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Abstract. Twisted knot theory introduced by M. Bourgoin is a generalization
of knot theory. It leads us to the notion of twisted virtual braids. In this paper

we show theorems for twisted links corresponding to the Alexander theorem

and the Markov theorem in knot theory. We also provide a group presentation
and a reduced group presentation of the twisted virtual braid group.

1. Introduction

M. O. Bourgoin [1] introduced twisted knot theory as a generalization of knot
theory. Twisted link diagrams are link diagrams on R2 possibly with some crossings
called virtual crossings and bars which are short arcs intersecting the arcs of the
diagrams. Twisted links are diagrammatically defined as twisted link diagrams
modulo isotopies of R2 and local moves called extended Reidemeister moves which
are Reidemeister moves (R1, R2, R3), virtual Reidemeister moves (V1, V2, V3, V4)
and twisted moves (T1, T2, T3) depicted in Figure 1. Twisted links correspond to
stable equivalence classes of links in oriented three-manifolds which are orientation
I-bundles over closed but not necessarily orientable surfaces.

Twisted links are analogous to virtual links introduced by L. H. Kauffman [7].
Virtual link diagrams are link diagrams on R2 possibly with some virtual crossings.
Virtual links are defined as virtual link diagrams modulo isotopies of R2 and local
moves called generalized Reidemeister moves which are Reidemeister moves (R1,
R2, R3) and virtual Reidemeister moves (V1, V2, V3, V4) depicted in Figure 1.
Virtual links correspond to stable equivalence classes of links in oriented three-
manifolds which are orientation I-bundles over closed oriented surfaces.

The Alexander theorem states that every link is represented as the closure of a
braid, and the Markov theorem states that such a braid is unique modulo certain
moves so called Markov moves. In virtual knot theory, analogous theorems are
established in [8, 9].

In this paper we show theorems for twisted links corresponding to the Alexander
theorem and the Markov theorem. We also provide a group presentation and a
reduced group presentation of the twisted virtual braid group.

This article is organized as follows. In Section 2, we state the definition of
the twisted virtual braid group and provide a group presentation of the group.
In Section 3, the Alexander theorem for twisted links is shown by introducing a
method of braiding a given twisted link diagram, which we call the braiding process.
In Section 4, we give the statement of the Markov theorem for twisted links and
prove it. In Section 5, virtual exchange moves are discussed. In Section 6, we give
a reduced presentation of the twisted virtual braid group, and concluding remarks.

2. The twisted virtual braid group

Let n be a positive integer.
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Figure 1. Extended Reidemeister moves.

Definition 2.1. A twisted virtual braid diagram on n strands (or of degree n) is a
union of n smooth or polygonal curves, which are called strands, in R2 connecting
points (i, 1) with points (qi, 0) (i = 1, . . . , n), where (q1, . . . , qn) is a permutation
of the numbers (1, . . . , n), such that these curves are monotonic with respect to
the second coordinate and intersections of the curves are transverse double points
equipped with information as a positive/negative/virtual crossing and strings may
have bars by which we mean short arcs intersecting the strings transversely. See Fig-
ure 2, where the five crossings are negative, positive, virtual, positive and positive
from the top.

Figure 2. A twisted virtual braid diagram on 3 strands.

Here is an alternative definition.

Definition 2.2. Let E be [0, n + 1] × [0, 1] and let p2 : E → [0, 1] be the second
factor projection. A twisted virtual braid diagram of n strands (or of degree n) is
an immersed 1-manifold b = a1 ∪ . . . ∪ an in E, where a1, . . . , an are embedded
arcs, called strands, possibly with bars by which we mean short arcs intersecting
the strands transversely, satisfying the following conditions (1)–(5):

(1) ∂b = {1, 2, . . . , n} × {0, 1} ⊂ E.
(2) For each i ∈ {1, . . . , n}, p2|ai : ai → [0, 1] is a homeomorphism.
(3) The set of multiple points of the strands consists of transverse double points,

which are referred as crossings of the diagram.
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(4) Each crossing is equipped with information of a positive crossing, a negative
crossing or a virtual crossing.

(5) Every bar avoids the crossings.

Let X(b) denote the set of crossings of b and the points on the strands where bars
intersect with. A twisted virtual braid diagram is said to be good if it satisfies the
following condition.

(6) The restriction map p2|X(b) : X(b)→ [0, 1] is injective.

The twisted virtual braid diagram depicted in Figure 2 is good. On the other
hand, the twisted virtual braid diagram depicted in Figure 3 is not good, since
there exist a pair of bars lying in p−12 (y) for some y ∈ [0, 1], or since there exists a
virtual crossing and a bar lying in p−12 (y′) for some y′ ∈ [0, 1].

Figure 3. A twisted virtual braid diagram which is not good.

Definition 2.3. Two twisted virtual braid diagrams b and b′ of degree n are equiv-
alent if there is a finite sequence of twisted virtual braid diagrams of degree n,
say b0, b1, . . . , bm, with b = b0 and b′ = bm such that for each j = 1, . . . ,m, bj is
obtained from bj−1 by one of the following:

• An isotopy of E keeping the conditions (1)–(5) of a twisted virtual braid
diagram.
• An extended Reidemeister move.

A twisted virtual braid is an equivalence class of twisted virtual braid diagrams.

The set of twisted virtual braids forms a group, where the product is defined by
the concatenation similar to the braid group such that bb′ is b on b′ when we draw
the braid diagram vertically. The twisted virtual braid group is denoted by TV Bn.

Let σi, σ
−1
i , vi (i = 1, . . . , n − 1) and γi (i = 1, . . . , n) be twisted virtual braid

diagrams depicted in Figure 4. Twisted virtual braids represented by them will
be also denoted by the same symbols. The group TV Bn is generated by σi, vi
(i = 1, . . . , n− 1) and γi (i = 1, . . . , n), which we call standard generators.

i i+ 1 i i+ 1 i i+ 1 i

σi σ−1
i vi γi

b b b b b b b b b bbb bbb b b b b bb b b b

1 1 1 1 nnnn

Figure 4. Generators of the group of twisted virtual braids.

Figure 5 shows classical braid moves, corresponding to R2 and R3. Figure 6
shows virtual braid moves, corresponding to V2, V3, and V4. (There are some
other moves corresponding to R3 and V4. However, it is well known that those
moves are equivalent to the moves in the figure, cf. [8].)
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Figure 5. Classical braid moves.

V2
V3

V4

b b b bb b b b b bb bb b b b

b bb b
b b b b b bb b

1 ni i+ 1 1 ni i+ 1 1 ni i+ 1 i+ 2 1 ni+ 1 i+ 2

1 ni i+ 1 i+ 2 1 ni+ 1 i+ 2 1 ni i+ 1 i+ 2 1 ni+ 1 i+ 2

i

i i

b b b b

Figure 6. Virtual braid moves.
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b b b b b bb b bb b b

1 i i+ 1 n 1 i i+ 1 n 1 i i+ 1 n 1 i i+ 1 n

1 i n 1 i n 1 i i+ 1 n 1 i i+ 1 n

I

IIIII

Figure 7. Twisted braid moves.

We call the two moves depicted in the top row of Figure 7 twisted braid moves
of type I, and the move on the left of the second row a twisted braid move of type
II. The move on the right of the bottom is called a twisted braid move of type III
or of type III(+). When we replace the positive crossings with negative ones, it is
called a twisted braid move of type III or of type III(−).

Braid moves corresponding to extended Reidemeister moves are classical braid
moves, virtual braid moves and twisted braid moves.

Theorem 2.4. The twisted virtual braid group TV Bn is generated by standard
generators, σi, vi (i = 1, . . . , n−1) and γi (i = 1, . . . , n), and the following relations
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are defining relations, where e denotes the identity element:

σiσj = σjσi for |i− j| > 1;(1)

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2;(2)

v2i = e for i = 1, . . . , n− 1;(3)

vivj = vjvi for |i− j| > 1;(4)

vivi+1vi = vi+1vivi+1 for i = 1, . . . , n− 2;(5)

σivj = vjσi for |i− j| > 1;(6)

viσi+1vi = vi+1σivi+1 for i = 1, . . . , n− 2;(7)

γ2i = e for i = 1, . . . , n;(8)

γiγj = γjγi for i, j = 1, . . . , n;(9)

γjvi = viγj for j 6= i, i+ 1;(10)

σiγj = γjσi for j 6= i, i+ 1;(11)

γi+1vi = viγi for i = 1, . . . , n− 1;(12)

viσivi = γi+1γiσiγiγi+1 for i = 1, . . . , n− 1.(13)

Remark 2.5. Using (3), we see that relations (7) and (12) are equivalent the fol-
lowing (14) and (15), respectively:

σi+1 = vivi+1σivi+1vi for i = 1, . . . , n− 2,(14)

γi+1 = viγivi for i = 1, . . . , n− 1.(15)

Remark 2.6. There are two kinds of twisted braid moves of type I as shown in
Figure 7. The left one corresponds to relations (12) and the right one to (16):

γivi = viγi+1 for i = 1, . . . , n− 1.(16)

Using (3), we see that relations (12) are equivalent to (16).

Remark 2.7. There are two kinds of twisted braid moves of III; one is type III(+) as
shown in Figure 7 and the other is type III(−). The former corresponds to relations
(13) and the latter to (17):

viσ
−1
i vi = γi+1γiσ

−1
i γiγi+1 for i = 1, . . . , n− 1.(17)

Using (3) and (8), we see that relations (13) are equivalent to (17).

Proof. Note that the inverse elements of vi and γi in TV Bn are themselves. Let
S be the set of standard generators of TV Bn and let S∗ be the set of standard
generators and their inverse elements of TV Bn:

S = {σi, vi | i = 1, . . . , n− 1} ∪ {γi | i = 1, . . . , n},
S∗ = {σi, σ−1i , vi | i = 1, . . . , n− 1} ∪ {γi | i = 1, . . . , n}.

Let b be a twisted virtual braid diagram. When it is good, it is presented uniquely
as a concatenation of elements of S∗, which we call a preferred word of b. When
it is not good, one can modify it slightly by an isotopy of E keeping the condition
of a twisted virtual braid diagram to become good. Thus, S generates the group
TV Bn.

Let b and b′ are good twisted virtual braid diagrams. Suppose that b′ is obtained
from b by an isotopy of E keeping the condition of a twisted virtual braid diagram.
Then they are related by a finite sequence of changing heights of a pair of points in
X(b). A single height change of a pair of such points corresponds to one of relations
(1), (4), (6), (9), (10), (11) and variants of (1), (6) and (11) with σi replaced by
σ−1i and/or σj replaced by σ−1j . Note that the variants are consequences of the
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original relations up to relations (3) and (8). Thus, we see that the preferred words
of b and b′ are congruent modulo relations (1), (4), (6), (9), (10), (11) and relations
(3) and (8).

Suppose that b′ is obtained from b by an extended Reidemeister move. When
the move is R2, the change of preferred words corresponds to σεiσ

−ε
i = σ−εi σεi

(ε ∈ {±1}), which is a trivial relation. When the move is R3, it is well known that
the change of preferred words corresponds to a relation which is a consequence of
relations (2). When the move is V2, the change of preferred words corresponds
to relations (3). When the move is V3, the change of preferred words corresponds
to relations (5). When the move is V4, we may assume that it is the move as in
Figure 5, which corresponds to relations (7). When the move is T1, the change of
preferred words corresponds to relations (12) or (16). When the move is T3, the
change of preferred words corresponds to relations (13) or (17). Therefore we see
that the preferred words of b and b′ are congruent each other modulo all relations
(1)–(13).

Since all relations (1)–(13) are valid in the group TV Bn, these relations are
defining relations. �

Remark 2.8. The twisted virtual group TV Bn is different from the ring group ([2])
or the extended welded braid group ([5]). Brendle and Hatcher [2] discussed the
space of configurations of n unlinked Euclidean circles, called rings, whose funda-
mental group is the ring group Rn. They showed that the ring group is isomorphic
to the motion group of the trivial link of n components in the sense of Dahm [3].
The ring group has a finite index subgroup isomorphic to the braid-permutation
group, also called the welded braid group, introduced by Fenn, Rimányi and Rourke
[6]. Damiani [4] studied the ring group from various points of view. In particular,
she introduced in [5] the notion of the extended welded braid group defined by using
diagrams motivated from the work of Satoh [11]. Damiani’s extended welded braid
group is isomorphic to the ring group.

The twisted virtual braid group TV Bn is different from the ring group and the
extended welded braid group for n > 2, since they admit a relation v1σ2σ1 =
σ2σ1v2, which is not allowed in the twisted virtual braid group TV Bn.

3. Braid presentation of twisted links

The closure of a twisted virtual braid (diagram) is defined by a similar way for
a classical braid.

Example 3.1. The closure of a twisted virtual braid diagram is shown in Figure 8.

Figure 8. The closure of braid γ1σ
−1
1 γ2.

In this section we show that every twisted link is represented by the closure of a
twisted virtual braid diagram (Theorem 3.6).
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3.1. Gauss data. For a twisted link diagram K, we prepare some notation:

• Let VR(K) be the set of all real crossings of K.
• Let S(K) be the map from VR(K) to the set {+1,−1} assigning the signs

to real crossings.
• Let B(K) be the set of all bars in K.
• Let N(v) be a regular neighborhood of v, where v ∈ VR(K) ∪B(K).
• For c ∈ VR(K), we denote by c(1), c(2), c(3), and c(4) the four points of
∂N(c) ∩K as depicted in Figure 9.

c(3)

c(1) c(2)

c(4) c(4) c(3)

c(1) c(2)

Figure 9. Boundary points of N(c) ∩K.

• For γ ∈ B(K), we denote by γ(1) and γ(2) the two points of ∂N(γ) ∩K as
depicted in Figure 10.

γ(1)

γ(2)

Figure 10. Boundary points of N(γ) ∩K.

• Put W = W (K) = Cl(R2 \ ∪v∈VR(K)∪B(K)N(v)), where Cl means the
closure.

• Let V ∂R (K) = {c(j)|c ∈ VR(K), 1 ≤ j ≤ 4}, and B∂(K) = {γ(j)|γ ∈
B(K), 1 ≤ j ≤ 2}.
• Let K|W be the restriction of K to W , which is a union of some oriented

arcs and loops generically immersed in W such that the double points are
virtual crossings of K, and the set of boundary points of the arcs is the set
V ∂R (K) ∪B∂(K).
• Let µ(K) be the number of components of K.
• Define a subset G(K) of (V ∂R (K)∪B∂(K))2 such that (a, b) ∈ G(K) if and

only if K|W has an oriented arc starting from a and ends at b.

The Gauss data of a twisted link diagram K is the quintuple

(VR(K), S(K), B(K), G(K), µ(K)).

Example 3.2. Let K be a twisted link diagram depicted in Figure 11. When we
name the real crossings c1 and c2 as in the figure, the Gauss data is

({c1, c2}, {+1,+1}, {γ1}, {(c(4)1 , c
(2)
2 ), (c

(3)
2 , c

(2)
1 ), (c

(4)
2 , γ

(1)
1 ), (γ

(2)
1 , c

(1)
1 ), (c

(3)
1 , c

(1)
2 )}, 1).

We say that two twisted link diagrams K and K ′ have the same Gauss data if
µ(K) = µ(K ′) and there exists a bijection g : VR(K) ∪ B(K) → VR(K) ∪ B(K)
satisfying the following conditions:
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Figure 11. A twisted link diagram with one bar.

• g(VR(K)) = VR(K), and g(B(K)) = B(K).
• g preserves the signs of real crossings; S(K)(c) = S(K ′)(g(c)) for c ∈
VR(K).
• (a, b) ∈ G(K) if and only if (g∂(a), g∂(b)) ∈ G(K ′), where g∂ : V ∂R (K) ∪
B∂(K)→ V ∂R (K ′)∪B∂(K ′) is the bijection induced from g, i.e., g∂(c(j)) =

(g(c))(j) for c ∈ VR(K), 1 ≤ j ≤ 4 and g∂(γ(j)) = (g(γ))(j) for γ ∈
B(K), 1 ≤ j ≤ 2.

Let K be a twisted link diagram and W = W (K) = Cl(R2\∪v∈VR(K)∪B(K)N(v))
as before. Suppose that K ′ is a twisted link diagram with the same Gauss data
with K. Then by an isotopy of R2 we can move K ′ such that

• K and K ′ are identical in N(v) for every v ∈ VR(K) ∪B(K),
• K ′ has no real crossings and bars in W , and
• there is a bijection between the arcs/loops of K|W and those of K ′|W with

respect to the endpoints of the arcs.

In this situation, we say that K ′ is obtained from K by replacing K|W .

Lemma 3.3. Let K and K ′ be twisted link diagrams, and let W = W (K) =
Cl(R2 \ ∪v∈VR(K)∪B(K)N(v)).

(1) If K ′ is obtained from K by replacing K|W , then they are related by a finite
sequence of isotopies of R2 with support W and V1, V2, V3, V4, and T1 moves.

(2) If two twisted link diagrams K and K ′ have the same Gauss data, then K is
equivalent to K ′.

Proof. (1) Let N1, N2, . . . , Nm be regular neighborhoods of the real crossings and
bars of K. Let a1, a2, . . . , an and a′1, a

′
2, . . . , a

′
n be the arcs/loops of K|W and K ′|W

respectively. Using an isotopy of R2 with support W , we may assume that the
intersection of a′1 with a2, . . . , an are transverse double points. The arc/loop a1
is homotopic to a′1 in R2 (relative to the boundary when a1 is an arc). Taking
the homotopy generically with respect to the arcs/loops a2, . . . , an, and the 2-disks
N1, N2, . . . , Nm, we see that the arc/loop a1 can be changed into a′1 by a finite
sequence of moves as shown in Figure 12 up to isotopy of R2 with support W .
Considering that all crossings in Figure 12 are virtual crossings, we regard these
moves as V1, V2, V3, V4, and T1 moves. In this way, we can change a1 into
a′1 without changing other arcs/loops of K|W and K ′|W . Applying this argument
inductively, all arcs/loops of K|W change into the corresponding ones of K ′|W .

(2) Moving K by an isotopy of R2, we may assume that K ′ is obtained from K
by replacing K|W . By (1), we obtain the assertion. �
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Ni Ni Ni Ni

Figure 12. Moves on immersed curves.

3.2. Braiding process. Let O be the origin of R2 and identify R2 \ {O} with
R+ × S1 by polar coordinates, where R+ is the set of positive numbers. Let π :
R2 \ {O} = R+ × S1 → S1 denote the radial projection.

For a twisted link diagram K, we denote by VR(K) the set of real crossings, by
VB(K) the set of points on K where bars intersect with, and by X(K) the set of
all (real or virtual) crossings and the set of points on K where bars intersect with.

Definition 3.4. A closed twisted virtual braid diagram is a twisted link diagram K
satisfying the following conditions (1) and (2):

(1) K is contained in R2 \ {O}.
(2) Let k : tS1 → R2 \ {O} be the underlying immersion of K, where tS1 is

a disjoint union of copies of S1. Then π ◦ k : tS1 → S1 is a covering map
of S1 of degree n which respects the orientations of tS1 and S1.

A closed twisted virtual braid diagram is good if it satisfies the following condition.

(3) Let N1, N2, . . . , Nm be regular neighborhoods of the real crossings and bars
of K. Then π(Ni) ∩ π(Nj) = ∅ for i 6= j.

Proposition 3.5. Every twisted link diagram K is equivalent, as a twisted link, to
a good closed twisted virtual braid diagram K ′ such that K and K ′ have the same
Gauss data.

Proof. Let K be a twisted link diagram and let N1, N2, . . . , Nm be regular neigh-
borhoods of the real crossings and bars of K. Moving K by an isotopy of R2, we
may assume that all Ni are in R2 \{O}, π(Ni)∩π(Nj) = ∅ for i 6= j and the restric-
tion of K to Ni satisfies the condition of a closed twisted virtual braid diagram.
Replace the remainder K|W (K) such that the result is a good closed twisted virtual
braid diagram K ′. Then K and K ′ have the same Gauss data, and by Lemma 3.3
they are equivalent as twisted links. �

The procedure in the proof of Proposition 3.5 makes a given twisted link diagram
to a good closed twisted virtual braid diagram having the same Gauss data with
K. This is the braiding process in our paper.

A point θ of S1 is called a regular value for a closed twisted virtual braid diagram
K if X(K) ∩ π−1(θ) = ∅. Cutting K along the half line π−1(θ) for a regular value
of θ, we obtain a twisted virtual braid diagram whose closure is equivalent to K.

Thus, Proposition 3.5 implies the following.

Theorem 3.6. Every twisted link is represented by the closure of a twisted virtual
braid diagram.

4. The Markov theorem for twisted links

In this section we show a theorem on braid presentation of twisted links which
is analogous to the Markov theorem for classical links.

A twisted Markov move of type 0 or a TM0-move is a replacement of a twisted
virtual braid diagram b with another b′ of the same degree such that b and b′ are
equivalent as twisted virtual braids, i.e., they represent the same element of the
twisted virtual braid group.
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A twisted Markov move of type 1 or a TM1-move is a replacement of a twisted
virtual braid (or its diagram) b with b1bb

−1
1 where b1 is a twisted virtual braid (or

its diagram) of the same degree with b. We also call this move a conjugation.
A twisted Markov move of type 1 or a TM1-move may be defined as a replacement

of a twisted virtual braid (or its diagram) b = b1b2 with b′ = b2b1 where b1 and b2
are twisted virtual braids (or their diagrams) of the same degree. See Figure 13.

bb ∼

TM1
b2

b2

b1

∼

b1

b−1
1

b1

Figure 13. A twisted Markov move of type 1 or a TM1-move.

For a twisted virtual braid (or its diagram) b of degree n and non-negative
integers s and t, we denote by ιts(b) the twisted virtual braid (or its diagram) of
degree n+ s+ t obtained from b by adding s trivial strands to the left and t trivial
strands to the right. This defines a monomorphism ιts : TV Bn → TV Bn+s+t.

A stabilization of positive, negative or virtual type is a replacement of a twisted
virtual braid (or its diagram) b of degree n with ι10(b)σn, ι10(b)σ−1n or ι10(b)vn, re-
spectively.

b bb ∼ ∼TM2 b∼

Figure 14. A twisted Markov move of type 2 or a TM2-move.

A twisted Markov move of type 2 or a TM2-move is a stabilization of positive,
negative or virtual type, or its inverse operation. See Figure 14.

A right virtual exchange move is a replacement

ι10(b1)σ−1n ι10(b2)σn ←→ ι10(b1)vnι
1
0(b2)vn,

and a left virtual exchange move is a replacement

ι01(b1)σ−11 ι01(b2)σ1 ←→ ι01(b1)v1ι
0
1(b2)v1,

where b1 and b2 are twisted virtual braids (or their diagrams). A twisted Markov
move of type 3 or a TM3-move is a right/left virtual exchange move or its inverse
operation. See Figure 15.

Definition 4.1. Two twisted virtual braids (or their diagrams) are Markov equivalent
if they are related by a finite sequence of twisted Markov moves TM1–TM3 (or
TM0–TM3 when we discuss them as diagrams).

Theorem 4.2. Two twisted virtual braids (or their diagrams) have equivalent clo-
sures as twisted links if and only if they are Markov equivalent.

Remark 4.3. In Section 5, it turns out that if two twisted virtual braids (or their
diagrams) is related by a left virtual exchange move then they are related by a
sequence of TM1-moves (or TM0-moves and TM1-moves when we discuss them as
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b1

∼

TM3 b1

∼

b2 b2b2 b2

b1 b1

Figure 15. A twisted Markov move of type 3 or a TM3-move.

diagrams) and a right virtual exchange move. Thus we may remove left virtual
exchange moves from the definition of Markov equivalence.

Let K and K ′ be closed twisted virtual braid diagrams and let b and b′ be
twisted virtual braid diagrams obtained from K and K ′ by cutting along π−1(θ)
and π−1(θ′) for some regular values θ and θ′. We say that K ′ is obtained from K
by a twisted Markov move of type 0 or a TM0-move if they are equivalent as closed
twisted virtual braids. Note that K ′ is obtained from K by a TM0-move if and
only if b and b′ are related by a finite sequence of TM0-moves and TM1-moves. We
say that K ′ is obtained from K by a twisted Markov move of type 2 or a TM2-move
if b and b′ are related by a TM2-move and some TM1-moves. We say that K ′ is
obtained from K by a twisted Markov move of type 3 or a TM3-move if b and b′

are related by a TM3-move and some TM1-moves.

Definition 4.4. Two closed twisted virtual braid diagrams K and K ′ are Markov
equivalent if they are related by a finite sequence of TM0-, TM2- and TM3-moves.

Proposition 4.5. Two closed twisted virtual braid diagrams K and K ′ are Markov
equivalent if and only if twisted virtual braid diagrams b and b′ are Markov equiv-
alent, where b and b′ are obtained from K and K ′ by cutting along π−1(θ) and
π−1(θ′) for some regular values θ and θ′.

Proof. For a given closed twisted virtual braid diagram K, b is uniquely determined
up to TM1-moves. Then the assertion is trivial by definition. �

By Proposition 4.5, Theorem 4.2 is equivalent to the following theorem.

Theorem 4.6. Two closed twisted virtual braid diagrams are equivalent as twisted
links if and only if they are Markov equivalent.

To prove Theorem 4.6, we require the following lemma.

Lemma 4.7. Two closed twisted virtual braid diagrams with the same Gauss data
are Markov equivalent.

Proof. Let K and K ′ be closed twisted virtual braids with the same Gauss data.
Modifying them by isotopies of R2 \ {O}, we may assume that they are good. Let
N1, N2, . . . , Nm be regular neighborhoods of the real crossings and bars of K, and
N ′1, N

′
2, . . . , N

′
m be regular neighborhoods of the corresponding real crossings and

bars of K ′.
Case (I). Suppose that π(N1), π(N2), . . . , π(Nm) and π(N ′1), π(N ′2), . . . , π(N ′m)

appear in S1 in the same cyclic order. Modifying K by an isotopy of R2 \ {O}
keeping the condition of a good closed twisted virtual braid, we may assume that
N1 = N ′1, N2 = N ′2, . . . , Nm = N ′m and the restrictions of K and K ′ to these
disks are identical. Let a1, . . . , as be the arcs/loops of K|W and a′1, . . . , a

′
s be the

corresponding arcs/loops of K ′|W . Let θ ∈ S1 be a regular value for K and K ′
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such that π−1(θ) is disjoint from N1 ∪ · · · ∪ Nm. If there exists an arc/loop ai of
K|W such that |ai ∩ π−1(θ)| 6= |a′i ∩ π−1(θ)|, then move a small segment of ai or a′i
toward the origin O by some V2 moves which are

TM0-moves and apply some VM2-moves of virtual type so that |ai ∩ π−1(θ)| =
|a′i∩π−1(θ)| after the modification. Thus without loss of generality, we may assume
that |ai ∩ π−1(θ)| = |a′i ∩ π−1(θ)| for all i = 1, . . . , s.

Let k : tS1 → R2 \ {O} and k′ : tS1 → R2 \ {O} be the underlying immersions
of K and K ′, respectively, such that they are identical near the preimages of the
real crossings and bars. Let I1, . . . , Is be arcs/loops in tS1 with k(Ii) = ai and
k′(Ii) = a′i for i = 1, . . . , s. Note that π◦k|Ii and π◦k′|Ii are orientation-preserving
immersions into S1 with π ◦ k|∂Ii = π ◦ k′|∂Ii . Since ai and a′i have the same
degree, so we have a homotopy kti : Ii → R2 \ {O} (t ∈ [0, 1]) of Ii relative to
the boundary ∂Ii such that k0i = k|Ii and k1i = k|Ii and π ◦ kti is an orientation-
preserving immersion. Taking such a homotopy generically with respect to the
other arcs/loops of K|W and K ′|W and the 2-disks N1, N2, . . . , Nm, we see that
ai can be transformed to a′i by a sequence of TM0-moves. Apply this procedure
inductively, we can change a1, . . . , as to a′1, . . . , a

′
s by a sequence of TM0-moves and

TM2-moves. Thus we see that K is transformed into K ′ by a finite sequence of
TM0 and TM2-moves.

Case (II). Suppose that π(N1), π(N2), . . . , π(Nm) and π(N ′1), π(N ′2), . . . , π(N ′m)
do not appear in S1 in the same cyclic order. It is sufficient to show that we
can interchange the position of two consecutive π(Ni)’s. Suppose that we want to
interchange π(N1) and π(N2).

(1) Suppose that N2 is a neighborhood of a real crossing. Figure 16 shows how
to interchange π(N1) and π(N2) by TM0-moves and TM2-moves.
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Figure 16. Interchange the positions of N1 and N2.

(2) Suppose that N2 is a neighborhood of a bar. Figure 17 shows how to inter-
change π(N1) and π(N2) by TM0-moves and TM2-moves.

Applying this argument, we can make π(N1), π(N2), . . . , π(Nm) and
π(N ′1), π(N ′2), . . . , π(N ′m) to appear in the same cyclic order on S1 using VM0 and
VM2-moves. Then we can reduce the case to Case (I). �

Proof of Theorem 4.6. If two closed twisted virtual braids (or their diagrams) are
Markov equivalent then they are equivalent as twisted links. Conversely, suppose
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Figure 17. Interchange the positions of N1 and N2.

that K and K ′ are closed twisted virtual braid diagrams which are equivalent
as twisted links. There is a finite sequence of twisted link diagrams, say, K =
K0,K1, . . . ,Kn = K ′ such that Ki+1 is obtained from Ki by one of the extended
Reidemeister moves.

For each i = 1, . . . , n− 1, Ki may not be a closed twisted virtual braid diagram.

Let K̃i be a closed twisted virtual braid diagram obtained from Ki by the braiding

process in the previous section. We assume K0 = K̃0 and Kn = K̃n. Then for each

i = 0, 1, . . . , n, K̃i and Ki have the same Gauss data. It is sufficient to prove that

K̃i and K̃i+1 are Markov equivalent.

It is shown in [9] that K̃i and K̃i+1 are Markov equivalent when Ki+1 is obtained
from Ki by one of R1, R2, R3, V1, V2, V3, and V4. (In [9] virtual links and closed
virtual braid diagrams are discussed. However the argument in [9] is valid in our
current situation.)

Thus, it is sufficient to consider a case that Ki+1 is obtained from Ki by a twisted
move T1, T2 or T3.

(1) Let Ki+1 be obtained by Ki from a T1 move. Then Ki and Ki+1 have same

Gauss data, and hence K̃i and K̃i+1 have same Gauss data. By Lemma 4.7, K̃i

and K̃i+1 are Markov equivalent.
(2) Let Ki+1 be obtained by Ki by a T2 move. Assume that a pair of bars in Ki

is removed by the T2 move to obtain Ki+1. Let N be a 2-disk where the T2 move
is applied such that N ∩ Ki is an arc, say α, with two bars and N ∩ Ki+1 is the
arc α. Let N1 and N2 be neighborhoods of the two bars such that N1 ∪N2 ⊂ N .
By an isotopy of R2, deform Ki, α and N such that N ∩Ki is α with two bars and

π|α : α → S1 is an orientation-preserving embedding. Let K̃ ′i be a closed twisted
virtual braid obtained from the deformed Ki by applying the braid process in the

previous section such that N is pointwise fixed, and let K̃ ′i+1 be a closed twisted

virtual braid obtained from K̃ ′i by removing the two bars intersecting α. Then K̃ ′i
and K̃ ′i+1 are related by a TM0-move. Since K̃i and K̃ ′i have the same Gauss data,

they are Markov equivalent. Since K̃i+1 and K̃ ′i+1 have the same Gauss data, they

are Markov equivalent. Thus K̃i and K̃i+1 are Markov equivalent. The case that a
pair of bars are introduced to Ki to obtain Ki+1 is shown similarly.

(3) LetKi+1 be obtained fromKi by a T3 move. There are 4 possible orientations
for a T3 move, say T3a, T3b, T3c, and T3d as in Figure 18.

First consider a case that Ki+1 is obtained from Ki by a move T3a or T3b.
Assume that Ki is as in the left and Ki+1 is as in the right of Figure 18. Let N
be a 2-disk where the move is applied. Then N ∩Ki is a pair of arcs, say α1 and
α2, intersecting transversely at a real crossing and there are four bars. Let N1 be
a neighborhood of the real crossing of Ki and N2, . . . , N5 be neighborhoods of the
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T3a

T3b

T3c

T3d

Figure 18. Oriented T3 moves.

four bars of Ki in N such that N1 ∪ · · · ∪ N5 ⊂ N . By an isotopy of R2, deform
Ki, α1, α2, and N such that π|α1

: α1 → S1 and π|α2
: α2 → S1 are orientation-

preserving embeddings. Let K̃ ′i be a closed twisted virtual braid diagram obtained
from the deformed Ki by applying the braid process in the previous section such

that N is pointwise fixed, and let K̃ ′i+1 be a closed twisted virtual braid diagram

obtained from K̃ ′i by applying a T3a (or T3b) move. Then K̃ ′i and K̃ ′i+1 are related

by a TM0-move. Since K̃i and K̃ ′i have the same Gauss data, they are Markov

equivalent. Since K̃i+1 and K̃ ′i+1 have the same Gauss data, they are Markov

equivalent. Thus K̃i and K̃i+1 are Markov equivalent. The case that Ki is as in
the right and Ki+1 is as in the left of the figure is shown similarly.

Now consider the case that Ki+1 is obtained from Ki by a move T3c or T3d.
Note that a move T3c (or T3d) is a consequence of a move T3b (or T3a) modulo
moves V1, V2, V3, and V4. One can see this by rotating the two diagrams in
T3c (or T3d) by 90 degrees clockwise. Then the left hand side becomes the same
diagram with the left hand side of T3b (or T3a). The right hand side of T3c (or
T3d) after the rotation has a real crossing and no bars. One can see that the right
hand side of T3b (or T3a) also has a real crossing and no bars. Considering the
Gauss data of the tangle in N and applying the same argument to the proof of
Lemma 4.7, we see that the right hand side of T3c (or T3d) after the rotation is
transformed to the right hand side of T3b (or T3a) by V1, V2, V3, and V4 moves
in N . Thus we can reduce the case to T3a (or T3b) and the case of V1, V2, V3,
and V4 moves. �

5. On virtual exchange moves of twisted virtual braids

It turns out that if two twisted virtual braids (or their diagrams) are related by
a left virtual exchange move then they are related by a sequence of TM1-moves
(or TM0-moves and TM1-moves) and a right virtual exchange move. Thus we may
remove left virtual exchange moves from the definition of Markov equivalence.

Let fn : TV Bn → TV Bn be an isomorphism determined by

σi 7→ σn−i, for i = 1, . . . , n− 1

vi 7→ vn−i, for i = 1, . . . , n− 1

γi 7→ γn−i+1, for i = 1, . . . , n.

For a twisted virtual braid diagram b of degree n which is good, we also denote
by fn(b) a twisted virtual braid diagram obtained from the diagram b by applying
the above correspondence to the preferred word of b.
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Let ∇n be a twisted virtual braid (or its diagram) with

∇n =

n−1∏
i=1

(vivi−1 . . . v1)

n∏
j=1

γj .

Let Fn : TV Bn → TV Bn be an isomorphism determined by

b 7→ ∇nb∇−1n for b ∈ TV Bn.

Then ∇2
n = e in TV Bn and Fn(b) = fn(b) for b ∈ TV Bn. In particular b and fn(b)

are related by a TM1-move (or TM0-moves and TM1-moves when we discuss them
as diagrams).

Theorem 5.1. If two twisted virtual braids of degree n (or their diagrams) are
related by a left virtual exchange move, then they are related by a sequence of TM1-
moves (or TM0-moves and TM1-moves) and a right virtual exchange move.

Proof. Let b and b′ be twisted virtual braid diagrams of degree n related by a left
virtual exchange move. Suppose that

b = ι01(b1)σ−11 ι01(b2)σ1 and b′ = ι01(b1)v1ι
0
1(b2)v1,

where b1 and b2 are good twisted virtual braid diagrams of degree n− 1. Then

fn(b) = ι10(fn−1(b1))σ−1n ι10(fn−1(b2))σn and fn(b′) = ι10(fn−1(b1))vnι
1
0(fn−1(b2))vn,

and hence fn(b) and fn(b′) are related by a right virtual exchange move. Since b is
conjugate to Fn(b) = fn(b) as elements of TV Bn, and b′ is conjugate to Fn(b′) =
fn(b′), we see that b and b′ are related by a sequence of TM1-moves (or TM0-moves
and TM1-moves when we discuss them as diagrams) and a right virtual exchange
move. �

6. A reduced presentation of the twisted virtual braid group

L. Kauffman and S. Lambropoulou [8] gave a reduced presentation of the virtual
braid group. Motivated by their work, we give a reduced presentation of the twisted
virtual braid group. Using the reduced presentation, one can deal the twisted virtual
braid group with less number of generators and relations.

In this section, we show that the presentation of the twisted virtual braid group
TV Bn given in Theorem 2.4 can be reduced to a presentation with n+1 generators
and less relations by rewriting σi (i = 2, . . . , n − 1) and γi (i = 2, . . . , n) in terms
of σ1, γ1 and v1, . . . , vn−1 as follows:

σi = (vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1) for i = 2, . . . , n− 1,(18)

γi = (vi−1 . . . v1)γ1(v1 . . . vi−1) for i = 2, . . . , n.(19)

See Figure 19. These can be seen geometrically from their diagrams or algebraically
from (14) and (15).
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γi = (vi−1 . . . v1)γ1(v1 . . . vi−1)

Figure 19. σi and γi.

Theorem 6.1. The twisted virtual braid group TV Bn has a presentation whose
generators are σ1, γ1, v1, . . . , vn−1 and the defining relations are as follows:

v2i = e for i = 1, . . . , n− 1;(20)

vivj = vjvi for |i− j| > 1;(21)

vivi+1vi = vi+1vivi+1 for i = 1, . . . , n− 2;(22)

σ1(v2v3v1v2σ1v2v1v3v2) = (v2v3v1v2σ1v2v1v3v2)σ1,

(23)

(v1σ1v1)(v2σ1v2)(v1σ1v1) = (v2σ1v2)(v1σ1v1)(v2σ1v2),

(24)

σ1vj = vjσ1 for j = 3, . . . , n− 1;(25)

γ21 = e,(26)

γ1vj = vjγ1 for j = 2, . . . , n− 1;(27)

γ1v1γ1v1 = v1γ1v1γ1,(28)

γ1v1v2σ1v2v1 = v1v2σ1v2v1γ1,(29)

γ1v1γ1σ1γ1v1γ1 = σ1.(30)

In what follows, we refer to relations (3), (4) and (5) or equivalently (20), (21)
and (22) as the virtual relations.

Lemma 6.2 (cf. [8]). Relations (7) follow from relations (18) and the virtual
relations.

This lemma is directly seen. The following three lemmas are proved in [8]. So
we omit the proofs.
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Lemma 6.3 (Lemma 1 of [8]). Relations (6) follow from relations (18), the virtual
relations, and relations (25).

Lemma 6.4 (Lemma 3 of [8]). Relations (1) follow from relations (18), the virtual
relations, and relations (23) and (25).

Lemma 6.5 (Lemma 2 of [8]). Relations (2) follow from relations (18), the virtual
relations, and relations (24) and (25).

In the following proofs, we underline the expressions which we focus on.

Lemma 6.6. Relations (8) follow from relations (19), the virtual relations, and
relation (26).

Proof.

γ2i = (vi−1 . . . v1)γ1(v1 . . . vi−1)(vi−1 . . . v1)γ1(v1 . . . vi−1)

= (vi−1 . . . v1)γ21(v1 . . . vi−1)

= (vi−1 . . . v1)(v1 . . . vi−1)

= e.

�

Lemma 6.7. Relations (10) follow from relations (19), the virtual relations, and
relations (27).

Proof. Since j 6= i, i+ 1, we consider the following two cases.
Case(i) Suppose j ≤ i− 1. Then i ≥ 2 and we have

viγj = vi(vj−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . v1)viγ1(v1 . . . vj−1)

= (vj−1 . . . v1)γ1vi(v1 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vj−1)vi

= γjvi.

Case(ii) Suppose j ≥ i+ 2. Then

viγj = vi(vj−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . vi+2vivi+1vivi−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . vi+2vi+1vivi+1vi−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . vi+2vi+1vivi−1 . . . v1)vi+1γ1(v1 . . . vj−1)

= (vj−1 . . . v1)γ1vi+1(v1 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vi−1vi+1vivi+1vi+2 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vi−1vivi+1vivi+2 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vj−1)vi

= γjvi.

�

Lemma 6.8. Relations (9) follow from relations (19), the virtual relations, and
relations (27) and (28).
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Proof. By the previous lemma, we may assume relations (10). It is sufficient to
consider a case of j > i.

γiγj = (vi−1 . . . v1)γ1(v1 . . . vi−1)(vj−1 . . . v1)γ1(v1 . . . vj−1)

= (vi−1 . . . v1)γ1(vj−1 . . . v1)(v2 . . . vi)γ1(v1 . . . vj−1) (by (10))

= (vi−1 . . . v1)(vj−1 . . . v2)γ1v1γ1(v2 . . . vi)(v1 . . . vj−1) (by (28))

= (vi−1 . . . v1)(vj−1 . . . v2)v1γ1v1γ1v1(v2 . . . vi)(v1 . . . vj−1)

= (vj−1 . . . v2v1)(vi . . . v2)γ1v1γ1v1(v2 . . . vi)(v1 . . . vj−1)

= (vj−1 . . . v2v1)(vi . . . v2)γ1v1γ1v1(v1 . . . vj−1)(v1 . . . vi−1)

= (vj−1 . . . v2v1)(vi . . . v2)γ1v1γ1(v2 . . . vj−1)(v1 . . . vi−1) (by (10))

= (vj−1 . . . v2v1)γ1(vi . . . v2)v1(v2 . . . vj−1)γ1(v1 . . . vi−1)

= (vj−1 . . . v2v1)γ1v1(v2 . . . vj−1)(vi−1 . . . v1)γ1(v1 . . . vi−1)

= γjγi.

�

Lemma 6.9. Relations (11) follow from relations (18), (19), the virtual relations,
relations (25), (27) and (29).

Proof. By previous lemmas, we may assume relations (6) and (7) or equivalently
(14).

First we show (11) when j = 1, i.e., σiγ1 = γ1σi for i 6= 1. We apply induction
on i, with initial condition i = 2. The relation σ2γ1 = γ1σ2 follows from (18) and
(29).

Assuming σiγ1 = γ1σi, we obtain σi+1γ1 = γ1σi+1 as follows:

σi+1γ1 = vivi+1σivi+1viγ1

= vivi+1σivi+1γ1vi

= vivi+1σiγ1vi+1vi

= vivi+1γ1σivi+1vi

= viγ1vi+1σivi+1vi

= γ1vivi+1σivi+1vi

= γ1σi+1.

Hence,

(31) σiγ1 = γ1σi for i 6= 1.

Now, we show relations (11): σiγj = γjσi for j 6= i, i+ 1.
Case(i) Suppose j ≤ i− 1. Then

σiγj = σi(vj−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . v1)σiγ1(v1 . . . vj−1) (by (31))

= (vj−1 . . . v1)γ1σi(v1 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vj−1)σi

= γjσi.
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Case(ii) Suppose j ≥ i+ 2. Then

σiγj = σi(vj−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . vi+2)σi(vi+1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . vi+2)vi+1viσi+1vivi+1(vi+1vivi−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . vi)σi+1(vi−1 . . . v1)γ1(v1 . . . vj−1)

= (vj−1 . . . vi)(vi−1 . . . v1)σi+1γ1(v1 . . . vj−1) (by (31))

= (vj−1 . . . v1)γ1σi+1(v1 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vi−1)σi+1(vi . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vi−1)vivi+1σivi+1vi(vivi+1vi+2 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vi+1)σi(vi+2 . . . vj−1)

= (vj−1 . . . v1)γ1(v1 . . . vi+1)(vi+2 . . . vj−1)σi

= γjσi.

�

Lemma 6.10. Relations (12) follow from relations (19) and the virtual relations.

Proof.

γi+1vi = (vi . . . v1)γ1(v1 . . . vi)vi

= vi(vi−1 . . . v1)γ1(v1 . . . vi−1)

= viγi.

�

Lemma 6.11. Relations (13) follow from relations (18), (19), the virtual relations,
and relations (27) and (30).

Proof.

γi+1γiσiγiγi+1 = (vi . . . v1)γ1(v1 . . . vi)(vi−1 . . . v1)γ1(v1 . . . vi−1)(vi−1 . . . v1)(vi . . . v2)

σ1(v2 . . . vi)(v1 . . . vi−1)(vi−1 . . . v1)γ1(v1 . . . vi−1)(vi . . . v1)γ1(v1 . . . vi)

= (vi . . . v1)γ1(v1 . . . vi−1vivi−1 . . . v1)γ1(vi . . . v2)σ1(v2 . . . vi)γ1

(v1 . . . vi−1vivi−1 . . . v1)γ1(v1 . . . vi)

= (vi . . . v1)γ1(vi . . . v2v1v2 . . . vi)γ1(vi . . . v2)σ1(v2 . . . vi)γ1

(vi . . . v2v1v2 . . . vi)γ1(v1 . . . vi)

= (vi . . . v1)(vi . . . v2)γ1v1(v2 . . . vi)(vi . . . v2)γ1σ1γ1(v2 . . . vi)(vi . . . v2)

v1γ1(v2 . . . vi)(v1 . . . vi)

= (vi . . . v1)(vi . . . v2)γ1v1γ1σ1γ1v1γ1(v2 . . . vi)(v1 . . . vi)

= vi(vi−1 . . . v1)(vi . . . v2)σ1(v2 . . . vi)(v1 . . . vi−1)vi

= viσivi.

�

Proof of Theorem 6.1. In the twisted virtual braid group, it is verified that all
relations (18)–(30) are valid by a geometrical argument using diagrams or algebraic
argument using the relations (1)–(13). On the other hands, we see that the relations
(1)–(13) follow from the relations (18)–(30) by the previous lemmas. �
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Concluding remarks

In this paper we study twisted virtual braids and the twisted virtual braid group,
and provide theorems for twisted links corresponding to the Alexander theorem and
the Markov theorem. We also provide a group presentation and a reduced group
presentation of the twisted virtual braid group. As future work, it will be interesting
to study the pure twisted virtual braid group and construct invariants for twisted
virtual braids and twisted links. For example, biquandles with structures related
to twisted links introduced in [10] may be discussed by using twisted virtual braids.
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