POLYNOMIAL INVARIANTS OF VIRTUAL DOODLES AND
FLAT VIRTUAL KNOTS

JOONOH KIM AND KYOUNG-TARK KIM

Abstract. In this paper, we introduce new polynomial invariants
of virtual doodles obtained by combining a state model with an
integer labeling to flat virtual knot diagrams. Using our invariants
we show that the doodle diagram dy; is different from the doodle
diagram dy 4.

1. Introduction

A virtual link diagram is a link diagram in R? possibly having some
encircled crossings without over/under information. Such an encircled
crossing is called a virtual crossing (see Fig. 1).

AKX X

Real crossing Virtual crossing Flat crossing

Figure 1. Crossing types

Two virtual link diagrams are said to be equivalent if they are related
by a finite sequence of generalized Reidemeister moves described in
Fig. 2. A virtual link is defined as an equivalence class of virtual link
diagrams [4].

A flat virtual link diagram is a virtual link diagram in R? in which the
over/under information at each real crossing is ignored. In particular,
a l-component flat virtual link diagram is called a flat virtual knot
diagram. A crossing without over/under information is called a flat
crossing (see Fig. 1). Two flat virtual link diagrams are said to be
equivalent if they are related by a finite sequence of generalized flat
Reidemeister moves described in Fig. 3, which are flattened versions of
the generalized Reidemeister moves. A flat virtual link is defined as
an equivalence class of flat virtual link diagrams. Hence, a flat virtual
knot is an equivalence class of flat virtual knot diagrams.

Doodles were first introduced in [1]. The original definition of a doo-
dle was a collection of embedded circles in the sphere % with no triple
or higher intersection points. Khovanov [8] extended the idea to allow
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Figure 2. Generalized Reidemeister moves
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Figure 3. Generalized flat Reidemeister moves

each component to be an immersed circle in §2. In [3], Bartholomew,
Fenn, N. Kamada, and S. Kamada extend the range of doodles to im-
mersed circles in closed orientated surfaces of any genus.

A virtual doodle diagram can be regarded as a flat virtual link dia-
gram in S2. So, a virtual doodle diagram with just one component may
be a flat virtual knot diagram. Two virtual doodle diagrams are called
equivalent if they are related by a finite sequence of the generalized
flat Reidemeister moves except the move FRj3 in Fig. 3, called doodle
moves. A virtual doodle is defined as an equivalence class of virtual
doodle diagrams [3].

Let D be a flat virtual link diagram. D is said to be oriented if each
component of D is oriented. Equivalence of two oriented flat virtual
link diagrams is similarly defined as in the case of unoriented diagrams
except that orientations are taken into consideration. An oriented flat
virtual link is defined to be an equivalence class of oriented flat virtual

link diagrams.
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The study of virtual knots is closely related to that of flat virtual
knots. Indeed, for a given virtual knot diagram, we obtain a flat vir-
tual knot diagram by ignoring the over /under information at each real
crossing. Thus, some invariants of virtual knots are modified ones of
flat virtual knots [5, 6, 7].

Invariants of virtual doodles are hardly known as research has only
recently been carried out. In [3], Bartholomew, Fenn, N. Kamada, and
S. Kamada introduced an invariant defined in terms of colorings of vir-
tual diagrams, specifically flat virtual knot diagrams. In [7], the author
presented an invariant using the flat virtual knot invariant introduced
in [5].

The purpose of this paper is to provide new polynomial invariants
for virtual doodles and flat virtual knots. This paper is organized as
follows: In Section 2, we present our method for constructing a new
polynomial invariant of flat virtual knots. In Section 3 and Section 4,
we demonstrate the invariance of this polynomial. Finally, in Section 5,
we apply the method described in Section 2 to provide a polynomial
invariant for virtual doodles.

In the following sections, we assume that diagrams, virtual links and
virtual doodles are oriented.
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2. The polynomial Pp(t) for a flat virtual knot diagram D

Let D be a flat virtual knot diagram and C(D) the set of all flat crossings
of D. Suppose that |C(D)| = 2. We first fix p e C(D), which we call
a base point, and locally assign integers +1 to two arcs near p as in
Fig. 4.

+1 -1
p : a base point

-1 +1

Figure 4. Local {+1}-assignment near a base point

Now consider g € C(D)\{p}. As shown in the leftmost diagram in
Fig. 5, let D(gq) be the diagram obtained from D by smoothing the flat
crossing ¢g. The diagram D(q) has two components. We say that D(g)
is compatible with p if p is a mixed crossing of D(g), i.e., p is a crossing

of distinct two components of D(g); see Fig. 6.
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Figure 6. Examples of compatibility and incompatibility

For p e C(D), we define
Cy(D) = {ge C(D)\{p} : D(q) is compatible with p}.

If the diagram D(g) is compatible with the base point p, then the
labels +1 are given to the two components of D(g) in such a way that
the assignment at p is as in Fig. 4. The diagram D(q) together with
the labeled components is denoted by D,(gq).

The sign of the diagram D,(g), which we denote by sgn(D,(q)),
is defined as +1 depending on the situation depicted in Fig. 5. For
ceC(Dp(q)), we define ind(D,(g);c) by the rule depicted in Fig. 7.

+1 -1 -1 +1 +1 +1 -1 —1
-1 +1 +1 -1 +1 +1 -1 -1
ind(D,(q);c)=+1 ind(Dy(q);c)=—1 ind(D(g);c)=0 ind(Dp(g);c)=0

Figure 7. Indices for ce C(D,(q))
For g € C,(D), we define the linking index 1k(D,(q)) by
k(Dp(q) = ), ind(Dp(q)sc).
ceC(Dy(q))
Now, we are in a position to give the following definition.

Definition 1. For a flat virtual knot diagram D, we define a polynomial
Pp(t) € Z[t] as follows:

if |C(D)| <1,
Pp(t) = Z Z sgn(D A@p@)l - otherwise.
peC(D) geCy(D)



Remark 2. Let —D be the inverse oriented diagram of D. Then, ac-
cording to Definition 1, we have P_p(t) = —Pp(t) because the indices
in Fig. 4 and Fig. 7 are preserved for —D, while the signs in Fig. 5 are
reversed for —D.

Example 3. Let D be the following flat virtual knot diagram as in Fig. 8.

Figure 8. Example, the diagram D

Note that C(D) = {p,q,r}, Cp,(D) = {q,r}, C4(D) = {p}, and C,(D) =
{p}. Thus
Pp(t) = sgn(Dp(q))z“k(DP(‘I))‘ + Sgn(Dp(r))t\lk(Dp(r))l + sgn(Dq(p))t“k(Dq(P))|
+ sgn(D,(p))k PPl
= (+ D) (D (D)2 (=)l = 277 421

3. Invariance of Pp(f) under the moves FR| and FR;

In this section, we will show that Pp(¢) is invariant under the moves
FRy and FR;. Throughout this and the next section, the symbol D
stands for an oriented flat virtual knot diagram.

Lemma 4. Suppose |C(D)| = 3. Let E be the diagram obtained from D
by applying a move FR; eliminating a flat crossing r of D. If pe C(E) =
C(D)\{r} and g € C,(E), then sgn(D,(q)) = sgn(E,(q)) and k(D) (q)) =
Ik(Ep(q))-

Proof. It is obvious that ind(D,(g);r) = 0. Since the move FR; elim-

inating r fixes all crossings except r, we see that ind(D,(q);c) =
ind(E,(q);c) for ce C(Dy(q))\{r}. Hence, we obtain

k(Dp(q) = ), ind(Dp(g)ic) =ind(Dp(g);r)+ >, ind(Dy(g):c)
c<C(Dy(a)) ceCO@\Ir)

= ), ind(Ey(q);c) = k(Ep(q)).
ceC(Ep(q))
We also have sgn(D,(q)) = sgn(E,(g)) for the same reason as above. [J
Proposition 5. The polynomial Pp(t) is invariant under the move FRy.

Proof. Let E be the diagram obtained from D by applying a move FR|
eliminating a flat crossing r of D. For any p € C(D), we put

Pppt)= D) sgn(Dy(q))™ Pl (3.1)

qeCp(D)
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Since C(D) = &, we have P(p )(t) = 0 by definition. Hence, we obtain

Po(t)=Ppy)+ D, Popyt)= > Ppyl).
peC(D)\{r} peC(D)\{r}

Now, we have three cases. First, we consider the case where |C(D)| =
1. The definition of the polynomial gives Pp(r) =0 = Pg(z).

Next, we consider the case where |C(D)| =2. Let C(D) = {r, p}. Since
Cp(D) = I, we have Pyp ) = 0 and hence Pp(t) = 0. On the other hand,
we obtain Pg(t) = 0 because |C(E)| = 1.

Finally, we consider the case where |C(D)| > 3. Since r ¢ C,(D) for
p € C(D)\{r}, Lemma 4 gives the equality Pp p)(¢) = Pg p)(t), which
leads to Pp(t) = Pg(t). This completes the proof. O

Lemma 6. Suppose that |C(D)| =2, and that D has a 2-gon whose
vertices are flat crossings r and s as depicted in Fig. 9. Then,
for p e C(D)\{r,s}, either {r,s} nC,(D) = & or {r,s} = C,(D) holds.
Furthermore, if {r,s} < C,(D), then sgn(D,(r)) = —sgn(D,(s)) and

k(D (r)) = Ik(Dp(s))-

Figure 9. 2-gons

Proof. Since D,(r) is equivalent to D,(s), r € Cp(D) if and only if s e
Cy(D). Hence, either {r,s} = C,(D) or {r,s} nC,(D) = & holds.

Now, suppose {r,s} = C,(D). Since the components of D,(r) and
D,(s) are labeled in a neighborhood N as depicted in Fig. 10, it is
clear that sgn(D,(r)) = —sgn(D,(s)), where € € {#+1}. Since the splices
at r and s fix all flat crossings in C,(D)\{r,s}, we see that, for ce
C(Dp(r))\{s} = C(Dy(s))\{r}, ind(D,(r);c) = ind(D,(s);c). Moreover,
note from Fig. 10 that ind(D,(r);s) = ind(D,(s);r). Hence, we obtain

k(Dy(r) = Y ind(Dp(r);c) =ind(Dy(r)is)+ Y, ind(Dp(r):c)

ceC(Dy(r)) ceC(Dy(r)\fs}
—ind(Dy(s):r)+ >, ind(Dp(s);c)= >, ind(Dp(s):c)
ceC(Dy(s)\{r} ceC(Dy(s))
= 1k(D,(s)). O

Lemma 7. Suppose that |C(D)| > 2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the left diagram in Fig. 9. Let
X =Cy(D) nCs(D). Then, the following hold:

(i) X n{r,s} =, C(D) ZXké{S}, and Cy(D) = X u {r}.



/_\78

Figure 10. D,(r) and Dp(s) (where € € {+1})

(ii) For ¢ € X, sgn(Dr(q)) = —sgn(Ds(q)) and Ik(Dr(q)) =

—Ik(Ds(q))-
(iii) sgn(D,(s)) = 1, sgn(Dy(r)) = —1, and 1k(D,(s)) = Ik(Dy(r)).

Proof. (i) Since r ¢ C,(D) and s ¢ C4(D), we have X n{r,s} = &. It is
clear that s € C.(D) and r e Cy(D). For p e C(D)\{r,s}, r is a mixed
crossing of D(p) if and only if s is a mixed crossing of D(p), whence
peC,(D) if and only if pe Cy(D). Thus, either pe X or p¢ C,(D) uCy(D)
holds. We claim that C,(D)\X = {s}. It is clear that C,(D)\X 2 {s}.
Let pe C,(D)\X. Suppose that pe C(D)\{r,s}. Since p ¢ X, it follows
from the previous argument that p ¢ C,(D) u Cs(D) which contradicts
to p € C,(D). Thus, p e {r,s}. Since r¢ C.(D), we have p = s and
C,(D)\X = {s}. Since X < C,(D), we see that C,(D) = X u {s}. The
proof for Cs(D) = X U {r} is similar.

(ii) Note that D,(q) and Ds(q) are the same 2-component diagram
except their labels. We put D,(q) = E, U F, and Ds(q) = Es U F; where
we may assume that, when disregarding the labels, E, and F; are the
same diagrams as Eg and Fy, respectively. If we denote the labels given
to E,, F,, Es, and F; by l(E,), I(F,), I(Es), and [(Fj), respectively, then
we see that [(E,) = [(F;) and [(F,) = [(Es), that is, D,(q) and Djs(q)
have opposite labels. Hence, sgn(D,(gq)) = —sgn(Ds(g)). Since D,(q)
and Ds(q) have opposite labels, the equality ind(D,(q);c) =ind(Ds(q);¢)
holds for c € C(D,(q)) = C(Ds(q)). Thus, we have

k(Dr(q))= Y, ind(D/(q):ic)= Y. (—ind(Ds(q):c)) = —Ik(Ds(q)).

ceC(D(q)) ceC(Ds(q))

(iii) The diagrams of Fig. 10 indicate that sgn(D,(s)) = 1 and
sgn(Dg(r)) = —1. Since D,(s) and Ds(r) are identical as a labeled
diagram, we have ind(D,(s);r) = ind(Ds(r);s). Since C(D,(s))\{r} =
C(Ds(r))\{s}, we also have ind(D,(s);c) = ind(Ds(r);c) for ¢ €
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Ik(D,(s)) = Z ind(D,(s);¢) =ind(D,(s);r) + Z ind(D,(s);¢)

ceC(D,(s)) ceC(Dy(s))\r

=ind(Ds(r);s)+ >, ind(Ds(r)ic)= > ind(D(r);c)
ceC(Dg(r))\s ceC(Dy(r))

= Ik(Dy(r)) O

Lemma 8. Suppose that |C(D)| =2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the right diagram in Fig. 9.
Then, the following hold:

(i) C,(D) = Cy(D) and C,(D) ~ {r,s} = &.

(i) For g € G(D), sgn(Dr(q)) = —sgn(Ds(q)) and 1k(D,(q)) =
—1k(Ds(q)).

Proof. (i) Since r and s are self crossings of D(s) and D(r) respectively,
we have r ¢ Cy(D) and s ¢ C,(D), where a flat crossing is said to be self if
the flat crossing is formed by only one component. For p e C(D)\{r, s},
r is a mixed crossing of D(p) if and only if s is a mixed crossing of
D(p), whence p € C,(D) if and only if p € C3(D). Therefore, we have
C,(D) = C4(D) and C,(D) n{r,s} = &.

(ii) By the similar reason as in the proof of Lemma 7 (ii), observe
that D,(q) and Ds(q) have opposite labels. It follows that sgn(D,(q)) =
—sgn(Ds(q)) and 1k(Dr(q)) = —1k(Ds(q)). O

Lemma 9. Suppose that |C(D)| = 3, and that E is the diagram obtained
from D by applying a move FR, eliminating two flat crossings r and
s of D. Let pe C(E) = C(D)\{r,s} and g€ Cy(E). Then, we have
sgn(Dp(q)) = sgn(Ep(q)) and 1k(Dp(g)) = Ik(Ep(q))-

Proof. Since the move FR, fixes the outside of a neighborhood N
as depicted in Fig. 10, it follows that sgn(D,(q)) = sgn(E,(q)) and
ind(Dp(g);c) = ind(E,(q);c) for c e C(E) = C(D)\{r,s}. It is also easy
to see that ind(D,(g);r) = —ind(D,(g);s). By the previous facts, we
obtain

k(Dy(q)) = Z ind(Dy(q);c)
D

(
= ind(D,(q);r) +ind(Dp(q);s) + 2 ind(D,(q):c)
ceC(Dy(q)\{rs}

= ), ind(Ey(g)ic) = K(E,(q)). -
(£

For an oriented flat virtual knot diagram D with a 2-gon, whose
vertices are flat crossings r and s as in Fig. 9, we put

Pip ) (t) = P(Dér) (t) + Pip.g) (1),



where we use Eq. (3.1) in the right hand side. Then, we have

PD(t) = P(D,r,s) (t) + Z P(D,p) (t)
peC(D)\{r:s}
Lemma 10. Suppose that |C(D)| = 2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the left diagram in Fig. 9. Then,
we have Pp ) (t) = 0.

Proof. Let X = C,(D) nCs(D). If X # J, then Lemma 7 implies that

P(D,r,s)(t>=<sgn( A(s)tMEPr LN sgn(D,(p))e P ()))

peX

(sgn< (DO S sgn(D, () <>>l)

peX

= <Sgn(Dr(s))t“k(D’(s))‘ + sgn(Ds(r))t“k(Ds(’))‘>

+(zsgn<p,< YIKOAN 4 3 sgn(D, ()0 <>>>

peX peX
=0
If X = ¥, then Lemma 7 also shows that
P(p ) (1) = sgn(D, ()t Pr 4 sgn (D (r))e P = O

Lemma 11. Suppose that |C(D)| > 2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the right diagram in Fig. 9.
Then, we have Pp . (t) = 0.

Proof. Lemma 8 gives

Pip s (1) = Z (sgn(Dy(q)) + sgn(Dy(q))) *Pr@)l — g, 0
geCr(D)

If a flat virtual knot diagram is oriented, then it exhibits two types
of the move FR,, which depend on the orientations of the two arcs
involved in the move. If the move is realized by two arcs with the same
direction as in the left figure of Fig. 9, then it is called type A. The
move realized by two arcs with opposite directions as in the right figure
of Fig. 9 is called type B.

Lemma 12. The polynomial Pp(¢) is invariant under the move FR, of
type A.

Proof. Suppose |C(D)| = 2. Let E be the diagram obtained from D by
applying a move FR, of type A eliminating flat crossings r and s of D.
We have three cases based on the number |C(D)|.
First, we consider the case where |C(D)| =2, i.e., C(D) = {r,s}. It is
easy to see that C.(D) = {s} and C4(D) = {r}. Lemma 10 gives Pp(t) =
9



P(p,s)(t) = 0. Since |C(E)| =0, we have Pg(t) = 0 by Definition 1.
Hence, it holds that Pp(t) = Pg(t).

Next, we consider the case where |C(D)| = 3. Suppose that C(D) =
{r;s,p}. We claim that Pyp ) (t) = 0. Note that C,(D) = & or Cp(D) =
{r;s} by Lemma 6. If C»(D) = J, then it is clear that Pp ,(t) =0. If
Cp(D) = {r,s}, then Lemma 6 also gives

Ppp)(t) = sgn(D, ()t PrDl 1 san (D, (5))KPr ()] — o,

The previous claim and Lemma 10 yield that Pp(t) = Ppp)(t) +
P(p,s)(t) = 0. On the other hand, since |C(E)| =1, Pg(t) = 0 by Defi-
nition 1. Thus, it holds that Pp(t) = Pg(t).

Finally, we consider the case where |C(D)| = 4. Note that C(E) =
C(D)\{r,s}. Since Pip . (t) =0 by Lemma 10, it is sufficient to show
that Pp ) (t) = P p)(t) for pe C(E), which leads to Pp(t) = Pe(t). By
Lemma 6 we have {r,s} "C,(D) = & or {r,s} = Cp(D). If {r,s} nC)(D) =
&, then C)(D) = C,(E) whence Lemma 9 gives

P(D’p)(t): Z Sgn(Dp(q))t“k(Dp(Q))|: Z Sgn(DP(q))tnk(DP(q))\

qeC,(D) qeCp(E)
= > sen(Ep(@)™E Dl = Py (@),
qeCp(E)

If {r,s} = Cp(D), then C,(D) = C,(E) U {r,s} and Lemma 6 gives
sgn(Dp(r))t\lk(Dp(r))\ + Sgn(Dp(s))t“k(Dﬂ(s)ﬂ 0

Hence, we obtain Pp ,(t) = P (t) by Lemma 9 as in the previous case.
This completes the proof. O

Lemma 13. The polynomial Pp(f) is invariant under the move FR, of
type B.

Proof. The proof is similar to that of Lemma 12, using Lemma 8 and
Lemma 11, with the exception that there is a distinction in the case of
|C(D)| =2 for two sets, C,(D) and Cy(D). O

The following is an immediate consequence from Lemmas 12 and 13.

Proposition 14. The polynomial Pp(¢) is invariant under the move FR;.

4. Invariance of Pp(t) under the moves FR3 and FVRy

In this section, we will show that Pp(z) is invariant under the moves FR3
and FVR4. There are two oriented versions of the triangle move FRj3
as illustrated in Fig. 11. It is known that FR3 of type B can be realized
by a finite sequence of the moves FR3 of type A and FR;,. Therefore, in
the sequel, we will focus on demonstrating that the polynomial Pp(r)

remains invariant under the move FR3 of type A.
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FR3 of type A FR3 of type B

non-cyclic type cyclic type

Figure 11. Two oriented types of the move FR3
! 52
o S0
2 51
D E
Figure 12. The settings in D and E

Lemma 15. Let E be the diagram obtained from D through a single
move FRj3 of type A. Assuming that the settings in D and E are as
depicted in Fig. 12, the following statements hold:

(i) ro€Cy, (D) if and only if rg € C,,(D); in this case, sgn(D;, (r)) =

—1, sgn(D,,(rg)) = 1, and 1k(D,, (rg)) = —1k(Dy, (o))
(ii) s € Cs, (E) if and only if 5o € Cs, (E); in this case, sgn(Es, (so)) =

1, sgn(Ey, (so)) = —1, and 1k(E;, (s0)) = —1k(Es, (s0))-
(ili) m €Cy (D) if and only if 55 € Cy, (E); in this case, sgn(Dy, (r2)) =

sgn(Ey,(s2)) = 1 and 1k(Dy, (r2)) = Ik(Es,(s2))-

(iv) r1 €C,, (D) if and only if 51 € Cy,(E); in this case, sgn(D,,(r1)) =
sgn(Ey,(s1)) = —1 and Ik(Dy, (r1)) = Ik(Es,(s1)).

(v) r1€Cyy(D) if and only if 51 € Cy, (E); in this case, sgn(Dy,(r1)) =
sgn(E;, (s1)) = 1 and Ik(Dy,(r1)) = Ik(Es, (s1))-

(vi) r€Cy, (D) if and only if 55 € Cy, (E); in this case, sgn(Dy,(r2)) =
sgn(Ey, (s2)) = —1 and k(D (r2)) = Ik(Ej, (s2)).

Proof. To begin with, we show the claim (i). Since r; and r; form a
2-gon in D(ry), it follows that ry € C, (D) if and only if ry € C,,(D).
Since D, (rg) and D,,(rg) are the same diagram with opposite labels,
we have 1k(Dy, (r9)) = —1k(Dy,(r0)). From the labels at the base points,
we see that sgn(D,, (ro)) = —1 and sgn(D,,(rg)) = 1.

Next, we prove the claim (ii). We find that s; and s, form a 2-gon
in D(sp). We also find that Ej, (so) and E,(so) are the same diagram
with opposite labels. Hence, the same reason as in the previous case
give the claim (ii).

Furthermore, we give the proof of the claim (iii). D(r;) is isotopic
to E(sy). Since r; and sg are the corresponding crossings, it is easy to
see that r, € C, (D) if and only if 55 € Cy,(E). Since D, (r2) is isotopic
to E,(s2), we easily obtain the remaining claims.

Finally, we clarify the claims (iv), (v) and (vi). These claims are
analogous to the claim (iii). Hence, the proofs for them are also similar

to that of the claim (iii), completing the proof. O
11



Now, whenever g ¢ C,(D) for pe C(D) and g€ C(D)\{p}, we adopt the
convention sgn(D,(q)) = 0 and 1k(D,(g)) = 0. From this convention, it
is evident to see that the polynomial Pp(¢) in Definition 1 can be written
by

Po(t)= ", ), W(Dylg)), (4.1)
peC(D) qeC(D)\{p}
where W(D,(g;t)) = sgn(D,(q)) - tPr(@)l.

Let E be the diagram from D by applying a move FR3 of type A.
Suppose that D and E differ only in one place as in Fig. 11. Let
R = {ro,r1,rn} € C(D) and S = {s9,s1,52} < C(E) (cf. Fig. 12), and
T =C(D)\R =C(E)\S. Since C(D)\{p} =T u (R\{p}) for pe R and
C(D)\{p} =Ry (T\{p}) for pe T, we have

Pp(t) =] ( >, W(Dp(CI);t))+Z ( > W@p(é]%ﬂ)
qeC qeC

PER (D)\{p} peT (D)\{r}

PER \ geR\{p} PER \qeT

-2, ( ) W<Dp<q>;t>>+ > (Z W<Dp<q>;r>>
+ <ZW(Dp(q);t)> +> ( D W(Dp(q);t)).

peT \geR peT \ ¢eT\{p}

We also obtain

> ( > W(Dp<q>;z>)+2 (2 W<Dp<q>;r>>
qeS\{p}

peS peS \geT

> ZW<Dp(q);t>)+Z< > W(Dp(q);t))-

PE(Z‘)

pET qES pET qu\{p}
Then, we have the following.

Lemma 16. The following statements hold:

(i) > ( > W(%(Q)ﬂ)) = ( > W(Dp(Q);t>) :

PER \ geR\{p} peS \geS\{p}
@ Y (zwwmm) -y (2w<Dp<q>;r>) .
PER \qeT peS \qeT

(iii) ) <2 W(Dp(Q);t)> - (EW(DP(CI);I)> :
PeT \geR peT \ ¢S
12



Proof. (i) Using Eq. (4.1) and Lemma 15, we obtain

2 ( 2, W(Dp(q);O) (sen(Dr, (ro) P 0D - sgn (D, ()P 0D

peR \ geR\{p}
+sgn(D,, (rz))t“k(D’l ()l 4 sgn(Drz(rl))ﬂlk(Drz(n))l
+sgn(Dy, (r1))i P D) 4 son(D, (1)) K P (72)
— 0+ sgn(Ey, (52))t* B 62 4 sgn(Eg (s ))tllk(EsO(sl))l
+ sgn(Eg, (s1))1 ™"
(sgn( o, (50))t B )l gon (E, (s0))¢ K (Es (50) )

5, (51) ‘—i—Sgn( sl(sz))f‘lk 51 (52))

+sgn(Eq, (s2))™E0 2Dl 1 son (Ey (1)) Es (1))l
+Sgn(E32<sl))t“k 2 (1) ‘+Sgn(Es1(52))t“k s1(52))

Z( > W<Dp<q>;z>).

PeS \geS\{p}

(ii) For each i€ {0,1,2} and g€ T, it is easy to show that g € C,,(D) if
and only if g € Cy,(E), in which case, we have sgn(Dy,(q)) = sgn(Es;(q))
and 1k(Dy,(q)) = Ik(E;;(g)). Thus, we obtain

Z <Z W(Dp(51>;f)> = ngn g))tkPrila ))I)
i=0

PER \qgeT qeT

3 sgn(E (g)) s @ >>|>
i=0 \geT
= ZW<Dp<q>;r>).

peS \qeT

5

(iii) For each pe T and i€ {0,1,2}, it is also easy to verify that
ri€ Cp(D) if and only if 5;€ C,(E), in which case, we have sgn(D,(r;)) =
sgn(E,(s;)) and Ik(D,(r;)) = Ik(E,(si)). Therefore, we have

2 (Z W(Dp<q);t)) = ngn )ik Dp<r,>>>
peT \g¢eR
= ngn t“k p(si ))I)

The following is an immediate consequence of Lemma 16.
13



Proposition 17. The polynomial Pp(z) is invariant under the move FR3.

Let E be the diagram obtained from D by a single move FVRy. Let
r be the flat crossing of D for the move FVR4 and s the corresponding
crossing of E. We put X = C(D)\{r} = C(E)\{s}. Then, we have

Pp(t) = W(Di(q):it)+ ). > W(Dylg)st)
4eC(D)\{r} peC(D)\{r} \aeC(D)\(p}

D WD)+ ) WD)+ Y, W(Dp(g):t)

pex geX\{p}

DIWDHg)it)+ > WDp(r):it)+ > | > W(Dy(q)st)
geX

peX PeEX \ geX\{p}

we also have
= Y W(Eqhn)+ D WE i)+ > | D) W(Ea))
geX peX peX \geX\{p}
Then, we have the following

Lemma 18. The following statements hold:

) SIWDq)ir) = SIW(E

qeX geX

(ii) ZW(DP(’”)Ql) = ZW(EP(S) )
peX peX

i) D[ D) WDplght) | =D Dl W(Eq):0)
peX \ ¢ex\{p} peX \gex\{p}

Proof. Observe first that, depending on the orientation, D(r) is isotopic
to E(s) or D(r) is obtainable from E(s) by using the move FVR;.

(i) Suppose that r and s are base points of D and E, respectively.
For g€ X, it is clear that g € C(D) if and only if g€ C(E). In this case,
we have sgn(D,(q)) = sgn(Es(q)) and 1k(D,(q)) = 1k(Es(q)). Thus, we

have
Z W(D,(q) Z sgn(D,(g))¢™Pr@))

qeX geX
= S sen(B ED) - Y,
qgeX qeX

(ii) For pe X, it is also evident that r € C,(D) if and only if s € C,(E).
(7)) =

Note that, in this case, we have sgn(D,(r)) = sgn(E,(s) and 1k(D,(r)
14



Ik(E,(s)). Thus, we obtain

STWD(r)it) = 3 sen(Dy () KO0

peX peX
= Z sgn(E t|1k Z W(E
peX peX
(iii) This is clear. O

The following is an immediate consequence of Lemma 18.

Proposition 19. The polynomial Pp(¢) is invariant under the move
FVRy.

Theorem 20. For a flat virtual knot K, the polynomial Pk(¢) is an in-
variant for K, i.e., it is invariant under the generalized flat Reidemeister
moves.

Proof. Clearly, it is invariant under the moves FVR|, FVR,, and FVRj3.
By Propositions 5, 14, 17 and 19, it is invariant under the moves FRy,
FRz, FR3, and FVR4. U

5. An invariant of virtual doodles

In this section, based on the invariant Pp(z) for flat virtual knots, we
introduce an invariant of virtual doodles with one component.

Let D be a virtual doodle diagram with one component and p € C(D).
By smoothing p we obtain two component diagram D,,, which is labeled
+1 as in Fig. 13.

-1 +1

X3¢

Figure 13. The two component labeled diagram D,

For p € C(D), we define op(p) by
on(p)= 3 ind(Dyi0),
ceC(D))

where ind(D,;c) is defined similarly as in Fig. 7. Now, we give the main
definition in this section.

Definition 21. Let D be a virtual doogle diagram. We define the poly-
nomial Rp(t,u) € Z|t,u] by

0 if |C(D)| < 1,

Rp(t,u) = Z ulon(P)] Z sgn(Dp(q))-l“lk(Dp(q))| otherwise.

peC(D) qeCp(D)
15



Remark 22. We also have R_p(t,u) = —Rp(t,u) for the inverse diagram
—D of D.

Proposition 23. The polynomial Rp(t,u) is invariant under the move
FR,.

Proof. Let E be the diagram obtained from D by applying a move FR;
eliminating r€ C(D). If |C(D)| = 1, then the definition gives Rp(t,u) =
0 = Rg(t,u). Using Eq. (3.1), we put for p e C(D)

R(D7p) (l,u) = M‘GD(p)‘P(Dvp) (l‘)

Since Pyp, ) (t) = 0 (cf. the proof of Proposition 5), we have Rp ) (t,u) =
0 and

RDU?”) :R(D,r) (t7u> + Z R(D,p)(t7u) = Z R(D,p)(tau)'
peC(D)\{r} peC(D)\{r}

Assume that |C(D)| = 2. If |C(D)| =2, say C(D) = {r,p}, then
Cp(D) = & and hence Pp ,(t) = 0. Thus, Rp(t,u) = Rip p(t,u) = 0.
On the other hand, Rg(t,u) = 0, since |C(E)| = 1.

Now, suppose that |C(D)| = 3. Since Pp p(t) = Pgp(t) for pe
C(D)\{r} = C(E) as in the proof of Proposition 5, we have Rp ,)(t,u) =
Rg,p)(t,u). This leads the desired result Rp(t,u) = Rg(t,u). O

Proposition 24. The polynomial Rp(t,u) is invariant under the move
FR>.

Proof. First, we consider the move FR; of type A. Suppose |C(D)| =2
and let E be the diagram obtained from D by applying a move FR,
of type A eliminating r,s € C(D). We put Rp . (t,u) = Rip ) (t,u) +
R(D,s) (ta I/t) :

First, suppose that |C(D)| = 2. Since |C(E)| =0, Rg(t,u) =0 by def-
inition. It is sufficient to show that Rp(f,u) = 0. Let C(D) = {r,s}.
Since D, and Ds are equivalent diagrams with opposite labels, we
have op(r) = —op(s) whence |op(r)| = |op(s)|. Since C,(D) = {s}
and Cy(D) = {r} as in the proof of Lemma 12, we obtain Rp(t,u) =
R(p s (t,u) = 0 by using Lemma 7 (ii).

Next, suppose that |C(D)| = 3. Since |C(E)| =1, Rg(t,u) =0 by
definition. It is sufficient to show that Rp(f,u) = 0. Let C(D) = {r,s, p}.
Since P(p p)(t) = 0 as in the proof of Lemma 12, we have Rp (¢, u) =
0. Furthermore, since |op(r)| = |op(s)|, we can deduce Rp .. (t,u) =
0 by performing a similar computation as presented in the proof of
Lemma 10. Thus, we have Rp(t,u) = R(p p)(t,u) + R(p 5 (t,u) = 0.

Finally, suppose that |C(D)| = 4. Since C(E) = C(D)\{r,s}, we have

RD(lau) = R(D,ns) (l,l/t) + 2 R(D,p) (t7u>
peC(E)
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and
Re(t,u) = ). Rigp(t,u).
peC(E)
We only have to show the following two claims.
Claim 1. Rp ) (t,u) = 0.
Claim 2. R(p ) (t,u) = Rg p)(t,u) for pe C(E).

Proof of Claim 1. This is similar to the previous case where |C(D)| =
3.

Proof of Claim 2. By Lemma 6 we have {r,s} nC,(D) = & or {r,s} <
Cp(D). If {r,s} nCy(D) = &, then C,(D) = C,(E). Since it is evident
that op(p) = og(p), we have by Lemma 9

R(D7p)(l‘,u):u|00(l7)\ Z Sgn(Dp<q))l|lk(Dp(q))|
q€Cp(D)

— yloe(P)] Z Sgn(Ep(q))lllk(Ep(q))\ = Rz p)(t,u).
q€Cy(E)
If {r,s} = C,(D), then C,(D) = C,(E) U {r,s}. We have by Lemma 6
M\Gp(D)Isgn(Dp(r))t\lk(Dp(r))\ + uIGp(D)ISgn(Dp<s))t\lk(Dp(S))l -0

Hence, we also obtain Rp(f,u) = Rg(t,u) by Lemma 9.
The proof for the move FRy of type B is similar to that for the
previous case. O

Note that Rp(z,u) is invariant under the moves FVR|, FVR,, FVR3,
and FVR4 because op(p) is clearly invariant under these moves. Since
D can be regarded as a flat virtual knot diagram, it is also clear that

PD(Z) =RD(Z‘, 1)

Let d be a virtual doodle with just one component and D its dia-
gram. We define the polynomial R;(z,u) by Rp(t,u). Then, we have
the following.

Theorem 25. For a virtual doodle d with just one component, the poly-
nomial Ry(f,u) is an invariant for d, i.e., it is invariant under the gen-
eralized flat Reidemeister moves except the move FRj3.

Example 26. We consider the virtual doodles dy 1 and dy 4 in [3], which
have diagrams as in Fig. 14. We denote by D and E the diagrams of
dsq and dg4 in Fig. 14, respectively.

Then we have

Cr(D)={r2}, Cn(D)={r,p}, Cn(D)={ro,ri,p}, Cp(D)={ri,r},

and

Co(E) = {51}, Cy(E) = {SO,p},” Coy(E) = {p},  Cp(E) = {s1,52}-



Figure 14. dy; and ds4 in [3]

Thus we compute Ry,  (¢,u) as

Ry, (t,u) = u“’D(’O)‘sgn(D,O(rg))t“k(D’o(rZ))‘ + M\Go(rl)\sgn(Drl (rp))¢K(Pry (r2))]
+ u'GD(r‘)|sgn(Drl ()P (D] u|GD(r2)|sgn(Dr2(ro))t|lk(D’2(r0))|
+ uIGD(rz)Isgn(Drz(rl))tllk(Drz(rl))l + u"’D(’2)|sgn(D,2 (p))tK(Pr ()]
+ uIGD(p)\Sgn(Dp(rl))t\lk(Dp(rn))\ + u\cu(p)lSgn(Dp(rz))tllk(Dp(rz))l

— Ol (= 1) O () O (= 1) 12l () gy I+ 1 (= 1)lO

Ful (=) 2 =2 ) A0 =2 )
= 1> tut —u—ut® +u? +u’t.
On the other hand, we compute Ry, ,(f,u) as
Ry, (t,u) = M\GE(So)\Sgn(ESO(S]))tllk(Eso(n))I + u|0'E(Sl)|Sgn<ES1 (s0) )¢ (Es1 (50))]
+ M|GE(S1)|Sgn(Esl (p))eEs (PD] u'“E(s2)|sgn(E52 (p))t/KEs (P))]
P ggn(E (51)e K EOD) 4 0 Plgn (£ (7)) K E )
— ul T (D)0 O () g O (1)l 20 gy [+ T ()12
+ul =2 (1) 2 A
— —u+t—1>—ur* +u® +utt.
Note that Ry, (t,u) # Ry, ,(t,u). Observe that
Py, (t) =Rg,,(t,1) =Ry, ,(t,1) = Py, ,(1).

Since a virtual doodle can be regarded as a flat virtual link, the equality
Py, ,(t) = Py, (1) also follows from the fact that ds 1 and ds 4 are related
by a move FR3.
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