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1 Introduction and main results

Let us consider the sequence ξ, ξ1, ξ2, . . . of independent identically distributed random
variables (i.i.d.r.v.). And let

ξ̄n = max
1≤i≤n

ξi.

Random variable ξ̄n has been quite thoroughly investigated (see [7]-[9], [13]). It should
be noted that the absolute majority of works only the case of weak convergence of the
distribution ξ̄n was studied.

We are mostly interested in the asymptotic behavior of the extreme values of ξ̄n almost
surely (a.s.). Moreover, only a discrete case will be studied. It is assumed that r.v. ξ has
a distribution (i, pi), i ≥ 0, so, further we assume that

P(ξ = i) = pi > 0,
∞∑
i=0

pi = 1.
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This topic has been discussed in a number of works ([1]-[3], [12], [15]-[17]) (the fact that the
asymptotics of extreme values of r.v. in continuous and discrete cases can differ significantly
has long been known, see, for example, [3]).

To formulate the following result, we introduce some necessary notation.
For r.v. ξ with distribution (i, pi), i ≥ 0, put:

R(n) = − lnP(ξ ≥ n) = − ln

(∑
i≥n

pi

)
,

r(n) = R(n)−R(n− 1).

Let us define the following functions for sufficiently large t > 0:

L0(t) = t, Lm(t) = lnLm−1(t), m ∈ N.

It was noticed quite a while ago that asymptotic behavior of ξ̄n in discrete case is closely
related to sequence

a(n) = max

(
k ≥ 0 :

∑
i≥k

pi ≥
1

n

)
. (1)

Further for the sequence (r(n)) we define its extension to the function r : (0,∞) → R by
setting r(x) = r(⌈x⌉), (⌈x⌉ - the least integer ≥ x).

Let

R(x) =

∫ x

0

r(y)dy.

The function R is a piecewise linear extension of the sequence R(n).
Given a function H : R → R we denote by H−1 its generalized inverse defined by

H−1(y) = inf {x ∈ R : H(x) ≥ y} , y ∈ R.

Put

αm(t) =
m∑
i=1

Li(t), am(t) = R−1(αm(t)),

d(t) = R−1(L1(t)− L3(t)).

We will also assume that the following condition is satisfied:
∀x > 0

lim
t→∞

r(tx)

r(t)
= xρ, ρ > −1. (2)

Note that for the geometric distribution and the Poisson distribution, the condition (2)
is fulfilled at ρ = 0 .

As it turned out, the asymptotic behavior of ξ̄n depends significantly on the parameter
ρ. Therefore, it seems appropriate to consider three cases:

A) 0 < ρ <∞;
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B) −1 < ρ < 0;
C) ρ = 0 .
First we present some well-known results of cases A), B), C).

Theorem 1. (Case A), [15], [16]) Let (ξk)k∈N be a sequence of independent copies of a
discrete random variable ξ with distribution (i, pi), i ≥ 0, a(n) defined by equality (1) and
the condition (2) is fulfilled when 0 < ρ <∞.

Then

P

(
lim sup
n→∞

(ξ̄n − a(n)) = 1

)
= 1, (3)

P
(
lim inf
n→∞

(ξ̄n − a(n)) = −1
)
= 1, (4)

and
P(ξ̄n = a(n) i.o.) = 1,

( ”i.o.” - abbreviation ”infinitely often”).

It should be noted that in articles [15], [16] the equalities close to (3) and (4) were
obtained in a more general situation.

Theorem 2. (Case B), [1]) Let (ξk)k∈N be a sequence of independent copies of a discrete
random variable ξ with distribution (i, pi), i ≥ 0, m ≥ 1 some fixed integer and the condition
(2) is fulfilled when −1 < ρ < 0.

Then

P

(
lim sup
n→∞

r(a1(n))(ξ̄n − am(n))

Lm+1(n)
= 1

)
= 1, (5)

P

(
lim inf
n→∞

L2(n)r(a1(n))(ξ̄n − d(n))

2L3(n)
= −1

)
= 1. (6)

In fact, Theorem 2 is not clearly formulated in [1], but it simply follows from it. Indeed,
if the function r(x) satisfies condition (2), then it is regularly varying at +∞ with index ρ,
r ∈ RVρ. Then also R ∈ RVρ+1, R

−1 ∈ RV1/(ρ+1) ([4], Proposition 1.5.8, Theorem 1.5.12)
and r(R−1) ∈ RVρ/(ρ+1).

Therefore r(a1(t)) = r(R−1(ln t)) = (ln t)ρ/(1+ρ)g(ln t), where function g(t) slowly vary-
ing to infinity. From the last equality and Theorem 2 of article [1], we immediately obtain
equalities (5), (6).

Theorem 3. (Case C), [1]) Let (ξk)k∈N be a sequence of independent copies of a discrete
random variable ξ with distribution (i, pi), i ≥ 0, m ≥ 1 some fixed integer and the condition
(2) is fulfilled when ρ = 0.

(i) If
r(a1(n))

Lm+1(n)
→ 0, n→ ∞, (7)

then the equality (5) holds.
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(ii) If
L2(n)r(a1(n))

L3(n)
→ 0, n→ ∞,

then the equality (6) holds.

As it is seen from the results above, for cases A and B we have a complete picture
of the asymptotic behavior of the r.v. ξ̄n. In the boundary case C the situation is more
complicated. Although the case of the Poisson distribution was analyzed in articles [15],
[16], a number of related problems remain open. For example, under the condition

L2(n)r(a1(n))

L3(n)
→ ∞, n→ ∞, (8)

in article [1] the following relation was established:

P
(
lim inf
n→∞

(ξ̄n − d(n)) = κ
)
= 1, (9)

where κ ∈ [−1, 0]. Here by κ we denote nonrandom constant.
Unfortunately, the constant κ was not found even in the important case of geometric
distribution.

The same applies to the value of κ1 in equality

P

(
lim sup
n→∞

(ξ̄n − am(n) = κ1

)
= 1,

under the condition
r(a1(n))

Lm+1(n)
→ ∞, n→ ∞. (10)

In this article, we will try to find answers to these questions.
The main results of the work are the following theorems.

Theorem 4. Let (ξn)n∈N be a sequence of independent copies of a discrete random variable
ξ with distribution (i, pi), i ≥ 0, the function r(x) is monotonic and satisfies conditions (8)
and (2) when ρ = 0 .

(i) If ∑
n≥1

1

R(n)
= ∞, (11)

then
P
(
lim inf
n→∞

(ξ̄n − ⌊d(n)⌋) = −1
)
= 1. (12)

(ii) If the series
∑

n≥1
1

R(n)
converges, then

P
(
lim inf
n→∞

(ξ̄n − ⌊d(n)⌋) = 0
)
= 1,

where ⌊x⌋ - the least integer ≤ x.
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Theorem 5. Let (ξn)n∈N be a sequence of independent copies of a discrete random variable
ξ with distribution (i, pi), i ≥ 0, m ≥ 1 some fixed integer. Let condition (2) be satisfied
for ρ = 0 and condition (10). Then

(i) If m = 1 and r(n) monotonically increases, then equality of (3) of Theorem 1 holds.
(ii) If m ≥ 2 and series ∑

n≥1

1

R(n)L1(R(n)) . . . Lm−2(R(n))
(13)

converges, then

P

(
lim sup
n→∞

(ξ̄n − ⌊am(n)⌋) = 0

)
= 1. (14)

(iii) If m ≥ 2 and the series (13) diverges, then

P

(
lim sup
n→∞

(ξ̄n − ⌊am(n)⌋) = 1

)
= 1.

In the next two sections, the proofs of Theorems 4 and 5 are going to be given. And at
the end of the article, the examples of applications of the results obtained to the geometric
distribution and the Poisson distribution are considered. In addition, birth and death
process with linear growth and immigration will be considered.

2 Proof of Theorem 4

Let’s start with (i). Since r.v. ξ̄n takes integer values, then in order to prove (12) it suffices
to show that

P(ξ̄n ≤ ⌊d(n)⌋ − 1 i.o.) = 1, (15)

P(ξ̄n < ⌊d(n)⌋ − 1 i.o.) = 0. (16)

But from the relation (9) we obtain

P(lim inf
n→∞

(ξ̄n − ⌊d(n)⌋) = κ̂) = 1,

where κ̂ ∈ {−1, 0, 1}, and equality (16) is also fulfilled. Hence it is clear that it remains to
prove the equality (15).

Here we use an important result of the article [12], which we formulate in the form of
a lemma.

Lemma 1 ( [12]). Let (ξn), n ≥ 1 be a sequence of independent copies of a random variable
ξ. Further, let (un), n ≥ 1 be a nondecreasing sequence of real numbers such that

P(ξ > un) → 0 and nP(ξ > un) → ∞, n→ ∞.
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Then the probability
P
(
ξ̄n ≤ un i.o.

)
equals zero or one according to whether the series

∞∑
n=1

P(ξ > un) exp (−nP(ξ > un))

converges or diverges.
We also have the following implications:

• if limn→∞P(ξ > un) = c > 0, then P
(
ξ̄n ≤ un i.o.

)
= 0;

• if lim infn→∞ nP(ξ > un) <∞, then P
(
ξ̄n ≤ un i.o.

)
= 1.

If in Lemma 1 we choose un = ⌊d(n)⌋ − 1, then it is obvious when n→ ∞

P(ξ > ⌊d(n)⌋ − 1) → 0

and

nP(ξ > ⌊d(n)⌋ − 1) = nP(ξ ≥ ⌊d(n)⌋) ≥ n exp(−R(d(n))) = L2(n) → ∞.

Thus, according to Lemma 1, the equality (15) is true if and only if the series

S =
∞∑
n=1

P(ξ > ⌊d(n)⌋ − 1) exp (−nP(ξ > ⌊d(n)⌋ − 1))

diverges.
Let’s rewrite the series S as follows

S =
∞∑
n=1

P(ξ ≥ ⌊d(n)⌋) exp (−nP(ξ ≥ ⌊d(n)⌋)) =
∑
k≥0

αkSk, (17)

where
αk = P(ξ ≥ k), Sk =

∑
⌊d(n)⌋=k

exp(−nαk).

Next, we find a lower bound for Sk. Put

nk = min(n ≥ 3 : d(n) ≥ k) = min(n ≥ 3 : L1(n)− L3(n) ≥ R(k))

= min

(
n ≥ 3 :

n

L2(n)
≥ exp(R(k))

)
. (18)

Since exp(−tαk) is a decreasing function, then

Sk =

nk+1−1∑
n=nk

exp(−nαk) ≥
∫ nk+1

nk

exp(−tαk)dt

=
1

αk
exp(−nkαk)(1− exp(−αk(nk+1 − nk))). (19)
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In the next step, we find an approximate formula for the integer nk. For this, we introduce
the function ϕ(x) = x/L2(x). In interval [e2,∞) the function ϕ(x) is continuous and
increases monotonically. And therefore, for x ∈ [(e2)/ ln 2,∞) there exists its inverse
ϕ−1(x). Let’s set it by formula

ϕ−1(x) = xL2(x)(1 + ψ(x)). (20)

Then we have

x = ϕ(ϕ−1(x)) =
xL2(x)(1 + ψ(x))

L2(x) + ln
(
1 + L3(x)+ln(1+ψ(x))

L1(x)

)
or

ψ(x) =
1

L2(x)
ln

(
1 +

L3(x) + ln(1 + ψ(x))

L1(x)

)
.

From the last equality, elementary considerations deduce the following asymptotic relation:

ψ(x) → 0 when x→ ∞.

This implies the following approximation for the function ψ(x):

ψ(x) =
L3(x)(1 + o(1))

L1(x)L2(x)
. (21)

Adding together the equalities (18), (20), (21), we get

nk = ⌈ϕ−1(exp(R(k)))⌉ = exp(R(k))L1(R(k))

(
1 +

L2(R(k))(1 + o(1))

R(k)L1(R(k))

)
+ θ, (22)

where 0 ≤ θ < 1.
Since r(k) ≥ 0, then

αk(nk+1 − nk) ≥ αk exp(R(k))L1(R(k))

(
exp(r(k + 1))− 1− L2(R(k))(1 + o(1))

R(k)L1(R(k))

)

≥ L1(R(k))

(
r(k + 1)− L2(R(k))(1 + o(1))

R(k)L1(R(k))

)
.

Next, we show that under the conditions of Theorem 4

L1(R(k)) r(k) → ∞ when k → ∞. (23)

Thus, from the last inequalities and (23), we obtain

αk(nk+1 − nk) → ∞. (24)

Before proceeding further, let’s make sure that the asymptotic relation (23) is correct. It
is clear that it is enough to consider the case when the function r(x) is decreasing.
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Let us first remind that the function r(x) is slowly varying at infinity. Therefore,
according to Karamat’s theorem (see[4], Proposition 1.5.8, Theorem 1.5.12 ) when x→ ∞

R(x) = xr(x)(1 + o(1)), R−1(x) = xr̂(x), (25)

where r̂(x) also is slowly varying.
In addition ∀ϵ > 0 for sufficiently large x

x−ϵ ≤ r(x) ≤ xϵ

(see [6], chapter 8).
From the above estimates it follows that:

r(x)L1(R(x)) = r(x)(lnx+ ln r(x) + o(1)) ≥ r(x)((1− ϵ) lnx+ o(1)).

And therefore (23) it is true if

r(x) lnx→ ∞, x→ ∞. (26)

Let’s write the condition (8) as follows: when x→ ∞

L2(x)r(a1(x))

L3(x)
=
L2(x)r(R

−1(lnx))

L3(x)
=
L2(x)r(lnxr̂(lnx))

L3(x)
→ ∞. (27)

Since r(x) is decreasing, then taking into account (25) we have for sufficiently large x and
0 < ε < 1:

1 =
1

x
R(R−1(x)) = r̂(x)r(xr̂(x))(1 + o(1)) ≤ r̂(x)r(x1−ε)(1 + o(1)).

As a consequence of the last estimate, we obtain for some C > 0, ∀x > x0:

r̂(x) ≥ C > 0.

Therefore, for sufficiently large x:

r(lnxr̂(lnx)) ≤ r(C lnx).

Hence and the relation (27) we obtain: for y = lnx→ ∞

L1(y)r(y)

L2(y)
∼ L2(x)r(C lnx)

L3(x)
≥ L2(x)r(lnxr̂(lnx))

L3(x)
→ ∞.

This means that (26) is fulfilled, so the asymptotic relations (23), (24) are true.
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Now we can evaluate the series S from below. In accordance with (19) and (24) when
k → ∞

Sk ≥
1

αk
exp(−αknk)(1 + o(1)).

And further (see (17),(22))

S ≥
∑
k≥0

exp(−αknk)(1 + o(1))

=
∑
k≥0

exp(−αk exp(R(k))L1(R(k))(1 + χk)− αkθ)(1 + o(1))

=
∑
k≥0

1 + o(1)

(R(k))1+χk
exp(−αkθ), (28)

where

0 ≤ θ ≤ 1, R(k) = kr(k)(1 + o(1)), χk =
L2(R(k))(1 + o(1))

R(k)L1(R(k))
.

But when k → ∞
ln(R(k))χk = χk(ln k + ln r(k) + o(1)) → 0,

accordingly
(R(k))χk → 1.

From the last relation (28) and condition (11) it immediately follows that the series S
diverges, and therefore equalities (15) and (12) are true.

(ii) is proven according to a similar scheme. We can establish that the convergence of
the series

∑
n≥1

1
R(n)

implies the equality

P
(
ξ̄n ≤ ⌊d(n)⌋ − 1 i.o.

)
= 0, (29)

but
P
(
ξ̄n ≤ ⌊d(n)⌋ i.o.

)
= 1. (30)

As we already know from Lemma 1, the equality (29) is equivalent to the convergence of
the series S from (17).

Further, instead of the lower estimate of the value of Sk, the following upper estimate
is used

Sk =

nk+1−1∑
n=nk

exp(−nαk) ≤
∫ nk+1−1

nk−1

exp(−tαk)dt =
exp(αk)

αk
exp(−nkαk)(1−exp(−αk(nk+1−nk))).

Since the condition (11) was not used when proving the asymptotic ralation (24), then

Sk ≤
exp(αk)

αk
exp(−αknk)(1 + o(1)).
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Here and formula (22) for series S we can give the following upper bound

S ≤ e
∑
k≥0

exp(−αknk)(1 + o(1))

≤ e
∑
k≥0

exp(−αk exp(R(k))L1(R(k))(1 + χk)− αkθ)(1 + o(1))

≤ e
∑
k≥0

1 + o(1)

(R(k))1+χk
, (31)

where χk ≥ 0 is defined above.
From the estimates given above in (i) and (31), we conclude that the convergence of

the series S follows from the convergence of the series
∑

n≥1
1

R(n)
.

It remains to prove equality (30). Again, we will use Lemma 1, according to which the
equality (30) is true if

lim inf
n→∞

nP (ξ > ⌊d(n)⌋) <∞. (32)

Let us choose a subsequence (nk) given by formula (22) and for which ⌊d(nk)⌋ = k. Put

g(k) = nkP (ξ > ⌊d(nk)⌋) = nkP (ξ ≥ k + 1)

and suppose that g(k) → ∞ when k → ∞.
Then (see ralations (22), (28))

g(k) = (exp(R(k))L1(R(k))(1 + χk) + θ) exp(−R(k + 1))

= exp(−r(k + 1))L1(R(k))(1 + χk) + o(1).

In these equalities, let’s move on to logarithms

ln g(k) = −r(k + 1) + L2(R(k)) + o(1) → ∞, k → ∞.

Finally, using formula (25), we get

r(k + 1) = L2(k)− ln g(k) + o(1).

Thus with sufficiently large k
r(k + 1) ≤ L2(k).

But the last inequality and relation (25) contradict the convergence of series
∑

n≥1
1

R(n)
.

Therefore, the condition (32) and the equality (30) are fulfilled. □

10



3 Proof of Theorem 5

Let’s start with (i). According to Teorem 1 of article [15] the equalities

P(ξ̄n = a(n) + 1 i.o.) = 1, (33)

P(ξ̄n > a(n) + 1 i.o.) = 0, (34)

are true if ∑
n≥1

exp(−r(n)) <∞. (35)

It is not difficult to see that equality (3) is a simple consequence of (33), (34). Therefore,
it is enough to establish the implication: (10) ⇒ (35).

Let us choose arbitrary C > 1. Then under condition (10) for sufficiently large x

r(a1(x)) = r(R−1(L1(x))) ≥ CL2(x),

or when y = L1(x)
r(R−1(y)) ≥ CL1(y),

and then if R−1(y) = z
r(z) ≥ CL1(R(z)).

Here we use formula (25) again

r(z) ≥ CL1(zr(z)(1 + o(1))) = C(L1(z) + L1(r(z)) + o(1)) ≥ CL1(z). (36)

It is obvious that the last inequalities ensure the convergence of the series (35). It should
also be noted that ⌊a1(n)⌋ = a(n).

Next, we proceed to the proof of (ii). We obtain the relation (14) as a corollary of the
following equalities:

P(ξ̄n ≥ ⌊am(n)⌋ i.o.) = 1, (37)

P(ξ̄n ≥ ⌊am(n)⌋+ 1 i.o.) = 0. (38)

Their proof is based on the following lemma.

Lemma 2 (Corollary 4.3.1 in [8]). Let (ξk), k ≥ 1 be a sequence of independent copies
of a random variable ξ with cumulative distribution function F and let (un), n ≥ 1 be a
nondecreasing sequence of real numbers. Then the probability

P(ξ̄n ≥ un i.o.)

equals zero or one according to whether the series

∞∑
n=1

(1− F (un))

converges or diverges.

11



Let’s start with equality (37). In Lemma 2, put un = ⌊am(n)⌋. And we get

S =
∞∑
n=1

(1− F (un)) =
∞∑
n=1

exp(−R(⌊am(n)⌋)) ≥
∞∑
n=1

exp(−R(am(n)))

=
∞∑
n=1

exp(−αm(n)) =
∞∑
n=1

1

nL1(n) . . . Lm−1(n)
= ∞.

According to Lemma 2, (37) follows from this.
The proof of equality (38) will also be based on Lemma 2, but we choose un = ⌊am(n)⌋+

1. We will write the series S as following

S =
∞∑
n=1

(1− F (un)) =
∞∑
n=1

exp(−R(⌊am(n)⌋+ 1)) =
∑
k≥0

exp(−R(k + 1))
∑
n∈Ik

1, (39)

where Ik = {n : ⌊am(n)⌋ = k} .
We will show that the convergence of the series (13) implies the convergence of the

series (39). Let us consider the set Ik in more detail

Ik = {n : k ≤ am(n) < k + 1} = {n : R(k) ≤ αm(n) < R(k + 1)}
= {n : exp(R(k)) ≤ φ(n) < exp(R(k + 1))},

where φ(x) = xL1(x) . . . Lm−1(x) is a continuous and monotonically increasing function
for sufficiently large x.

Here it becomes clear that in order to estimate the value
∑

n∈Ik 1 we need to find an
approximate formula for the inverse function φ−1(x). Just as in case of equalities (25),
for sufficiently large x we have φ−1(x) = xL̂(x), where function L̂(x) is slowly varying at
infinity which we write as

L̂(x) =
1

L1(x) . . . Lm−1(x)(1 + g(x))
.

It appears,
g(x) → 0 when x→ ∞. (40)

Indeed

x = φ(φ−1(x)) =
xL1(φ

−1(x)) . . . Lm−1(φ
−1(x))

L1(x) . . . Lm−1(x)(1 + g(x))
. (41)

In addition for k ≥ 1, y = φ−1(x) and x→ ∞

Lk(φ
−1(x))

Lk(x)
=

Lk(y)

Lk(φ(y))
=

Lk−1(L1(y))

Lk−1(L1(y) + . . .+ Lm−1(y))
→ 1.

The last asymptotic relations together with equality (41) give (40).

12



So

φ−1(x) =
x

L1(x) . . . Lm−1(x)(1 + g(x))
=

x(1 + o(1))

L1(x) . . . Lm−1(x)
.

Put

nk = ⌈φ−1(exp(R(k)))⌉ = exp(R(k))

R(k)L1(R(k)) . . . Lm−2(R(k))(1 + g(exp(R(k)))
+ θ,

where 0 ≤ θ < 1. Moreover ∑
n∈Ik

1 = nk+1 − nk

and
nk
nk+1

= exp(−r(k + 1))
R(k)L1(R(k)) . . . Lm−2(R(k))

R(k + 1)L1(R(k + 1)) . . . Lm−2(R(k + 1))
.

Since at i = 0, 1, . . . ,m− 2 and k → ∞

Li(R(k + 1))

Li(R(k))
→ 1

and in accordance with condition (10) r(k) → ∞, then

nk
nk+1

= o(1) when k → ∞.

The last ratio allow us to estimate the series S from (39):

S =
∑
k≥0

exp(−R(k + 1))
∑
n∈Ik

1 =
∑
k≥0

exp(−R(k + 1))nk+1

(
1− nk

nk+1

)
(42)

=
∑
k≥0

1 + o(1)

R(k + 1)L1(R(k + 1)) . . . Lm−2(R(k + 1))
.

Thus, the convergence of the series S is equivalent to the convergence of the last series
in (42).

To obtain equality (38), it remains to apply Lemma 2.
(iii). If m ≥ 2 and the series (13) diverges, then series S also diverges from (42).

Therefore, by Lemma 2
P(ξ̄n ≥ ⌊am(n)⌋+ 1 i.o.) = 1.

To complete the proof, it remains to establish the equality

P(ξ̄n ≥ ⌊am(n)⌋+ 2 i.o.) = 0. (43)

First, we note that under condition (10) for an arbitrary C > 1 and for sufficiently large x

r(x) ≥ CLm(x). (44)
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Indeed for sufficiently large x

r(a1(x)) = r(R−1(L1(x))) ≥ CLm+1(x).

Next, we should simply repeat the considerations given in the proof of inequalities (36).
It is clear that the proof of equality (43) will be based on Lemma 2. We choose

un = ⌊am(n)⌋+ 2. Then the series S will look like

S =
∞∑
n=1

(1− F (un)) =
∞∑
n=1

exp(−R(⌊am(n)⌋+ 2)) =
∑
k≥0

exp(−R(k + 2))(nk+1 − nk). (45)

In addition, as stated in the (ii)

nk+1 − nk =
exp(R(k + 1))(1 + o(1))

R(k + 1)L1(R(k + 1)) . . . Lm−2(R(k + 1))
.

From here and estimates (44) and (45) we have

S =
∑
k≥0

exp(−r(k + 2))(1 + o(1))

R(k + 1)L1(R(k + 1)) . . . Lm−2(R(k + 1))

≤
∑
k≥0

(1 + o(1))

R(k + 1)L1(R(k + 1)) . . . Lm−2(R(k + 1))(Lm−1(k + 1))C
.

If we add here the equality
R(x) = xr(x)(1 + o(1))

(see (25)), then we come to the conclusion: series S converges. According to Lemma 2,
this means that equality (43) is true. □

4 Examples

Let’s consider some examples of application of the Theorems given above.
Example 1. (Geometric distribution) .
Let 0 < q < 1,

P(ξ = i) = pi = q(1− q)i, i ≥ 0.

Then

P(ξ ≥ i) = (1− q)i = exp(−γi), γ = ln
1

1− q
,

that is

R(n) = γn, r(n) = γ, am(n) =
1

γ
αm(n).
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It is obvious that condition (2) is fulfilled for the example when ρ = 0 and condition (7).
Hence according to Theorem 3

P

(
lim sup
n→∞

γξ̄n − αm(n)

Lm+1(n)
= 1

)
= 1.

In addition, it is easy to verify that conditions (8), (11) of Theorem 4 are also true and
d(n) = (L1(n)− L3(n))/γ. And therefore by Theorem 4 we have

P

(
lim inf
n→∞

(
ξ̄n −

⌊
L1(n)− L3(n)

γ

⌋)
= −1

)
= 1.

Example 2. (Poisson distribution).
Let

P(ξ = i) = pi =
λi

i!
exp(−λ), i ≥ 0, λ > 0.

It is known [15], [16] that the following asymptotic relations are true for the Poisson
distribution with parameter λ > 0:

R(n) =

(
n+

1

2

)
lnn− n(lnλ+ 1)− λ+

1

2
ln 2π + o(1), (46)

r(n) = lnn+O(1), (47)

a1(n) =
lnn

L2(n)

(
1 +

L3(n) + lnλ+ 1 + o(1)

L2(n)

)
. (48)

It is not difficult to check that for m ≥ 2 the condition (10) of Theorem 5 is fulfilled.
Indeed, from (47) and (48) we get:

r(a1(n))

Lm+1(n)
=
L2(n)− L3(n) +O(1)

Lm+1(n)
→ ∞, n→ ∞.

It is also easy to check that for m ≥ 2 the condition (8) of Theorem 4 is true. As agreed
(46) ∑

n≥1

1

R(n)L1(R(n))
∼
∑
n≥1

1

nL2
1(n)

<∞,

then for m ≥ 3 the series (13) converges.
Therefore, according to (ii) of Theorem 5 for m ≥ 3

lim sup
n→∞

(ξ̄n − ⌊am(n)⌋) = 0 a.s. (49)

Case m = 2 is also simple ∑
n≥1

1

R(n)
∼
∑
n≥1

1

nL1(n)
= ∞.
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Therefore, the series (13) diverges. According to (iii) of Theorem 5 we have

lim sup
n→∞

(ξ̄n − ⌊a2(n)⌋) = 1 a.s.

Next, we apply Theorem 4. As mentioned above, we make sure that condition (11) of
Theorem 4 is true. Then

lim inf
n→∞

(ξ̄n − ⌊d(n)⌋) = −1 a.s. (50)

Remark 1. Previously, the asymptotic behavior of extreme values ξ̄n a.s. for the case
of Poisson distribution have been studied in articles [15], [16]. The formulation of the
corresponding results, for example in [15], is somewhat different from the above equalities
(49)-(50). Of course, the statements obtained in [15] regarding the Poisson distribution
are close to equalities (49)- (50). But the direct proof of their equivalence does not seem
simpler than the proof of the equalities (49)-(50) themselves.

Example 3. (Birth and death processes).
Let X(t) be the birth and death process with parameters

λn = λn+ a, µn = µn, λ > 0, µ > 0, a > 0, n = 0, 1, 2, . . . (51)

(see [11, chapter 7, §6]).
Such process is called a process with linear growth and immigration. If state n describes

the size of the population at a certain moment in time, then the probability of transition
to state n+ 1 in a short period of time δ is equal to (λn+ a)δ + o(δ), and the probability
of transition n → n − 1 is given by µnδ + o(δ). Coefficient a can be interpreted as the
infinitesimal intensity of population growth due to immigration.

Assume that the following condition is fulfilled

ρ =
λ

µ
< 1. (52)

It is not difficult to verify that under condition (52) X(t) will be a regenerative process
of a special type with moments of regeneration S0 = 0, S1, S2, . . . , here Sk is the first
moment of entering state 0 after the k − th exit from it. Moreover

MT = ETk =
1

λ0p0
=

1

ap0
,

p0 =

(
∞∑
k=0

θk

)−1

, θ0 = 1, θk =
k∏
i=1

λi−1

µi
, k ≥ 1,

where Tk = Sk − Sk−1 is the duration of k-th regeneration cycle [10]. We are interested in
asymptotic behavior a.s. of extreme values of the population:

X̄(t) = sup
0≤s<t

X(s), t ≥ 0.
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Let
q(n) = P(X̄(T1) ≥ n) = exp(−R(n)).

It is known that

q(n) =
1/ρ− 1

C0

ρnna/λ(1 + o(1)),

where

C0 = lim
n→∞

na/λ
n∏
i=1

(
1− 1

1 + iλ/a

)
,

(see [14]).
This implies that

R(n) = − ln q(n) = n ln
1

ρ
− a

λ
lnn− C1 + o(1), C1 = ln

1/ρ− 1

C0

(53)

and

R(n)−R(n− 1) = r(n) = ln
1

ρ
+ o(1). (54)

The law of the iterated logarithm for the lim sup and a law of the triple logarithm for the
lim inf was established for the process X̄(t) in [14]. Here we strengthen this statement as
follows.

Let X(t) be the birth and death process for parameters λn, µn, that are given by
equalities (51) and are fulfilled by conditions (52).

Then

P

(
lim sup
t→∞

X̄(t) ln 1
ρ
− αm(t)− a

λ
L2(t)

Lm+1(t)
= 1

)
= 1, (55)

P

(
lim inf
t→∞

(
X̄(t)−

[
L∗
(

t

MT

)])
= −1

)
= 1, (56)

where

L∗(t) = L1(t)− L3(t) +
a

λ

(
L2(t)− L2

(
1

ρ

))
+ C1 + o(1),

C1 is given by the equality (53), MT and p0 are defined above.
To obtain equality (55), we use Theorem 23 and (i) of Corollary 2 from [2]. Thus, in

the conditions of example 3, we have

P

(
lim sup
t→∞

r(a1(t))(X̄(t)− am(
t
MT

))

Lm+1(t)
= 1

)
= 1. (57)

Considering equalities (54), (57), it remains to find a simple asymptotic formula for the
function am(t).

The function R(x) is a piecewise linear extension of the sequence (R(n)). By construc-
tion, it is absolutely continuous and increasing. Therefore
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R(am(t)) = R(R−1(αm(t)) = αm(t). (58)

In addition, the function R(x) in the whole points is given by equation (53). Then, choosing
ϑ = am(t)− ⌊am(t)⌋, we get

R(am(t)) = R(⌊am(t)⌋) + ϑ(R(⌈am(t)⌉)−R(⌊am(t)⌋))

= R(⌊am(t)⌋) + ϑ

(
ln

1

ρ
+ o(1)

)
= am(t) ln

1

ρ
− a

λ
ln⌊am(t)⌋ − C1 + o(1). (59)

Hence and (58) the following relation follows:

ln am(t) = L2(t)− L2

(
1

ρ

)
+ o(1).

Next, we substitute this expression for ln am(t) into equation (59). Putting the last equal-
ities together, we get

am(t) =

(
ln

1

ρ

)−1(
αm(t) +

a

λ

(
L2(t)− L2

(
1

ρ

))
+ C1 + o(1)

)
.

This equality and (57) complete the proof of (55).
Let us turn to relation (56). Denote by Ȳn the extreme value of the process X(t) for n

regeneration cycles:
Ȳn = X̄(T1 + . . . Tn).

It is clear from equality (53) that condition (11) of Theorem 4 is satisfied. Therefore

P
(
lim inf
n→∞

(Ȳn − ⌊d(n)⌋) = −1
)
= 1, (60)

d(n) = R−1(L1(n)− L3(n)).
Let N(t) denote the counting process for the sequence (T1 + . . .+ Tn)

N(t) = max(n ≥ 0 : T1 + . . .+ Tn < t), t ≥ 0.

It is clear that when t changes from 0 to ∞, the process N(t) runs through all natural
numbers a.s. And therefore, we can substitute the process N(t) instead of n into equality
(60). We get

P
(
lim inf
t→∞

(ȲN(t) − ⌊d(N(t))⌋) = −1
)
= 1, (61)

The next step, we use the well-known result of the renewal theory [5]:

lim
t→∞

N(t)

t
=

1

MT

a.s.,

18



that is by t→ ∞
lnN(t) = ln

t

MT

+ o(1) a.s.

From the last equality we get

R(d(N(t))) = L1(N(t))− L3(N(t)) = L1

(
t

MT

)
− L3

(
t

MT

)
+ o(1).

Next, we apply the asymptotic equalities (53), (54) once again. Just as in the case of the
am(t) function, simple calculations give∣∣∣∣d(N(t))− L∗(

t

MT

)

∣∣∣∣ = o(1),

∣∣∣∣d(N(t) + 1)− L∗
(

t

MT

)∣∣∣∣ = o(1),

where the function L∗(t) is defined in equality (56).
Note that equality (61) remains true even when the process N(t) is replaced by N(t)+1.

The relation (56) follows from this, because

ȲN(t) ≤ X̄(t) ≤ ȲN(t)+1.

Remark 2. The result close to equality (55) is given in Corollary 3 of [2]. Unfortunately,
it contains one inaccuracy (when proving it, the authors confused the functions αm(t) and
Lm(t), defined above).

The same remark also applies to Corollary 4 from [2] (it should be replaced by Lm(t) to
αm(t)).
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