the boundary of the Siegel disk is
a quasicircle containing exactly one critical point, and the set Ω1 of all parameters for which two
critical values coincide is countably infinite. We also show that there exist uncountable sets Ω2 and
Ω3 such that the boundary of the Siegel disk is a quasicircle containing exactly one critical point
for any parameter in Ω2 and the boundary of the Siegel disk is a quasicircle containing exactly two
critical points for any parameter in Ω3. Furthermore, we can construct Ω2 so that for uncountably
many parameters in Ω2, the critical values which are the images of the critical points outside the
boundaries of the Siegel disks are in the Siegel disks, on the boundaries of the Siegel disks, and
outside the closures of the Siegel disks.

1. Introduction

Let f : C → Ĉ be a transcendental meromorphic function. The nth iteration fn(z) is defined
for all points in C except for the countable set consisting of the preimages of ∞ by f, f 2, · · · , fn−1.

A point z0 ∈ C is called an irrationally indifferent p-periodic point if there exists a minimum
integer p such that f p(z0) = z0 and λ := (f p)′(z0) = e2πiθ (θ ∈ R\Q). The λ is called the multiplier
of z0. In addition, the point z0 is called a fixed point if p = 1. The point z0 is called a Siegel point

if there exist a maximal f p-invariant domain D ⊂ Ĉ and an analytic homeomorphism ϕ : D → D
such that ϕ(f p(ϕ−1(z))) = λz and ϕ(z0) = 0. Otherwise, z0 is called a Cremer point. In the former
case, the domain D is simply connected and we call D the Siegel disk of period p centered at z0.
In addition, D is called fixed if p = 1. If θ satisfies the following condition:∑

n

log qn+1

qn
<∞,

where pn/qn is the nth convergent of θ obtained from the continued fraction expansion, then z0 is
a Siegel point (see [8] and [22] or [21, p.132, Theorem 11.10]). An irrational number is called a
Brjuno number if it satisfies the condition above. The set B of all Brjuno numbers is uncountable
and dense in R. An irrational number is called of bounded type if {ak}∞k=0 is bounded, where
[a0; a1, a2, . . . , ak, . . . ] is its continued fraction. An irrational number of bounded type is always a
Brjuno number. Hence if θ is of bounded type, then z0 is a Siegel point. In this case, we call z0
(or the Siegel disk D centered at z0) bounded type.
Points c ∈ C and f(c) are called a critical point and a critical value respectively if f ′(c) = 0.

A point a ∈ Ĉ is called an asymptotic value if there exists a continuous curve γ(t) (0 ≤ t < 1)
with limt→1 γ(t) = ∞ and limt→1 f(γ(t)) = a. We call critical values, asymptotic values, and their
accumulation points singular values.
Let S be the set of all transcendental entire functions of the form

P (z) exp (Q(z)),
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where P and Q are polynomials. The set S is a proper subset of the Speiser class consisting of
all entire functions with finitely many singular values. Functions in S are also called structurally
finite in the sense of [25]. Zakeri studied boundaries of bounded type fixed Siegel disks centered
at the origin for functions in S. His result is as follows:

Theorem ([27]). Let f ∈ S. If f has a bounded type fixed Siegel disk centered at the origin, then
the boundary of the Siegel disk is a quasicircle containing at least one critical point.1)

Let S̃ be the set of all transcendental meromorphic functions of the form

R(z) exp (Q(z)),

where R(z) and Q(z) are a rational map which has at least one pole and a polynomial respectively.
Functions in S̃ and functions in S share many important properties. For example, they have
finitely many critical points, two asymptotic values 0 and ∞, and finitely many zeros.2) Thus we
can expect the result for functions in S̃ similar to that for functions in S. We ask the following
question:

Question 1. Let f ∈ S̃. Suppose that f has a bounded type fixed Siegel disk centered at the origin.
Is the fixed Siegel disk bounded by a quasicircle containing at least one critical point?

We consider the easiest case as follows: Henceforth fix any irrational number θ of bounded type.
Suppose that f ∈ S̃, the degrees of R and Q are 1, and f has a bounded type Siegel fixed point at
the origin with multiplier λ = e2πiθ. The function f is conformally conjugate to

gα(z) := e2πiθ
z

1− α+1
α
z
eαz

for some α ∈ C \ {0,−1} (see Proposition 3.1). The one parameter family {gα}α∈C\{0,−1} has the
following properties:

(1) gα has two critical points 1 and

cα :=
−1

α + 1
,

two asymptotic values 0 and ∞, and one pole

tα :=
α

α + 1

(see Proposition 3.1).

(2) gα′ 6= gα is conformally conjugate to gα if and only if α′ = 1/(α + 1) − 1 (see Proposition
3.2).

Main Theorem. Let 4α be the bounded type fixed Siegel disk of gα centered at the origin. Then:

(i) If two critical values gα(1) and gα(cα) coincide, then 4α is bounded by a quasicircle con-
taining exactly one critical point. Moreover, the set Ω1 := {α | gα(1) = gα(cα)} is countably
infinite.

1)Zakeri’s original statement includes Shishikura’s result which says that all bounded type fixed Siegel disks of
polynomials of arbitrary degree are bounded by quasicircles containing critical points. On the other hand, since
the space S is not invariant under affine conjugations moving the origin, Theorem does not say anything about
bounded type fixed Siegel disks centered at points other than the origin. Zakeri mentioned this technical problem
in his paper [27]. In [18], Kisaka and Naba construct some functions in S with bounded type fixed Siegel disks
centered at points other than the origin, whose boundaries are quasicircles containing critical points.

2)Meromorphic functions with finitely many critical points and asymptotic values share important dynamical
properties (see [4], [5], [6], [11], and [23]).
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(ii) There exists an uncountable set Ω2 such that if α ∈ Ω2, then 4α is bounded by a quasicircle
containing exactly one critical point. Moreover, the quasicircle constant can be taken so
that it is independent of α ∈ Ω2.

(iii) There exists an uncountable set Ω3 such that if α ∈ Ω3, then 4α is bounded by a quasicircle
containing exactly two critical points. Moreover, the quasicircle constant can be taken so
that it is independent of α ∈ Ω3.

(iv) We can construct Ω2 so that it is connected and it consists of three uncountable sets Ω2,1,
Ω2,2, and Ω2,3 such that:

(a) If α ∈ Ω2,j (j = 1, 2, 3), then v(α) ∈ 4α, v(α) ∈ ∂4α, and v(α) /∈ 4α respectively,
where v(α) is the critical value of gα for α ∈ Ω2 which is the image of the critical point
outside the boundary ∂4α.

(b)

Ω2,2 ⊂ ∂Ω2,1 ∩ ∂Ω2,3, Ω3 ⊂ ∂Ω2,3.

Remark 1.1. We give two constructions of Ω2 in Section 5 and Section 7. The second construction
of Ω2 will show the Main Theorem (iv) (see Section 7).

Keen and Zhang studied the one parameter family

{g̃α(z) := (e2πiθz + αz2)ez}α∈C\{0},

where θ is of bounded type (see [17]). Like gα, g̃α has two critical points, two asymptotic values

0 and ∞, and a bounded type fixed Siegel disk 4̃α centered at the origin. They showed that for
every α ∈ C\{0}, 4̃α is bounded by a quasicircle containing critical points and that for α in some

uncountable set, the boundary ∂4̃α contains exactly two critical points. However, they did not
provide the information on the position of the critical values of g̃α as in the Main Theorem (iv). It
is natural to expect that Keen and Zhang’s proof is applicable to our case and we obtain the result
on the Siegel disk 4α of gα as in [17]. Unfortunately, since gα has one pole tα, we cannot use their
method as in [17] (and cannot use the method as in [27]). In particular, we have the difficulty of
making the number of critical points in the boundaries ∂4α exactly one or two. Hence in order to
show the Main Theorem, we have to modify Keen and Zhang’s argument. We use the result of [9]
in order to prove the Main Theorem (i). The proofs of the Main Theorem (ii), (iii), and (iv) are
inspired by quasiconformal surgery methods of [9], [17], and [26]. We modify some meromorphic
functions fβ (defined in Section 5) into gα with the bounded type fixed Siegel disks 4α bounded
by quasicircles containing critical points. The advantage of our surgery technique is that we obtain
such gα for uncountably many parameters α and that we control the number of critical points in
the boundaries ∂4α and the position of critical values as in the Main Theorem (iv). This is done
by choosing fβ carefully.

This paper is organized as follows: In Section 2, we introduce basic definitions and facts. We
characterize the family {gα}α∈C\{0,−1} in Section 3. In Section 4, Section 5 and Section 6, we prove
the Main Theorem (i), (ii), and (iii) respectively. In Section 7, we give another construction of Ω2

and show the Main Theorem (iv). We devote Section 8 to some concluding remarks.

2. Preliminaries

We introduce preliminary definitions and results.
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Definition 2.1 (Quasiregular mappings). Let U be an open subset of C. A continuous mapping
φ : U → C is a K-quasiregular mapping if φ is locally K-quasiconformal except at a discrete set
of points in U for some K ≥ 1. The constant K is called a quasiregular constant.3)

Note that quasiconformal mappings or quasiregular mappings between Riemann surfaces are de-
fined by their local coordinates.

Definition 2.2 (Quasicircles). A Jordan curve γ ⊂ Ĉ is called a K-quasicircle if there exists a K-

quasiconformal mapping ϕ : Ĉ → Ĉ such that γ = ϕ(S1), where S1 := {z | |z| = 1}. This K is
called a quasicircle constant of γ. We call γ a quasicircle if it is a K-quasicircle for some K ≥ 1.

We can tell whether a Jordan curve is a quasicircle or not by the following lemma:

Lemma 2.3 ([1], [12, p.23, Theorem 2.2.5]). Let γ ⊂ Ĉ be a Jordan curve and let Diam(X) be
the Euclidean diameter of a set X ⊂ C. Then γ is a K-quasicircle for some K ≥ 1 if and only if
there exists a constant A ≥ 1 such that for every pair of two distinct points z1, z2 ∈ γ \ {∞},

min
j=1,2

Diam(γj) ≤ A|z1 − z2|,

where γ1 and γ2 are the components of γ \{z1, z2}. Moreover, K and A depend only on each other.

We prepare the following lemma:

Lemma 2.4 ([27, p.488, Lemma 2.2]). Let γ ⊂ Ĉ be a K-quasicircle, let U be a component of

Ĉ\γ, and let g : D → U be a conformal mapping. Then g extends to a K2-quasiconformal mapping

of Ĉ.

3. Characterization of the family {gα}α∈C\{0,−1}

In this section, we characterize the one parameter family {gα}α∈C\{0,−1} defined in the introduc-
tion by the following propositions:

Proposition 3.1. Let f ∈ S̃ have the following properties:

(a) f can be written by

f(z) =
az + b

cz + d
etz,

where ad− bc, c, and t are non-zero;

(b) f has a bounded type Siegel fixed point at the origin with multiplier λ = e2πiθ.

Then f is conformally conjugate to

gα(z) = e2πiθ
z

1− α+1
α
z
eαz

for some α ∈ C \ {0,−1}. Moreover, gα has two critical points 1 and cα = −1/(α + 1), two
asymptotic values 0 and ∞, and one pole tα = α/(α + 1).

Proof. Since f has a fixed point at the origin, we have b = 0, and hence ad 6= 0. In addition, it
follows from the assumption (b) that f ′(0) = a/d = e2πiθ. Set

s := −c/d 6= 0.

Then we can write
f(z) = e2πiθ

z

1− sz
etz.

3)This is one of the equivalent definitions of quasiregular mappings. See [7] for alternative definitions. For basic
properties of quasiconformal mappings, see also [2] or [20].
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An easy calculation shows that

f ′(z) = e2πiθ+tz−stz2 + tz + 1

(1− sz)2
.

Hence f has two non-zero critical points u and v which are roots of −stz2 + tz + 1 = 0. Let

L(z) := uz.

It follows that L−1 ◦ f ◦ L has two critical points 1 and v/u. Moreover, we obtain

f̃(z) := L−1 ◦ f ◦ L(z) = e2πiθ
z

1− s̃z
et̃z,

where s̃ = su 6= 0 and t̃ = tu 6= 0. Since f̃ ′(1) = 0, we have

−s̃t̃ · 12 + t̃ · 1 + 1 = 0,

and hence s̃ = (t̃ + 1)/t̃. It follows from this, s̃ 6= 0, and t̃ 6= 0 that t̃ ∈ C \ {0,−1}, and hence

f̃(z) = gα(z), where α = t̃. By the construction, gα has two critical points 1 and cα, and one pole
tα. Since the map z 7→ eαz has two asymptotic values 0 and ∞, and

e2πiθ
z

1− α+1
α
z
→ −e2πiθ α

α + 1
(z → ∞),

gα has two asymptotic values 0 and ∞. □
Proposition 3.2. Let α and α′ be two distinct points in C \ {0,−1}. Then gα and gα′ are
conformally conjugate if and only if α′ = 1/(α + 1)− 1.

Proof. Suppose that α′ = 1/(α + 1)− 1 and

l(z) := −(α + 1)z.

An easy calculation shows that l−1 ◦ gα′ ◦ l = gα.

Suppose that there exists a conformal map l̃ : Ĉ → Ĉ such that l̃−1 ◦ gα′ ◦ l̃ = gα. Since both gα′

and gα have an essential singularity at ∞ and only two asymptotic values 0 and ∞, l̃ fixes 0 and
∞. It follows that l̃(z) = kz for some k 6= 0. Moreover, since l̃(1) = k is a critical point of gα′ , we
have k = 1 or k = −1/(α′ + 1). Since gα′ 6= gα, we have k 6= 1, and hence k = −1/(α′ + 1) and

α′ 6= −2. Since gα′ has another critical point l̃(−1/(α + 1)) = 1/{(α′ + 1)(α + 1)} = 1, we obtain
α′ = 1/(α + 1)− 1. □

4. Proof of the Main Theorem (i)

We use the following result of [9] to prove the Main Theorem (i):

Lemma 4.1 ([9, p.2140, Theorem 1.5.]). Let U ⊂ Ĉ be an open set and let a meromorphic function

f : U → Ĉ have the following properties:

(a) The set of all singular values of f is contained in {a, b, c} for some a, b, c ∈ Ĉ;
(b) a ∈ U and a is a bounded type Siegel fixed point;

(c) c ∈ Ĉ \ U or f(c) = c.

Moreover, let γ′ be an injective path which goes from a to b while avoiding {a, b, c} in between and
let γ be the lift of γ′ by f which has an endpoint a. (Note that f(γ) ⊂ γ′.) Then one and only one
of the following three cases occurs:

(1) γ ends on a non-critical point in U . In addition, U = Ĉ and f is a Möbius transformation.



6 H. NABA

(2) γ ends on a critical point. (We call the critical point the main critical point.) In addition,
the Siegel disk 4 centered at a is bounded by a quasicircle which contains the main critical
point and does not contain other critical points.

(3) γ leaves every compact subset of U . In addition, 4 does not compactly contained in U .

Proof of the Main Theorem (i). By the assumption, gα has exactly one critical value gα(1) = gα(cα)
and two asymptotic value 0 and ∞. Hence we can apply Lemma 4.1 to gα by putting U = C,
f = gα, a = 0, b = gα(1), and c = ∞. Since gα is transcendental, either of the cases (2) and (3)
holds. Since b = gα(1) is not an asymptotic value, the case (3) does not occur. Therefore, the case
(2) occurs.

Next, we show the existence of Ω1. Put gα(1) = gα(cα). Then it follows that

F (α) :=
1

(α + 1)2
e−α/(α+1) − eα = 0.

F (α) has an essential singularity at α = −1 and does not have an asymptotic value 0 at α = −1.
By Picard’s theorem and Iversen’s theorem, the set Ω1 := {α | gα(1) = gα(cα)} is countably infinite
(see [16] or [10, p.8, Theorem 1.6] for Iversen’s theorem). □

Remark 4.2. Two critical points 1 and cα = −1/(α+1) of gα coincides only when α = −2. By the
Main Theorem (i), 4−2 is bounded by a quasicircle containing the critical point 1 of g−2.

5. Proof of the Main Theorem (ii)

For β ∈ C \ {0}, we define

fβ(z) :=

{
z

1−(β+1)z/β
eβz (β ∈ C \ {0,−1})

ze−z (β = −1).

Note that if β → −1, then fβ → f−1 locally uniformly. By the argument in Section 3, when
β ∈ C \ {0,−1}, fβ has two critical points 1 and cβ = −1/(β + 1), two asymptotic values 0 and
∞, and one pole tβ = β/(β + 1). We have cβ, tβ → ∞ as β → −1. For any r > 0, we define

Br := (−1,−1 + r].

Henceforth we restrict β to Br (or Br = Br ∪ {−1}). We prove the Main Theorem (ii) by going
through the following three steps:

Step 1. By choosing a small enough r > 0 and using fβ, we construct an M -quasiregular mapping

Fβ : C → Ĉ for every β ∈ Br with the following properties:

(1) Fβ(0) = 0, Fβ(D) = (D), and Fβ|S1 is a critical circle map;

(2) Fβ and

Rθ(z) := e2πiθz

are quasiconformally conjugate on D;
(3) Fβ depends continuously on β ∈ Br;

(4) The constant M is independent of β ∈ Br.

Step 2. We show that there exists an M1-quasiconformal mapping φβ : Ĉ → Ĉ which fixes 0, 1,
and ∞, and has the following properties:
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(1) For some α ∈ C \ {0,−1},

Gβ(z) := φβ ◦ Fβ ◦ φ−1
β (z) = e2πiθ

z

1− α+1
α
z
eαz = gα,

where gα is as in the introduction.

(2) gα(= Gβ) has the Siegel disk 4α centered at the origin whose boundary ∂4α is an M1-
quasicircle containing exactly one critical point 1;

(3) The constant M1 is independent of β ∈ Br.

Step 3. From Step 2, we define the surgery map

S : Br → C \ {0,−1}, β 7→ α,

where Gβ = gα. We show that the surgery map S is continuous and S(β) → −1 as β → −1. Since
the set S(Br) is uncountable, and ∂4α is an M1-quasicircle containing exactly one critical point 1
for any α ∈ S(Br), we obtain the Main Theorem (ii) by taking

Ω2 := S(Br).

We prepare the following lemmas for the steps above:

Lemma 5.1. Let β ∈ Br, let
Dβ := {z | |z| < |fβ(1)|},

and let Uβ be the connected component of f−1
β (Dβ) which contains the origin. (Note that fβ(0) = 0.)

If r > 0 is small enough, then fβ|Uβ
: Uβ → Dβ is univalent and Uβ is simply connected. Moreover,

Uβ has the following properties:

(1) ∂Uβ is a piecewise smooth Jordan curve containing exactly one critical point 1:

(2) Uβ ⊂ D.

Proof. Suppose that β ∈ Br. fβ has two critical values fβ(1) and fβ(cβ). We have

fβ(1) = −βeβ, fβ(cβ) = − β

(1 + β)2
e−β/(1+β).

Since fβ(1) → e−1 and fβ(cβ) → ∞ as β → −1, we have fβ(cβ) /∈ Dβ for r > 0 small enough.
By [9, p.2155, Lemma 5.3], fβ|Uβ

: Uβ → Dβ is univalent and Uβ is simply connected. Obviously,
∂Dβ does not contain the asymptotic values 0 and ∞ of fβ. It follows from this that ∂Uβ is a
Jordan curve (see [9, p.2155, Lemma 5.4]). Since ∂Uβ is a preimage of ∂Dβ by fβ, ∂Uβ is piecewise
smooth. By the construction, we have fβ([0, 1)) ∈ R, f ′

β(z) 6= 0 for any z ∈ [0, 1), fβ(1) > 0, and
fβ(0) = 0. It follows that f ′

β(z) > 0 for any z ∈ [0, 1), and hence [0, 1) ⊂ Uβ. This implies that ∂Uβ

contains the critical point 1. An easy calculation shows that |fβ(z)| > fβ(1) for any z ∈ S1 \ {1},
and hence Uβ ⊂ D. By the construction, another critical point cβ is not in ∂Uβ for r > 0 small
enough.

Similarly, we can show the case β = −1. We omit the details. □
Lemma 5.2. If r > 0 is small enough, then there exists a constant K ≥ 1 such that ∂Uβ is a
K-quasicircle for all β ∈ Br.

Proof. The proof is similar to that of [17, p.142, Lemma 2.4]. We have to pay attention to the
existence of the pole tβ of fβ for β ∈ Br and modify the argument.
Suppose that r > 0 is small enough so that the statement of Lemma 5.1 holds. We take two

distinct points x and y in ∂Uβ so that they divide ∂Uβ into two Jordan arcs I and I ′. (We mean
that I ∪ I ′ = ∂Uβ and I ∩ I ′ = {x, y}.) For any piecewise smooth arc segment J , let |J | be
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the Euclidean length of J . We can assume that |fβ(I)| ≤ |fβ(I ′)| without loss of generality. Let
Diam(X) be as in Lemma 2.3. By Lemma 2.3, we have only to show that there exists a constant
A > 0 independent of β ∈ Br, x, and y such that

(5.1) Q(β, x, y) :=
Diam(I)

|x− y|
< A.

Since fβ(I) ⊂ ∂Dβ and ∂Dβ = {z | |z| = fβ(1)} is a circle, we have

(5.2) |fβ(I)| ≤ (π/2)|fβ(x)− fβ(y)|.
Henceforth let L be the closed straight line segment joining x and y. It follows from (5.2) and
|fβ(x)− fβ(y)| ≤ |fβ(L)| that
(5.3) |fβ(I)| ≤ (π/2)|fβ(L)|.
By Lemma 5.1, we have L ⊂ D. In addition, recall that fβ has the pole tβ with tβ → ∞ as β → −1.

Thus if r > 0 is small enough, then tβ /∈ D, and hence tβ /∈ L. Therefore, there exists a q ∈ L such
that |f ′

β(q)| = maxz∈L |f ′
β(z)| > 0. It follows that

(5.4) |fβ(L)| ≤ |f ′
β(q)||L|.

By the definition of a diameter, there exist points b1, b2 ∈ I such that |b1 − b2| = Diam(I).
Moreover, there also exists a j = 1 or 2 such that:

1 /∈ {z | |z − bj| ≤ Diam(I)/5}.
Let Ĩ be the connected component of

{z | |z − bj| ≤ Diam(I)/10} ∩ I
which contains bj. By definition, it follows that:

(5.5) |Ĩ| ≥ Diam(I)/10;

(5.6) |z − 1| ≥ Diam(I)/10 for any z ∈ Ĩ .

Since Ĩ does not contain critical points 1 and cβ of fβ, there exists a p ∈ Ĩ such that |f ′
β(p)| =

minz∈Ĩ |f ′
β(z)| > 0. It follows that

(5.7) |fβ(Ĩ)| ≥ |f ′
β(p)||Ĩ|.

From (5.4), (5.5), (5.7), the definition of Q(β, x, y), and Ĩ ⊂ I, we see that

|f ′
β(q)|

|f ′
β(p)|

≥ |fβ(L)|
|L|

· |Ĩ|
|fβ(Ĩ)|

=
|fβ(L)|
|fβ(Ĩ)|

· |Ĩ|
Diam(I)

· Diam(I)

|L|

≥ 1

10

|fβ(L)|
|fβ(I)|

·Q(β, x, y).(5.8)

It follows from (5.3) that

(5.9)
|fβ(I)|
|fβ(L)|

≤ π

2
.

The inequalities (5.8) and (5.9) yield

(5.10) Q(β, x, y) ≤ 5π
|f ′

β(q)|
|f ′

β(p)|
.
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An easy calculation shows that

f ′
β(z) = −β2 (z − 1)(z + 1/(β + 1))

(β + 1)(z − β/(β + 1))2
eβz.

Thus we have

(5.11)
|f ′

β(q)|
|f ′

β(p)|
=

|p− β/(β + 1)|2

|q − β/(β + 1)|2
· |q − 1|
|p− 1|

· |q + 1/(β + 1)|
|p+ 1/(β + 1)|

· |eβ(q−p)|.

Since L ⊂ D and Ĩ ⊂ I ⊂ D, we have |p| ≤ 1 and |q| ≤ 1. Thus we obtain for every β ∈ Br,

(5.12) |eβ(q−p)| < e2(1+r).

Moreover, when r > 0 is small enough, it follows that for every β ∈ Br,

(5.13)
|p− β/(β + 1)|2

|q − β/(β + 1)|2
< 2;

(5.14)
|q + 1/(β + 1)|
|p+ 1/(β + 1)|

< 2.

(This is because the left-hand sides of (5.13) and (5.14) converge to 1 as β → −1.) From the
triangle inequality, q ∈ L, and the definition of a diameter, we see that

|q − 1| ≤ |q − p|+ |p− 1|
≤ |q − x|+ |x− p|+ |p− 1|
≤ |x− y|+ |x− p|+ |p− 1|
≤ 2Diam(I) + |p− 1|.(5.15)

The inequalities (5.6) and (5.15) show that

|q − 1|
|p− 1|

≤ 2Diam(I) + |p− 1|
|p− 1|

=
2Diam(I)

|p− 1|
+ 1

≤ 2Diam(I)

Diam(I)/10
+ 1

= 21.(5.16)

It follows from (5.10)–(5.16) that if r > 0 is small enough, then for any β ∈ Br and any pair of x
and y in Uβ,

Q(β, x, y) < 420πe4 =: A,

as required. □
Henceforth we suppose that r > 0 is small enough so that the statements of Lemma 5.1 and Lemma
5.2 hold.

Lemma 5.3. Let {βn}n∈N ⊂ Br be a sequence with βn → β∞ ∈ Br as n→ ∞. Then ∂Uβn → ∂Uβ∞

as n→ ∞ with respect to the Hausdorff metric.

Proof. Suppose that there exists a subsequence {β′
n}n∈N ⊂ {βn}n∈N and a δ > 0 such that the

Hausdorff metric between ∂Uβ′
n
and ∂Uβ∞ is greater than δ for any n ≥ 1. By the Riemann mapping

theorem and Carathéodory’s theorem, we can take a homeomorphism ω̃βn : D → Uβn which is
conformal in D, and fixes 0 and 1. By Lemma 2.4, we can extend ω̃βn into a K2-quasiconformal
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mapping ωβn of Ĉ fixing 0 and 1, where K is as in Lemma 5.2. From the construction, every limit
function of {ωβn |Ĉ\{0,1}}n∈N cannot be the constant 0 or 1. Therefore, there exists a subsequence

{β′′
n}n∈N ⊂ {β′

n}n∈N such that ωβ′′
n
→ ω locally uniformly on C, where ω is a K2-quasiconformal

mapping of Ĉ fixing 0 and 1. Let

γ := ω(S1) ⊂ C.
By the construction, γ is aK2-quasicircle with ∂Uβ′′

n
→ γ (as n→ ∞) with respect to the Hausdorff

metric. By Lemma 5.1, we have Uβ′′
n
⊂ D for any n ≥ 1, and hence γ ⊂ D. In addition, from the

fact that fβ′′
n
→ fβ∞ uniformly on D and the definition of Dβ, it follows that

fβ′′
n
(∂Uβ′′

n
) → fβ∞(γ), ∂Dβ′′

n
→ ∂Dβ∞

with respect to the Hausdorff metric. Since ∂Dβ′′
n
= fβ′′

n
(∂Uβ′′

n
), we obtain fβ∞(γ) = ∂Dβ∞ . By

Hurwitz’s theorem, fβ∞ is univalent on the bounded component of C \ γ, and hence γ = ∂Uβ∞ .
It follows that ∂Uβ′′

n
→ ∂Uβ∞ with respect to the Hausdorff metric. This contradicts the fact that

{β′′
n}n∈N ⊂ {β′

n}n∈N. □

Next, we introduce the following version of the Herman-Świa̧tek theorem:

Lemma 5.4 ([9, p.2147, Theorem 3.8], [14], [15], and [24]). Let F be a family of holomorphic
maps defined in a neighborhood of S1 with the following properties:

(a) There exists an open annulus A containing S1 such that every f ∈ F is defined in A;

(b) f(S1) = S1 and f |S1 is a critical circle map;

(c) There exists an R > 0 such that for every f ∈ F , the rotation number of f |S1 has all its
entries of the continued fraction less than or equal to R;

(d) F is precompact on A for the Euclidean metric.

Then there exists a k > 1 such that for every f ∈ F , f |S1 is k-quasisymmetrically conjugate to
rotation.4)

Proof of the Main Theorem (ii). Our proof is divided into the three steps which we mentioned at
the beginning of this section. Recall that we restricted β to Br (or Br) and r > 0 is small enough
for the statements of Lemma 5.1 and Lemma 5.2 to hold.

Step 1: By the Riemann mapping theorem and Carathéodory’s theorem, for β ∈ Br, we can take

a homeomorphism ρβ : Ĉ \D → Ĉ \Uβ which is conformal in Ĉ \D, and satisfies ρβ(∞) = ∞ and

ρβ(1) = 1. By Lemma 2.4, we can extend ρβ into a K2-quasiconformal mapping ρ̂β of Ĉ fixing 1
and ∞, where K is as in Lemma 5.2.
For any sequence {βn}n∈N ⊂ Br with βn → β∞ ∈ Br as n→ ∞, it follows from the construction

that every limit function of {ρ̂βn |Ĉ\{1,∞}}n∈N cannot be the constant 1 or ∞. Thus there exists

a subsequence {β′
n}n∈N ⊂ {βn}n∈N such that ρ̂β′

n
→ σ locally uniformly on C, where σ is a K2-

quasiconformal mapping of Ĉ fixing 1 and ∞. It follows from Lemma 5.3 that σ|Ĉ\D = ρβ∞ , and

hence ρ̂β′
n
|Ĉ\D = ρβ′

n
→ ρβ∞ locally uniformly on C\D. This implies that the set of all limit functions

of {ρβn}n∈N contains only ρβ∞ , and hence ρβn → ρβ∞ locally uniformly on C \ D. Therefore, ρβ
depends continuously on β ∈ Br. The map fβ ◦ ρβ|S1 : S1 → ∂Dβ is a homeomorphism, where Dβ

is as in Lemma 5.1. From the standard theory about the rotation number, there exists a unique

4)For the definition of quasisymmetric mappings from S1 to itself, see [13] or [9, p.2144, Definition 3.2]. The
rotation is the map z 7→ e2πiθz, where θ is the rotation number of f |S1 .
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θβ ∈ [0, 1) such that for

Lβ(z) :=
e2πiθβz

|fβ(1)|
,

the rotation number of Lβ ◦ fβ ◦ ρβ|S1 : S1 → S1 is the θ which was fixed at the beginning (see [7,
p.103, Theorem 3.20]). By the construction, Lβ depends continuously on β ∈ Br. For β ∈ Br, we
define

F̃β(z) := Lβ ◦ fβ ◦ ρβ(z) (z ∈ C \ D).
The Schwarz reflection principle shows that if r > 0 is small enough, then there exists an l > 1
such that for any β, F̃β is extended to a holomorphic map F̂β in {z | |z| > 1/l}. Henceforward, we
fix a small enough r > 0 so that such extension goes well and the statements of Lemma 5.1 and
Lemma 5.2 hold. Set

Al := {z | 1/l < |z| < l}.
By the construction, F̂β|Al

depends continuously on β ∈ Br, and hence the family {F̂β|Al
}β∈Br

satisfies the assumption of Lemma 5.4. By Lemma 5.4, there exists a k-quasisymmetric mapping
sβ : S1 → S1 for β ∈ Br such that

sβ ◦ F̂β|S1 ◦ s−1
β = Rθ, sβ(1) = 1,

where k > 1 is independent of β and Rθ(z) = e2πiθz. By the theory of Ahlfors-Beurling, we can
extend sβ as a homeomorphism ŝβ : D → D which is an M -quasiconformal mapping in D with
sβ(0) = 0, where M depends only on k, and hence M is independent of β (see [9, p.2148, Lemma

3.10]). Since F̂β|S1 = F̃β|S1 depends continuously on β, one can show that sβ depends continuously
on β ∈ Br. Then it follows from the way of its extension that ŝβ also depends continuously on β.
For β ∈ Br, we define Fβ as follows:

Fβ(z) :=

{
F̃β(z) (z ∈ C \ D)
ŝ−1
β ◦Rθ ◦ ŝβ(z) (z ∈ D).

Since F̃β|S1 = F̂β|S1 = s−1
β ◦ Rθ ◦ sβ, Fβ is continuous. In addition, Fβ : C → Ĉ is locally M -

quasiconformal except the two preimages of the two critical points of fβ by ρβ. Thus Fβ is an
M -quasiregular mapping. By the construction, Fβ satisfies the following properties:

(1) Fβ(0) = 0, Fβ(D) = (D), and Fβ|S1 is a critical circle map;

(2) Fβ and Rθ are quasiconformally conjugate on D;
(3) Fβ depends continuously on β ∈ Br;

(4) The constant M is independent of β ∈ Br.

Thus, we achieve the goal of Step 1.

Step 2: We construct an Fβ-invariant almost complex structure on Ĉ with Beltrami coefficient
µβ satisfying ||µβ||∞ < k′ for some k′ < 1 independent of β as follows: Let µŝβ be the Beltrami

coefficient of ŝβ in D. If z ∈ F−n
β (D) for some integer n ≥ 0, then we define µβ(z) as the pullback

of µŝβ(F
n
β (z)) by F n

β . Otherwise, set µβ(z) := 0. Since the almost complex structure on D with

Beltrami coefficient µŝβ is Fβ-invariant, the almost complex structure on Ĉ with coefficient µβ is
well-defined and Fβ-invariant. We have ||µβ||∞ < k′ for some k′ < 1, since Fβ is holomorphic on

C \ D and Fβ(D) = (D). Moreover, we can take k′ < 1 independent of β, since the quasiregular
constant M of Fβ is independent of β. By the integrability theorem (see [7, p.40, Theorem 1.28]),
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there exists a quasiconformal mapping φβ : Ĉ → Ĉ which solves the Beltrami equation with
coefficient µβ and fixes 0, 1, and ∞. Therefore,

Gβ := φβ ◦ Fβ ◦ φ−1
β : C → Ĉ

is meromorphic. By the construction, Gβ has the only one zero 0 and the only one pole. Thus
there exist an entire function h(z) and non-zero constants b and p such that

Gβ(z) = b
z

z − p
eh(z).

We can show that h(z) is a polynomial of degree 1 as follows: When |z| is large enough, we have
(∗) ϕ1 ◦Gβ(z) = fβ ◦ ϕ2(z),

where

ϕ1 := L−1
β ◦ φ−1

β , ϕ2 := ρβ ◦ φ−1
β .

Obviously, ϕ1 and ϕ2 are quasiconformal mappings. Since ϕ1 and ϕ
−1
2 are Hölder continuous at ∞,

there exist positive constants K ′ > 1, C1, and C2 such that

|ϕ1(z)| ≥ C1|z|1/K
′
, |ϕ2(z)| ≤ C2|z|K

′
for |z| large enough.

From this and |fβ(z)| ≤ e|z|
2
(|z| → ∞), there exist positive constants A and N such that

max
|z|=R

eh(z) ≤ eARN

for R > 0 large enough.

Thus h(z) is a polynomial. In addition, the relation (∗) implies that both of fβ and Gβ have only
one positive (or negative) sector in a punctured neighborhood of ∞ in the sense of [27, p.495].
Therefore, we deduce that h(z) is a polynomial of degree 1.
By the construction, we have G′

β(0) = e2πiθ and G′
β(1) = 0. Hence as in the proof of Proposition

3.1, we obtain for some α ∈ C \ {0,−1},

Gβ(z) = gα(z) = e2πiθ
z

1− α+1
α
z
eαz.

It follows from the construction that gα(= Gβ) has the Siegel disk 4α = φβ(D) centered at the
origin. Since ||µβ||∞ < k′ for k′ < 1 independent of β, there exists a constant M1 ≥ 1 independent
of β such that φβ is M1-quasiconformal. Thus the boundary ∂4α = φβ(S1) is an M1-quasicircle
containing exactly one critical point 1 of gα. Therefore, the argument above completes Step 2.

Step 3: From Step 2, we can define the surgery map

S : Br → C \ {0,−1}, β 7→ α,

where Gβ = gα. In order to show that S is continuous, we claim the following assertion, whose
proof is similar to the argument in [17, p.157, Section 5] or [26, p.218, Section 11]:

Assertion. Let {βn}n∈N ⊂ Br be any sequence with βn → β∞ ∈ Br as n → ∞. Then there exists
a subsequence {β′

n}n∈N ⊂ {βn}n∈N such that S(β′
n) → S(β∞) as n→ ∞.

Proof of the assertion. By Step 2, there exists a subsequence {β′
n}n∈N ⊂ {βn}n∈N and an M1-

quasiconformal mapping φ : Ĉ → Ĉ such that φβ′
n
→ φ locally uniformly on C (as n → ∞). We

define

ς := φ ◦ Fβ∞ ◦ φ−1, ςn := φβ′
n
◦ Fβ′

n
◦ φ−1

β′
n
, ς∞ := φβ∞ ◦ Fβ∞ ◦ φ−1

β∞

If ς = ς∞, then S(β′
n) → S(β∞). The proof is completed in the case. Henceforth we suppose that

ς 6= ς∞.
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We can show that if ς 6= ς∞, then µβ′
n
→ µβ∞ with respect to the spherical measure as follows:

For a measurable set E ⊂ Ĉ, let Area(E) be the Lebesgue area of E in the spherical metric. In
addition, we define

Qε
n := {z ∈ C | |µβ′

n
(z)− µβ∞(z)| > ε},

for ε > 0 and n ≥ 1. It suffices to show that for any ε > 0 and any C > 0, if n is large enough,
then Area(Qε

n) < C. By the definitions of µβ′
n
and µβ∞ , we obtain

(5.17) Qε
n ⊂

⋃
k≥0

F−k
β′
n
(D) ∪

⋃
k≥0

F−k
β∞

(D).

Obviously, ς and ς∞ are quasiconformally conjugate. It follows from ς 6= ς∞, ςn → ς locally
uniformly, and the argument similar to that in [26, p.201] or [17, p.157, p.158] that for n large

enough, there exist quasiconformal mappings ξn : Ĉ → Ĉ such that:

(i) ξn fixes 0, 1, and ∞;

(ii) ξn satisfies

ξn ◦ ς = ςn ◦ ξn;

(iii) The complex dilatations χn of ξn are uniformly bounded, and

||χn||∞ → 0 (n→ ∞).

Hence we have

τn ◦ Fβ∞ = Fβ′
n
◦ τn,

where τn := φ−1
β′
n
◦ ξn ◦ φ. It follows from the construction that for every n ≥ 1,

τn(D) = D, τn(Ĉ \ D) = Ĉ \ D, τn(0) = 0, τn(∞) = ∞,

and the complex dilatations of quasiconformal mappings τn are uniformly bounded. Thus from
this, the fact that the area of the Riemann sphere is finite, and the area distortion theorem (see
[3, p.37, Theorem 1.1]), we deduce that for any δ > 0, there exists an integer N ≥ 1 such that:

(5.18) Area

(⋃
k≥0

F−k
β∞

(D) \
⋃

0≤k≤N

F−k
β∞

(D)

)
< δ,

and for n large enough,

(5.19) Area

(⋃
k≥0

F−k
β′
n
(D) \

⋃
0≤k≤N

F−k
β′
n
(D)

)
< δ.

Note that every connected component of F−k
β′
n
(D) is the image of some connected component of

F−k
β∞

(D) by τn. It follows from the properties (i) and (iii) of ξn that ξn → IdĈ locally uniformly,
and hence τn → IdĈ locally uniformly. We have for n large enough,

(5.20) Area

( ⋃
0≤k≤N

F−k
β′
n
(D) \

⋃
0≤k≤N

F−k
β∞

(D)

)
< δ.

From the construction, ŝβ′
n
◦ FN

β′
n
→ ŝβ∞ ◦ FN

β∞
locally uniformly on

⋃
0≤k≤N F

−k
β∞

(D) as n → ∞.

In addition, when z ∈
⋃

0≤k≤N F
−k
β∞

(D) and n is large enough, the complex dilatation of ŝβ′
n
◦ FN

β′
n
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at z and that of ŝβ∞ ◦ FN
β∞

at z are µβ′
n
(z) and µβ∞(z) respectively. It follows from this and the

construction that for n large enough,

(5.21) Area

(
Qε

n ∩
⋃

0≤k≤N

F−k
β∞

(D)

)
< δ.

From (5.17)–(5.21), we obtain
Area(Qε

n) < 4δ.

Since δ > 0 is arbitrary, we can take 4δ = C. This implies that µβ′
n
→ µβ∞ with respect to the

spherical measure.
From the argument above and [19, p.29, Theorem 4.6], we have φβ′

n
→ φβ∞ locally uniformly.

It follows that ς = ς∞. On the other hand, we assumed that ς 6= ς∞. This is a contradiction,
and hence we obtain ς = ς∞ and S(β′

n) → S(β∞) as n → ∞. This completes the proof of the
assertion. ■

The assertion implies that if βn → β∞ ∈ Br, then the set {S(βn)}n∈N is bounded and has
only one accumulation point S(β∞). It follows that S(βn) → S(β∞) as n → ∞, and hence S is
continuous.

Finally, we show that S(β) → −1 as β → −1. Recall that φβ : Ĉ → Ĉ is an M1-quasiconformal
mapping fixing 0, 1, and ∞, where M1 is independent of β, and ρβ can be extended to a K2-

quasiconformal mapping of Ĉ fixing 1 and ∞, where K is as in Lemma 5.2. Thus

{ψβ := φβ ◦ ρ−1
β }β∈Br

is uniformly Hölder continuous at ∞ in the sense of [20, p.70] (see [20, p.70, Theorem 4.3]). In
addition, since gS(β) has a critical point cS(β) = −1/(S(β) + 1) = ψβ(−1/(β + 1)), it follows from
−1/(β + 1) → ∞ as β → −1 that

−1

S(β) + 1
= ψβ

(
−1

β + 1

)
→ ∞

as β → −1. This shows that S(β) → −1 as β → −1, and hence S(Br) is uncountable. Moreover,
by the construction, 4α is anM1-quasicircle containing exactly one critical point 1 when α ∈ S(Br)
(see Step 2). Thus we can take

Ω2 := S(Br).

Therefore, we have the desired result of the Main Theorem (ii). □
Remark 5.5. From this construction of Ω2 and Proposition 3.2, there exists an uncountable set Ω̃2

such that if α ∈ Ω̃2, then ∂4α is a quasicircle containing exactly one critical point cα. Moreover,
it follows from the construction that gα(cα) /∈ 4α for α ∈ Ω2.

6. Proof of the Main Theorem (iii)

In this section, we show the Main Theorem (iii) by the quasiconformal surgery in Section 5. Let
fβ be as in Section 5. For 0 < r < π, we restrict β to the set

Cr := {z = −1 + eiθ | θ ∈ [π − r, π) ∪ (π, π + r]}.

Lemma 6.1. Let β ∈ Cr, let
Dβ := {z | |z| < |fβ(1)|},

and let Uβ be the connected component of f−1
β (Dβ) which contains the origin. (Note that fβ(0) = 0.)

If r > 0 is small enough, then fβ|Uβ
: Uβ → Dβ is univalent and Uβ is simply connected. Moreover,

Uβ has the following properties:
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(1) ∂Uβ is a piecewise smooth Jordan curve containing exactly two critical points 1 and cβ =
ei(π−θ);

(2) There exists a large enough R > 1 independent of β such that

Uβ ⊂ E,

where E := {z | |z| ≤ R} \ {z | |z − tβ| < 1/R}.

Proof. We show that ∂Uβ contains 1 and cβ as follows: An easy calculation shows that for 0 <
x < 1,

|fβ(x)|2 = |fβ(xei(π−θ))|2 = 2x2(1− cos θ)

(x− (1− cos θ))2 + sin2 θ
e−2x+2x cos θ =:M(x).

In addition, we have

M ′(x) =
4x(1− cos θ)2(1− x)(x2 + (2 cos θ − 1)x+ 2)

((x− (1− cos θ))2 + sin2 θ)2
e−2x+2x cos θ.

Therefore, we have M ′(x) > 0 for any 0 < x < 1. Thus Uβ contains

{x | 0 < x < 1} ∪ {xei(π−θ) | 0 < x < 1},
and hence ∂Uβ contains 1 and cβ. From the argument in the proof of Lemma 5.1, it follows that
f |Uβ

: Uβ → Dβ is univalent and ∂Uβ is a piecewise smooth Jordan curve. This shows (1).
Since

fβ
eβz

=
z

(1− (β + 1)z/β)
→ −β

β + 1
(z → ∞)

and ∂Dβ = {z | |z| = |fβ(1)|} is bounded away from 0 and ∞, which are asymptotic values of
z 7→ eβz, there exists some compact set E ′ such that Uβ ⊂ E ′ for any β ∈ Cr. Moreover, since the
pole tβ → 2 and fβ → f−2 uniformly in a neighborhood of t−2 = 2 with respect to the spherical
metric as β → −1 + eiπ = −2, we can choose a large enough R > 0 such that the property (2)
holds if r > 0 is small enough. □
Lemma 6.2. If r > 0 is small enough, then there exists a constant K ≥ 1 independent of β such
that ∂Uβ is a K-quasicircle for any β ∈ Cr.

Proof. The proof is similar to that of Lemma 5.2. However, we have to modify the treatment of
the pole tβ and pay attention to the two critical points 1 and cβ in ∂Uβ. Suppose that r > 0 is
small enough so that the statement of Lemma 6.1 holds. We need to show that there exists a
constant A > 0 independent of β ∈ Cr and two distinct points x and y in ∂Uβ such that

(6.1) Q(β, x, y) :=
Diam(I)

|L|
< A,

where I and I ′ are two Jordan arcs with ∂Uβ = I ∪ I ′, I ∩ I ′ = {x, y}, and |fβ(I)| ≤ |fβ(I ′)|,
and L is the closed straight line segment joining x and y. Let d be the distance from tβ to the
straight line segment L. Suppose that d < 1/(2R). Then the property (2) in Lemma 6.1 assures
that |L| > 1/R. Since Diam(I) ≤ 2R, we have

(6.2) Q(β, x, y) =
Diam(I)

|L|
<

2R

1/R
= 2R2.

Henceforth, we consider the case d ≥ 1/(2R). There exist two points b1 and b2 in I such that

|b1 − b2| = Diam(I). In addition, there exists a connected component Î of

{z | 3Diam(I)/10 ≤ |z − b1| ≤ 2Diam(I)/5} ∩ I
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with |Î| ≥ Diam(I)/10. If

{1, cβ} ∩ {z | |z − bj| ≤ Diam(I)/5} 6= ∅

for j = 1, 2, then we define Ĩ := Î. Otherwise, there exists a j = 1 or 2 such that:

{1, cβ} ∩ {z | |z − bj| ≤ Diam(I)/5} = ∅.

In this case, let Ĩ be the connected component of

{z | |z − bj| ≤ Diam(I)/10} ∩ I
which contains bj. By definition, we have

(6.3) |Ĩ| ≥ Diam(I)/10;

(6.4) |z − cβ| ≥ Diam(I)/10, |z − 1| ≥ Diam(I)/10 for any z ∈ Ĩ .

As in the proof of Lemma 5.2, we can show that there exist points q ∈ L and p ∈ Ĩ such that

(6.5) Q(β, x, y) ≤ 5π
|f ′

β(q)|
|f ′

β(p)|
.

From the argument similar to the proof of Lemma 5.2, the property (2) in Lemma 6.1, (6.3), (6.4),
and the assumption d ≥ 1/(2R), there exists a constant A′ > 0 independent of β, x, and y such
that

(6.6)
|f ′

β(q)|
|f ′

β(p)|
< A′.

From (6.2), (6.5), and (6.6), we can take A := max{5πA′, 2R2}. □
Remark 6.3. In Lemma 6.2, we suppose that r > 0 is small enough. However, by using the
compactness of Cr ∪ {−2} and modifying the proofs in Lemma 6.1 and Lemma 6.2, one can
remove the assumption. Let

C̃ := {z = −1 + eiθ | θ ∈ (0, π) ∪ (π, 2π)},

and let Dβ and Uβ be as in Lemma 6.1 for β ∈ C̃. It follows from the proof of Lemma 6.1 that

|fβ(1)| = |fβ(cβ)| and ∂Uβ contains exactly two critical points of fβ for any β ∈ C̃. However,
since fβ is not defined for β = 0 = −1 + e2πi, and |fβ(1)| = |fβ(cβ)| → 0 and the pole tβ → 0 as
β → 0, we do not know whether there exists a constant K ≥ 1 independent of β such that ∂Uβ is

a K-quasicircle for any β ∈ C̃ or not.

Proof of the Main Theorem (iii). From Lemma 6.1 and Lemma 6.2, we can apply the quasiconfor-
mal surgery technique in Section 5 to fβ for β ∈ Cr. Hence there exists a continuous mapping

S : Cr → C \ {0,−1}
such that ∂4S(β) is a quasicircle containing exactly two critical points. Note that the construction
assures that we can choose the quasicircle constant of ∂4S(β) independent of β ∈ Cr. Moreover,

there exist quasiconformal mappings ψβ for β ∈ Cr of Ĉ fixing 1 and ∞ such that:

(1) {ψβ}β∈Cr is uniformly Hölder continuous at 1 in the sense of [20, p.70];

(2) gS(β) has two critical points 1 and

cS(β) =
−1

S(β) + 1
= ψβ

(
−1

β + 1

)
.
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Since −1/(β + 1) → 1 as β → −2, we have

cS(β) =
−1

S(β) + 1
→ 1 (β → −2),

and hence
S(β) → −2 (β → −2).

Thus S(Cr) is uncountable. We can take

Ω3 := S(Cr). □

7. Proof of the Main Theorem (iv)

In this section, we give another construction of Ω2 and prove the Main Theorem (iv). We
extend the surgery map S : Cr → C \ {0,−1} in the proof of the Main Theorem (iii) into the map
S : Qr → C \ {0,−1}, where Qr ⊃ Cr is defined as follows: For any 0 < r < π, let

Ir := {z = k(r) + iy | −l(r) ≤ y ≤ l(r)}
where k(r) and l(r) are the real part and the imaginary part of −1+ ei(π−r) ∈ Cr respectively, and
let Qr be the bounded closed domain whose boundary is

{−2} ∪ Cr ∪ Ir.
Note that k(r) → −2 and l(r) → 0 as r → 0. Let Dβ and Uβ be as in Lemma 6.1 for β ∈ Qr. As
in the proofs of Lemma 5.1, Lemma 6.1, and Lemma 6.2, we can easily show the following lemma:

Lemma 7.1. Let
B̂r := (−2, k(r)].

If r > 0 is small enough and β ∈ B̂r, then |fβ(1)| > |fβ(cβ)| and fβ|Uβ
: Uβ → Dβ is univalent

and ∂Uβ is a piecewise smooth Jordan curve which contains exactly one critical point 1 of fβ.
Moreover, there exists a constant K ≥ 1 independent of β such that ∂Uβ is a K-quasicircle for

any β ∈ B̂r.

Henceforth let Q̃r be the interior of Qr.

Lemma 7.2. If r > 0 is small enough and β ∈ Q̃r, then fβ|Uβ
: Uβ → Dβ is univalent and ∂Uβ is

a piecewise smooth Jordan curve which contains exactly one critical point 1 of fβ. Moreover, there

exists a constant K ≥ 1 independent of β such that ∂Uβ is a K-quasicircle for any β ∈ Q̃r.

Proof. First of all, we show that ∂Uβ contains the critical point 1 of fβ as follows: Let

M(x) := |fβ(x)|2,

where β = −2+X + iY ∈ Q̃r for 0 < X ≤ k(r) + 2 < 2 and −l(r) < Y < l(r), and 0 < x < 1. An
easy calculation shows that

M ′(x) = L(x) · P (x),
where

L(x) :=
2x(2−X)((2−X)2 + Y 2)(1− x)e2(−2+X)x

((−2 +X + (1−X)x)2 + Y 2(1− x)2)2
,

P (x) := ((1−X)2 + Y 2)x2 − (Y 2 + (X − 1)(X − 3))x+ 2−X + Y 2/(2−X).

Obviously, we obtain L(x) > 0. Since 0 < X < 2, we have

P (1) = X + Y 2/(2−X) > 0.

It follows from this that if r > 0 is small enough, then P (x) > 0 for 0 < x < 1. This implies that
Uβ contains (0, 1), and hence ∂Uβ contains the critical point 1 of fβ.
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Next, we show that fβ : Uβ → Dβ is univalent and cβ /∈ ∂Uβ as follows: Let β = −2+X+iY ∈ Q̃r

for 0 < X ≤ k(r) + 2 < 2 and −l(r) < Y < l(r). Note that

|fβ(1)/β| = |eβ|, |fβ(cβ)/β| = |e−β/(β+1)/(β + 1)2|.
Let

H(X,Y ) := |eβ| − |e−β/(β+1)/(β + 1)2| = e−2+X − 1

(−1 +X)2 + Y 2
eF (X,Y ),

where

F (X,Y ) :=
(2−X)(−1 +X)− Y 2

(−1 +X)2 + Y 2
.

One can check that

∂H(X,Y )

∂Y
=

2Y

((−1 +X)2 + Y 2)3
eF (X,Y ) ·G(X,Y ),

where

G(X,Y ) :=

(
X − 1

2

)2

+ Y 2 − 1

4
.

For any fixed 0 < X ≤ k(r) + 2, define Y (X) > 0 and T (X) > 0 by

G(X,±Y (X)) = 0, −2 +X ± iT (X) ∈ Cr.

We have Y (X) < T (X), and hence

∂H(X,Y )

∂Y
< 0 (−T (X) < Y < −Y (X), 0 < Y < Y (X)),

∂H(X,Y )

∂Y
= 0 (Y = 0, ±Y (X)),

∂H(X,Y )

∂Y
> 0 (−Y (X) < Y < 0, Y (X) < Y < T (X)).

Since H(X, 0) > 0 from Lemma 7.1 and H(X,±T (X)) = 0, there exists a constant W (X) ∈
(0, Y (X)) such that:

H(X,Y ) > 0 (−W (X) < Y < 0, 0 < Y < W (X)),(7.1)

H(X,Y ) = 0 (Y = ±W (X)),(7.2)

H(X,Y ) < 0 (−T (X) < Y < −W (X), W (X) < Y < T (X)).(7.3)

By Lemma 7.1, we have cβ /∈ Uβ and |fβ(1)| > |fβ(cβ)| for any β ∈ B̂r. Obviously, the mappings

β 7→ cβ, β 7→ |fβ(1)|, β 7→ |fβ(cβ)|
are continuous. Therefore, there exist the positive values:

S+(X) := sup{L > 0 | cβ /∈ Uβ for any β ∈ I+(L)},

S−(X) := sup{L > 0 | cβ /∈ Uβ for any β ∈ I−(L)},
where

I+(L) := {β = −2 +X + iY ∈ Q̃r | 0 < Y < L},
I−(L) := {β = −2 +X + iY ∈ Q̃r | −L < Y < 0}.

Suppose that S+(X) < T (X). Then, as in the proofs of Lemma 5.1, Lemma 6.1, and Lemma 6.2,
fβ : Uβ → Dβ is univalent, and there exists a constant K ′ ≥ 1 independent of β such that ∂Uβ is
a K ′-quasicircle for any β ∈ I+(S+(X)). Let

β(X) := −2 +X + iS+(X).
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It follows from the argument in the proof of Lemma 5.3 that ∂Uβ(X) is a (K ′)2-quasicircle and
fβ(X) : Uβ(X) → Dβ(X) is univalent. Therefore, we have cβ(X) /∈ Uβ(X). Since H(X,Y ) < 0 for

W (X) < Y < T (X) from (7.3), we obtain S+(X) ≤ W (X). Let pβ ∈ Uβ be the preimage of fβ(cβ)
by fβ for β ∈ I+(S+(X)) ∪ {β(X)}. Note that pβ 6= cβ and pβ ∈ Uβ for β ∈ I+(S+(X)). From
the construction, we see that S+(X) = W (X) and pβ → pβ(X) ∈ ∂Uβ(X) as β → β(X). Moreover,

since the multiplicity of cβ is unchanged for all β ∈ Q̃r, it follows that pβ(X) 6= cβ(X). This implies

that cβ /∈ Uβ for all β ∈ I+(S+(X)) ∪ {β(X)}. This contradicts the definition of S+(X), and
hence S+(X) ≥ T (X). Similarly, we can show that S−(X) ≥ T (X). Since 0 < X ≤ k(r) + 2 is
arbitrary, fβ|Uβ

: Uβ → Dβ is univalent and ∂Uβ is a piecewise smooth Jordan curve containing

exactly one critical point of fβ for any β ∈ Q̃r. As in the proof of Lemma 6.2, for some constant

K ≥ 1 independent of β, ∂Uβ is a K-quasicircle for any β ∈ Q̃r. □
Remark 7.3. Let W (X) be as in the proof of Lemma 7.2. Obviously, the map

W : (0, k(r) + 2] → R, X 7→ W (X)

is continuous. Note that W (X) → 0 as X → 0. In addition, it follows from the proof of Lemma
7.2 that ∂Dβ contains fβ(cβ) and ∂Uβ does not contain cβ for β = −2 +X ± iW (X).

It follows from Lemma 6.1, Lemma 6.2, Lemma 7.2, and the quasiconformal surgery technique in
Section 5 that:

Lemma 7.4. There exists a continuous mapping

S : Qr → C \ {0,−1}
such that:

(1) If α ∈ S(Cr), then ∂4α contains exactly two critical points;

(2) If α ∈ S(Q̃r ∪ Ir), then ∂4α contains exactly one critical point 1;

(3)
S(−2) = −2.

Remark 7.5. From the construction, the three sets S(Cr), S(Q̃r ∪ Ir), and {−2} are mutually
disjoint.

Moreover, it follows from Remark 7.3, Lemma 7.4, and (7.1), (7.2), and (7.3) in the proof of Lemma
7.2 that:

Lemma 7.6. Let S be as in Lemma 7.4. Then there exist uncountable sets Ω2,1, Ω2,2, and Ω2,3 in

S(Q̃r) such that:

(1)

S(Q̃r) = Ω2,1 ∪ Ω2,2 ∪ Ω2,3;

(2) If α ∈ Ω2,1, then gα(cα) ∈ 4α;

(3) If α ∈ Ω2,2, then gα(cα) ∈ ∂4α;

(4) If α ∈ Ω2,3, then gα(cα) /∈ 4α;

(5)
Ω2,2 ⊂ ∂Ω2,1 ∩ ∂Ω2,3, Ω3 := S(Cr) ⊂ ∂Ω2,3.

Remark 7.7. Obviously, the three sets Ω2,1, Ω2,2, and Ω2,3 are mutually disjoint. The set S(Q̃r)
may contain some open set.
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Proof of the Main Theorem (iv). By Lemma 7.4 and Lemma 7.6, we can also take

Ω2 := S(Q̃r).

Furthermore, this construction of Ω2 := S(Q̃r) shows the claim. □

8. Concluding remarks

In this paper, we deal with the one parameter family {gα}α∈C\{0,−1}. By the Main Theorem,
gα has the Siegel disk 4α (centered at the origin) bounded by a quasicircle containing critical
points for uncountably many α. However, there are many parameters α left. We ask the following
questions:

Question 2. Are 4α bounded by quasicircles containing at least one critical point of gα for all
α ∈ C \ {0,−1}?
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