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Abstract

On a contact Riemannian manifold which is compact and not assumed to be in-

tegrable, we intend to construct a parametrix for the Kohn-Rossi Laplacian. In

particular, we will explicitly express the inverse of its principal part. Beals-Greiner

constructed it in the case where the manifold is integrable. Our study depends heav-

ily on theirs. We have some tools useful for the study in the non-integrable case, by

means of which their results are extended to the general case and furthermore the

inverse can be revealed more clearly.

0 Introduction

In this paper, on a contact Riemannian manifold M which is compact and not as-

sumed to be integrable, we intend to construct a parametrix Q for the Kohn-Rossi

Laplacian □H (cf. (1.6), (1.7)): that is, the operators Q□H − I, □HQ − I have C∞-

kernels. In particular, we will explicitly express the inverse operator of the principal

part □H (cf. (1.9)). The operator □H is not elliptic and consequently the standard

elliptic theory does not work well for the study. We wish to investigate its parametrix

as a stepping-stone to a close study of such a troublesome but important operator.

Beals-Greiner ([2, Chap.4]) constructed it in the case where M is integrable. Our

study depends heavily on theirs. Fortunately we have some tools useful for the study

in the non-integrable case, by means of which their results are extended to the general

case and furthermore the inverse (□H)−1 can be revealed more clearly. In addition,

the terms of the symbol σ(Q), which is written as an expansion
∑

k≥2 σ−k(Q), can be

expressed explicitly up to an arbitrarily low degree, though the quantity of (elementary)

calculation increases rather rapidly.
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We will prove the main theorems in §3 and §4, which propose the explicit formulas

for the symbol and the kernel of (□H)−1 and mention some properties of □H derived

from the existence of a global parametrix. §1 and §2 are devoted to the explanation

of our tools. In §1 a general contact Riemannian manifold and the hermitian Tanno

connection ♯∇, etc., on it ([4]) will be reviewed. The connection ♯∇ coincides with the

well-known Tanaka-Webster connection (e.g. [3]) in the integrable case, and the author

thinks that, as the Tanaka-Webster one fits for the study in the integrable case, so must

do the connection ♯∇ in the general case. In fact, he applied it to several problems in the

general contact Riemannain case ([5], [6], [7], [8], [9], etc.), and the study in this paper is

one of such considerations. The formulas in the main theorems are described by means of

geodesics, normal coordinates, parallel transportations, etc., with respect to ♯∇. In §2,
referring to [2, §11] we will review the concept of y-coordinates xy associated to the ♯∇-

normal coordinates x. The new coordinates xy play an important role in investigating

the inverse (□H)−1. It is our idea to consider only the case where the coordinates x

are ♯∇-normal ones. With no consideration to the use of connection Beals-Greiner ([2])

adopted the coordinates x unrestrictedly, so that their formulas have some vague parts

even though restricted to the integrable case.

Last, we want to mention briefly another approach to the Laplacian □H : In [4],

the author studied the heat kernel e−t□H . We proved its unique existence and showed

that its pointwise trace can be expanded into tr e−t□H (P 0, P 0) ∼
∑

k≥0 t
−(n+1)+kak(P

0)

when t→ 0, and all the coefficients are described as certain universal polynomials built

from the curvature and the torsion of the hermitian Tanno connection. Further, by

using only a basic knowledge of calculus, one can describe the polynomials explicitly up

to an arbitrarily high order. We may incidentally remark that the results in §4 of the

paper can be deduced also from those in [4].

Together with [4], this paper thus deepens our understanding of the Kohn-Rossi

Laplacian.

1 Contact Riemannian manifold and the Kohn-Rossi Lapla-

cian

Let M = (M ; e0, e0, J, g) be a (2n + 1)-dimensional contact Riemannian manifold.

Here e0 is a contact 1-form and e0 is the unique vector field satisfying e0⌋ e0 := e0(e0) =

1, e0⌋ de0 := de0(e0, ) = 0, and (J, g) is a pair of (1, 1)-tensor field and Riemannian

metric satisfying g(e0, X) = e0(X), g(X, JY ) = −de0(X,Y ) := −X(e0(Y ))−Y (e0(X))+

e0([X,Y ]) and J2X = −X + e0(X)e0.
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Referring to [4] and [9], first we will review briefly some basic properties of the

hermitian Tanno connection denoted by ♯∇ ([4]), which is a tool crucial for our study.

We set H = ker e0, H± = {X ∈ CH | JX = ±iX} (CH := H ⊗ C). Without the

assumption that J is integrable (i.e., [Γ(H+),Γ(H+)] ⊂ Γ(H+)), we will equip M with

the connection, which is characterized by the following conditions:

♯∇e0 = 0, ♯∇g = 0, ♯∇J = 0,

π+T (
♯∇)(Z,W ) = 0 (Z ∈ H+, W ∈ CTM),

where T (♯∇) is the torsion tensor and π+ : CTM = Ce0 ⊕ H+ ⊕ H− → H+ is the

natural projection (cf. [4, Lemma 1.1], [6, §2]). We notice that it coincides with

the Tanaka-Webster connection ([3, §1.2]) provided that J is integrable. On a small

neighborhood U = UP of a given point P, we always consider a unitary frame eC• =

(eC0 , e
C
1 , . . . , e

C
n , e

C
1̄
, . . . , eCn̄) of CTU (eC0 := e0, e

C
ᾱ = eCα ∈ H−, g(e

C
α, e

C
β̄
) = δαβ, 1 ≤

α, β ≤ n) which is ♯∇-parallel along all the ♯∇-geodesics from P. Its dual frame is

denoted by e•C = (e0C, e
1
C, . . . , e

n
C, e

1̄
C, . . . , e

n̄
C) (hence, e0C = e0). We take the associated

orthonormal frames e• = (e0, e1, · · · , e2n), e• = (e0, e1, · · · , e2n) with respect to the un-

derlying Riemannian metric g, i.e.,

eα =
eCα + eCᾱ√

2
, en+α =

eCᾱ − eCα√
−2

, eα =
eαC + eᾱC√

2
, en+α =

eαC − eᾱC√
−2

,

g = e0C ⊗ e0C +
∑

1≤α≤n

(eαC ⊗ eᾱC + eᾱC ⊗ eαC) =
∑

0≤j≤2n

ej ⊗ ej .
(1.1)

Further, let x• = t(x0, x1 . . . , x2n) be the ♯∇-normal coordinates centered at P with

∂/∂xj = ej at 0 = P, and xC• = t(xC0 , x
C
1 . . . , x

C
n , x

C
1̄
. . . , xCn̄) be the complexified one. Also

the frames (∂/∂xC• ) = (∂/∂xC0 , ∂/∂x
C
1 , · · · , ∂/∂xC1̄ , · · ·), (dx

C
• ) = (dxC0 , dx

C
1 , · · · , dxC1̄ , · · ·)

are similarly defined, that is,

xC0 = x0, xCα =
xα + ixn+α√

2
,

∂

∂xC0
=

∂

∂x0
,

∂

∂xCα
=

1√
2

( ∂

∂xα
− i

∂

∂xn+α

)
,(1.2)

etc. Hereafter the Greek indices α, β, . . . will vary from 1 to n, and so will do the block

Latin indices A, B, . . . in {0, 1, . . . , n, 1̄, . . . , n̄}. We notice ♯∇eC = 0, ♯∇Γ(H±) ⊂ Γ(H±)

and we have the following.

Proposition 1.1 The connection forms ω(♯∇)AB with

♯∇eCβ =
∑

eCα · ω(♯∇)αβ ,
♯∇eCβ̄ =

∑
eCᾱ · ω(♯∇)ᾱβ̄ , ω(♯∇)ᾱβ̄ = −ω(♯∇)βα

and the transition functions V•(x
C), V •(xC) defined by

eC• = (∂/∂xC• ) · V•, e•C = (dxC• ) · V •, hence, V• = (tV •)−1

(i.e., eCA =
∑
VBA ∂/∂x

C
B, etc.)
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are expanded as

ω(♯∇)αβ(∂/∂x
C
A)(x

C)(1.3)

= −
∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
xCA1

· · ·xCAℓ

∂ℓ−1F (♯∇)αβ(∂/∂x
C
A, ∂/∂x

C
A1

)

∂xCA2
· · · ∂xCAℓ

(0),

V BA(xC) = δBA +

∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
xCA1

· · ·xCAℓ

∂ℓ−1T (♯∇)AA1
(∂/∂xCB)

∂xCA2
· · · ∂xCAℓ

(0)(1.4)

+

∞∑
ℓ=2

ℓ− 1

(ℓ+ 1)!

∑
xCA1

· · ·xCAℓ

∂ℓ−2F (♯∇)AA1
(∂/∂xCA2

, ∂/∂xCB)

∂xCA3
· · · ∂xCAℓ

(0).

(
F (♯∇)AB(X,Y ) := g(F (♯∇)(X,Y )eCB, e

C
Ā),

T (♯∇)AB(Y ) := g(T (♯∇)(eCB, Y ), eCĀ)

)
where we put F (♯∇)(X,Y ) = [♯∇X ,

♯∇Y ] − ♯∇[X,Y ], T (
♯∇)(X,Y ) = ♯∇XY − ♯∇YX −

[X,Y ]. The transition functions v•(x), v
•(x) defined by

e• = (∂/∂x•) · v•, e• = (dx•) · v•, hence, v• = (tv•)−1

are also expanded as

vji(x) = δji +

∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
xi1 · · ·xiℓ

∂ℓ−1T (♯∇)ii1(∂/∂xj)

∂xi2 · · · ∂xiℓ
(0)(1.5)

+

∞∑
ℓ=2

ℓ− 1

(ℓ+ 1)!

∑
xi1 · · ·xiℓ

∂ℓ−2F (♯∇)ii1(∂/∂xi2 , ∂/∂xj)

∂xi3 · · · ∂xiℓ
(0).

(
F (♯∇)ij(X,Y ) := g(F (♯∇)(X,Y )ej , ei),

T (♯∇)ij(Y ) := g(T (♯∇)(ej , Y ), ei)

)

Proof. The expansions (1.3), (1.4) were shown in [4, Proposition 2.4] (cf. [1, Ap-

pendix II]). As for (1.5): The equalities

xCα ⊗ ∂

∂xCα
+ xCᾱ ⊗ ∂

∂xCᾱ
= xα ⊗ ∂

∂xα
+ xn+α ⊗ ∂

∂xn+α
,

etc., and (1.4) yield

V BA = δBA +

∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
xi1 · · ·xiℓ

∂ℓ−1g(T (♯∇)(ei1 , ∂/∂x
C
B), e

C
Ā
)

∂xi2 · · · ∂xiℓ
(0)

+

∞∑
ℓ=2

ℓ− 1

(ℓ+ 1)!

∑
xi1 · · ·xiℓ

∂ℓ−2g(F (♯∇)(∂/∂xi2 , ∂/∂x
C
B)ei1 , e

C
Ā
)

∂xi3 · · · ∂xiℓ
(0),

and we have

e•C = e• ·


1 0

(0, β)-entry

0
(0, β̄)-entry

0
(α, 0)-entry

E√
2

E√
2

0
(ᾱ, 0)-entry

iE√
2

−iE√
2

 =: e• · Ẽ,
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v• = Ẽ V •Ẽ−1

=


V 00

V 0β+V 0β̄
√
2

(0, β)-entry

−iV 0β+iV 0β̄
√
2

(0, n + β)-entry

V α0+V ᾱ0
√
2

(α, 0)-entry

(V αβ+V ᾱβ̄)+(V αβ̄+V ᾱβ)
2

−i(V αβ−V ᾱβ̄)+i(V αβ̄−V ᾱβ)
2

iV α0−iV ᾱ0
√
2

(n + α, 0)-entry

i(V αβ−V ᾱβ̄)+i(V αβ̄−V ᾱβ)
2

(V αβ+V ᾱβ̄)−(V αβ̄+V ᾱβ)
2

 .

Hence, by straightforward computation, we obtain the expansion (1.5).

Now, we put

∧0,∗
H T ∗M = {ω ∈ ∧∗CT ∗M | X⌋ω = 0 (X ∈ Re0 ∪H+)},

Ω0,∗M = Γ(∧0,∗
H T ∗M)

and set ∂̄H = Π(0,∗+1) ◦ d : Ω0,∗M → Ω0,∗+1M , where d is the usual exterior differentia-

tion and Π(0,∗+1) denotes the natural projection Ω∗+1M := Γ(∧∗+1CT ∗M) → Ω0,∗+1M .

Its formal adjoint is denoted by ∂̄∗H and the formally self-adjoint operator

□H = □H,q := ∂̄∗H ∂̄H + ∂̄H ∂̄
∗
H : Ω0,qM → Ω0,qM(1.6)

is called the Kohn-Rossi Laplacian. It is known (cf. [4, Proposition 1.3]) that, on U ,

they can be expressed as follows:

∂̄H =
∑

eᾱC ∧ ♯∇eCᾱ
, ∂̄∗H = −

∑
eᾱC ∨ ♯∇eCα

,

□H = −
∑(

♯∇eCα
♯∇eCᾱ

− ♯∇♯∇
eCα

eCᾱ

)
−
√
−1 q ♯∇eC0

(1.7)

−
∑

F (♯∇)γδ (e
C
ᾱ, e

C
β ) · eᾱC∧ e

β̄
C ∨ eγ̄C∧ e

δ̄
C ∨ ,

where eᾱC∧ is the exterior production of eᾱC and eᾱC ∨ := eCᾱ ⌋ is the interior one of eCᾱ.

(We notice that, even if eC• , etc., are just unitary, the formulas hold.) Here we want to

state that hereafter our study will specialize solely in the case

0 < q < n(1.8)

for reasons that will become apparent.

Next, referring to [2, §10], let us introduce the symbol spaces. We put

FH
m (U) = {f ∈ C∞(π∗T ∗U\{0}End(∧

0,q
H T ∗U)) | f(Q, λ · T ) = λmf(Q, T )},

where λ ·T is the Heisenberg dilation of T = (T 0, TH) ∈ T ∗U = Re0⊕H∗ by λ > 0, i.e.,

λ · T := (λ2T 0, λTH). By using the ♯∇-parallel transportation along the ♯∇-geodesics

to P, we trivialize the bundles on U as

T ∗U ∼= U × T ∗
PU

∼= U × R2n+1, e•(x) · σ ↔ (x, e•(0) · σ) ↔ (x, σ),

∧0,q
H T ∗U ∼= U × ∧0,q

H T ∗
PU

∼= U × C(
n
q)
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and put

Fm
H (U) =

{
f ∈ C∞(π∗T ∗UEnd(∧

0,q
H T ∗U)) |

there exist fk ∈ FH
k (U) (k ≤ m) such that f ∼

∑
k≤m

fk

}
,

where “f ∼
∑

k≤m fk” means that, for each multi-indices A, B and each N > 0, there

exists a locally bounded function cABN (x) > 0 such that∣∣∣∂Ax ∂Bσ (f −
∑

k>m−N

fk

)
(x, σ)

∣∣∣ ≤ cABN (x) |σ|m−|B|H−N
H (|σ|H ≥ 1).(

|σ|H := {|σ0|2 +
∑
j≥1

|σj |4}1/4, |B|H := 2B0 +
∑
j≥1

Bj = B0 + |B|
)

Now, we consider another trivialization

T ∗U ∼= U × T ∗
PU

∼= U × R2n+1, (dx•)x · ξ ↔ (dx•)0 · ξ ↔ (x, ξ)

and regard the elements of C∞(π∗T ∗UEnd(∧
0,q
H T ∗U)) as the cross-sections of the bundle

over U × R2n+1 (∋ (x, ξ)), which are, hence, denoted by q(x, ξ). We set

(dx•)x · ξ• = e•(x) · σ•(x, ξ), hence, σ•(x, ξ) =
tv•(x) · ξ•

and put

SH
m (U) = {q ∈ C∞(π∗T ∗U\{0}End(∧

0,q
H T ∗U)) |

there exists f ∈ FH
m (U) such that q(x, ξ) = f(x, σ(x, ξ))},

Sm
H (U) = {q ∈ C∞(π∗T ∗UEnd(∧

0,q
H T ∗U)) |

there exists f ∈ Fm
H (U) such that q(x, ξ) = f(x, σ(x, ξ))}.

(Refer to [2, Proposition(10.46)] which remarks on the choice of the frames e•.) As usual

we put S∞
H (U) =

∪
m Sm

H (U), S−∞
H (U) =

∩
m Sm

H (U), etc. A pseudodifferential operator

P acting on C∞(∧0,q
H T ∗U) whose usual symbol σ(P ) belongs to Sm

H (U) is then called an

H-pseudodifferential operator (on U) of degree m. Those of H-pseudodifferential

operators acting on C∞(U) will be denoted also by Sm
H (U), etc., if no confusion occurs.

The symbol spaces Sm
H (M), etc., and H-pseudodifferential operators on M of degree m

are then defined in an ordinary manner.

The Laplacian□H is obviously anH-differential operator of degree 2 and the principal

part □H , i.e., σ(□H) ∈ SH
2 (M), is expressed on U as

□H(
∑
|J|=q

eJC · fJ) =
1

2

∑
|J|=q

eJC ·□J(fJ)(1.9)
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:=
1

2

∑
|J|=q

eJC ·
{
− 2

∑
eCαe

C
ᾱ −

√
−1 2q eC0

}
(fJ)

=
1

2

∑
|J|=q

eJC ·
{
−
∑

(eCαe
C
α + eCαe

C
α)−

√
−1λ eC0

}
(fJ) (λ := −(n− 2q))

=
1

2

∑
|J|=q

eJC ·
{
−

2n∑
j=1

(ej)
2 −

√
−1λ e0

}
(fJ),

where we set J = ((1 ≤) j1 < · · · < jq (≤ n)) and eJC = ej1C ∧ · · · ∧ ejqC . Our main interest

centers around the operator.

2 On the y-coordinates and the y-group structure

Let us regard the small ♯∇-normal coordinate neighborhood (UP, x) (given in §1)
naturally as a small neighborhood of 0 in (R2n+1, x). Then, [4, §3] says that R2n+1

has a contact Riemannian structure and the associated hermitian Tanno connection ♯∇
which satisfy the following: their restrictions to UP coincide with the given ones, and

the coordinates x of (R2n+1, x) is the global ♯∇-normal ones on R2n+1. In §2 and §3, our
study will be advanced on the contact Riemannian manifold U = R2n+1. For example,

eC• is, hence, a globally defined frame of CTU = CTR2n+1 which is ♯∇-parallel along all

the ♯∇-geodesics from 0.

Referring to [2, §11], given a point y ∈ R2n+1 (= U), we start with reviewing the

y-coordinates, the y-group structure, etc., of R2n+1. The new coordinates centered at y

defined by

xy = t(xy0, . . . , x
y
2n) = v•(y)

−1(x− y)(2.1)

are called the y-coordinates with respect to the frame e•, which are uniquely

determined by the conditions:

xy = C(y)(x− y), e•(y) = (∂/∂xy•)
∣∣∣
xy
•=0

with some matrix C(y). We have

(∂/∂x•)x = (∂/∂xy•)xy · v•(y)−1,

e•(x) = (∂/∂xy•)xy · v•(y;xy), v•(y;x
y) := v•(y)

−1v•(x)

and, if we denote the symbols of the operators i−1 ∂

∂xyj

∣∣∣
xy

and i−1ej |y+v•(y)xy by ξyj and

σj(y;x
y, ξy), respectively, then have

ξy• = tv•(y) · ξ•, σ•(y;x
y, ξy) = tv•(y;x

y) · ξy• .
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Next, let us set

b•(y) = (bkj(y))1≤k,j≤2n, bkj(y) :=
∂v0j(y;x

y)

∂xyk

∣∣∣
xy=0

=
∑
i,ℓ

vℓk(y)
∂vij
∂xℓ

(y)vi0(y).(2.2)

Then, by Proposition 1.1, we have

bn+β,β(0) =
1

2
, bβ,n+β(0) = −1

2
, bkj(0) = 0 (otherwise),

and the Euclidean space (R2n+1, xy) with the group structure

xy · zy = t((xy · zy)0, (xy · zy)1, . . .),

(xy · zy)0 := xy0 + zy0 +
2n∑

j,k=1

bkj(y)x
y
kz

y
j , (xy · zy)j := xyj + zyj (j ≥ 1)

(2.3)

is called the y-group.

We say that an operatorQ acting on C∞(R2n+1, xy) is y-invariant if L∗
xy◦Q = Q◦L∗

xy

for every xy, where Lxy is the left translation by xy. For each j the unique y-invariant

vector field eyj which agrees with ∂/∂xyj at y is given by

(eyjf)(x
y) =

d

ds
f(xy · t(0, . . . , 0,

j

s̆, 0. . . . , 0)y)
∣∣∣
s=0

(f ∈ C∞(R2n+1, xy)).(2.4)

The y-invariant frame ey• = (ey0, e
y
1, . . . , e

y
2n) with ey•(0) = (∂/∂xy•)|xy=0 thus obtained

is expressed as

ey•(x
y) = (∂/∂xy•) · vy•(xy),

vy•(x
y) :=


1

∑
k≥1

bkβ(y)x
y
k

(0, β)-entry

∑
k≥1

bk,n+β(y)x
y
k

(0, n + β)-entry

0
(α, 0)-entry

E O

0
(n + α, 0)-entry

O E

 ,

i.e., ey0 =
∂

∂xy0
, eyj =

∂

∂xyj
+

2n∑
k=1

bkj(y)x
y
k

∂

∂xy0
(j ≥ 1),

and, if we denote the symbol of the operator i−1eyj by σyj (x
y, ξy), then we have

σy•(x
y, ξy) = tvy•(x

y) · ξy•

i.e., σy0(x
y, ξy) = ξy0 , σyj (x

y, ξy) = ξyj +
2n∑
k=1

bkj(y)x
y
k ξ

y
0 .

Its dual frame ey,• is, hence, expressed as

ey,•(xy) = (dxy•) · vy,•(xy), vy,•(xy) := tvy•(x
y)−1,(2.5)

i.e., ey,0 = dxy0 −
2n∑

k,j=1

bkj(y)x
y
kdx

y
j , ey,j = dxyj (j ≥ 1).
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Here, let us investigate the matrix b• (cf. (2.2)) closely.

Lemma 2.1 If we set

b•:m(y) = (bkj:m(y))1≤k,j≤2n (0 ≤ m ≤ 2n),

bkj:m(y) :=
∂vmj(y;x

y)

∂xyk

∣∣∣
xy=0

=
∑
i,ℓ

vℓk(y)
∂vij
∂xℓ

(y)vim(y),

then we have

[ek, ej ] =
2n∑

m=0

{bkj:m − bjk:m}em (k, j ≥ 1).(2.6)

Further, if we set

Bβα:m(y) =
1

2

{
(bβα:m(y)− bn+β,n+α:m(y))− i(bn+β,α:m(y) + bβ,n+α:m(y))

}
,

Bβᾱ:m(y) =
1

2

{
(bβα:m(y) + bn+β,n+α:m(y))− i(bn+β,α:m(y)− bβ,n+α:m(y))

}
,(2.7)

Bβ̄ᾱ:m(y) = Bβα:m(y), Bβ̄α:m(y) = Bβᾱ:m(y),

then we have

[eCβ , e
C
α] =

2n∑
m=0

{Bβα:m −Bαβ:m}em, [eCβ , e
C
ᾱ] =

2n∑
m=0

{Bβᾱ:m −Bᾱβ:m}em.(2.8)

Proof. Since

[ek, ej ] = [
∑

vℓk
∂

∂xℓ
,
∑

vij
∂

∂xi
] =

∑{
vℓk

∂vij
∂xℓ

− vℓj
∂vik
∂xℓ

}
vimem,

(2.6) is valid. (2.8) follows from (2.6) easily.

Proposition 2.2 We have bβα = bβα:0, etc., and accordingly let us put Bβα = Bβα:0,

etc. Then we have

Bβα = Bαβ, Bβ̄α = Bαβ̄ + iδβα,(2.9)

bβα = bαβ, bn+β,n+α = bn+α,n+β, bn+β,α = bα,n+β + δβα.(2.10)

Remark. [2, (21.7)] says bβα = bαβ because of the integrability of J . But, in fact,

(2.10) holds even if J is not integrable.

Proof. [4, (1.8)] implies that (even if J is not integrable) the coefficients of e0 in the

expansions of [eCβ , e
C
α], [e

C
β , e

C
ᾱ] are equal to 0, −iδβα, respectively. That is, we obtain

(2.9). (2.10) follows from (2.9) and (2.7).

Even more, we have the following: In the same way as the definitions of xC• , (∂/∂x
C
• ),

(dxC• ) (cf. (1.2)) and e
C
• , e

•
C (cf. (1.1)) , we define xy,C• , (∂/∂xy,C• ), (dxy,C• ) and ey,C• , ey,•C .
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Lemma 2.3 We have

ey,C• = (∂/∂xy,C• ) · vy,C• (xy,C), ey,•C = (dxy,C• ) · vy,•C (xy,C), vy,•C = t(vy,C• )−1,

vy,C• :=


1

∑
A ̸=0

BAβ(y)x
y,C
A

(0, β)-entry

∑
A ̸=0

BAβ̄(y)x
y,C
A

(0, β̄)-entry

0
(α, 0)-entry

E O

0
(ᾱ, 0)-entry

O E

 .

Now, (2.5) and (2.10) yield

dey,0 = d(dxy0 −
∑
k,j≥1

bkj(y)x
y
kdx

y
j ) =

∑
k,j≥1

(bjk(y)− bkj(y))dx
y
k ∧ dx

y
j

=
∑

dxyα ∧ dxyn+α =
∑

ey,α ∧ ey,n+α,

so that

ey,0 ∧ (dey,0)n = n! (−1)n(n−1)/2 ey,0 ∧ ey,1 ∧ ey,2 ∧ · · · ∧ ey,2n,

that is, ey,0 is a contact form. Let us set

Hy := ker ey,0 = ⟨ey1, . . . , e
y
2n⟩, hence, TR2n+1 = ⟨ey0⟩ ⊕Hy,

Jy : TR2n+1 → TR2n+1, Jy(ey0) = 0, Jy(eyα) = eyn+α, J
y(eyn+α) = −eyα,

CHy = Hy
+ ⊕Hy

− := ⟨ey,C1 , . . . , ey,Cn ⟩ ⊕ ⟨ey,C
1̄
, . . . , ey,Cn̄ ⟩ hence, Jy

∣∣∣
Hy

±
= ±i,

gy = ey,0C ⊗ ey,0C +
∑

(ey,αC ⊗ ey,ᾱC + ey,ᾱC ⊗ ey,αC ) =
∑

0≤j≤2n

ey,j ⊗ ey,j .

Then My := (R2n+1;xy•, e
y,•, ey•, J

y, gy) is, hence, a contact Riemannian manifold. We

denote the hermitian Tanno connection and the pseudo-Hermitian torsion by ♯∇y and

τy (i.e., τy(X) := T (♯∇y)(X, ey0)). Since Lemma 2.3 and (2.9) imply

[ey,Cα , ey,Cβ ] = 0, [ey,Cα , ey,C
β̄

] = −iδαβ ey,C0 , [ey,C0 , ey,Cβ ] = 0,

we have the following.

Proposition 2.4 The contact Riemannian manifold My is integrable and we have

ω(♯∇y)αβ = 0, τy = 0.

The Kohn-Rossi Laplacian acting on Ω0,qMy (cf. (1.7), (1.9)) is, hence, expressed as

□y
H(
∑
|J|=q

ey,JC · fJ) =
1

2

∑
|J|=q

ey,JC ·□y
J(fJ)

=
1

2

∑
|J|=q

ey,JC ·
{
− 2

∑
ey,Cα ey,Cᾱ −

√
−1 2q ey,C0

}
(fJ)

=
1

2

∑
|J|=q

ey,JC ·
{
−

2n∑
j=1

(eyj )
2 −

√
−1λ ey0

}
(fJ) (λ = −(n− 2q)).
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3 The model operator □y
H and its inverse

The operator □y
H on My will approximate □H near y, and is called the model

operator. Its element □y
J acting on C∞(R2n+1, xy), called the model operator too,

is expressed also as

□y
J = −

2n∑
j=1

(eyj )
2 − i

(∑
α∈J

iey,0C ([ey,Cα , ey,Cα ])−
∑
α ̸∈J

iey,0C ([ey,Cα , ey,Cα ])
)
ey0.

Since 0 < q < n (cf. (1.8)), we have∣∣∣∣∣∣
∑
α ̸∈J

iey,0C ([ey,Cα , ey,Cα ])−
∑
α∈J

iey,0C ([ey,Cα , ey,Cα ])

∣∣∣∣∣∣ <
∣∣∣∣∣∑

α

iey,0C ([ey,Cα , ey,Cα ])

∣∣∣∣∣ .
That is, the Levi form Ly defined by

Ly(Z,W ) = −idey,0(Z,W ) = iey,0C ([Z,W ]) (Z,W ∈ Hy
+)

satisfies the condition Y (q) (cf. [2, Definition (21.34)]). Hence, we know (cf. [2, Theorem

(21.35)]) that the model operators □y
J , □

y
H have the inverse operators (□y

J)
−1, (□y

H)−1.

In this section we will investigate the inverse operators closely and express their symbols

and kernels explicitly.

Let us change the coordinates xy into the new ones x′y, which we call the normal

y-coordinates, by the transformation (cf. [2, (1.18), (1.19)])

ψ : (R2n+1, xy) → (R2n+1, x′y),

xy 7→ x′y = t(xy0 −
1

2

2n∑
j,k=1

qkj(y)x
y
kx

y
j , x

y
1, . . . , x

y
2n),

qkj(y) = qjk(y) :=
1

2
(bkj(y) + bjk(y)).

(3.1)

It will simplify our investigation. In fact, the y-group structure (2.3) of (R2n+1, xy)

induces the new one of (R2n+1, x′y)

x′y · z′y = t((x′y · z′y)0, (x′y · z′y)1, . . .),

(x′y · z′y)0 := x′y0 + z′y0 +
2n∑

j,k=1

ckj(y)x
′y
k z

′y
j , (x′y · z′y)j := x′yj + z′yj (j ≥ 1),

ckj(y) = −cjk(y) :=
1

2
(bkj(y)− bjk(y)) (hence, bkj = qkj + ckj)

(3.2)

with

c•(y) := (ckj(y)) =

(
O −a
a O

)
, a =

(
a1 O. . .
O an

)
, aj =

1

2
,(3.3)
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which is fairly simpler than the original one. In [2] the coordinates x′y were called the

skew-symmetric ones and, by another transformation, x′y were changed into the normal

ones ([2, (1.26)-(1.29)]). But obviously x′y are already such normal ones in our case.

On (R2n+1, x′y), we consider the y-invariant frame e′y• with e′y• (0) = (∂/∂x′y• )|xy=0

(cf. (2.4)), which is expressed as

e′y• (x
′y) = (∂/∂x′y• ) · v′y• (x′y),(3.4)

v′y• (x
′y) :=


1

∑
k≥1

ckβ(y)x
′y
k

(0, β)-entry

∑
k≥1

ck,n+β(y)x
′y
k

(0, n + β)-entry

0
(α, 0)-entry

E O

0
(n + α, 0)-entry

O E

 .

Further, if we denote the symbols of i−1 ∂

∂x′yj
and i−1e′yj by ξ′y and σ′yj (x

′y, ξ′y) respec-

tively, then we have

σ′y• (x
′y, ξ′y) = tv′y• (x

′y) · ξ′y• .(3.5)

Now, let us set

□′y
J := ψ∗□y

J = −
2n∑
j=1

(e′yj )
2 −

√
−1λ e′y0(3.6)

and, first, introduce an explicit expression of the symbol of the inverse operator (□′y
J )

−1.

Theorem 3.1 (On the symbol of (□′y
J )

−1) If ξ′y ̸= 0, then

σ((□′y
J )

−1)(x′y, ξ′y) = q′(y;x′y, ξ′y)(3.7)

= q̃′(y;σ′y(x′y, ξ′y)) :=

∫ ∞

0
e−λξ′y0 sG(σ′y(x′y, ξ′y), s) ds

with

G(ξ′y, s) =



( 1

cosh(|ξ′y0 |s)

)n
exp

(
−

2n∑
j=1

(ξ′yj )
2 · tanh(|ξ

′y
0 |s)

|ξ′y0 |

)
: ξ′y0 ̸= 0,

exp
(
−

2n∑
j=1

(ξ′yj )
2s
)

: ξ′y0 = 0,

(3.8)

where the integrand e−λξ′y0 sG(σ′y(x′y, ξ′y), s) is C0 on R2n+1 × [0,∞), C∞ on (R2n+1 −
{0})× [0,∞) and is rapidly decreasing with respect to s. Notice that σ′y0 (x

′y, ξ′y) = ξ′y0 ,

and if it vanishes, then σ′yH(x′y, ξ′y) = ξ′yH , where we set ξ′yH = t(ξ′y1 , . . . , ξ
′y
2n), etc.
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Since

((□y
J)

−1u)(xy) = ((ψ∗(□′y
J )

−1)u)(xy) = ((□′y
J )

−1ψ∗u)(ψ(x
y)),

we have the following.

Corollary 3.2 (On the symbol of (□y
J)

−1) We set

q = ψ∗q′, i.e., q(y;xy, ξy) = q′(y;ψ(xy, ξy)) = q′(y;x′y, ξ′y).

If ξy ̸= 0 (i.e., ξ′y ̸= 0), then we have

σ((□y
J)

−1)(xy, ξy) = q(y;xy, ξy).

The expression of (□y
H)−1 in terms of the symbol is, hence,

(□y
H)−1(

∑
|J|=q

ey,JC · fJ)(xy) = 2
∑
|J|=q

ey,JC (xy) · (□y
J)

−1(fJ)(x
y)(3.9)

= 2
∑
|J|=q

ey,JC (xy) · 1

(2π)2n+1

∫
ei⟨x

y ,ξy⟩q(y;xy, ξy) f̂J(ξ
y) dξy.

In fact, q(y;xy, ξy) ∈ SH
−2 in the last line must be changed into an element of S−2

H which

is equal to the original one apart from a neighborhood of ξy = 0.

Next, we will introduce an explicit expression of the kernel of the inverse operator

(□′y
J )

−1.

Proposition 3.3 (cf. [2, Theorem (5.9)], (3.2.1)-(3.2.2)) There exists a unique

tempered distribution k′(y; ) on (R2n+1, x′y), i.e., k′(y; ) ∈ S ′(R2n+1, x′y), such that it is

locally integrable, of C∞ except at 0, and satisfies

k′(y; ) ◦ δt = t−2nk′(y; ) (t > 0, δtx
′y := t(t2x′y0 , tx

′y
1 , . . . , tx

′y
2n))

and, last,

((□′y
J )

−1f)(x′y) =

∫
R2n+1

k′(y; (z′y)−1 · x′y) f(z′y) dz′y (f ∈ C∞
c (R2n+1, x′y)).(3.10)

The kernel k′(y; ) is expressed as follows.

Theorem 3.4 (On the kernel of (□′y
J )

−1) Assume x′y ̸= 0 and consider the

integral path in C

I =

 I0 = (−∞,∞) : x′yH := t(x′y1 , . . . , x
′y
2n) ̸= 0,

Iε = (−∞+ iε · sgnx′y0 , ∞+ iε · sgnx′y0 ) : x′y0 ̸= 0,
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where we fix ε with 0 < ε < π/2. Then, we have

k′(y;x′y) = (2π)−1Γ(n)

∫
I
A(s) e−λs

(
γ(x′yH , s)− ix′y0 s

)−n
ds,(3.11)

A(s) := (4π)−n
( s

sinh s

)n
, γ(x′yH , s) :=

1

4
|x′yH |2s coth s.

The integrand is integrable. In the case x′y0 ̸= 0 the integral on the path Iε does not

depend on the choice of ε, and, in the case x′yH ̸= 0 and x′y0 ̸= 0, the integral on I0

coincides with that on Iε.

Remark. As for the integral (3.11) with I = I0 (and x′yH ̸= 0): If we set x′yH = 0

forcibly, the integrand is not integrable because γ(x′yH , s)− ix
′y
0 s = −ix′y0 s. To regularize

the integral in the case x′yH = 0 (and, hence, x′y0 ̸= 0) we deform the integral path I0 to

get the integral (3.11) with I = Iε (and x′y0 ̸= 0).

Corollary 3.5 (On the kernel of (□y
J)

−1) Set

k(y; ) = ψ∗k′(y; ), i.e., k(y;xy) = k′(y;ψ(xy)) = k′(y;x′y),

then we have

((□y
J)

−1f)(xy) =

∫
R2n+1

k(y; (zy)−1 · xy) f(zy) dzy

=

∫
R2n+1

k′(y; (z′y)−1 · x′y) (ψ∗f)(z
′y) dz′y.

The expression of (□y
H)−1 in terms of the kernel is, hence,

(□y
H)−1(

∑
|J|=q

ey,JC · fJ)(xy) = 2
∑
|J|=q

ey,JC (xy) · (□y
J)

−1(fJ)(x
y)(3.12)

= 2
∑
|J|=q

ey,JC (xy) ·
∫
R2n+1

k(y; (zy)−1 · xy) fJ(zy) dzy.

3.1 On the proof of Theorem 3.1

Let us prove Theorem 3.1. The smooth function G(ξ′y, s)|ξ′y0 ̸=0 can be extended

uniquely to the smooth one (3.8) (on ξ′y ̸= 0), which is certainly C0 on R2n+1 × [0,∞)

and C∞ on (R2n+1−{0})× [0,∞). In the case ξ′y0 = 0 it is obvious that the integrand of

(3.7) is rapidly decreasing, but, in the case ξ′y0 ̸= 0 it will not so obvious. For example,

we will show ∣∣G(ξ′y, s)∣∣ ≤ C exp
(
− n|ξ′y0 |s

)
: ξ′y0 ̸= 0.(3.1.1)
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Since 0 < q < n, we have

−λξ′y0 − n|ξ′y0 | < 0.

Hence, if (3.1.1) holds, then, also in the case ξ′y0 ̸= 0, the integrand is exponentially

decreasing when s → ∞. In this way, for the proof it will suffice to focus only on the

case ξ′y0 ̸= 0. In the following, thus we assume ξ′y0 ̸= 0.

The merit to adopt the transformation (3.1) is that e′y• and σ′y• = σ′y• (x
′y, ξ′y) are

expressed simply as

e′y0 =
∂

∂x′y0
, e′yj =

∂

∂x′yj
+

1

2
x′yn+j

∂

∂x′y0
, e′yn+j =

∂

∂x′yn+j

− 1

2
x′yj

∂

∂x′y0
,

σ′y0 = ξ′y0 , σ′yj = ξ′yj +
1

2
x′yn+jξ

′y
0 , σ′yn+j = ξ′yn+j −

1

2
x′yj ξ

′y
0

(cf. (3.2), (3.3), (3.4), (3.5)). Referring to (3.6) the symbol of □′y
J is expressed as

σ(□′y
J )(x

′y, ξ′y) = p′(y;x′y, ξ′y)

= p̃′(y;σ′y(x′y, ξ′y)) :=
2n∑
j=1

σ′yj (x
′y, ξ′y)2 + λσ′y0 (x

′y, ξ′y)

and the operator □′y
J is, hence, y-invariant, so that its inverse operator is also y-invariant

and its symbol can be expressed as

σ((□′y
J )

−1)(x′y, ξ′y) = q′(y;x′y, ξ′y) = q̃′(y;σ′y(x′y, ξ′y)).

To investigate q̃′, we have only to follow the argument in [2, §4]. Let us put q(ξ) =

q̃′(y; ξ), p(ξ) = p̃′(y; ξ). Notice that if we set ξ = σ′y(x′y, ξ′y) then ξ0 = σ′y0 (x
′y, ξ′y) =

ξ′y0 . Therefore, the assumption ξ′y0 ̸= 0 induces ξ0 ̸= 0, and we have

1 = σ((□′y
J )

−1□′y
J )(x, ξ)

∣∣∣
x=0

=
∑
α

1

α!

(
∂αξ (q(σ(x, ξ)))·Dα

x (p(σ(x, ξ)))
)∣∣∣

x=0

=
{
p(ξ)−

2n∑
j=1

1

4
ξ20(

∂

∂ξj
)2
}
q(ξ) =

{ 2n∑
j=1

ξ2j + λξ0 −
2n∑
j=1

1

4
ξ20(

∂

∂ξj
)2
}
q(ξ).

That is, under the assumption ξ0 ̸= 0, q(ξ) satisfies the equation

2n∑
j=1

{
ξ2j −

1

4
ξ20

( ∂

∂ξj

)2}
q(ξ) + λξ0 q(ξ) = 1,

which is formally solved in [2, (4.17), (4.23)] to give

q(ξ) =

∫ ∞

0
e−λξ0sG(ξ, s) ds,(3.1.2)
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where G(ξ, s) is the function (3.8) in the case ξ′y0 ̸= 0 but with ξ′y replaced by ξ. And

we have the estimate (cf. (3.1.1))

|G(ξ, s)| ≤ 2n exp
(
− 1

2

2n∑
j=1

|ξ0|s
)
= 2n exp

(
− n|ξ0|s

)
,

etc. That is, in the case 0 < q < n the integrand of (3.1.2), or (3.7) is rapidly decreasing.

In this way, Theorem 3.1 can be justified (cf. [2, (4.26)-(4.28)]).

3.2 On the proof of Theorem 3.4

We refer to the argument in [2, §5]. By formal computation we have

((□′y
J )

−1f)(x′y) =

∫
R2n+1

k′(y;x′y, x′y − z′y)f(z′y)dz′y(3.2.1)

:=

∫
R2n+1

{
(2π)−2n−1

∫
R2n+1

ei⟨x
′y−z′y ,ξ′y⟩q′(y;x′y, ξ′y)dξ′y

}
f(z′y)dz′y,

((□′y
J )

−1f)(x′y) = (L∗
x′y((□′y

J )
−1f))(0) = ((□′y

J )
−1(L∗

x′yf))(0)

=

∫
R2n+1

k′(y; 0,−z′y) (L∗
x′yf)(z′y) dz′y =

∫
R2n+1

k′(y; 0,−z′y) f(x′yz′y) dz′y

=

∫
R2n+1

k′(y; 0, (z′y)−1) f(x′yz′y) dz′y.

As for the last equality, notice that −z′y = (z′y)−1 because the matrix c•(y) at (3.3) is

skew-symmetric. Setting

k′(y;x′y) := k′(y; 0, x′y) = (2π)−2n−1

∫
R2n+1

ei⟨x
′y ,ξ′y⟩q′(y; 0, ξ′y) dξ′y(3.2.2)

= (2π)−2n−1

∫
R2n+1

ei⟨x
′y ,ξ′y⟩ q̃′(y; ξ′y) dξ′y,

thus formally we obtain the formula (3.10).

Next, the integrand of (3.11) has the following property.

Lemma 3.2.1 The function A(s)(γ(x′yH , s)−ix
′y
0 s)

−n of s (∈ C) is meromorphic and

has no poles in {
s
∣∣∣ |Im s| < π

2

}
: x′yH ̸= 0 & x′y0 = 0,{

s
∣∣∣ 0 ≤ Im s · sgnx′y0 <

π

2

}
: x′yH ̸= 0 & x′y0 ̸= 0,{

s
∣∣∣ s ̸= ±kπ (k = 0, 1, 2, . . .)

}
: x′yH = 0 & x′y0 ̸= 0,

(3.2.3)

and is analytic on the integral path I. Further, there are C > 0, c > 0 such that, on I,

|A(s) e−λs| ≤ C exp
(
(|λ| − (n− 1

2
)) |Re s|

)
≤ C exp

(
− |Re s|

)
,(3.2.4)

Re(γ(x′yH , s)− ix′y0 s) > c > 0.(3.2.5)
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Proof. We put x = x′y, ξ = ξ′y, etc., for short. As for (3.2.4)：The second inequality

follows from 0 < q < n. Let us show the first one. On I = I0, for |s| large, we have

s

sinh s
=

|s|
sinh |s|

=
2|s|

e|s| − e−|s| ≤
2|s|

e|s| − e|s|/2

= 4|s|e−|s| ≤ 8n e|s|/2ne−|s| = 8n e−(1− 1
2n

)|s|,

so that, on I = I0,

|A(s) e−λs| ≤ C exp
(
|λs| − (1− 1

2n
)n|s|

)
= C exp

(
(|λ| − (n− 1

2
))|s|

)
.

On I = Iε, for |s| large, we have∣∣∣ s

sinh s

∣∣∣ = ∣∣∣ u+ iv

sinh(u+ iv)

∣∣∣ = ∣∣∣ u+ iv

sinhu · cos v + i coshu · sin v

∣∣∣
=

|u+ iv|
(sinh2 u · cos2 v + cosh2 u · sin2 v)1/2

≤ |u+ iv|
(sinh2 u · cos2 v + sinh2 u · sin2 v)1/2

=
|u+ iv|
sinh |u|

=
|Re s+ iε|
sinh(|Re s|)

≤ |Re s|+ ε

sinh(|Re s|)
≤ 2|Re s|

sinh(|Re s|)
.

Thus, on I = Iε, we obtain the above estimate with s replaced by Re s. As for (3.2.5):

The function s coth s is meromorphic and has no poles at s ̸= ±ikπ (k ∈ N) and we

know

Re(s coth s) > 0 (−π
2
< Im s <

π

2
)(3.2.6)

and

Re(γ(xH , s)− ix0s) =
2n∑
j=1

x2j
4
Re(s coth s) + x0Im s.(3.2.7)

Now, by (3.2.6), on I = I0 (& xH ̸= 0) we have Re(s coth s) > c > 0 with some c > 0,

and on I = Iϵ (& x0 ̸= 0) we have Re(s coth s) > 0 and

x0 Im s = x0 Im(t+ iε · sgnx0) = x0 ε · sgnx0 = ε|x0| > 0.

Thus we obtain the estimation (3.2.5). As for (3.2.3): (3.2.6), (3.2.7) say that Re(γ(xH , s)−
ix0s) > 0 as long as

(x0Im s, xH) ̸= (0, 0, . . . , 0), x0 Im s ≥ 0, |Im s| < π

2
.

Hence, (γ(xH , s)− ix0s)
−n has no poles in{
s
∣∣∣ |Im s| < π

2

}
: x′yH ̸= 0 & x′y0 = 0,{

s
∣∣∣ 0 ≤ Im s · sgnx′y0 <

π

2

}
: x′yH ̸= 0 & x′y0 ̸= 0,{

s
∣∣∣ s ̸= 0

}
: x′yH = 0 & x′y0 ̸= 0.



Parametrix and the Kohn-Rossi Laplacian 18

Since A(s) has no poles in {s | s ̸= ±kπ (k = 1, 2, . . .)}, certainly the function

A(s)(γ(xH , s)− ix0s)
−n has no poles in (3.2.3).

Let us prove Theorem 3.4.

Proof of Theorem 3.4. Again, we put x = x′y, ξ = ξ′y, etc., for short. First, let

us prove the formula (3.11) with “ I = I0 and xH ̸= 0”. Theorem 3.1 implies that, in

the case ξ0 ̸= 0, we have

q̃′(y; ξ) =

∫ ∞

0
e−λξ0sG(ξ, s) ds =

∫ ∞

0
|ξ0|−1e−µsG(ξ, |ξ0|−1s) ds,

G(ξ, |ξ0|−1s) =
( 1

cosh s

)n
exp

(
−

2n∑
j=1

ξ2j
|ξ0|

tanh s
)
,

where we set µ = λ · sgn ξ0. In the following, we want to compute

k′(y;x) =

∫ ∞

0

{
(2π)−2n−1

∫
(R\{0})×R2n

ei⟨x,ξ⟩|ξ0|−1e−µsG(ξ, |ξ0|−1s) dξ
}
ds

=

∫ ∞

0

{
(2π)−1

∫
R\{0}

eix0ξ0 |ξ0|−1e−µs(
(2π)−2n

∫
R2n

ei⟨xH ,ξH⟩G(ξ, |ξ0|−1s) dξH

)
dξ0

}
ds.

First, we have

(2π)−2n

∫
R2n

ei⟨xH ,ξH⟩G(ξ, |ξ0|−1s) dξH

=
( 1

cosh s

)n
· (2π)−2n

∫
R2n

ei⟨xH ,ξH⟩ exp
(
−

2n∑
j=1

ξ2j
|ξ0|

tanh s
)
dξH

= (4π)−n
( |ξ0|
sinh s

)n
exp

(
− 1

4

2n∑
j=1

|ξ0|x2j coth s
)
.

Hence, referring to the formula [2, (5.22)(5.23)], we have

(2π)−1

∫
R\{0}

eix0ξ0 |ξ0|−1e−µs
(
(2π)−2n

∫
R2n

ei⟨xH ,ξH⟩G(ξ, |ξ0|−1s) dξH

)
dξ0

= (4π)−n
( 1

sinh s

)n
(2π)−1

∫ ∞

−∞
eix0ξ0 |ξ0|n−1

exp
(
− λs · sgnξ0 − |ξ0|

1

4

2n∑
j=1

x2j coth s
)
dξ0

= (4π)−n
( 1

sinh s

)n
(2π)−1Γ(n)

{
e−λs(

1

4

2n∑
j=1

x2j coth s− ix0)
−n

+eλs(
1

4

2n∑
j=1

x2j coth s+ ix0)
−n
}
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= (4π)−n
( s

sinh s

)n
(2π)−1Γ(n)

{
e−λs(

1

4

2n∑
j=1

sx2j coth s− ix0s)
−n

+eλs(
1

4

2n∑
j=1

sx2j coth s+ ix0s)
−n
}

and

k′(y;x) = (2π)−1Γ(n)
{∫ ∞

0
(4π)−n

( s

sinh s

)n
e−λs(

1

4

2n∑
j=1

sx2j coth s− ix0s)
−nds

+

∫ ∞

0
(4π)−n

( s

sinh s

)n
eλs(

1

4

2n∑
j=1

sx2j coth s+ ix0s)
−nds

}

= (2π)−1Γ(n)

∫ ∞

−∞
(4π)−n

( s

sinh s

)n
e−λs

(1
4

2n∑
j=1

sx2j coth s− ix0s
)−n

ds.

Here the integrability is guaranteed by (3.2.4), (3.2.5). Thus the formula (3.11) with

“ I = I0 and xH ̸= 0” was obtained.

As was indicated in Remark of the theorem the above formula cannot cover the case

x0 ̸= 0 and xH = 0, and we want to draw the formula (3.11) with “ I = Iε and x0 ̸= 0”.

If x0 ̸= 0 and xH ̸= 0, then the integrand A(s) e−λs
(
γ(xH , s)− ix0s

)−n
of the integral

(3.11) is analytic on
{
s
∣∣∣ 0 ≤ Im s · sgnx0 < π

2

}
(cf. (3.2.3)). Hence, by the ordinary

theory of analytic function, we know that, in the case x0 ̸= 0 and xH ̸= 0, the integral

(3.11) on the integral path I = I0 coincides with that on I = Iε. The latter one (with

“ I = Iε, x0 ̸= 0 and xH ̸= 0”) can be extended naturally to the desired one (with

“ I = Iε and x0 ̸= 0”). It will be obvious now that the formula (3.11) thus obtained

fulfils the requirement stated in the theorem.

4 Parametrix and some global properties of □H

Returning to the setting in §1, let us construct a global parametrix of □H = □H,q.

First, we will construct a parametrix of the principal part □H on U .

Given a symbol q(x, ξ) ∈ S∞
H (U), in the y-coordinates (xy, ξy) it is written as

q(y;xy, ξy) := q(y + v•(y)x
y, v•(y)ξy).

Conversely, a symbol q(y;xy, ξy) in the y-ones can be written in the usual ones (x, ξ) as

q(x, ξ) := q(x; 0, σ(x, ξ)).

Indeed, let φ be the transformation of R2n+1 defined by φ(xy) = y+ v•(y)x
y (cf. (2.1)),

then we have

q(φ(xy); 0, σ(φ(xy), v•(y)ξy)) = q(ψ(xy), v•(y)ξy)
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= q(y;ψ−1ψ(xy), ψ∗v•(y)ξy) = q(y;xy, tv•(y) v
•(y)ξy)

= q(y;xy, ξy).

Now, together with Corollaries 3.2 and 3.5, it implies the following.

Theorem 4.1 (On a parametrix of □H on U) Let q(y;xy, ξy) be the symbol

given in Corollary 3.2, and let k(y;xy) be the kernel given in Corollary 3.5. Then the

inverse operator (□H)−1 is expressed as

(□H)−1(
∑
|J|=q

eJC · fJ)(y)(4.1)

= 2
∑
|J|=q

eJC(y) ·
1

(2π)2n+1

∫
R2n+1

ei⟨y,ξ⟩q(y; 0, σ(y, ξ)) f̂J(ξ) dξ,

(□H)−1(
∑
|J|=q

eJC · fJ)(y) = 2
∑
|J|=q

eJC(y) ·
∫
R2n+1

det v•(y)k(y; (zy)−1) fJ(z) dz(4.2)

with σ((□H)−1) ∈ S−2
H (U ; End(∧0,q

H T ∗U)), and □H on U has a two-sided parametrix QU

given by

QU = (□H)−1(I +RH
U + · · ·+ (RH

U )k + · · ·)

with □H(□H)−1 := I −RH
U , σ(R

H
U ) ∈ S−1

H (U ; End(∧0,q
H T ∗U)).

As for the expansion σ(QU ) =
∑

k≥2 σ−k(QU ), σ−k(QU ) ∈ SH
−k(U ; End(∧0,q

H T ∗U)), the

terms can be expressed explicitly up to an arbitrarily low degree by using Proposition 1.1.

Proof. As for (4.1)： Since the inverse operator (□y
J)

−1 has the symbol q(y;xy, ξy)

(cf. Corollary 3.2), the above argument and [2, Theorem (18.4)] imply that the inverse

(□J)
−1 has the symbol q(y; 0, σ(y, ξ)). Thus we obtain the formula (4.1). As for (4.2)：

First we have

(□H)−1(
∑
|J|=q

eJC · fJ)(y) = (□y
H)−1(

∑
|J|=q

ey,JC · fyJ )(0)(4.3)

(fyJ (z
y) := fJ(y + v•(y)z

y)).

Indeed, by (2.1) and (3.9), we have

f̂yJ (ξ
y) =

∫
e−i⟨zy ,ξy⟩fyJ (z

y)dzy =

∫
e−i⟨tv•(y)(z−y),tv•(y) ξ•⟩fJ(z) det

tv•(y) dz

= ei⟨y,ξ⟩ det tv•(y)

∫
e−i⟨z,ξ⟩fJ(z) dz = ei⟨y,ξ⟩ det tv•(y) f̂J(ξ),

(□y
H)−1(

∑
|J|=q

ey,JC · fyJ )(0) = 2
∑
|J|=q

ey,JC (0) · 1

(2π)2n+1

∫
ei⟨0,ξ

y⟩q(y; 0, ξy) f̂yJ (ξ
y) dξy
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= 2
∑
|J|=q

eJC(y) ·
1

(2π)2n+1

∫
q(y; 0, σ(y, ξ))ei⟨y,ξ⟩ det tv•(y) f̂J(ξ) det

tv•(y) dξ

= 2
∑
|J|=q

eJC(y) ·
1

(2π)2n+1

∫
ei⟨y,ξ⟩q(y; 0, σ(y, ξ)) f̂J(ξ) dξ = (□H)−1(

∑
|J|=q

eJC · fJ)(y).

Thus we obtain (4.3). Hence, referring to (3.12), we have

(□y
H)−1(

∑
|J|=q

ey,JC · fyJ )(0) = 2
∑
|J|=q

eJC(y) ·
∫

k(y; (zy)−1) fyJ (z
y) dzy

= 2
∑
|J|=q

eJC(y) ·
∫

k(y; (zy)−1) fJ(z) det
tv•(y) · dz.

The remaining part will be obvious by the standard argument.

A two-sided global parametrix Q of □H is constructed as follows: According to

Theorem 4.1, on a small open set U we construct a parametrix QU with σ(QU ) ∈
S−2
H (U ; End(∧0,q

H T ∗U)) which is properly supported (cf. [2, (9.21)]). We take a finite

number of such pairs {(U,QU )}, where {U} is an open covering of M . Let {ϕU} be a

C∞-partition of unity subordinate to {U}. Then the operator Q defined by

Qf =
∑
U

QU (ϕUf)

is a two-sided global parametrix with σ(Q) ∈ S−2
H (M ; End(∧0,q

H T ∗M)).

By the standard Fredholm theory (cf. [2, Theorem (19.16)]), now we know that the

L2-extension

□H : L2(M ;∧0,q
H T ∗M) → L2(M ;∧0,q

H T ∗M)

has the following properties:

dimker □H <∞, ker □H ⊂ C∞(M ;∧0,q
H T ∗M),

and range□H is closed and

codim range□H <∞.

Further, the associated projections

Π1 : L
2(M ;∧0,q

H T ∗M) = ker □H ⊕ (ker □H)⊥ → (ker □H)⊥,

Π2 : L
2(M ;∧0,q

H T ∗M) = range□H ⊕ (range□H)⊥ → range□H

and the continuous operator NH : L2(M ;∧0,q
H T ∗M) → L2(M ;∧0,q

H T ∗M) satisfying

□HNH = Π2 (on L2(M ;∧0,q
H T ∗M)), NH□H = Π1 (on dom□H),

which is called the partial inverse of □H and is unique modulo smoothing operators, are

all H-pseudodifferential operators. We know that the operator NH , which is of degree

−2, is in fact a parametrix of □H .
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