
POLYNOMIAL INVARIANTS OF VIRTUAL DOODLES AND
FLAT VIRTUAL KNOTS

JOONOH KIM AND KYOUNG-TARK KIM

Abstract. In this paper, we introduce new polynomial invariants
of virtual doodles obtained by combining a state model with an
integer labeling to flat virtual knot diagrams. Using our invariants
we show that the doodle diagram d4.1 is different from the doodle
diagram d4.4.

1. Introduction
A virtual link diagram is a link diagram in R2 possibly having some

encircled crossings without over/under information. Such an encircled
crossing is called a virtual crossing (see Fig. 1).

Real crossing Virtual crossing Flat crossing

Figure 1. Crossing types

Two virtual link diagrams are said to be equivalent if they are related
by a finite sequence of generalized Reidemeister moves described in
Fig. 2. A virtual link is defined as an equivalence class of virtual link
diagrams [4].

A flat virtual link diagram is a virtual link diagram in R2 in which the
over/under information at each real crossing is ignored. In particular,
a 1-component flat virtual link diagram is called a flat virtual knot
diagram. A crossing without over/under information is called a flat
crossing (see Fig. 1). Two flat virtual link diagrams are said to be
equivalent if they are related by a finite sequence of generalized flat
Reidemeister moves described in Fig. 3, which are flattened versions of
the generalized Reidemeister moves. A flat virtual link is defined as
an equivalence class of flat virtual link diagrams. Hence, a flat virtual
knot is an equivalence class of flat virtual knot diagrams.

Doodles were first introduced in [1]. The original definition of a doo-
dle was a collection of embedded circles in the sphere S2 with no triple
or higher intersection points. Khovanov [8] extended the idea to allow
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Figure 2. Generalized Reidemeister moves
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Figure 3. Generalized flat Reidemeister moves

each component to be an immersed circle in S2. In [3], Bartholomew,
Fenn, N. Kamada, and S. Kamada extend the range of doodles to im-
mersed circles in closed orientated surfaces of any genus.

A virtual doodle diagram can be regarded as a flat virtual link dia-
gram in S2. So, a virtual doodle diagram with just one component may
be a flat virtual knot diagram. Two virtual doodle diagrams are called
equivalent if they are related by a finite sequence of the generalized
flat Reidemeister moves except the move FR3 in Fig. 3, called doodle
moves. A virtual doodle is defined as an equivalence class of virtual
doodle diagrams [3].

Let D be a flat virtual link diagram. D is said to be oriented if each
component of D is oriented. Equivalence of two oriented flat virtual
link diagrams is similarly defined as in the case of unoriented diagrams
except that orientations are taken into consideration. An oriented flat
virtual link is defined to be an equivalence class of oriented flat virtual
link diagrams.
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The study of virtual knots is closely related to that of flat virtual
knots. Indeed, for a given virtual knot diagram, we obtain a flat vir-
tual knot diagram by ignoring the over/under information at each real
crossing. Thus, some invariants of virtual knots are modified ones of
flat virtual knots [5, 6, 7].

Invariants of virtual doodles are hardly known as research has only
recently been carried out. In [3], Bartholomew, Fenn, N. Kamada, and
S. Kamada introduced an invariant defined in terms of colorings of vir-
tual diagrams, specifically flat virtual knot diagrams. In [7], the author
presented an invariant using the flat virtual knot invariant introduced
in [5].

The purpose of this paper is to provide new polynomial invariants
for virtual doodles and flat virtual knots. This paper is organized as
follows: In Section 2, we present our method for constructing a new
polynomial invariant of flat virtual knots. In Section 3 and Section 4,
we demonstrate the invariance of this polynomial. Finally, in Section 5,
we apply the method described in Section 2 to provide a polynomial
invariant for virtual doodles.

In the following sections, we assume that diagrams, virtual links and
virtual doodles are oriented.
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2. The polynomial PDptq for a flat virtual knot diagram D

Let D be a flat virtual knot diagram and CpDq the set of all flat crossings
of D. Suppose that |CpDq| ě 2. We first fix p P CpDq, which we call
a base point, and locally assign integers ˘1 to two arcs near p as in
Fig. 4.

p : a base point

`1 ´1

´1 `1

Figure 4. Local t˘1u-assignment near a base point

Now consider q P CpDqztpu. As shown in the leftmost diagram in
Fig. 5, let Dpqq be the diagram obtained from D by smoothing the flat
crossing q. The diagram Dpqq has two components. We say that Dpqq

is compatible with p if p is a mixed crossing of Dpqq, i.e., p is a crossing
of distinct two components of Dpqq; see Fig. 6.
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Figure 5. Sign of the diagram Dppqq

p q

third-party flat or virtual crossing

p q

Figure 6. Examples of compatibility and incompatibility

For p P CpDq, we define
CppDq “ tq P CpDqztpu : Dpqq is compatible with pu.

If the diagram Dpqq is compatible with the base point p, then the
labels ˘1 are given to the two components of Dpqq in such a way that
the assignment at p is as in Fig. 4. The diagram Dpqq together with
the labeled components is denoted by Dppqq.

The sign of the diagram Dppqq, which we denote by sgnpDppqqq,
is defined as ˘1 depending on the situation depicted in Fig. 5. For
c P CpDppqqq, we define indpDppqq;cq by the rule depicted in Fig. 7.

c

`1 ´1

´1 `1
indpDppqq;cq“`1

c

´1 `1

`1 ´1
indpDppqq;cq“´1

c

`1 `1

`1 `1
indpDppqq;cq“0

c

´1 ´1

´1 ´1
indpDppqq;cq“0

Figure 7. Indices for c P CpDppqqq

For q P CppDq, we define the linking index lkpDppqqq by

lkpDppqqq “
ÿ

cPCpDppqqq

indpDppqq;cq.

Now, we are in a position to give the following definition.
Definition 1. For a flat virtual knot diagram D, we define a polynomial
PDptq P Zrts as follows:

PDptq “

$

&

%

0 if |CpDq| ď 1,
ÿ

pPCpDq

ÿ

qPCppDq

sgnpDppqqq ¨ t |lkpDppqqq| otherwise.
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Remark 2. Let ´D be the inverse oriented diagram of D. Then, ac-
cording to Definition 1, we have Ṕ Dptq “ ´PDptq because the indices
in Fig. 4 and Fig. 7 are preserved for ´D, while the signs in Fig. 5 are
reversed for ´D.
Example 3. Let D be the following flat virtual knot diagram as in Fig. 8.

p

q

r

Figure 8. Example, the diagram D

Note that CpDq “ tp,q,ru, CppDq “ tq,ru, CqpDq “ tpu, and CrpDq “

tpu. Thus
PDptq “ sgnpDppqqqt |lkpDppqqq| ` sgnpDpprqqt |lkpDpprqq| ` sgnpDqppqqt |lkpDqppqq|

` sgnpDrppqqt |lkpDrppqq|

“ p`1qt |`1| ` p`1qt |`1| ` p´1qt |`2| ` p´1qt |`2| “ ´2t2 ` 2t.

3. Invariance of PDptq under the moves FR1 and FR2

In this section, we will show that PDptq is invariant under the moves
FR1 and FR2. Throughout this and the next section, the symbol D
stands for an oriented flat virtual knot diagram.
Lemma 4. Suppose |CpDq| ě 3. Let E be the diagram obtained from D
by applying a move FR1 eliminating a flat crossing r of D. If p P CpEq “

CpDqztru and q P CppEq, then sgnpDppqqq “ sgnpEppqqq and lkpDppqqq “

lkpEppqqq.
Proof. It is obvious that indpDppqq;rq “ 0. Since the move FR1 elim-
inating r fixes all crossings except r, we see that indpDppqq;cq “

indpEppqq;cq for c P CpDppqqqztru. Hence, we obtain

lkpDppqqq “
ÿ

cPCpDppqqq

indpDppqq;cq “ indpDppqq;rq `
ÿ

cPCpDppqqqztru

indpDppqq;cq

“
ÿ

cPCpEppqqq

indpEppqq;cq “ lkpEppqqq.

We also have sgnpDppqqq “ sgnpEppqqq for the same reason as above. □
Proposition 5. The polynomial PDptq is invariant under the move FR1.
Proof. Let E be the diagram obtained from D by applying a move FR1
eliminating a flat crossing r of D. For any p P CpDq, we put

PpD,pqptq “
ÿ

qPCppDq

sgnpDppqqqt |lkpDppqqq|. (3.1)
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Since CrpDq “ H, we have PpD,rqptq “ 0 by definition. Hence, we obtain

PDptq “ PpD,rqptq `
ÿ

pPCpDqztru

PpD,pqptq “
ÿ

pPCpDqztru

PpD,pqptq.

Now, we have three cases. First, we consider the case where |CpDq| “

1. The definition of the polynomial gives PDptq “ 0 “ PEptq.
Next, we consider the case where |CpDq|“ 2. Let CpDq “ tr, pu. Since

CppDq “ H, we have PpD,pq “ 0 and hence PDptq “ 0. On the other hand,
we obtain PEptq “ 0 because |CpEq| “ 1.

Finally, we consider the case where |CpDq| ě 3. Since r R CppDq for
p P CpDqztru, Lemma 4 gives the equality PpD,pqptq “ PpE,pqptq, which
leads to PDptq “ PEptq. This completes the proof. □

Lemma 6. Suppose that |CpDq| ě 2, and that D has a 2-gon whose
vertices are flat crossings r and s as depicted in Fig. 9. Then,
for p P CpDqztr,su, either tr,su X CppDq “ H or tr,su Ď CppDq holds.
Furthermore, if tr,su Ď CppDq, then sgnpDpprqq “ ´sgnpDppsqq and
lkpDpprqq “ lkpDppsqq.

r

s

r

s

Figure 9. 2-gons

Proof. Since Dpprq is equivalent to Dppsq, r P CppDq if and only if s P

CppDq. Hence, either tr,su Ď CppDq or tr,su XCppDq “ H holds.
Now, suppose tr,su Ď CppDq. Since the components of Dpprq and

Dppsq are labeled in a neighborhood N as depicted in Fig. 10, it is
clear that sgnpDpprqq “ ´sgnpDppsqq, where ε P t˘1u. Since the splices
at r and s fix all flat crossings in CppDqztr,su, we see that, for c P

CpDpprqqztsu “ CpDppsqqztru, indpDpprq;cq “ indpDppsq;cq. Moreover,
note from Fig. 10 that indpDpprq;sq “ indpDppsq;rq. Hence, we obtain

lkpDpprqq “
ÿ

cPCpDpprqq

indpDpprq;cq “ indpDpprq;sq `
ÿ

cPCpDpprqqztsu

indpDpprq;cq

“ indpDppsq;rq `
ÿ

cPCpDppsqqztru

indpDppsq;cq “
ÿ

cPCpDppsqq

indpDppsq;cq

“ lkpDppsqq. □

Lemma 7. Suppose that |CpDq| ě 2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the left diagram in Fig. 9. Let
X “ CrpDq XCspDq. Then, the following hold:

(i) X X tr,su “ H, CrpDq “ X Y tsu, and CspDq “ X Y tru.
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D Dpprq Dppsq

r

s
N

ε ´ε
N

ε ´ε

r

s
N

ε

´ε
N

ε

´ε

Figure 10. Dpprq and Dppsq (where ε P t˘1u)

(ii) For q P X , sgnpDrpqqq “ ´sgnpDspqqq and lkpDrpqqq “

´lkpDspqqq.
(iii) sgnpDrpsqq “ 1, sgnpDsprqq “ ´1, and lkpDrpsqq “ lkpDsprqq.

Proof. (i) Since r R CrpDq and s R CspDq, we have X X tr,su “ H. It is
clear that s P CrpDq and r P CspDq. For p P CpDqztr,su, r is a mixed
crossing of Dppq if and only if s is a mixed crossing of Dppq, whence
p PCrpDq if and only if p PCspDq. Thus, either p P X or p RCrpDqYCspDq

holds. We claim that CrpDqzX “ tsu. It is clear that CrpDqzX Ě tsu.
Let p P CrpDqzX . Suppose that p P CpDqztr,su. Since p R X , it follows
from the previous argument that p R CrpDq YCspDq which contradicts
to p P CrpDq. Thus, p P tr,su. Since r R CrpDq, we have p “ s and
CrpDqzX “ tsu. Since X Ď CrpDq, we see that CrpDq “ X Y tsu. The
proof for CspDq “ X Y tru is similar.

(ii) Note that Drpqq and Dspqq are the same 2-component diagram
except their labels. We put Drpqq “ Er Y Fr and Dspqq “ Es Y Fs where
we may assume that, when disregarding the labels, Er and Fr are the
same diagrams as Es and Fs, respectively. If we denote the labels given
to Er, Fr, Es, and Fs by lpErq, lpFrq, lpEsq, and lpFsq, respectively, then
we see that lpErq “ lpFsq and lpFrq “ lpEsq, that is, Drpqq and Dspqq

have opposite labels. Hence, sgnpDrpqqq “ ´sgnpDspqqq. Since Drpqq

and Dspqq have opposite labels, the equality indpDrpqq;cq “ indpDspqq;cq

holds for c P CpDrpqqq “ CpDspqqq. Thus, we have

lkpDrpqqq “
ÿ

cPCpDrpqqq

indpDrpqq;cq “
ÿ

cPCpDspqqq

p´indpDspqq;cqq “ ´lkpDspqqq.

(iii) The diagrams of Fig. 10 indicate that sgnpDrpsqq “ 1 and
sgnpDsprqq “ ´1. Since Drpsq and Dsprq are identical as a labeled
diagram, we have indpDrpsq;rq “ indpDsprq;sq. Since CpDrpsqqztru “

CpDsprqqztsu, we also have indpDrpsq;cq “ indpDsprq;cq for c P
7



CpDrpsqqztru “ CpDsprqqztsu. The previous facts give

lkpDrpsqq “
ÿ

cPCpDrpsqq

indpDrpsq;cq “ indpDrpsq;rq `
ÿ

cPCpDrpsqqzr

indpDrpsq;cq

“ indpDsprq;sq `
ÿ

cPCpDsprqqzs

indpDsprq;cq “
ÿ

cPCpDsprqq

indpDsprq;cq

“ lkpDsprqq □

Lemma 8. Suppose that |CpDq| ě 2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the right diagram in Fig. 9.
Then, the following hold:

(i) CrpDq “ CspDq and CrpDq X tr,su “ H.
(ii) For q P CrpDq, sgnpDrpqqq “ ´sgnpDspqqq and lkpDrpqqq “

´lkpDspqqq.

Proof. (i) Since r and s are self crossings of Dpsq and Dprq respectively,
we have r R CspDq and s R CrpDq, where a flat crossing is said to be self if
the flat crossing is formed by only one component. For p P CpDqztr,su,
r is a mixed crossing of Dppq if and only if s is a mixed crossing of
Dppq, whence p P CrpDq if and only if p P CspDq. Therefore, we have
CrpDq “ CspDq and CrpDq X tr,su “ H.

(ii) By the similar reason as in the proof of Lemma 7 (ii), observe
that Drpqq and Dspqq have opposite labels. It follows that sgnpDrpqqq “

´sgnpDspqqq and lkpDrpqqq “ ´lkpDspqqq. □
Lemma 9. Suppose that |CpDq|ě 3, and that E is the diagram obtained
from D by applying a move FR2 eliminating two flat crossings r and
s of D. Let p P CpEq “ CpDqztr,su and q P CppEq. Then, we have
sgnpDppqqq “ sgnpEppqqq and lkpDppqqq “ lkpEppqqq.

Proof. Since the move FR2 fixes the outside of a neighborhood N
as depicted in Fig. 10, it follows that sgnpDppqqq “ sgnpEppqqq and
indpDppqq;cq “ indpEppqq;cq for c P CpEq “ CpDqztr,su. It is also easy
to see that indpDppqq;rq “ ´indpDppqq;sq. By the previous facts, we
obtain

lkpDppqqq “
ÿ

cPCpDppqqq

indpDppqq;cq

“ indpDppqq;rq ` indpDppqq;sq `
ÿ

cPCpDppqqqztr,su

indpDppqq;cq

“
ÿ

cPCpEppqqq

indpEppqq;cq “ lkpEppqqq. □

For an oriented flat virtual knot diagram D with a 2-gon, whose
vertices are flat crossings r and s as in Fig. 9, we put

PpD,r,sqptq “ PpD,rqptq ` PpD,sqptq,
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where we use Eq. (3.1) in the right hand side. Then, we have
PDptq “ PpD,r,sqptq `

ÿ

pPCpDqztr,su

PpD,pqptq.

Lemma 10. Suppose that |CpDq| ě 2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the left diagram in Fig. 9. Then,
we have PpD,r,sqptq “ 0.

Proof. Let X “ CrpDq XCspDq. If X ‰ H, then Lemma 7 implies that

PpD,r,sqptq “

˜

sgnpDrpsqqt |lkpDrpsqq| `
ÿ

pPX

sgnpDrppqqt |lkpDrppqq|

¸

`

˜

sgnpDsprqqt |lkpDsprqq| `
ÿ

pPX

sgnpDsppqqt |lkpDsppqq|

¸

“

´

sgnpDrpsqqt |lkpDrpsqq| ` sgnpDsprqqt |lkpDsprqq|
¯

`

˜

ÿ

pPX

sgnpDrppqqt |lkpDrppqq| `
ÿ

pPX

sgnpDsppqqt |lkpDsppqq|

¸

“ 0

If X “ H, then Lemma 7 also shows that
PpD,r,sqptq “ sgnpDrpsqqt |lkpDrpsqq| ` sgnpDsprqqt |lkpDsprqq| “ 0. □

Lemma 11. Suppose that |CpDq| ě 2, and that D has a 2-gon whose
vertices are flat crossings r and s as in the right diagram in Fig. 9.
Then, we have PpD,r,sqptq “ 0.

Proof. Lemma 8 gives
PpD,r,sqptq “

ÿ

qPCrpDq

psgnpDrpqqq ` sgnpDspqqqq t |lkpDrpqqq| “ 0. □

If a flat virtual knot diagram is oriented, then it exhibits two types
of the move FR2, which depend on the orientations of the two arcs
involved in the move. If the move is realized by two arcs with the same
direction as in the left figure of Fig. 9, then it is called type A. The
move realized by two arcs with opposite directions as in the right figure
of Fig. 9 is called type B.
Lemma 12. The polynomial PDptq is invariant under the move FR2 of
type A.
Proof. Suppose |CpDq| ě 2. Let E be the diagram obtained from D by
applying a move FR2 of type A eliminating flat crossings r and s of D.
We have three cases based on the number |CpDq|.

First, we consider the case where |CpDq| “ 2, i.e., CpDq “ tr,su. It is
easy to see that CrpDq “ tsu and CspDq “ tru. Lemma 10 gives PDptq “
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PpD,r,sqptq “ 0. Since |CpEq| “ 0, we have PEptq “ 0 by Definition 1.
Hence, it holds that PDptq “ PEptq.

Next, we consider the case where |CpDq| “ 3. Suppose that CpDq “

tr,s, pu. We claim that PpD,pqptq “ 0. Note that CppDq “ H or CppDq “

tr,su by Lemma 6. If CppDq “ H, then it is clear that PpD,pqptq “ 0. If
CppDq “ tr,su, then Lemma 6 also gives

PpD,pqptq “ sgnpDpprqqt |lkpDpprqq| ` sgnpDppsqqt |lkpDppsqq| “ 0.

The previous claim and Lemma 10 yield that PDptq “ PpD,pqptq `

PpD,r,sqptq “ 0. On the other hand, since |CpEq| “ 1, PEptq “ 0 by Defi-
nition 1. Thus, it holds that PDptq “ PEptq.

Finally, we consider the case where |CpDq| ě 4. Note that CpEq “

CpDqztr,su. Since PpD,r,sqptq “ 0 by Lemma 10, it is sufficient to show
that PpD,pqptq “ PpE,pqptq for p P CpEq, which leads to PDptq “ PEptq. By
Lemma 6 we have tr,suXCppDq “ H or tr,su Ď CppDq. If tr,suXCppDq “

H, then CppDq “ CppEq whence Lemma 9 gives

PpD,pqptq “
ÿ

qPCppDq

sgnpDppqqqt |lkpDppqqq| “
ÿ

qPCppEq

sgnpDppqqqt |lkpDppqqq|

“
ÿ

qPCppEq

sgnpEppqqqt |lkpEppqqq| “ PpE,pqptq.

If tr,su Ď CppDq, then CppDq “ CppEq Y tr,su and Lemma 6 gives

sgnpDpprqqt |lkpDpprqq| ` sgnpDppsqqt |lkpDppsqq| “ 0.

Hence, we obtain PD,pptq “ PE,pptq by Lemma 9 as in the previous case.
This completes the proof. □

Lemma 13. The polynomial PDptq is invariant under the move FR2 of
type B.

Proof. The proof is similar to that of Lemma 12, using Lemma 8 and
Lemma 11, with the exception that there is a distinction in the case of
|CpDq| “ 2 for two sets, CrpDq and CspDq. □

The following is an immediate consequence from Lemmas 12 and 13.

Proposition 14. The polynomial PDptq is invariant under the move FR2.

4. Invariance of PDptq under the moves FR3 and FV R4

In this section, we will show that PDptq is invariant under the moves FR3
and FV R4. There are two oriented versions of the triangle move FR3
as illustrated in Fig. 11. It is known that FR3 of type B can be realized
by a finite sequence of the moves FR3 of type A and FR2. Therefore, in
the sequel, we will focus on demonstrating that the polynomial PDptq
remains invariant under the move FR3 of type A.
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ÐÑ
FR3 of type A

non-cyclic type

ÐÑ
FR3 of type B

cyclic type

Figure 11. Two oriented types of the move FR3

r0

r1

r2

D

s0

s2

s1

E

Figure 12. The settings in D and E

Lemma 15. Let E be the diagram obtained from D through a single
move FR3 of type A. Assuming that the settings in D and E are as
depicted in Fig. 12, the following statements hold:

(i) r0 P Cr1pDq if and only if r0 P Cr2pDq; in this case, sgnpDr1pr0qq “

´1, sgnpDr2pr0qq “ 1, and lkpDr1pr0qq “ ´lkpDr2pr0qq.
(ii) s0 P Cs1pEq if and only if s0 P Cs2pEq; in this case, sgnpEs1ps0qq “

1, sgnpEs2ps0qq “ ´1, and lkpEs1ps0qq “ ´lkpEs2ps0qq.
(iii) r2 P Cr1pDq if and only if s2 P Cs0pEq; in this case, sgnpDr1pr2qq “

sgnpEs0ps2qq “ 1 and lkpDr1pr2qq “ lkpEs0ps2qq.
(iv) r1 P Cr2pDq if and only if s1 P Cs0pEq; in this case, sgnpDr2pr1qq “

sgnpEs0ps1qq “ ´1 and lkpDr2pr1qq “ lkpEs0ps1qq.
(v) r1 P Cr0pDq if and only if s1 P Cs2pEq; in this case, sgnpDr0pr1qq “

sgnpEs2ps1qq “ 1 and lkpDr0pr1qq “ lkpEs2ps1qq.
(vi) r2 P Cr0pDq if and only if s2 P Cs1pEq; in this case, sgnpDr0pr2qq “

sgnpEs1ps2qq “ ´1 and lkpDr0pr2qq “ lkpEs1ps2qq.

Proof. To begin with, we show the claim (i). Since r1 and r2 form a
2-gon in Dpr0q, it follows that r0 P Cr1pDq if and only if r0 P Cr2pDq.
Since Dr1pr0q and Dr2pr0q are the same diagram with opposite labels,
we have lkpDr1pr0qq “ ´lkpDr2pr0qq. From the labels at the base points,
we see that sgnpDr1pr0qq “ ´1 and sgnpDr2pr0qq “ 1.

Next, we prove the claim (ii). We find that s1 and s2 form a 2-gon
in Dps0q. We also find that Es1ps0q and Es2ps0q are the same diagram
with opposite labels. Hence, the same reason as in the previous case
give the claim (ii).

Furthermore, we give the proof of the claim (iii). Dpr2q is isotopic
to Eps2q. Since r1 and s0 are the corresponding crossings, it is easy to
see that r2 P Cr1pDq if and only if s2 P Cs0pEq. Since Dr1pr2q is isotopic
to Es0ps2q, we easily obtain the remaining claims.

Finally, we clarify the claims (iv), (v) and (vi). These claims are
analogous to the claim (iii). Hence, the proofs for them are also similar
to that of the claim (iii), completing the proof. □
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Now, whenever q RCppDq for p PCpDq and q PCpDqztpu, we adopt the
convention sgnpDppqqq “ 0 and lkpDppqqq “ 0. From this convention, it
is evident to see that the polynomial PDptq in Definition 1 can be written
by

PDptq “
ÿ

pPCpDq

ÿ

qPCpDqztpu

W pDppqq; tq, (4.1)

where W pDppq; tqq “ sgnpDppqqq ¨ t |lkpDppqqq|.
Let E be the diagram from D by applying a move FR3 of type A.

Suppose that D and E differ only in one place as in Fig. 11. Let
R “ tr0,r1,r2u Ď CpDq and S “ ts0,s1,s2u Ď CpEq (cf. Fig. 12), and
T “ CpDqzR “ CpEqzS. Since CpDqztpu “ T Y pRztpuq for p P R and
CpDqztpu “ R Y pT ztpuq for p P T , we have

PDptq “
ÿ

pPR

¨

˝

ÿ

qPCpDqztpu

W pDppqq; tq

˛

‚`
ÿ

pPT

¨

˝

ÿ

qPCpDqztpu

W pDppqq; tq

˛

‚

“
ÿ

pPR

¨

˝

ÿ

qPRztpu

W pDppqq; tq

˛

‚`
ÿ

pPR

˜

ÿ

qPT

W pDppqq; tq

¸

`
ÿ

pPT

˜

ÿ

qPR

W pDppqq; tq

¸

`
ÿ

pPT

¨

˝

ÿ

qPT ztpu

W pDppqq; tq

˛

‚.

We also obtain

PEptq “
ÿ

pPS

¨

˝

ÿ

qPSztpu

W pDppqq; tq

˛

‚`
ÿ

pPS

˜

ÿ

qPT

W pDppqq; tq

¸

“
ÿ

pPT

¨

˝

ÿ

qPS

W pDppqq; tq

˛

‚`
ÿ

pPT

¨

˝

ÿ

qPT ztpu

W pDppqq; tq

˛

‚.

Then, we have the following.

Lemma 16. The following statements hold:

(i)
ÿ

pPR

¨

˝

ÿ

qPRztpu

W pDppqq; tq

˛

‚“
ÿ

pPS

¨

˝

ÿ

qPSztpu

W pDppqq; tq

˛

‚ .

(ii)
ÿ

pPR

˜

ÿ

qPT

W pDppqq; tq

¸

“
ÿ

pPS

˜

ÿ

qPT

W pDppqq; tq

¸

.

(iii)
ÿ

pPT

˜

ÿ

qPR

W pDppqq; tq

¸

“
ÿ

pPT

¨

˝

ÿ

qPS

W pDppqq; tq

˛

‚ .

12



Proof. (i) Using Eq. (4.1) and Lemma 15, we obtain

ÿ

pPR

¨

˝

ÿ

qPRztpu

W pDppqq; tq

˛

‚“

´

sgnpDr1pr0qqt |lkpDr1pr0qq| ` sgnpDr2pr0qqt |lkpDr2pr0qq|
¯

` sgnpDr1pr2qqt |lkpDr1 pr2qq| ` sgnpDr2pr1qqt |lkpDr2 pr1qq|

` sgnpDr0pr1qqt |lkpDr0 pr1qq| ` sgnpDr0pr2qqt |lkpDr0 pr2qq|

“ 0 ` sgnpEs0ps2qqt |lkpEs0 ps2qq| ` sgnpEs0ps1qqt |lkpEs0ps1qq|

` sgnpEs2ps1qqt |lkpEs2ps1qq| ` sgnpEs1ps2qqt |lkpEs1ps2qq|

“

´

sgnpEs1ps0qqt |lkpEs1ps0qq| ` sgnpEs2ps0qqt |lkpEs2ps0qq|
¯

` sgnpEs0ps2qqt |lkpEs0ps2qq| ` sgnpEs0ps1qqt |lkpEs0ps1qq|

` sgnpEs2ps1qqt |lkpEs2ps1qq| ` sgnpEs1ps2qqt |lkpEs1ps2qq|

“
ÿ

pPS

¨

˝

ÿ

qPSztpu

W pDppqq; tq

˛

‚.

(ii) For each i P t0,1,2u and q P T , it is easy to show that q P CripDq if
and only if q P CsipEq, in which case, we have sgnpDripqqq “ sgnpEsipqqq

and lkpDripqqq “ lkpEsipqqq. Thus, we obtain
ÿ

pPR

˜

ÿ

qPT

W pDppqq; tq

¸

“

2
ÿ

i“0

˜

ÿ

qPT

sgnpDripqqqt |lkpDripqqq|

¸

“

2
ÿ

i“0

˜

ÿ

qPT

sgnpEsipqqqt |lkpEsipqqq|

¸

“
ÿ

pPS

˜

ÿ

qPT

W pDppqq; tq

¸

.

(iii) For each p P T and i P t0,1,2u, it is also easy to verify that
ri P CppDq if and only if si P CppEq, in which case, we have sgnpDppriqq “

sgnpEppsiqq and lkpDppriqq “ lkpEppsiqq. Therefore, we have
ÿ

pPT

˜

ÿ

qPR

W pDppqq; tq

¸

“
ÿ

pPT

˜

2
ÿ

i“0

sgnpDppriqqt |lkpDppriqq|

¸

“
ÿ

pPT

˜

2
ÿ

i“0

sgnpEppsiqqt |lkpEppsiqq|

¸

“
ÿ

pPT

˜

ÿ

qPR

W pDppqq; tq

¸

. □

The following is an immediate consequence of Lemma 16.
13



Proposition 17. The polynomial PDptq is invariant under the move FR3.

Let E be the diagram obtained from D by a single move FV R4. Let
r be the flat crossing of D for the move FV R4 and s the corresponding
crossing of E. We put X “ CpDqztru “ CpEqztsu. Then, we have

PDptq “
ÿ

qPCpDqztru

W pDrpqq; tq `
ÿ

pPCpDqztru

¨

˝

ÿ

qPCpDqztpu

W pDppqq; tq

˛

‚

“
ÿ

qPX

W pDrpqq; tq `
ÿ

pPX

¨

˝W pDpprq; tq `
ÿ

qPXztpu

W pDppqq; tq

˛

‚

“
ÿ

qPX

W pDrpqq; tq `
ÿ

pPX

W pDpprq; tq `
ÿ

pPX

¨

˝

ÿ

qPXztpu

W pDppqq; tq

˛

‚.

we also have

PEptq “
ÿ

qPX

W pEspqq; tq `
ÿ

pPX

W pEppsq; tq `
ÿ

pPX

¨

˝

ÿ

qPXztpu

W pEppqq; tq

˛

‚.

Then, we have the following

Lemma 18. The following statements hold:
(i)

ÿ

qPX

W pDrpqq; tq “
ÿ

qPX

W pEspqq; tq.

(ii)
ÿ

pPX

W pDpprq; tq “
ÿ

pPX

W pEppsq; tq.

(iii)
ÿ

pPX

¨

˝

ÿ

qPXztpu

W pDppqq; tq

˛

‚“
ÿ

pPX

¨

˝

ÿ

qPXztpu

W pEppqq; tq

˛

‚.

Proof. Observe first that, depending on the orientation, Dprq is isotopic
to Epsq or Dprq is obtainable from Epsq by using the move FV R2.

(i) Suppose that r and s are base points of D and E, respectively.
For q P X , it is clear that q P CrpDq if and only if q P CspEq. In this case,
we have sgnpDrpqqq “ sgnpEspqqq and lkpDrpqqq “ lkpEspqqq. Thus, we
have

ÿ

qPX

W pDrpqq; tq “
ÿ

qPX

sgnpDrpqqqt |lkpDrpqqq|

“
ÿ

qPX

sgnpEspqqqt |lkpEspqqq| “
ÿ

qPX

W pEspqq; tq.

(ii) For p P X , it is also evident that r P CppDq if and only if s P CppEq.
Note that, in this case, we have sgnpDpprqq “ sgnpEppsq and lkpDpprqq “

14



lkpEppsqq. Thus, we obtain
ÿ

pPX

W pDpprq; tq “
ÿ

pPX

sgnpDpprqqt |lkpDpprqq|

“
ÿ

pPX

sgnpEppsqqt |lkpEppsqq| “
ÿ

pPX

W pEppsq; tq.

(iii) This is clear. □
The following is an immediate consequence of Lemma 18.

Proposition 19. The polynomial PDptq is invariant under the move
FV R4.
Theorem 20. For a flat virtual knot K, the polynomial PKptq is an in-
variant for K, i.e., it is invariant under the generalized flat Reidemeister
moves.
Proof. Clearly, it is invariant under the moves FV R1, FV R2, and FV R3.
By Propositions 5, 14, 17 and 19, it is invariant under the moves FR1,
FR2, FR3, and FV R4. □

5. An invariant of virtual doodles
In this section, based on the invariant PDptq for flat virtual knots, we
introduce an invariant of virtual doodles with one component.

Let D be a virtual doodle diagram with one component and p P CpDq.
By smoothing p we obtain two component diagram Dp, which is labeled
˘1 as in Fig. 13.

p Ñ

´1 `1

Dp

Figure 13. The two component labeled diagram Dp

For p P CpDq, we define σDppq by
σDppq “

ÿ

cPCpDpq

indpDp;cq,

where indpDp;cq is defined similarly as in Fig. 7. Now, we give the main
definition in this section.
Definition 21. Let D be a virtual doogle diagram. We define the poly-
nomial RDpt,uq P Zrt,us by

RDpt,uq “

$

’

’

&

’

’

%

0 if |CpDq| ď 1,
ÿ

pPCpDq

u|σDppq|

¨

˝

ÿ

qPCppDq

sgnpDppqqq ¨ t |lkpDppqqq|

˛

‚ otherwise.

15



Remark 22. We also have R´Dpt,uq “ ´RDpt,uq for the inverse diagram
´D of D.

Proposition 23. The polynomial RDpt,uq is invariant under the move
FR1.

Proof. Let E be the diagram obtained from D by applying a move FR1
eliminating r P CpDq. If |CpDq| “ 1, then the definition gives RDpt,uq “

0 “ REpt,uq. Using Eq. (3.1), we put for p P CpDq

RpD,pqpt,uq “ u|σDppq|PpD,pqptq.

Since PpD,rqptq “ 0 (cf. the proof of Proposition 5), we have RpD,rqpt,uq “

0 and

RDpt,uq “ RpD,rqpt,uq `
ÿ

pPCpDqztru

RpD,pqpt,uq “
ÿ

pPCpDqztru

RpD,pqpt,uq.

Assume that |CpDq| ě 2. If |CpDq| “ 2, say CpDq “ tr, pu, then
CppDq “ H and hence PpD,pqptq “ 0. Thus, RDpt,uq “ RpD,pqpt,uq “ 0.
On the other hand, REpt,uq “ 0, since |CpEq| “ 1.

Now, suppose that |CpDq| ě 3. Since PpD,pqptq “ PpE,pqptq for p P

CpDqztru “ CpEq as in the proof of Proposition 5, we have RpD,pqpt,uq “

RpE,pqpt,uq. This leads the desired result RDpt,uq “ REpt,uq. □

Proposition 24. The polynomial RDpt,uq is invariant under the move
FR2.

Proof. First, we consider the move FR2 of type A. Suppose |CpDq| ě 2
and let E be the diagram obtained from D by applying a move FR2
of type A eliminating r,s P CpDq. We put RpD,r,sqpt,uq “ RpD,rqpt,uq `

RpD,sqpt,uq.
First, suppose that |CpDq| “ 2. Since |CpEq| “ 0, REpt,uq “ 0 by def-

inition. It is sufficient to show that RDpt,uq “ 0. Let CpDq “ tr,su.
Since Dr and Ds are equivalent diagrams with opposite labels, we
have σDprq “ ´σDpsq whence |σDprq| “ |σDpsq|. Since CrpDq “ tsu

and CspDq “ tru as in the proof of Lemma 12, we obtain RDpt,uq “

RpD,r,sqpt,uq “ 0 by using Lemma 7 (iii).
Next, suppose that |CpDq| “ 3. Since |CpEq| “ 1, REpt,uq “ 0 by

definition. It is sufficient to show that RDpt,uq “ 0. Let CpDq “ tr,s, pu.
Since PpD,pqptq “ 0 as in the proof of Lemma 12, we have RpD,pqpt,uq “

0. Furthermore, since |σDprq| “ |σDpsq|, we can deduce RpD,r,sqpt,uq “

0 by performing a similar computation as presented in the proof of
Lemma 10. Thus, we have RDpt,uq “ RpD,pqpt,uq ` RpD,r,sqpt,uq “ 0.

Finally, suppose that |CpDq| ě 4. Since CpEq “ CpDqztr,su, we have

RDpt,uq “ RpD,r,sqpt,uq `
ÿ

pPCpEq

RpD,pqpt,uq
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and
REpt,uq “

ÿ

pPCpEq

RpE,pqpt,uq.

We only have to show the following two claims.
Claim 1. RpD,r,sqpt,uq “ 0.
Claim 2. RpD,pqpt,uq “ RpE,pqpt,uq for p P CpEq.

Proof of Claim 1. This is similar to the previous case where |CpDq| “

3.
Proof of Claim 2. By Lemma 6 we have tr,suXCppDq “ H or tr,su Ď

CppDq. If tr,su XCppDq “ H, then CppDq “ CppEq. Since it is evident
that σDppq “ σEppq, we have by Lemma 9

RpD,pqpt,uq “ u|σDppq|
ÿ

qPCppDq

sgnpDppqqqt |lkpDppqqq|

“ u|σE ppq|
ÿ

qPCppEq

sgnpEppqqqt |lkpEppqqq| “ RpE,pqpt,uq.

If tr,su Ď CppDq, then CppDq “ CppEq Y tr,su. We have by Lemma 6

u|σppDq|sgnpDpprqqt |lkpDpprqq| ` u|σppDq|sgnpDppsqqt |lkpDppsqq| “ 0.

Hence, we also obtain RDpt,uq “ REpt,uq by Lemma 9.
The proof for the move FR2 of type B is similar to that for the

previous case. □

Note that RDpt,uq is invariant under the moves FV R1, FV R2, FV R3,
and FV R4 because σDppq is clearly invariant under these moves. Since
D can be regarded as a flat virtual knot diagram, it is also clear that

PDptq “ RDpt,1q.

Let d be a virtual doodle with just one component and D its dia-
gram. We define the polynomial Rdpt,uq by RDpt,uq. Then, we have
the following.

Theorem 25. For a virtual doodle d with just one component, the poly-
nomial Rdpt,uq is an invariant for d, i.e., it is invariant under the gen-
eralized flat Reidemeister moves except the move FR3.

Example 26. We consider the virtual doodles d4.1 and d4.4 in [3], which
have diagrams as in Fig. 14. We denote by D and E the diagrams of
d4.1 and d4.4 in Fig. 14, respectively.

Then we have

Cr0pDq “ tr2u, Cr1pDq “ tr2, pu, Cr2pDq “ tr0,r1, pu, CppDq “ tr1,r2u,

and

Cs0pEq “ ts1u, Cs1pEq “ ts0, pu, Cs2pEq “ tpu, CppEq “ ts1,s2u.
17



r0

p

r1 r2

D“d4.1

ÐÑ

FR3

p

s0

s1

s2

E“d4.4

Figure 14. d4.1 and d4.4 in [3]

Thus we compute Rd4.1pt,uq as

Rd4.1pt,uq “ u|σDpr0q|sgnpDr0pr2qqt |lkpDr0pr2qq| ` u|σDpr1q|sgnpDr1pr2qqt |lkpDr1pr2qq|

` u|σDpr1q|sgnpDr1ppqqt |lkpDr1ppqq| ` u|σDpr2q|sgnpDr2pr0qqt |lkpDr2pr0qq|

` u|σDpr2q|sgnpDr2pr1qqt |lkpDr2pr1qq| ` u|σDpr2q|sgnpDr2ppqqt |lkpDr2ppqq|

` u|σDppq|sgnpDppr1qqt |lkpDppr1qq| ` u|σDppq|sgnpDppr2qqt |lkpDppr2qq|

“ u|0|p´1qt |´1| ` u|0|p`1qt |`1| ` u|0|p´1qt |`2| ` u|`1|p`1qt |`1| ` u|`1|p´1qt |0|

` u|`1|p´1qt |`2| ` u|´2|p`1qt |0| ` u|´2|p`1qt |`1|

“ ´t2 ` ut ´ u ´ ut2 ` u2 ` u2t.

On the other hand, we compute Rd4.4pt,uq as

Rd4.4pt,uq “ u|σE ps0q|sgnpEs0ps1qqt |lkpEs0 ps1qq| ` u|σE ps1q|sgnpEs1ps0qqt |lkpEs1 ps0qq|

` u|σE ps1q|sgnpEs1ppqqt |lkpEs1ppqq| ` u|σE ps2q|sgnpEs2ppqqt |lkpEs2ppqq|

` u|σE ppq|sgnpEpps1qqt |lkpEpps1qq| ` u|σE ppq|sgnpEpps2qqt |lkpEpps2qq|

“ u|`1|p´1qt |0| ` u|0|p`1qt |`1| ` u|0|p´1qt |`2| ` u|`1|p´1qt |`2|

` u|´2|p`1qt |0| ` u|´2|p`1qt |`1|

“ ´u ` t ´ t2 ´ ut2 ` u2 ` u2t.

Note that Rd4.1pt,uq ‰ Rd4.4pt,uq. Observe that
Pd4.1ptq “ Rd4.1pt,1q “ Rd4.4pt,1q “ Pd4.4ptq.

Since a virtual doodle can be regarded as a flat virtual link, the equality
Pd4.1ptq “ Pd4.4ptq also follows from the fact that d4.1 and d4.4 are related
by a move FR3.
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